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SEMIPARAMETRIC MODELS
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Bounded influence functions are used for robust estimation in semi-
parametric models. In this paper, we generalize Hampel’s variational
problem to semiparametric models and define the optimal B-robust influ-
ence function as the one solving the variational problem. We identify the
lowest bounds for influence functions and establish the existence and
uniqueness of the optimal influence functions in general semiparametric
models. Explicit optimal influence functions are given for a special case.
Examples are provided to illustrate the procedures for calculating the
optimal influence functions and for constructing the corresponding opti-
mal estimators.

1. Introduction. Efficient and adaptive estimation in semiparametric
models has been considered by many authors for the past 10 years. Most of
the effort has been devoted to calculating efficient influence functions and to
constructing efficient and adaptive estimates from them. The monograph by
Bickel, Klaassen, Ritov and Wellner (1993) (BKRW hereafter) contains an
extensive theoretical treatment of semiparametric models.

Robust estimation in semiparametric models has been explored recently by
some authors, for example, Beran (1978), Wu (1990) and Chen (1990). The
main reason for such interest comes from the concern that a few outliers in a
data set may totally distort the efficient or adaptive estimate. In his Ph.D.
dissertation, Chen (1990) extended the notions of influence functions to adapt
them to the structures of semiparametric models. He also introduced the idea
of “adaptive robustness.” Following the approach of Beran (1978), Wu (1990)
considered shrinking the Hellinger neighborhoods of certain semiparametric
models and explored the robust aspect of efficient estimates for these models.
Sasieni (1993) derived a large class of robust estimates in Cox’s models.
Cheng and Van Ness (1992) considered robust estimates in special errors-in-
variables models. However, there has been little consideration of the optimal-
ity problems related to semiparametric models. In this paper we shall extend
the approach of Hampel (1968) and Hampel, Ronchetti, Rousseeuw and
Stahel (1986) to semiparametric models.

Let X = (Q, %, u) be a measure space, where u is a o-finite measure. A
typical semiparametric model has the form

(1) #={P, ,;0€O®CcR? g <G},
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OPTIMAL INFLUENCE FUNCTIONS 969
where P, , is a distribution function on X. The parameter 6 is of main
interest, and G is a collection of functions. The nonparametric component g(-)
is usually of secondary interest. Sometimes, the model contains a finite
dimensional nuisance parameter n which requires different treatment than
g(-). The following examples are semiparametric models to be considered in
this article.

ExaMPLE 1. Symmetric location models. Assume that the data x,,..., x,
€ R! are i.i.d. and come from the model
X=0+¢,

where the center 6 is the parameter to be estimated; the error ¢ has density
g() that is symmetric about the origin and otherwise unknown. Adaptive
estimates in this model have been constructed by Stone (1975), Beran (1978)
and Bickel (1982).

ExAMPLE 2. Heteroscedastic regression models. Here we observe random
variables (x4, ¥1),...,(x,, y,), where y;s are real values, x;s are d-vectors
and they are related by

(2) yi = 0Tx; + exp(r(x;,1m))e, 6 R neR”.

The error ¢ is independent of x; and has density g(-) € G (the nonparamet-
ric component) that is symmetric about the origin. The main parameter here
is 0 € R?, and the nuisance parameter is 7 € R?. Some related references
include Carroll and Ruppert (1982) and Bickel (1978), although they have
focused on the situation when the scales are functions of 67x. However,
model (2) is included among those studied by Jobson and Fuller (1980).

ExXAMPLE 3. Semiparametric mixture models. Consider a semiparametric
model in which P, , = [ @, , dG(n). Each @, , represents a distribution with
density function f(:, 8, n). The set G contains all possible distributions of 7.

This model is motivated by the following considerations: while an estimate
of 6 is required in the parametric model {Q, n}, it is necessary to introduce an
incidental parameter 7;, which indexes the sampling distribution of X;. The
number of parameters becomes large as the sample size increases. This poses
certain difficulties for the consistent estimation of 6. To reduce the number of
parameters to be estimated, we treat the 7;s as random variables coming
from an unknown distribution G. Neyman and Scott (1948) were the first to
adopt such an approach. For a more complete discussion of the theory
associated with semiparametric mixture models, see Lindsay (1980) and
BKRW.

Influence functions are important tools in robust estimation. Hampel
(1968) used influence functions to measure robustness of estimators. Influ-
ence functions were originally defined by von Mises (1947) for functionals.
More specifically, assume that T’ is a R%valued functional on the set of all
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distribution functions and satisfies T(P, ) = 6 (Fisher consistency). The
influence function corresponding to 7'(-) 1s defined through the von Mises
derivative:

im T((l —t)P, , + tH) -0

t—>0 t

= fy(x,Po’g)dH.

In particular, H = §_, the point mass distribution at «x,

T((1-t)P, , +185,) -
P, = lim :

l//(x 0.8 ) t1—>0 t
The function y: X X% — R? is called the influence function of T'(-). It is
assumed that for any distribution P € &, (., P)ll € Ly(P) and [y(X, P)dP
=0.

Let x4,...,x, be ii.d. samples from P, g and let F be their empirical
distribution. One can estimate 6 by 0 = T(F ). Heuristically,

g, = T(Po’g +F,-P,)

@3 ~T(B)+ [ ¥(X.P,,)d(F, - P, ) + Remainder(F, - P, ,)

1
=0+ — Z‘, ¥(;, P, ;) + Remainder(F, - B, ).
i=1
Fernhollz/ 2(1983) provided conditions under which Remainder(¥, — -F )=
(n=1/%).

e do not restrict ourselves to estimates which can only be expressed as
functionals. In general, an estimate 0 is called (locally) asymptotically
linear if it satisfies (3) for a ¢ and if Remamder(F g =op, (712,
Correspondingly, the function ¢ is again called the 1nﬂuence funct1on of 0

One important feature of an influence function is that it enables us to
calculate the asymptotic distribution of the corresponding estimate. Indeed,
by the central limit theorem,

Vn (8, - 6) epo,gN(O,V(_zp, 0,2)),

where V(¢,0,g) = [¥(X,0,8)y(X, 0, g)" dP, , is the asymptotic covariance
matrix. - -

The influence function of an estimate also indicates the sensitivity of the
estimate to the observations. If the influence function is unbounded, then a
single outlier could totally distort the estimate. For parametric models,
Hampel (1968) called an estimate bounded robust, or B-robust, if its influence
function is bounded. The idea is to restrict the sensitivity of the estimate to
outliers. The use of estimates with bounded influence functions has become a
standard approach in robust estimation. However, a bounded influence func-
tion usually forces a compromise between efficiency and robustness. Attention
is then restricted to a subclass of estimates with influence functions that are
bounded by a constant, and we will find the best one within this class. Based
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on this idea, Hampel (1968) and Hampel, Ronchetti, Rousseeuw and Stahel
(1986) introduced the following criterion of optimality. For C > 0, find an
influence function ¢, to solve the problem

) minimize f ¥y dP, , over all influence functions
subject to sup, ||_4//( x)ll < C.

DEFINITION 1. An influence function ¢ solving problem (V) is called the
optimal (B-robust) influence function corresponding to C (or simply B-
optimal). An estimate is said to be B-optimal if its influence function is
B-optimal.

In this paper, we first identify the lowest bound that an influence can have.
Then we establish the existence and uniqueness of the optimal influence
functions in general semiparametric models. The optimal influence functions
are given explicitly for a special case which includes many interesting models.
In the examples we consider, optimal estimators can be constructed from the
optimal influence functions. Although it is difficult to provide explicit optimal
influence functions for general semiparametric models, we are able to approx-
imate the optimal influence function by a series of functions with explicit
expressions.

2. Preliminaries. Let us introduce notation and review some basic con-
cepts related to semiparametric models. We essentially follow the lines of
Chapters 2 and 3 of BKRW. For the semiparametric model defined by (1),
assume that P, , has density p(x, 6, g)(x) with respect to Lebesgue measure
(w). Throughout this paper the models are assumed to be regular, the
definition of which may be found in BKRW. Define the score function for 6 by

(4) 19(x70’g)=(il(x’o’g)’“-’id(x’G,g))
with

T
)

. J . J
1, = —1 0 ool = =1 0 .
1 0.)01 ng(xa ’g)’ y&d (90‘1 Og p(xa ag)

Let Ly(P, g) be the Hilbert space for which the inner product is generated by
P, ,. We define the tangent space for the nonparametric component. First,
however, introduce the set

M, = {t( x): t(x) is a score function for any submodel
(P, :m€(0,1), 8, G}}.

The tangent space P, is defined as the L,-closure of the linear span of M,,.
Usually P, is an infinite dimensional space for a semiparametric model. Let
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I1(|P,) be the projection operator from Ly(P, ;) onto its subspace P,. The
efficient score function for 6 is

(5) !?; = lo - H(19|P2)~

Correspondingly, I(, = A‘ll’; is the efficient influence function, where A =
[ 517 dP, ,. An estimate of 6 is efficient if it has an efficient influence
function. Begun, Hall, Huang and Wellner (1983) established the optimality
of efficient estimates using both convolution and minimax arguments. It can
be shown that the efficient influence function minimizes the trace of V(¢, 6, g)
and thus it solves problem (V) in the case C = «, h

In order to solve problem (V) for C < «, one needs to propose candidates
for influence functions. Assume that an estimate 6, of 6 is Gaussian regular
and is asymptotically linear with influence function . It is known from
Corollary 3.3.4 of BKRW that (-, 6, g) — 1, is orthogonal to both {1} and P,.
Thus, the influence function (-, 8, g) must satisfy the following conditions:

Consistency.
(i) [l_p(X, 6,g)dP, , =0,
(i) Ju(X,0,0)1F dP, , = 1y,
(iii) Ju(X,0,8)t(X)dP, ,=0, Vt(x)€EP,

Sometimes there may be a nuisance parameter 7 in addition to the nonpara-
metric component. Denote the score function for n by 1l,. The influence
function ¢ will satisfy one additional condition:

(iv) Ju(X,0,0)15dP, , = 0.

Convention. Even though an influence function is associated with an
estimate, a function satisfying the consistency conditions (i)—(iii) [and (iv)
when there is a nuisance parameter] is still treated as an influence function.

Hampel’s problem (V) may be reformulated as follows: minimize
f ]2 dP, , among all functions i satisfying the consistency conditions
(i)—(iii) [and (iv) when there is a nuisance parameter] and sup,|ly(x)|| < C.

Since P, may be of infinite dimension, it is difficult to solve problem (V)
directly. As is the case for parametric model, it is expected that there exists a
value C, such that problem (V) has a solution only when C is greater than
C,. In the next section we identify this lowest bound and establish the
existence and uniqueness of the optimal influence functions in general semi-
parametric models. In Section 3, we derive explicit expressions of the optimal
influence functions. Finally, in Section 4, we calculate the optimal influence
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functions and construct the corresponding optimal estimates for the exam-
ples.

3. The lowest bound. Throughout this section, we let (6, g) be fixed so
that we can suppress the dependence of P and ¥ on (6, g).

ProposiTioN 1. Let S, = {4: ¢ satisfies conditions (1)-(iii) and
esssup, ¢l < c}. If the set S is nonempty, then there is a solution to problem
(V). If both ¥y and ¥, solve (V) then they differ from each other at most on a
P-null set.

ProOOF. It is clear that the set S, is convex and closed. While the convex-
ity is straightforward, closedness follows from the fact that for any ¥, €8,
such that |y, — ¢llz, — 0, there is a subsequence of 4,, converging to 4//
almost surely, implying ess sup,|¢(x)| < c. By Theorem 3. 12 1in Luenberger
(1963), there exists a ¢, minimizing |||z, within S,. However, such a i,
may not be bounded by ¢ everywhere; i, can be modified on a P-null set such
that sup, [/l < ¢ and ||, llz, remains the same. Therefore, the modified ¥
solves problem (V). The existence follows.

To prove uniqueness, suppose that problem (V) has two solutions, ¢; and
¥, Introduce A = {x: y(x) = y(x)}. Define the function y,(x) = {J,(x) +
4//2(x)} /2. Note that ¢0(x) is also in S, and

Jloll* P = [l + 39l aP = [ + [

where A€ is the complement of the set A. By the strict convexity of || - ||, for
any x € A°,

g (2)IZ < Slga( )12 + ()17

Therefore, ¢; would not be the solution of problem (V) had it been that
P(A) < 1. Thus yy(x) and ¢,(x) are the same almost everywhere. O

Since S, © S, whenever ¢; <c¢,, S, is nonempty as long as S, is not
empty. We would like to find the lowest ¢ that makes S, nonempty. In other
words, we need to identify the lowest bound that an influence function can
have.

For simplicity, we temporarily assume that the parameter 6 is of one
dimension. Let 1 be the score function for 6 and let us introduce the space
H= P o {1} c Lz(P) where @ is the linear sum of two linear spaces. Denote
by H the L,-closure of H. We need the following assumption for the existence
of the optimal influence function:

(S) . i, H

Condition (S) is to distinguish 6 from the nonparametric component and
can often be verified by checking the structures of 1, and H. For instance, in
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the symmetric location model, the score function i,, is antisymmetric, while H
consists of symmetric functions. Therefore, condition (S) holds readily.

LEMMA 1. Under condition (S), there always exists a function Y& satisfy-
ing the consistency conditions (i)-(iii), which minimizes sup, |y(x)| among all
influence functions.

PROOF. Let IzL ={y e L(P): [yhdP =0,V h € H} be the orthogonal
complement of H and B ={y € H*, sup, |¢(x)| <1} be the unit ball in
H* . By Theorem 1 in Luenberger [(1963), page 119],

(6) 0 < min (|i, + AldP = max[ yi, dP.
heH yeB

Furthermore, the maximum on the right-hand side of (6) can always be
achieved by a function ¢* € B. We assume that sup, |*(x)| = 1, or else we
would consider ¢*(x)/sup, |¢*(x)| instead.

Note that [¢*1, dP + 0, which enables us to define ¢ = (Jy*1, dP) 1y
Then

) s ol = (fuoap) e el = ([0, ar| .

Suppose ¢ is another bounded influence function. Then ¢ satisfies consis-
tency conditions (i) and (iii) and thus ¢ € H*. By (7) and the definition of
P(x),

11/ . . . _
| swwtayle 4 = [ ()l dP = oy

Since i satisfies consistency condition (ii), sup, |¢F(x)| < sup, [y(x)|. O

Next we shall extend the above lemma to the case in which 6 is of high
dimension. Before doing this, we would like to review some basic concepts in
functional analysis. Let B be a Banach space and B* be its dual space. Let
a, and a be vectors in B. We say a, converges weakly to a if for any
functional f in B*, f(a,) — f(a). We write a, —, a for the weak conver-
gence. Correspondingly, suppose f,(-) and f(:) are vectors in B*. We say f,
converges to f in the weak* topology if for any a € B, f.(a) = f(a).

Let 1, be the vector of score functions defined by (4). Condition (S) needs to
be modified:

(8" a"l,¢H, VYacR%a#0.

It can be seen that condition (S’) ensures nonsingularity of the information
matrix for 6.

THEOREM 1. Under condition (S'), there always exists a function g
satisfying the consistency conditions (i)—(iii), which minimizes sup, || _¢(D|I
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among all influence functions. Conversely, if there exists a bounded influence
function, then condition (S’) holds.

Proor. Denote by M the set of all bounded functions satisfying consis-
tency conditions (i)-(iii). One needs to show that M is nonempty. Condition
(S’) implies that

i,eH,: H@{l] dJaez} i=1,...,d.

According to Lemma 1, for any i there exists a bounded function * which is
orthogonal to H, and satisfies [y*i,dP = 1. This shows that Yr o=
Wk, ..., yH" belongs to M and thus M is nonempty.

Let Ay = m1n¢eM||¢|Iw and ¥, €M such that lim e = Ay, Then
{$:n>1isa bounded set in L(P). The weak* compactness of the unit ball
in L (P) implies the existence of Y5 € M and a subsequence of {(,l:n n > 1}
(still denoted by ¥,), such that ¥, tends to ¢, in the weak® topology. It is
easy to show that Ay =lim, [l¢,ll. = IIz,l/OIIOO and thus ¢§ minimizes
sup, |l¢(x)|| over all influence funcEions.

Conversely, assume that M contains a bounded influence function . Let
a € R? be a nonzero vector. Without loss of generality we can even assume
that ||lal| = 1. Suppose aTl € H. Then there is a series {h, € H: n > 1} such
that h, »; a T{,. On the other hand, ¢, satisfies conditions (i)-(iii) and
therefore / (a z//O)h dP =0and [ (aTz,l/O)(aTlo) dP = 1. A contradiction comes
from the fact that 0 = [(a"yp)h, dP — [(a”y,)a"l,)dP = 1. O

DEFINITION 2. An asymptotically linear estimate 6,, of 0 is called the most
B-robust estimate if its influence function minimizes the sup norm among all
influence functions.

COROLLARY 1. Let C, = sup, |l¢§(x)|l. Problem (V) always has a solution
when the bound ¢ > C,. For any ¢ > C,, let .(-) be the optimal influence
function corresponding to bound c. Then [2(x)dP is a decreasing function

of c.

Proor. The first conclusion of the corollary follows directly from the
above lemma and Proposition 1. The second conclusion is evident because the
set S, is increasing with ¢. O

4. Explicit optimal influence functions. Explicit expression of opti-
mal influence functions is essential for the construction of the optimal
estimates. It is usually difficult to achieve this by solving problem (V) directly.
However, we can show that an influence function of a special form solves
problem (V). )

In one-dimensional parametric models, let 1, be the score function. For
¢ > 0, introduce the Huber truncation function 4 (x) = max(—c, min(x, ¢)).
Hampel (1968) showed that the optimal influence function must be of the
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form h (al, + b), where a and b are constants such that & (al, + b) satisfies
consistency conditions (i) and (ii).

As for multidimensional parametric models, let H (x): R¢ - R* be the
multidimensional version of the Huber function defined by

_h(liEl) (e
HA%) = =g i“mm(l’ ||3_c||)1“'

Hampel, Ronchetti, Rousseeuw and Stahel (1986) expected the optimal in-
fluence function to be of a similar expression: H,(Al, + b) for some matrix A
and a vector b. Shen (1994) established the existence of A and b in general
multidimensional parametric models.

In semiparametric models we would also expect the optimal influence
functions to be of the above form. In the following we generalize Theorem
4.3.1 of Hampel, Ronchetti, Rousseeuw and Stahel (1986) to semiparametric
models.

PROPOSITION 2. Denote by P, the L,-closure of P,. If for ¢ > 0, there exists
a d X d matrix A, a d-vector b and a d-vector of functions t(x) in P,, such
that the function @, = H,(Al, + t(x) + b) satisfies conditions ()-(iii), then
¥, solves problem (V).

In the presence of a nuisance parameter n € Rd',.the optimal influence
function is expected to be of a similar form. In fact, if 1, is the score function
for n and if there exists a d X d’ matrix B such that ¢, = H(Al, + Bl, +
t(x) + b) satisfies conditions (i)—(iv), then i, is an optimal influence function
for 6. The proof is similar to the above Proposition 2. This can be compared
with the optimal influence functions for partitioned parameters discussed in
Section 4.4 of Hampel, Ronchetti, Rousseeuw and Stahel (1986).

Note that #(x) need not be a vector of functions in the L,-space. Therefore,
Proposition 2 narrows down the scope of functions we will consider.

4.1. A special case. We are able to provide explicit optimal influence
functions for a special case. Following Huber (1964), we introduce a function
p.(): R > R* by

x%/2, if x| <c,

P %) = c?/2 + c(lxl —¢), iflxl >,
for 0 < ¢ < », and by py(x) = |x| and p(x) = x2. It can be seen that p/(x) =
h(x).

LEMMA 2. Suppose a random vector ¢ € R? satisfies E|| & || < . For any
¢ > 0, define a function f(a) = Ep(l¢ + al). Let a, minimize f(a). Then
laol < 2¢ + BEI£I.
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ProoF. First we assume that E{ = 0. In this case, we shall show that
llaoll < 2¢ + ElIfII If this were not true, we would have [la,ll > 2¢ + EH§II
Then by Jensen’s inequality,

f(ao) = Ep(Il€ + a,ll)
> p,(1 € + aol) = po(lla,l)
=c?/2 + c(llgoll - ¢)

>c?/2 + c¢(El€ll + ¢).
However,
f(0) = Epc(ll_gll) <c?2/2 + c(EII§H + c) <f(ao)-
This contradicts the fact that a, minimizes f(-). If E{+ 0, we consider
¢ — E¢. From what we have just shown, lla, + E€Nl < 2¢ + EI|§ E¢||, which
1mp11es llaoll < 2¢ + 3E|l§|l O

Let {P,, .} be a semiparametric model, with 6 € R? being the main
parameter and 1n € RY being the nuisance parameter. Assume that the
tangent space for g(-) is of the form
(8) Py = {v(T): »(T) € Ly(P), Ev(T) = 0},
where T is a fixed measurable function. In other words, P, is generated by
a fixed function T. As will be seen later, the examples that we consider are
of this type. Let l and l be the score functions for 6 and 7, respectively.
Again define H to be the L,-closure of P2 ® {1). It is evident that H =
{v(T): v(T) € L(P)}. Introduce the following condition:

(S") a’ly+bTl, ¢ H VYaecR!,VbeRY, lal+lbl+0.

Define a d X d matrix A = (a;;), with its off-diagonal elements a;; varying
freely and its diagonal elements satlsfymg the constraint

9) Z a; =1
i=1

Therefore, the matrix A has (d X d — 1) free variables. Let (,;) be the
elements of the d X d' matrix B and be allowed to vary freely. Denote by M
the set of triples (A, B, »(T')) such that A satisfies (9) and v(-) belongs to H.
Define a functional from M to R* by

f(A, B,2()) = [ p(llAl, + BL, + »(T)l)) dP.

THEOREM 2. Assume conditions (S") and (8) hold. Then for any ¢ > 0
there exist a scalar A # 0 and a triple (A, By, v(T)) € M that minimize f()
over M. Moreover, the function = H (A, i, + Bol + v(T)) satisfies condi-
tions (i), (iii), (iv) and

(10) Jwif dP = My,
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Defining , = )\‘1_(//, then s, is the optimal influence function corresponding
to bound C, = A~1

For some models it is relatively easy to calculate the conditional distribu-
tion of X given T. The above theorem provides a heuristic way to search for
A, B and v(-). For instance, when both 6 and 7 are of one dimension, one can
start with a fixed & and ﬁnd v(b,t) to minimize E{ pc(l + bl + T =t}
and then find b, to minimize

(11) Epfi, + bl, + v(5,T))

over all possible values of b. In fact, b, can be found by numerical calcula-
tion.

COROLLARY 2. When d = d’' = 1, there always exists b, to minimize 1.
Define A = [hfl, + by, + v(b,, T)}l dP. Then = A 'hfly, + bol, +
v(by, T)} is the optimal znﬂuence function with bound A~

4.2. General cases. For a general semiparametric model, it is possible to
approximate the optimal influence function by a series of functions of those
forms.

Let H be defined as in the previous section. Then H is a complete and
separable space. Thus, H has a countable basis which can be denoted by
{ex(x),...,e,(x)...}. Let H, be the linear space spanned by {1,e,,...,e,}. In
the following theorem 6 is assumed to be of one dimension, although this
requirement is not essential.

THEOREM 3. Let C, > 0 be defined as in Corollary 1. For any constant
¢ < Cy, let i} be the influence function solving problem (V) corresponding to

bound c. Then there exist a triangular array of real values {d", i = 0,...,n,
n=12...} and a scalar A, such that the function (x) = h (A i,+dp+
re; + - +dre,) satisfies: consistency conditions (i) and (ii), (//n( ) _L H, and

AQ) tends to (//c in the Ly-norm.

When ¢ = «, a,(x) == A, '(d} + dje; + -+ +d") represents the projection
of 1 to H,. Since H, tends to H and l is orthogonal to {1}, a,(*) tends to
77(10|H ) as n increases. The A, and d”s can be calculated numerlcally, and
therefore Theorem 3 gives an approx1mat10n to the efficient influence func-
tion.

5. Optimal estimates. Let x,,...,x, be iid. samples from By, In
order to construct the optimal estlmates it is necessary to estimate the
optimal influence functions. In particular, when the bound ¢ = %, the prob-
lem becomes constructing the efficient estimates. There is a general approach
in BKRW to constructing the efficient estimates, although no explicit esti-
mates are provided for general semiparametric models.
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When the bound ¢ < «, one needs explicit optimal influence functions
before being able to construct the optimal estimates. We believe that satisfac-
tory results can only be given for special models. As a general rule, we can
apply the one-step procedure explained in Chapter 7 of BKRW. Specifically,
we start with a preliminary Vn -consistent estimate 6,, and then estimate the
score function 1,. The next step is to estimate the optlmal influence function
by, say, (//n Thls is possible when the optimal influence functions have
explicit forms. In some cases we can show that ¢, satisfies conditions (1.4)
and (1.5) of Klaassen (1987). The one-step estimate is then defined by

A - 1”
0,=20,

Klaassen (1987) provided conditions under which 6, is the optimal estimate.

When the explicit forms of the optimal influence functions are not avail-
able, which may happen not only to the case ¢ < », but also to the case ¢ = «,
it is usually difficult, if not impossible, to estlmate the optimal 1nﬂuence
functions. Theorem 3 enables us to work on the subspaces of P We can
estimate the optimal influence function by estimating A, and d"’s The
one-step estimates can again be calculated from the estimated optimal influ-
ence functions. It is evident that a successful construction requires careful
selection of the dimensions of the subspaces. We have not attempted a
rigorous approach in this direction. However, Shen and Wong (1994) were
able to construct the nonparametric maximum likelihood estimates by the
method of sieves. They used the maximum likelihood estimates over paramet-
ric submodels to approximate the nonparametric maximum likelihood esti-
mate for a semiparametric model. They also calculated the rate of conver-
gence for the approximation. We hope that their approach could provide
insight to solving our problem.

6. Examples (Continued). We revisit the examples introduced in the
Introduction and calculate optimal influence functions for those models.

EXAMPLE 1. Symmetric location model. The underlying density is denoted
by g(x — 6); the score function for 6 is 1, = —g'(x — 6)/g(x — 6); the tan-
gent space consists of symmetric functions of (x — 6) that have zero expecta-
tions. For ¢ > 0, define A, = [h (), dP, ,. The optimal influence function
for this model has the following simple form:

(x,0,8) = A th (—gg,(x—(a)).

The one-step procedure can be used to construct the optimal estimator.
One can start with a preliminary estimate, say, the median 0 The 6, can be
dlscretlzed in the following way: form a grid of cubes with 51des of length

~1/2 gver R? and the discretized 6, is the midpoint of the cube into which
0 has fallen. The discretized medlan may be again denoted by 0 When n is
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large, 0 will fall into a compact set in which there are only a finite number of
cubes Wlth sides of length n~'/2. Hence 6, may be considered deterministic
for the purpose of applying asymptotlc theorles Having done this, we calcu-
late the residuals &, ==x;, — 6,, i = 1,...,n. Following Bickel (1982) or

Klaassen (1987), we can split the re51duals into &,...,¢, and
4,415+ > En,+n, Where n; = an, a is a constant and n, = n — n,. Note that

Bickel (1982) used an n, that tends to infinity at a lower rate than n.

One can estimate the score function from &,..., &n, by 1,(x) = {I,(x) -
1,(—x)}/2, where 1 is calculated in the same way as in (6.3) of Bickel (1982)
For c>0, we estlmate the optimal influence function by ¢, (x) =

A 1e)h A (x) with
1 7 o o
An(c) = Z hc(ln(gi))ln(gi)'
2 i=n;+1

Following the approach of Bickel (1982), it can be shown that the one-step
estimate

A - 1 » .
on = On + — Z ‘»[’n(gi)
ng i=n;+1

is the optimal estimate with influence function ,.

EXAMPLE 2. Heteroscedastic regression model. Let
f(x,y;0,m,8) = exp(—r(x,m))g(&)k(x)

be the joint density of (X,Y), where & = exp(—r(x, n)Xy — 67x) and k(x) is
the density of X. The score function for 6 is given by

!

i,(x,y:0,m, &) =V, log(f) = _%(S)xexp(_r(x,n)).

Similarly, the score function for 7 is

ln(x,y;é),n,g) =V, log(f) —{g;(s)e+1}Vnr(x,n).

The tangent space for g(-) can be written as

P, = {a(&): a(+) is symmetric about 0 and Ea(¢) = 0}.
We expect the optimal influence function for 6 to be of the form
(12) ¥ = H{Al,+Bi, +a(s))

for some matrices A, B and for a vector of symmetric functions a(-). For this
model an influence function § will satisfy consistency conditions (1)—(@iv). One
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needs the following condition for the existence of the optimal influence
function of the form (12):
For any vector o = («ay,..., ad)T,

P(gTL, = 0) = 1 implies that o = 0.

Note that condition (R) implies condition (S”) for this model. For any ¢ > 0,
we try to find a matrix A,(0, n, g) to minimize

(13) fpc(HAlo(x,y;ﬁ’,mg)”) dP g, 7, 6( %, )

over all matrices A = (a,;) satisfying constraint (9).

(R)

THEOREM 4. Under condition (R), for any c > 0 there exists a matrix

Ay(6,n, g) minimizing (13) over all A satisfying constraint (9). Moreover,
H.(A,0,n, g)l,) satisfies conditions (i), (iii) and (iv), and for some nonzero
scalar (6,7, g),

fH o(8,m, g)l } ,n,8) = (0,7, 8) L y5q-

Therefore, ,(-; 0,7, 8) = A(0,n, g) *H{A,(0,n, &l,} is the optimal influ-
ence functicn corresponding to bound Ay(0, 7, g)!

PrROOF. The proof follows the same lines as those of Theorem 2. O

The one-step procedure can also be used to construct the optimal esti-
mates. Let (x,,y,),...,(x,,y,) be iid. random samples from model (2).
Assume that 6, and 7, are the preliminary Vn -consistent estimates of § and
n, respectlvely, that is, Vn (6, — 8) = Op(1) and Vn (5}, — 1) = Op(1). The
existence of 6, and 7, will not be discussed here. The estimates 6, and 7,
can also be discretized so that they may be considered deterministic.

One can compute the residuals: & = (y;, — 6 x)exp{—r(x;, 1,)},
1,...,n. As in Example 1, split the residuals into {e,...,¢,} and
{64,415+ +> &0 4n,)» Where n = n; + n, and n; = an with a being a constant.
The first part of the &’s can be used to estimate (g’ /g)(x) in the same way as
in (6.3) of Bickel (1982). Assume that §,(x) is an antisymmetric version of the
estimate. We can estimate the score function 1,(x, y; 6, 0, g) by

1L.(x,5:0,m) = 4.{(y — 67x)exp(—r(x,m))}x exp(—r(x,n)).
For ¢ > 0, let matrix A, minimize among all A satisfying (9) the following
expression:

ffpv{ }exp(—r(x,ﬁn))
(14) { (y — 07x)exp(—r(x,7,))} dyk(x) dx

= [ [ {1 Adu(5) x exp(—r(x, 7))I}&n() dy k() dx.

EXT On,nn)
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The same approach as in Theorem 4 shows that for some nonzero scalar A,
A, will satisfy

[ [H{A,4.(3)x exp(—r(x,#,))}da(¥) ="

X exp(—r(x, ﬁn))gn(y) dyk(x) dx = /\nIdXd'

The optimal influence function ¢,(x, y; B, 6, g) can be estimated by
bo(x,9;0,m) = A, HLA L (x,y;0,m)}).

Finally, apply the one-step procedure to obtain the optimal robust estimate

N - 1 = -
(15) 0n= 0n+ - Z l//n(xi’yi;07;""’,;)'
ng = ni+1
Under certain conditions, it can be shown that én is an asymptotically linear
estimate of 6, with influence function ¢, defined by Theorem 4.

EXAMPLE 3. Semiparametric mixture model. We consider a special kind
of mixture models, that is, the exponential mixture models, in which, for

given 1,
(16) f(x,0,m) =exp{n"T(x,0) +S(x,0) —b(6,n)}.
The incidental parameter n has a distribution G(-). ‘ )
_ For simplicity, assume that 6 is of one dimension. Let T'(x, 6), S(x, 6) and
b(6, n) be the partial derivatives of T'(x, 6), S(x, ) and b(6, n) with respect
to 6. Theorem 4.5.1 and Corollary 4.5.1 of BKRW show that the score function
for 6 is
(17)  1,(X,6,G) =T(X,0)E(nIT) + S(X,0) — E(b(0,1)IT)
and that the tangent space for G is
P, = {w(T(X,0)): w(T(X,0)) € Ly(P) and Ew(T(X,9)) = 0}.
The optimal influence function is expected to be of the form
(18) ¥ =2"h (1, + wo(T) + ay),

where w,(T) € P, and A and a, are constants.
THEOREM 5. For any ¢ > 0, let w(t, 0, G) be the solution of the equation
(19) E{h,(1,(X,6,G) + w)IT(X,0) =t} = 0.

Define y, = h fi,(x,0,3) + w(T(x, 0),0,G)} and A = [y;1, dP, . Then ¢ =
M"Yy, is the B-optimal influence function with bound A~ ‘c.

Proor. It is evident that ¢ can be written in the form of (18) with
ay = A 'Ew(T(x,6),0,G) and w,(T) =w(T) — Ew(T) € P,.
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Consistency conditions (i) and (iii) follow from the fact that E(4|T(x, 6) = ¢t)
= 0 for any ¢, and condition (ii) is straightforward. O

A special case of model (16) is when T'(x, ) = T(x) and S(x, 8) = S(x)6.
The score function in (17) becomes

Iy(x,0,G) =S(x) — E(b(6,n)IT).
The optimal influence function reduces to

W(x) = AR {S(x) + w(T(x),0)),
where w(t, 6) solves the equation
(20) E{h.(S(x) + w)IT =t} =0.

In this situation, the problem is equivalent to robust estimation for the
parametric model derived by conditioning X on 7. Since the conditional
density of X on T does not depend on the unknown mixing distribution G,
the calculation of the optimal influence function becomes much simpler in
this case.

A famous example of a mixture model is the Neyman—Scott (scale) model,
in which a random vector X = (X®,..., X®)T has components that are
independently and identically distributed according to N(», o2). The main
parameter is § = —(20 %)™ !; the nuisance parameter is n = vo~ 2. The condi-
tional density of X for given 7 is

k k 2
F(x,0,m) = exp{n L 1 + 0 % ()" - f‘1(~"’~ + 1n(_2)) -
io1 o1 2 20 0
The nuisance parameter 7 is assumed to follow a distribution G(-). Then the
class of (unconditional) distributions of X constitutes a mixture model. Define
k k
T(X) = L X9, S(X)= ¥ (X9)" and

Jj=1 j=1
2

b(0,7) = g{—g-é +ln(——g)}.

The score function for 6 is 1, = S(x) — E(&(6, n)|T). For ¢ > 0, choose w(T")
such that

(21) E{h (i, + w)T} = 0.

Let U(X) = —20252 (X9 — T(X)/k)?. Then S(X) = -U(X)/26 +
T?(X)/k. It is well known that U(X) is independent of 7(X) and has a x?_;
distribution. Write g,_,(u) for the y2 , distribution density. Then (21) is
equivalent to

1
fhc(—g—o—u + wl)gk_l(u) du = 0.
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Note that w,(-) is a function depending only on 6. Since g,_; is a
nonatomic density, it is easy to show that w,(8) is a continuous and strictly
monotonic function of 6.

Let M) = [hf{-U(X)/260 + w,(0)}S(X)dP,; and ¢, = A~ ()
Xh{-U(X)/26 + w,(0)}. Theorem 5 implies that ¢, is an optimal influence
function corresponding to bound A~1(8)c.

We shall construct the optimal estimates corresponding to the optimal
influence function just derived. Suppose we have iid. samples X, =
(XD,...,X™), i=1,...,n, from the Neyman-Scott (scale) model. Let §, be
the M-estimate solving equatlon

n k
Y h X (Xi(j) - T(Xi)/k)2 +wy(0)| =0.
i=1 \j=1
Using the standard approach for parametric models, we can easily show that
6, is the optimal estimate corresponding to i,. A

In an extreme case, ¢ = , it can be seen that w,(§) = —(k — 1)o? and 6,
becomes the efficient estimate of 6, which in turn gives the efficient estimate
of o2:

1
TR Zl Zl(x<f>—T(X>/k)

Another example is the two sample exponential mixture model where, for
given 7, a bivariate random vector X = (x@, x®)T has a conditional density
f(xy, x5,0,7m) = exp{—n(x; + 0x,) + In(n?)}, Xy, %9 > 0.

The nuisance parameter 7 is distributed according to G(-). Define T'(X, 0) =

—(XD + 6XP) and b(6, n) = —In(n?0). The score function for 0 is
1,(X,6,G) = —X®E(n|T) — E(b(6,7)IT).

The marginal distribution of T is

pr(t,G) = —Constant X ¢ [ n? exp(nt) dG(n), for ¢ <O0.

The conditional density of X® given T is —(T'/6)Beta(1, 1), where Beta(1, 1)
is the beta distribution. Chapter 4 of BKRW shows E(n|T) = (p%/ppXt) —
T~ 1. To obtain the optimal influence function, we solve w from equation

E{h,(-XPE(n|T) + w)IT} = 0.
By the symmetry of the beta distribution, w(T) = —(T'/260) E(%|T). Then the
optimal influence function is given by

xD — gx@
(22) (2D, x®;0,G) = A, lh“{(__—z—o_)E("lT >}’

where A, is the normalizing constant.

Let (), x®),...,(x{P, x?) be iid. samples from P, ;. We construct the
optimal estimate for the extreme case ¢ = 0. In this case, the optimal
influence function becomes ¢, = A~ ! sgn(X® — 6X®). Since the conditional
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expectation E(n|T) is always nonnegative, it disappears from (22). The
estimate 6, = med{XV/X®: i = 1,..., n} solves equation

n

2 sgn(x — 6x?) = 0.
i=1

Thus, 6, is the most robust estimate with influence function Yo-
7. Technical details.

PrOOF OF PROPOSITION 2. For any function ¥,
(23) llyl® = lly — Al, — ¢t - BI* + 297 (AL, + ¢t + b) — AL, + ¢ + b°.

Let ¢,(-) be a series of functions in P, converging to t(:) in the L;-norm and
satisfying [|z,(x)ll < l£(2)l, for all x. Define ¢, = H,(Al, + t, + b). Then by
(293), -

JIg,)2 dP = [ily, — Al, - ¢, — II* dP
(24)
+ 2/¢_p,f(A10 +t,+b)dP - fIIAlo +t, +bl2dP.
Note that i, minimizes ||y — Al, —t, — bl> dP among all functions

bounded by c. Thus if ysatisfies consistency conditions (i)—(iii) and is bounded
by c, then (24) implies

g, 1> ap

< [lly — AL, — ¢, - bI* dP + 2 yT(Al, + £, + b) dP

(25)
— [ 1AL, + ¢, + 8I* dP

= f||¢_/,||2 dP +2[ yT(Al, +¢, + b) dP - 2 y”(Al, + ¢, + b) dP.

Since ¢, is bounded by ¢ and #,(-) = ¢(-) in the L;-norm, the dominated
convergence theorem yields ¥, = , in probability P and thus in the L,-norm
as well. Because y, satisfies consistency conditions (i)-(iid),

lim/_z//nT(AL, +t, +b)dP
= f%T(AL, +t+b)dP
— tr [ (Al + £+ b)" dp = tr [ (AL, +¢+ b)" dp

= [¢"(Al, + ¢t + ) dP.
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By (25), [ ligolI* dP = liminf, [ lly,I* dP < [ l||* dP, which shows that [
solves problem (V). O

PrOOF OF THEOREM 2. Let (A,, B,, v,(-)) € M be such that

(A, Byosp() =me=  min_ f(A,B,2()).

Condition (S") implies that all the elements of A, and B, have to be
bounded. There exist subsequences of A, and B, (stlll denoted by A, and
B,) which converge to some matrices A0 and BO, respectively. It can be
shown that A, continues to satisfy constraint (9). For any fixed ¢, let v/(¢)
minimize E{pc(HA l + B, l + v|DIT = ¢}. Then

E{ p.(I1 4,1, + B, + 7(T)I)IT = ¢}
< B{p (14,1, + Bi, + n,(D)I)IT = t}.
Hence E{p (A1, + Bn!n + v,(T)ID} = m. On the other hand, Lemma 2 yields
lz(2)l < 2¢ + BE(lA,, + BT = 1).

Thus, v(T) € L2(P) and {y,(T): n > 1} is a bounded set in L,(P). By weak
compactness, there is a subsequence of {1,(T)} [still denoted by »,(T)] and a
function vo(T) € H, such that y(T) =, vo(T) in L,(P). Since the functional
f(A, B, v()) is convex and is strongly contmuous in the sense of the Ly-norm,
it follows from Proposition 38.7 in Zeidler (1985) that

F(Ag, By, 2o(T)) < liminff(4,, B,, 5(T)).

Thus the triple (A, By, vo(")) belongs to M and minimizes f(-) over all
(A,B,v()) € M. Let ¢y = H, (Aol + Bol + vo(T)). Taking the partial deriva-
tives of f(-) with respect to elements of B, shows that ¢ is orthogonal to i
and therefore condition (iv) follows. Taklng the Gateaux derivatives of f(: )
with respect to v, yields conditions (i) and (iii).. Finally it remains to
establish (10). Write ¢ = (¢, ..., ¥,)T and 1, = (,,...,1,)7. We first take the
partial derivatives of f(-) with respect to the off-diagonal elements of A and
obtain

f.//,.ide=0, i=1,...,d,j=1,...,d,i #J.

By constraint (9), a;q = 1 — ay; — ** =@, _1)4_1)- Taking the partial deriva-
tives of f(-) with respect to a;;,..., a4 1yq_1) gives

JwdidP - [yi,dP=0, i=1,..,(d-1).

Define A = [y,1, dP. Then [y,i,dP = A, i = 1,...,d, which completes the
proof. O
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Proor oF THEOREM 3. Repeating the proof of Lemma 1 we can show that
there is the lowest bound C,, for functions satisfying conditions (i) and (ii)
and being orthogonal to H,. Clearly, C, is less than or equal to C, and must
in turn be less than or equal to c¢. From Corollary 4 of Shen (1994), for any
¢ > C,, there exist a scalar A, and a function

a,(x)=dg +dje, + - +dre, €H,

such that ¢,(x) == h,(A,1, + a,(x)) is orthogonal to H, and [y,1, dP = 1.

Since sup, [§,(x)| < ¢, {¢,: n > 1} is a bounded set in L (P). By Alaoglu’s
theorem [see, e.g., Dunford and Schwartz (1966)], there is a subsequence of
,, which can still be denoted by ¢,, and a function ¢, € L (P), such that i,
tends to ¢, in the weak* topology. We shall show that ¢, is the optimal
influence function corresponding to bound c. In fact, as a result of weak*
convergence,

(26) [ Yol, dP = 1imf Y, dP =1,
and for any k£ > 1 and any t(-) € H,,

[ wot(x) dP = Tim [ y,¢(x) dP = 0.

This implies that ¥, L H,, V k, and, in turn, ¢, L H. Therefore, Y, satisfies
consistency conditions (i)-(iii). Next we need to show that ¢, minimizes
/% dP among all influence functions bounded by c. Suppose i, is another
influence function also bounded by c. Then since ¢, is given by truncating
Al +a(x)at te,

f(‘/’n - )‘nib“ _an(x))2 dp S_/‘(l/’l - Anib‘ _an(x))2 dpP.

Since both ¢, and ¢, satisfy consistency conditions (i) and (ii) and are
orthogonal to a,(x), the above inequality implies

[ w2 dP < [y} dP + 21, [ wd,dP - 2a, [ dii, dP = [y2dP.
The weak* convergence argument and the Cauchy—-Schwarz inequality lead
to
1/2 1/2
2 . . . . 2 2
(27) [widP= hrllnlelodjn dP < Im}llnf(fzpo dP) (f¢ dP) ,
implying
(28) f Y2 dP < liminff $2 dP < f ¥2 dP.
n

It thus remains to prove that ess sup, [y(x)| < c. However, this follows from

l[ Yo fdP

limf c//nfdP| < cflfIdP, V fe L(P).
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Therefore, i, solves problem (V) corresponding to bound c. By uniqueness of
the optimal influence function, i, = *.

Finally, we derive the strong convergence of ¢, in the L,-norm. Suppose
that ¢, is another subsequence of {i,}, converging weakly to ;. Then
also solves problem (V) with bound c. By unicity, ¢* = ¢ and therefore the
original sequence i, converges weakly to the unique ¢*. Hence, [2 dP <
[(g})? dP since ¥ L H,. It follows from (26) and (28) that [(y})?>dP <
lim,, [2 dP. Therefore, lim, [¢,2 dP = [(y*)* dP. By Vitali’s theorem (see,
for example, Section A.5 of BKRW), [ (i, — #,)>dP — 0 and thus ¢, con-
verges to ¢ in the Ly-norm, finishing the proof. O
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