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ON A SEMIPARAMETRIC VARIANCE FUNCTION MODEL
AND A TEST FOR HETEROSCEDASTICITY'

By HANS-GEORG MULLER AND PENG-LIANG ZHAO

University of California, Davis and Merck Research Laboratories

We propose a general semiparametric variance function model in a
fixed design regression setting. In this model, the regression function is
assumed to be smooth and is modelled nonparametrically, whereas the
relation between the variance and the mean regression function is as-
sumed to follow a generalized linear model. Almost all variance function
models that were considered in the literature emerge as special cases.
Least-squares-type estimates for the parameters of this model and the
simultaneous estimation of the unknown regression and variance func-
tions by means of nonparametric kernel estimates are combined to infer
the parametric and nonparametric components of the proposed model. The
asymptotic distribution of the parameter estimates is derived and is
shown to follow usual parametric rates in spite of the presence of the
nonparametric component in the model. This result is applied to obtain a
data-based test for heteroscedasticity under minimal assumptions on the
shape of the regression function.

1. Introduction. Regression models with nonconstant error variance
are common in practice. Consider the fixed design regression model
(11) yi,n =g(ti,n) + 6i,n’
where y, , are measurements of the regression function g at ¢, ,, contami-
nated with independent errors §;, such that E§;, = 0 and ES?, = o2(¢; ).
It is thus assumed that var(y;,) = o2(¢;,), where o?(:) is the variance
function.

We address here the problem of inference for heteroscedasticity in (1.1)
whenever we do not want to make parametric assumptions on the regression
function g. The idea is to find an intrinsic measure of heteroscedasticity, no
matter what (linear, nonlinear or other) shape the regression function has;
we will show that, even under nonparametric assumptions on the regression
function, Vn -consistent inference is possible (Theorem 4.3) and that this
extends to a data-adaptive version (Theorem 5.1).

To recognize heteroscedasticity, that is, a nonconstant variance function
0 2(-) in (1.1), is an important task for the data analyst: Efficient inference for
the regression function itself requires that the heteroscedasticity be taken
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into account; this may lead to transformations of the data [Box and Hill
(1974)], weighted least squares procedures [Fuller and Rao (1978)], variable
bandwidth nonparametric regression smoothing [see Miiller and Stadtmiiller
(1987), Section 4] or modified likelihood procedures [Davidian and Carroll
(1987)]. Furthermore, establishing heteroscedasticity and estimating vari-
ance functions which relate the error variance to the predictors is sometimes
of interest in its own right [see Carroll and Ruppert (1988) or Miiller and
Stadtmiiller (1987) for examples].

Diagnostic plots to assess heteroscedasticity are a time-honored tool of
exploratory data analysis [cf,, e.g., Cook and Weisberg (1982) for a discussion].
Most of these procedures are based on residuals which are obtained after
fitting a parametric linear or nonlinear model to the data, usually by least
squares or likelihood methods. The same applies to formal tests of het-
eroscedasticity; a rather complete discussion of such tests is given in Carroll
and Ruppert [(1988), Section 3.4]. Without exception, these tests are based on
completely parametrically specified regression and variance functions, g and
o0 %(-), and usually are variants of tests which make use of least squares
[Harrison and McCabe (1979), Jobson and Fuller (1980)] or likelihood meth-
ods, such as score tests [Breusch and Pagan (1979), Cook and Weisberg
(1983)], quasilikelihood ratio tests and pseudolikelihood tests [Davidian and
Carroll (1987), Carroll and Ruppert (1988)]. Koenker and Bassett (1981)
discuss tests for heteroscedasticity in econometric contexts.

While some of these authors extend the classical framework somewhat to
include “robust” tests [Carroll and Ruppert (1981)], the case where no
parametric form is assumed for the regression function has not been investi-
gated so far, to the knowledge of the authors. We develop here a model where
it is only assumed that the true regression function is known to be “smooth”
(nonparametric part of the model) and that the relation between variance
function and regression function follows a generalized linear model (paramet-
ric part). In our approach, the role of the residuals is replaced by nonpara-
metric estimates of the variance function. No distributional assumptions are
made on the distribution of the errors, except for some moment properties,
essentially amounting to existence of the eighth moment.

The relation between regression function g and variance function o 2(-) is
assumed to follow the generalized linear model
p—-1
T 6H,(g(1)),

Jj=1

(1.2) G(a(¢)) = 6, +

with known link functions G, H;, 1 <i < p — 1, and unknown parameters 6;,
0 <i<p— 1. As special cases of our rather general semiparametric ap-
proach, one obtains almost all completely parametrized models that were
considered previously in the literature, including the so-called Poisson,
Gamma and lognormal models [McCullagh and Nelder (1989)], as well as the
“power-of-the-mean model” and the “exponential variance model” which are
described in detail in Carroll and Ruppert (1988).
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We give now three example scenarios motivating the usefulness of the
proposed model by specifications of (1.2).

(A) Consider an experiment where one has reason to assume that the
responses follow a binomial distribution, possibly with overdispersion. How-
ever, the relation between mean response and covariate ¢ is not known well
enough to be parametrically (linearly or nonlinearly) specified. We are inter-
ested in the nature of the dependency of the mean on the covariate and in an
assessment of overdispersion.

The proposed approach models the mean—covariate relationship g(¢) non-
parametrically and the variance function by o 2(¢) = oZg(¢)X(1 — g(¢)); this is
a special case of the polynomial variance model, a submodel of (1.2) which is
discussed further in Section 2. Inference for g(-) and o as developed below
is then of interest. The test introduced in Section 5 could be applied in this
context to test of = 1 versus 0-02 > 1, that is, no overdispersion versus

overdispersion.

(B) Consider an experiment where continuous measurements are recorded
and it is suggested that the responses have approximately constant coefficient
of variation. One would like to know whether this is indeed the case. At the
same time, the dependency of the mean on the covariate cannot be parametri-
cally specified. We model g(#) nonparametrically and embed the variance
function in the power-of-the-mean model (see Section 2), o 2(¢) = oZg(¢)?%.

Inference for g(-), o2 and 6, is of interest. In particular, the suggested
constant coefficient variation model corresponds to 6, = 1. An estimate for
the functional relation between variance and mean is obtained by estimating
0,. This requires, of course, that the power-of-the-mean model is not grossly
inappropriate.

(C) Assume the responses are count data. “Quasi-Poisson,” “overdisper-
sed Poisson” and “quasi—negative binomial” models are considered as possi-
bilities for the relation between variance and mean, whereas the regression
function g, relating the mean to the covariate, cannot be specified. One would
like to obtain information on g and at the same time differentiate between
the possible variance functions. Then incorporate g(#) nonparametrically and
adopt the polynomial variance model in the following form:

o?(t) = 6,8(t) + 6,8%(¢).
Estimation of g and of (6, 6,) is of interest. Tests can be performed to
compare the fit of models with 6, = 1, 6, = 0 (Poisson), with 6, > 1, 6, =0

(overdispersed Poisson) and with 6; =1, 6, > 0 [negative binomial, see
McCullagh and Nelder (1989), page 373].

" Our semiparametric variance function model is described in full detail in
Section 2. Least-squares-type estimators for the parametric and kernel esti-
mators for the nonparametric components of our model as well as iterative
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simultaneous estimation of these components by a Gauss—Seidel scheme will
be discussed in Section 3. We establish uniform convergence with rates for
estimates of the regression and variance function in Theorems 4.1 and 4.2.
One of our central results is Theorem 4.3, which provides the joint limiting
distribution for the estimates of the parameters relating variance and regres-
sion functions under parametric rates of convergence.

Since the asymptotic covariance matrix of the parameter estimates con-
tains unknowns, consistent estimators are developed in Lemma 5.1. This
result is then applied to arrive at a data-based test for heteroscedasticity as
given in Theorem 5.1. The null hypothesis of homoscedasticity corresponds to
6, = - = 6,_; = 0in (1.2). The power of this test for a family of contiguous
alternatives is investigated. Auxiliary results and proofs are collected in
Sections 6 and 7.

To conclude this section, a word of caution. The nonparametric procedures
which are a part of our semiparametric approach typically require moderate
to large sample sizes and therefore may not be fully feasible for small sample
size situations. Note that the main results providing justification for our
approach are asymptotic in nature.

2. A semiparametric variance function model. We consider the re-
gression model
(Ml) yi,n =g(ti,n) + 6i,n’
where g(-) is an unknown regression function and o 2(-) = var(8(-)) is an
unknown variance function, both defined on [0, 1]. The points ¢, , at which
measurements y; , are taken are assumed to be fixed but not necessarlly
equidistant for each n. They could also have arisen from a random design
regression experiment, in which case our analysis would be conditional on the
observed realization of the design. In order to have available strict bounds on
the spacings of the ¢, ,, we assume that they are generated as

i,n?

n—1
where F is a distribution function on [0, 1] which has a Lipschitz continuous
density f = F' satisfying

(M3) 0< 1nff()<supf()<oo
o, [0,1]

Note that the common equidistant case corresponds to £ = 1 on [0, 1].
For the errors §;, = 8(¢; ), it is assumed that they are independent for
each n, with

i—1
(M2) tin =F‘1( ), 1<i<n,

Eai,n = O’ Eazz,n = Uz(ti,n)’

E813,n = l“’3(ti,n) ’ E8i%n = /‘L4(ti,n) ’
for moment functions u4(-) and u,(-), which are continuous on [0, 1], and that
(M5) there exists an s > 8 such that E|§; ,|° < ¢ < .

(M4)
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Assumptions (M4) and (M5) are rather general, allowing for all kinds of
error distributions, including skewed distributions.

The nonparametric part of our model consists of smoothness assumptions
on regression and variance functions g and o 2(-). Let £ > 2 be an integer.
We require

(M6) g, o*(-) e #*([0,1]),
where #*([0,1]) denotes the space of % times continuously differentiable

functions on [0, 1]. The parametric part of our semiparametric model relates
regression function g and variance function o 2(-) as follows. Assuming that,

for some integer p > 1, p link functions G, Hy,..., H,_;: R - R are given,
let

p—1 p—1
(M7) G(a®(")) = 6o+ X 6H;(g()) = X 6;Hi(g(")),

j=1 =0

defining H(-) = 1. The link functions G and H; are supposed to satisfy some
regularity conditions:

(M8) G,HjE%Z(R), 0<j<p-1;
and

G(-) # const and, for any constant vectora = (a,,..., ap_l)T #0,

2
1 p_1
(M9) fof(u)[ ZO ajHj(g(u))] du >0,
j=
where a” denotes the transpose of a vector a.

Our first aim is to estimate the functions g(-) and o 2(:) and the parame-
ters 6,...,0,_;. Of particular interest is the question whether rates of
convergence for the parameter estimates are the usual parametric ones in
spite of the nonparametric smoothness assumptions (M6). Theorem 4.3 an-
swers this in the affirmative, while Theorems 4.1 and 4.2 guarantee the usual
nonparametric rates for function estimates g and 4 2(-).

Assumptions (M8) and (M9) impose weak technical restrictions on the link
functions G and H;. Model (M7) is thus very general. Consider, for instance,
the following models, which generalize other models that have been previ-

ously considered in the literature:

1. power-of-the-mean model, o*(t) = oZg(t)?’ [Carroll and Ruppert (1988),
McCullagh and Nelder (1989)];
2. exponential variance model, o*(t) = o exp(20g(¢)) [Carroll and Ruppert
(1988)];
3. polynomial variance model, a*(t) = By + B(g(t)** + -+ +B,_(g(t) %1,
with known powers «; > 0, all different, where it is assumed that always
o) =0

Model 1 comprises Poisson and Gamma regression, and model 3 contains
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the “constant coefficient of variation model” o %(¢) = o2g(t)?, among many
other special fully parametric models discussed in McCullagh and Nelder.

It is easy to see how models 1-3 can be expressed in the general form (M?7).
For model 1 take (denoting the identity function by id) G = log, H, = log,
whence 6, = 2 log o, and 6, = 26. For model 2, the corresponding choices
are G = log and H, = id, whence 6, = 2 log o, and 6, = 26, and for model
3,G=id, H;=x%, 0y=0,0,=6,,i=0,...,p — 1.

We note that, for instance, in the power-of-the-mean model, a test for
heteroscedasticity corresponds to testing H,: 6 = 0. Beyond developing this
test as a special case of a general procedure, our approach will also provide
an estimate of 6, which then helps to determine the relation between mean
and variances within this particular model.

One can ask what happens in case the assumed specification of the
variation—mean relationship (M7) is inaccurate. Of course the specific models
can be chosen as fairly large parametric families, as in Models 1-3 above, and
this flexibility may render such misspecifications less likely. If nevertheless a
misspecification occurs, the estimates for the nonparametric parts g(-) and
o 2(-) of the model (Section 3.1) will still be consistent with the same rates of
convergence as in Theorems 4.1 and 4.2. They may, however, suffer from a
loss in efficiency. The estimate for the parametric part 8 of the model, on the
other hand, possibly would cease to be consistent. The estimates then corre-
spond to “projections” on the misspecified family. Often one has some basic
idea about the nature of the response data which allows specification of a
family of parametric models (M7), whereas knowledge often is lacking regard-
ing the nature of the dependency of the means on the covariates. Our
approach targets this situation.

3. The estimators.

3.1, Estimators for the nonparametric components. The nonparametric
components of our semiparametric model (M1)-(M9) consist of the regression
function g and the variance function o 2(-). These functions, which are
smooth according to (M6), could in principle be estimated by various available
nonparametric regression procedures [see Eubank (1988) or Miiller (1988)].
We consider here a class of kernel estimates [see Gasser and Miiller (1984)],
but the following results can be easily extended to cover other nonparametric
regression methods as well, like those proposed by Priestley and Chao (1972),
local polynomial fits or smoothing splines.

Define

3.1 W.(¢t W. (¢t —1 SlK t_u)d 1<i
. ; =W. = <t<n,
( ) l( ) Ln( ) b'/;'_1 ( b u, 12 n

where sy =0, s, =1 and s; = 3(¢;, + ¢;,,), 1 <i <n — 1. Then the kernel



952 H.-G. MULLER AND P.L. ZHAO

estimators for g and o 2(-) are given by

n
(3.2 g1)= Y W)y,
' }‘L n n
(3.3) 62t)= L W()y2 - (X Wy)? = Y W(y? — (8@))7,
i=1 i=1 i=1
where the measurements y; come from model (M1).

The second estimator is motivated by the formula var(Y|X = ¢) = E(Y3X
=¢t) — {E(Y|X = t)}?, which applies to the random design case. Alternative
estimators were considered previously but are less suited for our purposes
here [Carroll (1982), Miiller and Stadtmiiller (1987)].

Observe that b = b(n) is a sequence of bandwidth parameters and K is a
kernel function. The kernel function K is supposed to have compact support
and to satisfy

supp(K) =[—-1,1], suplK|<c <, fK(u)du=1,

(K1) [K(u)u/du=0, 0<j<k, JK(u)u* du 0

and K(-x) =K(x).

Basic requirements for the sequence of bandwidths are

(K2) b—-0, nb — o,

Furthermore, for uniform convergence of g(-) and & 2(-), we need the follow-
ing condition:

For some ¢, 0 < ¢ <1, it holds that, for all sequences

(K3)
&,, ,~ 0,28 n -, [[K@ + a,) - K@)l dv = Oa).
Condition (K3) is for instance satisfied if K is Lipschitz continuous of order
on R except at a finite number of points where K could have a discontinuity.
For uniform considerations, we will need a further assumption on the
bandwidth sequence b = b(n). Let s be a constant as in (M5), and let r be
another constant such that 2 < r < s, with

nb \?
(K4) lim inf( ) n~2/7> 0.
o ono® log n

The following assumptions are occasionally needed:
(K5) nb%(ogn)? —» o, n'/2b* - d* for a constant d* with 0 < d* < x;
(K6) nb%* -0 asn - =

The kernel estimators (3.2) and (3.3) will be subject to boundary effects
when estimating near the endpoints 0 or 1 [see, e.g., Miiller (1991)]. We will
consider uniform convergence on an interval I c[0,1] and assume that
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boundary effects can be ignored on I, either by reducing I sufficiently or by
properly modifying estimates near the boundaries; for some smoothing meth-
ods such as locally weighted least squares, such modifications will be auto-
matic.

3.2. Estimators for the parametric components. It is natural to estimate

the parameters 6,,...,6,_; in model (M7) by a weighted least squares
method,

(89 8,-1)
(3.4) 2

n r-1
= argmin Y q(¢,)|G(%(%))) — L 6,H((%))|,
(Oyy.ens 0, p) i=1 1=0

where H,(-) = 1 as in (M7) and ¢(-) is a weight function, which is assumed to
be Lipschitz continuous. Let
T A A A T
B=(60,--10,1)"» B=(p,...8,_1) ,
X = (xij)lsisn,lsjsp’ X = (xAij)lsisn,lsjsp with Xij = IIj—l(g(ti))’
£,;=H;_,(4(t;)) (notethat H,=1);

furthermore, let
Z = (G(a*(t)),....G(o2(t,))"

5 R . T
Z= (G(O'Z(tl)),...,G(0'2(tn))) ,
Q! = diag(q(¢,),...,q(¢,)) (denoting the corresponding n X n
diagonal matrix).

Here, estimates g(-) and 62(-) are as given by (3.2) and (3.3).
Then model (M7) implies
(3.5) Z=Xg

and the estimator for the parameters (3.4) becomes the classical least squares
estimator,

A A A _l A A
(3.6) B=(X"Q'X) X"Q'Z,
provided the r.h.s. is well defined.

3.3. Simultaneous estimation of parametric and nonparametric compo-
nents. We sketch here an iterative procedure for the simultaneous estima-
tion of B, g and o 2(-) by taking advantage of model (M7) and some addi-
tional assumptions. Once estimates

A

/§=(éo,...,ep_1)
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have been obtained, they can be used to improve estimation of g and o 2(-) in
the following way: Assume that G is strictly monotone. Then, according to
(M7), defining a mapping ,( 8, g) = G '(ZF_0,H/(g(")), one has o*()) =
¥,(B, g(-)). Assume furthermore that the specific form of (M7) allows a
representation

(3.7) g2(:) = ¥, (B,o%("),
for a suitable mapping ¢,. The parametric estimator (3.6) can be rewritten as
(3.8) B=vs(8(),6%())

with a mapping ¢j;. These observations motivate the following Gauss—Seidel
type of iteration procedure. Set g(-) = £(-) [(3.2)] and G3(-) = ¢2() [(3.3)],
with undersmoothing bandwidths (3.10) given below and B, = 8 [(3.6)].
Then iterate

:é(i+ = %(ﬁ(ip 6’(?)('))’
g(i+1)(') = ¢g(BA(i+1)’ 5'(12)())’
6’(1'2+1)(') = ¢a(é(i+1),§(i+1)(’))

until convergence.

It is not difficult to see that the resulting estimates g(-) and & 2(-) at each
iteration satisfy (4.1) and (4.2), so that the resulting g will still satisfy (4.3).
Moreover, relation (M7) will be satisfied for estimates 8, 62(-) and g(-) after
each iteration.

In case the mapping ¢, (3.7) does not exist, the updating step for g in the
Gauss—Seidel algorithm is omitted. Then one would update g via locally
adaptive bandwidth choice. The first iteration step estimate for 3, when
starting with undersmoothing bandwidths for 4(-) and &2(-) will be asymp-
totically unbiased (see Theorem 4.3) and can therefore be used for the test in
Theorem 5.1. Estimates for g(-) and &2(-) can then be obtained by further
iteration or by applying local optimal bandwidths (3.9).

For kernel estimates, locally optimal bandwidths [in the sense of minimiz-
ing the asymptotic mean square error of g(¢)] are given by

o 2(2) 1\ V/@k+D
2kB” f(t)g ™ () 5}
where V = [K%(x) dx and B = ((— 1)*/k!)[K(x)x"*dx. Global analogs b* are
obtained by replacing o 2(¢) and f()g®’(¢t) by fo? and [fg®.
Efficient estimates for g are achieved by replacing the unknowns o 2(:)and
g™(-) by consistent estimates [cf. Miiller and Stadtmiiller (1987) for details].
Undersmoothing bandwidths which satisfy (K4) and (K5) can be obtained
from (3.9) by
(3.10) b(t) = b*(¢)n 1/kEEFD,
and analogously for global bandwidths.

(3.9) b*(t) = for g®(¢) + 0,
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4. Asymptotic properties and rates of convergence. Consider first
uniform convergence of the estimates g(-) and 42(-) [(3.2) and (8.3)] of the
nonparametric components of our model. Lemmas 6.1-6.3 lead to the follow-
ing uniform rates; analogous results for ¢ under homoscedastic errors were
discussed in Cheng and Lin (1981) and Miiller and Stadtmiller (1987). For
more details see Section 6.

THEOREM 4.1. Under (M1)-(M6) and (K1)-(K4),

log n 1%/

(4.1) supléf(t)—g(t)'=0p([ b
tel "

+ bk) wherel c (0,1).

THEOREM 4.2. Under (M1)-(M6) and (K1)-(K4),

4.2 |62(t 2(1)l=0 log n |1
(42) suplg™(¢) = (1)l = O, | =7

+ bk) where I c (0,1).

This provides consistency of the nonparametric parts, with the usual
nonparametric rates of convergence. Under somewhat stricter moment condi-
tions, (4.1) and (4.2) can be modified to yield almost sure convergence results
with the same rate. )

Turning now to the parameter estimates 8 [(3.4)], the following asymptotic
normality result establishes parametric rates of convergence. It provides the
basic tool for assessing heteroscedasticity in our semiparametric variance
function model. The derivation which is given in Section 7 requires the
uniform convergence results (4.1) and (4.2).

THEOREM 4.3. Under (M1)-(M9) and (K1)-(K5),
(4.3) V(B - B)—s M 1,3),
where =35, 2 =313,3;' and n = (9, ... =

(p,, A)0<K A<p-1 and 3, —(TK ,\)0<K A<p-1 @re (pxD,(p XPS and (P XP)
matrices, respectively, with

- d*B{ [ F(w)a(w) H( g ()G (o*(w))
(44 x[(g2(u) + o2(w)* - 28(w)g®(w)] du
p-1
-, 1f(u)q(u)Hl(g(u))[ T ejH;(g(u))}gm(u) du},

O0<l<p-1,
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d* being defined in (K5) and B as defined after (3.9);
1
(45) pea = [ F(w)a(w) H(g(w)) Hy(g(w)) du;

and

o= [ F(0)a* () H(8() Hy(8(w))

x G (o)} {ma() = o (w)
(46) p-1
+2G’(o-2(u)){ 'g’o ojI{J{(g(u))}/*‘G(u)

p-1 2
+{ Y OjHIf(g(u))} o%(u)|du, O0<k,A<p-1.
Jj=0

Note that it follows from (4.3) and (4.4) that B will be asymptotically
unbiased whenever d* = 0 in (K5), which can be achieved by choosing
bandwidths (3.10).

Note also that, by (4.4)—(4.6), the mean u and the asymptotic covariance
matrix 2 depend on the unknown parameter B = (6,,..., Bp_l)T; therefore
this result is not immediately applicable for the construction of confidence
intervals or testing. Condition (M9) guarantees that both matrices 3, and 3
are symmetric and positive definite when ¢ = 1, which is a natural initial
choice of the weight function ¢(-). Optimal weights ¢(¢,) would minimize
ldet 3| and depend in a complex way on the unknowns g(-), o2(-) and B.

As a final note, we observe that the asymptotic covariance matrix 3
depends on third and fourth moment functions us(-) and w,(-) through 3,
[(4.6)]. These functions are usually unknown. Their estimation is discussed in
the next section. In much of the classical parametric literature it is assumed
for the sake of simplicity that the error distribution is symmetric and thus
ws(-) = 0, which simplifies the expression for %, but these classical results
can be extended as well to allow for general third moment functions u,(-). In
our context it is necessary to consider this more general situation, as we wish
to cover cases involving quasi-Poisson or quasi-Gamma errors which neces-
sarily have us(-) # 0.

5. A test for heteroscedasticity. In this section, we develop a data-
dependent test statistic whose distribution under the null hypothesis of
homoscedasticity is derived. Besides this test, we obtain asymptotic confi-
dence regions for the unknown parameter vector B = (6,,..., Op_l)T as de-
fined in (M7).

Observe that assumption (K5) as needed for Theorem 4.3 amounts to some
undersmoothing of the nonparametric curve estimates even in the case
d* > 0. The mean squared error optimal bandwidth sequence is seen to be
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b* ~ n~1/@k+Dex for some constant c*, as given in (3.9) and the following
remark. We will always have n!'/2b** — «, so that bandwidth sequences
satisfying (K5) must be undersmoothing. If d* > 0 in assumption (K5), the
mean g in the limiting distribution (4.3) of Theorem 4.3 will be nonvanishing
and needs to be estimated [cf. Lemma 5.3 in Miiller and Stadtmiiller (1987)].
The additional assumption (K6) which is used exclusively in this section
implies d* = 0 in (K5), and it therefore corresponds to further undersmooth-
ing of the nonparametric curve estimates for the purpose of estimating the
parametric part 8. Bandwidths (3.10) and corresponding bandwidth esti-
mates achieve the necessary degree of undersmoothing.
The null hypothesis corresponding to homoscedasticity in (M7) is

(5.1) EO: 01 = = p—1 = 0.

Under (K6), we have u = 0, and (4.3) becomes Va (B = B) =4, 40, 3).
Define the (p — 1) X p matrix A =(X;)oci<p-20<;<p-1, Where A;; =1 if
j=i+1,and A; = 0 otherwise. Then the null hypothesis (5.1) can be recast
as

Hy: AB=0,
and it follows that, under ﬁo,
(5.2) VR AB =4 #(0, ASAT).

To find a data-based test statistic, we still need to estimate 3 = 35'3,37"
as defined in (4.3), (4.5) and (4.6). Considering estimates

(53) i0 = ( ﬁK,/\)OSK,/\Sp—l’
(5'4) i1 = (%K,/\)OSK,)\SP—I’

we note that the corresponding quantities p, , and 7, , [see (4.5) and (4.6)]
contain the unknowns g, o 2(), pg(-), (") and 6;. We estimate the integrals
by corresponding sample-based sums; due to averaging n terms, we expect
parametric rates of convergence for these estimates, which are given by

1 n
(55)  Bea=— ;Hx(é(ti))HA(é(ti))q(ti), 0<k,A=<p-1,

S|

fa —
TK,)\ -

¥ B (4(6)H(8())a(4)

(662t ult)) - (82(2))]

X

(5.6) -
+2G,(&2(ti))|: Z‘-«O BjHJ{(g\(ti))] Rs(2;)

+[ Z_JO @H}(é(ti))} &2('5,-)}-
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_Here, & and 62(-) are curve estimates as given in (3.2) and (3.3);
(6, ..., 0,_,) is the parameter estimate (3.4); and estimates fi;() and fi,(-) of
the moment functions of the errors u,(-) and u,(-) [see (M4)] are given by

Bs(t) = X W(0)y? - (2(0)) - 82(2)62(t),
i=1

pa(t) = B W63 ~ {£(1))" ~ (D) (1) - 6(4(1))*67(2).

(5.7)

We note that the quality of the proposed inference procedures depends to a
large extent on the feasibility of estimates f4(-) and f,(-). While these
estimates are shown to be consistent in the following lemma, satisfactory
estimation in practice may require large sample sizes. In some specific
applications, one may be able to assume symmetric errors [i.e., us(-) = 0], so
that only u,(-) remains to be estimated.

Given estimates 2, and 2, [(5.3) and (5.4)], we set

(5.8) $=3%;18.3:1
Observe the following.

LEMMA 5.1. Under (M1)-(M9) and (K1)-(K5),
(5.9) S -p 3.

The proof, which is omitted, is based on Lemmas 7.1 and 7.3 and estab-
lishes the convergences 3, —=p 2, 2; =p 2; and (5(8) =p us(?), (,(8) —p
w4(2), uniformly in z.

Note that under H,, £7-¢' 6,H}(g()) = 0 for all ¢, since Hy = 0. Let E be
an (m X p)-matrix of rank m, m < p, and let ¢, and ¢,, be m-vectors. To
test the hypothesis

H(): EB = {0 N

consider the test statistic

— T [y -1 — A
(5.10) T, =n(EB - {) (EXE") (EB- &)
Note that, for the special case of testing H,, corresponding to homoscedastic-
ity, this becomes

A T A, - 1 A

(5.11) T, =n(AB) (A2AT) (AB),
with A as defined before (5.2). Consider a family of simple alternative
hypotheses,

I;iln: EB = gln‘

. THEOREM 5.1. Assuming (M1)-(M9) and (K1)-(K6), it holds that, under
the null hypothesis H,,

(5.12) T, >4 x2,
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where x> has a central x* distribution with m degrees of freedom. Assume
that the alternatives H,, satisfy

] ] -1
(5.13) n(Gin = &) (BZET) (L1 = L) = p7,
for a fixed real constant p. Then, under H,,,,
(5.14) T, 5 xm(P?),

where x2(p?) has a noncentral x? distribution with m degrees of freedom
and noncentrality parameter p

The proof is in Section 7. The apphcatlon to the construction of a level-«
test is 1mmed1ate reject H, if T, > x2.,, the 100(1 — @)% quantile of the
corresponding x? distribution; power calculations for specific sequences of
alternatives follow from (5. 14) Choosing m =p, E =1id and {, =B, an
asymptotic 100(1 — «)% confidence region for 3 is obtained as { B: n( g-pB)r
Xz 1( B B) < X 31— a}

It is clear that tests for H, include tests for many simple null hypotheses,
besides homoscedasticity, Wthh may be of interest in various models (M7).
Such null hypotheses may correspond to statements like “no overdispersion,”
“quasi—Negative Binomial model” or “quasi-Gamma model” (see the exam-
ples given in the Introduction).

6. Auxiliary results and proofs of Theorems 4.1 and 4.2. Through-
out this section, we will use the notation p, = (log n/nb)/? and B =
((—D*/ED[K(x)x* dx, and in this and the following section repeatedly make
use of the following facts. According to (M3), there exist constants ¢, and c,,

0 <¢; < ¢y <, such that

6.1 ——-cl < nflt | u It, — I i
< < .
(6.1) n 1 tiil< s P tioa n

Furthermore, according to (M2) and (M3) by an application of the mean
value theorem,

(6.2) s; — s;i.1 = (nf(£)) (1 + O(n™Y)),
and for any Lipschitz-continuous function A defined on [0, 1], Riemann sum
approximation yields

n 1
£ (5= s ) E)RE) = [ F)h(a) du + 0 7).
i=1 0 n
Therefore, for any such function,
1 r 1 1
(6.3) — Y h(t,) = f f(u)h(u) du + o(—).
i1 0 n

Observing that the number of nonzero summands in ZK((x — ¢;)/b) is
O(nb), uniformly in x € [0, 1], we obtain analogously

(6.4) —Zh(t)K( ) ff(“)h(”)K( )du+0(1)
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We first prove Theorems 4.1 and 4.2, which will be needed to establish
Theorem 4.3. The proofs require the following auxiliary results, Lemmas
6.1-6.3.

LEMMA 6.1. Under (M1)-(M3), (M6), (K1) and (K2), for t € (0, 1),

(6.5) £(¢) —g(t) =[b*Bg™(t) + O(nb]™ 1) + o(b*)] + i W(t)8,.
i=1

The proof is standard by a Taylor expansion for the bias [cf., e.g., Miiller
(1988), (4.9) and (4.13)].

LEMMA 6.2. Under (M1)-(M6) and (K1)-(K4), for ¢t € (0, 1),

32(t) = o*(t) = [6*B[(2(t) + o2(1))™ ~ 28(1)g® (1))

+O([nb] ) + o(6h)] + [ém(t){az’(ti) - az(ti)}]

log n
nb
PrOOF. The proof of Theorem 4.1 given below does not require Lemma

6.2, and we may use (4.1), as well as (6.5). Therefore, noting that §, = 8(¢,)
and

G3(t) — a*(t)
= LWi(t)(&%(t;) + a2(2))
+2Y Wi(t)g(t,)8(¢;) + LW(t){8%(t;) — o?(¢)}
—(&%(t) + o2(t)) — 28(t)[b*B,g®(t) + O([nb] ") + o(b*)]
— 28(8) LWi(£)3(t;) + Oy (( p, +b*)).
Observing that
LW(t)(g>(t:) + o2(t;)) — (8°(2) + o?(2))
= b*B(g2(t) + o2(1))™ + O([nb] ") + o(b%)
and LW,(¢)X(g(¢,) — g(1)8(¢,) = 0,(n~"/?) completes the proof. O

(6.6)

+ 0

p

1/2 2
+ bk} ) +o,(n"1?).

LEMMA 6.3. Let I C[0,1] be a compact interval, where I =[0,1] can be
chosen in the case that boundary modifications are employed for estimators
(8.2) and (3.3) or that g and o 2(-) are cyclical. Otherwise, assume I c (0, 1).
Let n(t,),...,m(t,) be independent random variables with En(¢;) =0 and
En?(t;) = ¢(t,), for a function ¢ satisfying 0 < infle(#)| < sup|e(?)| < .
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Furthermore, for some s > 2, let E(In(t)I°) < ¢ < ». Then, assuming (M2),
(M3) and (K1)-(K4),
log n 1%/
nb ’

ProOF. Defining ¢, = n(t,)/[ ¢(¢,)]"/2, it is sufficient to show
(6.8) supZW/ (¢) &l = O,( p,),

tel

where W/(t) = Wi(t)¢(¢;,)*/2. Consider an equidistant grid 7;, € [0, 1], j > 1,
with maxlr; — 7,4/ =n"%/¢, 7, = 0 and 7, = 1, where { is as in (K3). Define
7(t) = argmm |‘T —tland g, = g, [l < (m)l/’} where r is as in (K4), and
I(A) denotes the 1nd1cat10r of a set A. Then

sup| LW/ (1) |
= fgng(W/(t) - Wi,(T(t)))eil + fzwzwi'(T(t))(é‘i - Z'z)|

+sup| L W/(7(¢))%| =1+ 11 + IIL.
tel

S W(t)n(s)| -

i=1

(6.7) sup

tel

p

For 1, observe that, by (6.1), sup;ls; —s;_;| = O(n™1), so that there exist
constants ¢ > 0 with

sup ). (W/ (t) - Wi (2(1)))’

e o 10

Applying the Cauchy—-Schwarz inequality and the weak law of large num-
bers, it follows that I = O,(p,).

As in the proof of Lemma 5.2 and the following remark in Miller and
Stadtmiiller (1987), one shows that II = O,(n'/" sup,1<;<,/W/(®)D, and
this is bounded by O,(n"" sup,c1<;< ,,IWi(t)l), which is seen to be O,(p,)
by (K4).

For III, we proceed as in Miiller and Stadtmiller (1987), requiring the
bound

sup(EW’2(t)log n) V< Csup (X W*(t)log n)l/2 =0(p,)- ]

tel tel

dv=0(n""*b"%).

PROOF OF THEOREM 4.1. Noting that the remainder terms in (6.5) are
uniform in ¢, Lemma 6.1 implies sup,|EZ(¢) — g(t)| = O(b*) for the bias part.
For the stochastic part, apply Lemma 6.3, choosing n(¢;) = 6(¢;) and ¢(-) =
a?(). O

PROOF OF THEOREM 4.2. For the bias part we use Lemma 6.2, noting the
uniformity of all remainder terms. For the stochastic part, apply Lemma 6.3
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with ¢(-) = u,(-) = 0*(") and errors n, = §> — E§2. For these errors 7, (M5)
holds with s’ =s/2 > 2 and (K4) is used for r with 2 <r <s’. O

7. Proofs of Theorems 4.3 and 5.1. For the proof of Theorem 4.3 we
need some additional notation. Let vy, = (log n/nb)/2? + b*. Observe that by
(M8), Taylor expansions and Theorems 4.1 and 4.2,

(7.1) G(6%(¢)) — G(o2(2)) = G'(a2(t))[62(¢) — a2(t)] + O,(%2)
and

(g TED) ~H(8() = Hi(s(0)[() - 8(D] +0,(3),
0<j<p-1
For a matrix A =1[a;looicm,—1,0<j<m,—1 With a;; = O,(v,), we write A =
[Op(yn)]mlxmz' A A
For the matrices X, X, Z and Z, defined before (3.5), we obtain, from (7.1)
and (7.2),

(7.3) Z-Z=S+ [op(y,f)]nXI,
(7.4) X-X=V+ [op(y,?)]nxp,
where

S = (G2t INa¥(t) — aX(ty),...,G' (a2 IN6%¢,) — a2t ))T
and

_____

Observing (6.2) and S = [0,(%)],x1, V =1[0,(3)],x,, VTQ 'S =
1[0, ()], and VIQ 'V = n[O,(y))],4,, we obtain the following auxiliary
results.

LEMMA 7.1. Asn — o,

1
(7.5) —X'Q X - %,

1, , 1 1

—XTQ X = —XTQ X + —X"Q"'V
(7.6) n n . n

+—VIQTIX + [0,(¥)] o xp»
1, 5

(7.7 —~X'Q7X ~p 3y,

where 3, is given in (4.5).
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LEMMA 7.2.

Vn (- B)=(n'X7Q'X)
X [n712XTQ'S — n~1/2X"Q VB + [0,(1)]

-1
(7.8

p><1]

PROOF OF THEOREM 4.3. According to Lemmas 7.1 and 7.2, it is sufficient
to show that

(7.9) n 12XTQ 18 — n~12XTQ VB -y, (7, 31),
where 1 and 3, are defined as in (4.4) and (4.6). Observe that
(7.10) n"2X'Q IS — nV2XTQ VB = (Losee s poi) s
where

{=n"1"? ._ilHj(g(ti))q(ti)G/(U2(ti))(6—2(ti) - a*(t;))

(8(%;) —8(t)),

O0<j=<p-1

n p_1
—n- 2 ._ZlHj(g(ti))q(ti)[ l;} 0,H;(g(t;))

Applying the decompositions for g(¢,) — g(¢,) and & 2(¢;,) — o %(¢,) provided in
Lemmas 6.1 and 6.2, observing (K5) we obtain

=4 +¢§ +0,(1), 0<j<p-1,
where

- n-‘”b”B{ % By (s (6)a(t) 6 (+7(8)

x[(g7(t) + o7(1))™ - 28(2) g™ ()]

n p-1
- 'ngj(g(ti))Q(ti) l;) 0,H;(g(t)) g(k)(ti)}’

{ = n/{ ‘_ilHj(g(ti))qm)G’(oz(ti))[él W(t){8%(1,) - a%)}]

P wti)sm)]},

O0<j=<p-1

Note that for the nonrandom part, by (6.2) and (K5), {/ = 1, + o(1), 0 <
<p — 1, where 7; is as in (4.4). Thus (7.10) follows from

(7.11) (2 ) =5 #0,3)).

n p-1
- ._ZII{j(g(ti))q(ti)[ E:O 6,H;(g(t,))
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To prove (7.11), we observe that, by (6.2) and (6.4),

% Wt a(0) H(8(1))6(o7(1)

! 1+0(%))
(7.12) )

" (%)

(3 [ a6 (e @k 252 au+ o )
= Hy(2(1))G'(02(t)))a(t) + O(b) + O((nb) 1),

l<Aa<n,0<j=<p-1,
where the last step requires (M6), (K1) and a Taylor expansion. Similarly,

1

n p-
‘§1 W).(ti)Hj(g(ti))Q(ti)[ lg

0

olHl,(g(ti))]
(7.13)

p—-1

- Hj(gm»[ Osz’(g(tA))]q(tA)

+0(b) +O((nb)™"), 1<iz<n,0<j<p-1

Combining (7.12) and (7.13) with

no Ve Z {0(b) + 0((nb) )}{52(t) — o2(t)) = 0,(1),

n-1/2 i"l {O(b) + 0((nb)‘1)}6(ti) =0,(1),

which follows by calculating first and second moments, we obtain

n
(7.14) {'= 2 U, +o,(1), 0<j<p-1,
i=1

where

U,

n

ij = n-1/2 I_Ij(g(ti))G,(o-2(ti))q(ti){Bz(ti) - Uz(ti)}

6(1:,.)}.

p—1
_Hj(g(ti))‘I(ti)[ l;} 6,H;(g(t;))
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Observe that, by (6.3),
Cov(et, &) = ['7(w)a* () Hy(8(w) Hy(£(w)

[G/(2(w)]*(ma(u) — o(u))

X

1

+2G'(a2(u))[ 3 olH;(g(u))}us(u)

j=0
p-1 2
+ [ E‘,O OlHl’(g(u))] 0'2(u)} du,

noting that E(82(t,) — o 2(¢,)? = u,(t,) — o*(t,) and E8(¢X8%(¢,) — o*(t,)
= py(t)

Now let a = (ag,...,a, ;)’ and define U,; = ©¥'a,;U,,;. Then it follows
that E(Z U,;)) = 0 and var(S U,;) > a”3,a, where 3, is as given in (4.6).
From (M5),

s/2

n n p-1
Y EIU, "< ¥ n'm[ ) alHl(g(ti))Q(ti)} 2¢72
i=1 i=1

=0

X (|G (o2(t,))I*/*EI8%(t,) — o 2(t,)**
p-1 s/2
+| X 6,H(8()) E|5(ti)|8/2}
=0

=0(n G4 > 0.
Hence the central limit theorem implies
a’(&f,. .., ;’_I)T -, #(0,a"3a),
and (7.11) follows by applying the Cramér-Wold device. O

We turn now to the proof of Theorem 5.1. The first step is to prove Lemma
5.1, which requires the following auxiliary result.

LEMMA 7.8. Under (M1)-(M9),

(7.15) - sug)lﬂj(t) — wi(t)=0,(1) forj=3,4.
te
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PrOOF. Apply Lemma 6.3, choosing 7(¢,) = (8(¢,))’ — E((8(t,))). Note that
(M5) implies that the assumptions of Lemma 6.3 are satisfied for j = 3, 4.
Observing that

E(y?) = (8(1))” + 3g(t;) 0 2(t;) + ms(t,),

E(y}) = (2(2))" + 6(2(t)) 0 2(t:) + 4g(t) ns(t:) + ma(t:),

one first shows the result for j = 3, applying Theorems 4.1 and 4.2. Then this
result is used to establish the case j = 4. O

ProOF OF THEOREM 5.1. Theorem 4.3 and Lemma 5.1 imply that
A, -1 A
n'2(ESET) (BB - &) =4 M0, 1),
which implies (5.12), whereas under alternatives H,,,
o QX o =1/2,, & o QX et —1/2, A
n'/2(EXET) (BB - &) =n'2(ESET) (BB - )

et QN et -1/2
+nl/2(BET) (L — )
=M, I) with|ul=p,
which implies (5.14). O
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