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GAUSSIAN SEMIPARAMETRIC ESTIMATION OF LONG
RANGE DEPENDENCE!

By P. M. ROBINSON

London School of Economics

Assuming the model f(A) ~ GA'"2H as A — 0 +, for the spectral
density of a covariance stationary process, we consider an estimate of
H € (0,1) which maximizes an approximate form of frequency domain
Gaussian likelihood, where discrete averaging is carried out over a neigh-
bourhood of zero frequency which degenerates slowly to zero as sample
size tends to infinity. The estimate has several advantages. It is shown to
be consistent under mild conditions. Under conditions which are not
greatly stronger, it is shown to be asymptotically normal and more
efficient than previous estimates. Gaussianity is nowhere assumed in the
asymptotic theory, the limiting normal distribution is of very simple form,
involving a variance which is not dependent on unknown parameters, and
the theory covers simultaneously the cases f(A) = », f(A) = 0 and f())
— C €(0, ©), as A = 0. Monte Carlo evidence on finite-sample perfor-
mance is reported, along with an application to a historical series of
minimum levels of the River Nile.

1. Introduction. Several estimates are now available for the slope of
the logged spectral density of a long range dependent covariance stationary
scalar process x,, ¢t =0,+ 1,..., which is observed at times ¢t =1,...,n.
Denote by vy; the lag-j autocovanance of x, and by f(A) the spectral densn;y of
x,, such that y; = E(xg — ExoNx; — Exo) = [T cos(jA)f(A) dA. It is assumed
that

(1.1) f(A) ~GA 22 ag A >0+,

for G € (0,©) and H € (0,1). The parameter H is sometimes called the
self-similarity parameter. In case H = %, f(A) tends to a finite positive
constant at zero frequency, whereas if H € (},1) it tends to infinity and if
H € (0, 1) it tends to zero. A recently published survey of relevant literature
up to about 1990 is Robinson (1994a).

Finite-parameter models for f(A) over the full frequency band (-, 7]
which are consistent with the property (1.1), have been considered (such as
fractional autoregressive moving average models), as have methods of esti-
mating an unknown H and additional parameters. In particular, the asymp-
totic distributional properties of Gaussian parameter estimates have been
derived by Fox and Taqqu (1986), Dahlhaus (1989) and Giraitis and Surgailis
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(1990), in case H € (4, 1) and under regularity conditions. These properties
are highly desirable ones: nl/2-consistency and asymptotic normality and,
when x, is actually Gaussian, asymptotic efficiency. However, these proper-
ties also depend on correct specification of f(A) over (—m, 7], and in the
event of any misspecification, estimates will, in general, be inconsistent. In
particular, misspecification of f(A) at high frequencies can lead to an incon-
sistent estimate of the parameter H, which characterizes low frequency
behaviour. The spectral density of a fractional autoregressive moving average
model has the rather strange mathematical property of being infinitely
differentiable at all frequencies in [ — 7, 7] except at zero frequency, where
(for H > 1) it is discontinuous and unbounded.

To overcome such criticisms, “semiparametric” estimates of H in (1.1)
have been proposed which can be justified as consistent in the absence of full
parametric or other global assumptions on f(A). One of these, due to Robin-
son (1994b), is consistent when H € (3, 1) under mild conditions which do
not include Gaussianity or even loose restrictions on f(A) away from zero
frequency (apart from integrability on (—, 7], a consequence of covariance
stationarity). The limiting distributional properties of this estimate are rather
complicated, however [see Lobato and Robinson (1994)]. One alternative
semiparametric estimate of H is due to Geweke and Porter-Hudak (1983).
Robinson (1995) recently established desirable asymptotic properties of modi-
fied and more efficient versions of this estimate, but under the restrictive
condition of Gaussianity, which may not be necessary but seems difficult to
replace by weaker but reasonably comprehensible conditions because the
estimate involves nonlinear transformation of the periodogram.

The present paper discusses a semiparametric “Gaussian” estimate of H
which, unlike the estimates of Geweke and Porter-Hudak (1983) and Robin-
son (1995), is not defined in closed form, but which dominates these estimates
in several respects. It is asymptotically more efficient. Much weaker assump-
tions than Gaussianity are imposed. [Giraitis and Surgailis (1990) likewise
avoided Gaussianity in their study of a parametric Gaussian estimate.]
Trimming out low frequency components [introduced in Robinson’s (1995)
estimate following a suggestion of Kiinsch (1986)] is avoided, as is the
additional user-chosen number needed for Robinson’s (1994b) estimate. The
current estimate was suggested by Kiinsch (1987), but he did not establish or
conjecture any statistical properties. The estimate is described in the follow-
ing section. In Section 3 it is shown to be weakly consistent under only slight
additional conditions to (1.1), with only finite second moments of x, assumed.
In Section 4 the estimate is shown to be asymptotically normally distributed
under somewhat stronger conditions, including a fourth moment condition on
x,. Three technical lemmas are proved in Section 5. The proof of consistency
and asymptotic normality involves some relatively unusual features. The
objective function optimized by the (implicitly defined) estimate behaves in a
nonuniform way over the parameter space. The mean-value theorem argu-
ment used in the central limit theorem requires not just a preliminary
consistency proof for the estimate, but a rate of consistency. Throughout, we
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aim for minimal conditions on the spectrum away from zero frequency and on
the bandwidth number involved in the semiparametric estimation, and our
proofs cover simultaneously cases 0 < H < 3, H = 3 and 1 > H > 3, whether
or not H is known a priori to be consistent with an infinite or a zero spectrum
at zero frequency. Section 6 contains Monte Carlo evidence of finite-sample
performance, and comparison with an estimate similar to those of Geweke
and Porter-Hudak (1983), Kiinsch (1986) and Robinson (1995), as well as an
application to the series of Nile minima.

It has been stated in the literature that fractional autoregressive moving
average processes which satisfy (1.1) also satisfy the time domain property

(1.2) y, ~g*" "% asj— oo,

where g <0 for 0 <H < 3 and g > 0 for < H < 1. Condition (1.2) (ex-
tended to include a slowly varying function) has been stressed by Taqqu
(1975), for example. With g = 2GT'(2 — 2H)cos wH, it is known that for
0 < H < 1, (1.2) implies (1.1) [Yong (1974), page 90], whereas for 3 < H < 1,
(1.1) and (1.2) are equivalent if the y; are quasimonotonically convergent to
zero, that is, v = 0as j—> ©and for some C <, v,,; < v,(1 + C/j) for all
large enough j [Yong (1974), page 75]. In general, (1.1) does not imply (1.2).

2. Semiparametric Gaussian estimate. Define the discrete Fourier
transform and periodogram of x,:

n
(2.1) w(A) = (27n) "2 Lz, I(A) = lw(W),

t=1
where correction for an unknown mean of x, is unnecessary because the
statistics (2.1) will be computed only at frequenc1es Aj=2mj/n for j=
1,...,m, where m is an integer less than in. Because our estimate is not
deﬁned in closed form, it is convenient to denote by G, and H, the true
parameter values, and by G and H any admissible values.

Consider the objective function [see Kiinsch (1987)]

1 2H 1
2.2 G, H — 1 G/\1 20 4 I,
(22) Q. )= . 3 log )
Wmtlng = I(};). Define the closed interval of admissible estimates of H,

=[A,, A 2], where A, and A, are numbers picked such that 0 < A; < A, <
1. We can choose A, and A, arbitrarily close to 0 and 1, respectively, or we
can choose them to reflect weak prior knowledge on H,, for example, A; = 3
if we are confident that f(A) » 0 as A — 0. Clearly the estimate

(G, H) = arg min Q(G, H)
0<G<®
Heo®

exists. We can also write

H-= inR(H),
arg min R(H)
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where
2 1 m R 1 m
R(H) =log G(H) _(2H_1);1,—210g)tj’ G(H) = ZZ)‘?H-%'
1 1

Were we to take m = 3n for n even, or m = 1(n — 1) for n odd, H would
be a Gaussian estimate of H, in the parametric model f(A) = G0|A|1 2Ho
A € (-7, 7], and the asymptotic theory of H would be effectively covered by
that of Fox and Taqqu (1986) and Giraitis and Surgailis (1990) in case H, €
(3, 1) and A; > }, although these authors considered an integral form in
place of the summation form (2.2). In our asymptotic theory, m tends to
infinity more slowly than n, so that the proportion of the frequency band
(=, m] involved in the estimation degenerates relatively slowly to zero as n
increases. The derivation of such asymptotic theory is quite different from
that of Fox and Taqqu (1986), Dahlhaus (1989) and Giraitis and Surgailis
(1990) for parametric Gaussian estimates. Our H is only m!/2-consistent and
is thus much less efficient than these estimates when they happen to be
based on a correct parametric model. Like Giraitis and Surgailis (1990), we
avoid the Gaussianity assumption of Fox and Taqqu (1986) and Dahlhaus
(1989), and unlike any of these authors, we allow H,, to be 1 or less than + 3, as
well as greater than 1, also permitting the set of admss1ble values of H to
include ones in (0, 3] as well as (, 1). An integral form of (2.2) could be
considered, but we prefer the discrete form (2.2), partly for its computational
convenience and partly because, in case of an unknown mean of x,, it avoids
dependence on the sample mean; for parametric Gaussian estimates, Cheung
and Diebold (1994) have found that the slow convergence of the sample mean
when H, > 1 can produce inferior finite sample behaviour in estimates of H,
besed on the integral form of objective function.

3. Consistency of estimates. The following assumptions are intro-
duced.

ASsSUMPTION Al. As A —> 0 +,
f()t) ~ GOAl_zHO’
where G, € (0, ©) and H, € [A,, A,].

AsSsUMPTION A2. In a neighbourhood (0, §) of the origin, f()) is differen-
tiable and ‘

d
/\logf()«) O(A"Y) asA—>0+.

d
AsSUMPTION A3. We have
(3.1) — Exq = Z og_j, Z a < oo,
where

E(glF,_) =0, E(&!IF,_,)=1, as,t=0,+1,...,
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in which F, is the o-field of events generated by &,, s < ¢, and there exists a
random variable & such that Ec% < » and for all > 0 and some K > 0,
P(le,] > m) < KP(lel > 7).

ASSUMPTION A4. As n — o,

1 m
— + — - 0.
m n

Assumption Al is just the basic model (1.1), with H, contained in the
interval of admissible estimates [A;, A,], while Assumption A2 is a regular-
ity condition, analogous to ones imposed in the parametric case by Fox and
Taqqu (1986) and Giraitis and Surgailis (1990). Assumption A3 takes the
innovations in the Wold representation (3.1) to be a square-integrable mar-
tingale difference sequence that need not be strictly stationary, but satisfies a
mild homogeneity restriction. Assumption A4 is minimal, because m must
tend to infinity for consistency, while it must do so more slowly than n
because Al specifies f(A) only as A — 0 + . The estimate of Robinson (1994b)
was shown to be consistent under conditions which are in some respects
weaker, but the latter estimate may be less attractive for practical use than
H because it is sensitive not only to m, but to an additional user-chosen
constant.

THEOREM 1. Let Assumptions A1-A4 hold. Then

H-,H, asn - »,

ProoF. For $> 8> 0let N, ={H: |H — Hy| < 6} and N, = (—», ®) — Nj.
Then for S(H) = R(H) — R(H,),

P(IH - Hyl> 8) = P(H e N;n ©)

- P( inf R(H) < inf R(H)) < P( inf S(H) < 0),
N;n® N;n®

because H;, € N; N @. Now define O, = {H: A <H <A,), where A=A,

when Hy< 3+ A; and Hy> A > H, —1 otherwise. When H,> 1 + A,,

define @, = {H: A; < H < A}, and otherwise take ®, to be empty. It follows

that

(32) P(IH - Hyl > 5) sP(Njggl S(H) < 0) +P(i§2f S(H) <0).

It is necessary to treat ®; and ®, separately because of the nonuniform
behaviour of R(H) around H = H, — 3. The set ®, is empty when, for
example, A; > 3 (so knowledge that H, > 1 is used in fixing ®) or when, on
the other hand, H, < 3. The first probability on the right of (3.2) is bounded
by

(3.3) P(supIT(H)I > inf U(H))
0,

N;n0,
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with the definitions
G(H) G(H,) 1m m2H~Ho
T(H) =1 —log{ ——=} —log{ — Y j2H-Ho)
(H) "g{ G, } log{ Gcm) | T8 mZI:J 2(H - H,) + 1
1 m
+2(H—Ho){5210gj—(logm—1)},
1

U(H) = 2(H - Hy) — log{2(H — H,) + 1},

1 m
G(H) = Gy— L AXH~H0,
1

so that S(H) = U(H) — T(H). Here, U(H) is the deterministic part of S(H)

obtained by replacing I; by GA;~?# and Riemann sums by integrals, T(H)

being the remainder. Because the function x — log(1 + x) achieves a unique

relative and absolute minimum on (—1, ) at x = 0, and because log(1 + x)

<x —4x% and —log(1l — x) > x + 322 for 0 < x < 1, it follows that

(34)  inf U(H) > min(28 — log(1 + 28), —25 — log(1 — 25)) > 152.
Ny;ne,

On the other hand, from the inequality |log(1 + x)| < 2|x| for |x| < 1 we

deduce that, for any nonnegative random variable Y,

(3.5) P(llogY|<¢e) <2P(lY —1/<2¢) whene<l,
and thus that supg |T(H)| -, 0 if
G(H) - G(H)
3.6 su
9 or | T G

is 0,(1), while

2(H—-Hy) +1m j\2HH
7 . -1
@ w27
and
1 m
(3.8) — Y log j — (logm — 1)
m

are both o(1). Now (3.7) is O(m~2(A-Ho-1) 5 0 a5 m — © from Lemma 1
(see Section 5), while (3.8) is O(log m/m) from Lemma 2 (see Section 5).
Write .
G(H) - G(H) _ A(H)

(3.9)

G(H) ~ B(H)’
where
_2(H-Hy) +1pm(j\* ]
s - SRR )R
(3.10) WH_H)+1m [ j\b-io
e
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for g; = GyA;~2%o. Now

1 1
2 ’

.\ 2(H-H,)
m )

2(H—H0)+1§:(J

(3.11) infB(H) =1 — sup
0, 0,

m 1

for all sufficiently large m, by Lemma 1. By summation by parts

|A(H)| < % ':’gll{(%)zm_m)
(3.12) _%rllrmdw}é(g;_q

3|m (1
Z(—’ - 1]|.
m|q\8&;

+ —_—
Because [(1 + 1/r)2#-Ho — 1| < 2 /r on ®, when r > 0, the first term on the
right of (3.12) has supremum on ®; bounded by

m—1, p \20H-Hp+1 1 r
6supZ( ) Z(——l)
0, 1 1\ &

r I.
Z(—’—l),
1\ 8

m=1, p \2A-Hp+1 1
L
the inequality being due to 0 < 2(A — Hy)) + 1 < 2(H — H;) + 1 on 0,. Now

(3.13)

2
1 m r

I g\ I 1
3.14 <L 1= (1 - —J)—’ + —(I - |a,I’L;) + (27L,; — 1),
( ) gj f] gj f;( J J J) ( J )
where I; = L(A)) = lw,(A)?, w,(X) = @wn)V/2Er 6,6, f; = f(A,) and a;
= a(); ) =¥ oale‘ 1 For any 1 > 0, Assumptlons Al and A4 1mply that n
can be chosen such that
L&
f“]
Let C be a generic finite positive constant. Assumptions Al, A2 and A4 imply
that for n sufficiently large,

5

8j
in view of the proof of Theorem 2 of Robinson (1995). Thus
m-1 2(A-Hy+1 ]_ r I. C"? m ¢ p \2(A-Hp)
BT SRR =R
T \m 1 fi ] &; m T \m
Cn

T R
2(A-Hy) +1

(3.15) <n, j=1,...,m.

(3.16) E|lZL|<c, j=1,....m,




LONG RANGE DEPENDENCE 1637

because L'r* < m®*!/(a + 1) for @ > —1. Next,

E'Ij —le; {lw; - aw, | lw; + ajw,l}
— — o 2 172
(3.17) < (EIL - o;Ew,@; — &,EG,w; + |o,I’EL)
2 1/2
X (EL + o;Ew, @, + &E@,w, + |a|’EL;) ",

where the first inequality is due to | |a|2 —161*| = [Re{(a — bY@ + B} < a —
b)Xa + b)l <la — bl|la + b| and the second to the Schwarz inequality. It fol-
lows from the proof of Theorem 2 of Robinson (1995) that, as n — o,

log(j + 1) )

EL=f|1+0

o; log(j+1
ijwsj = 2_;- + O(—g_(.]—.__)/\}/z_HO)’
1 log(j+1
EIaj = — 4+ O(i(‘]__)
2 J

uniformly in j = 1,..., m. Thus (8.17) is O(f,(log(j + 1)//)"/?) as n — « and

m—1, p \20A-Hp)+1 1 | r 1
E — — —
{ z (m) r2 L }

1 1 fj(Ij N |aj|2I€j)

208-Hy+1 ] log j\?
r 1( )

CZ( ) 2

C

2(A-Hy)-1/2 172
= Aoy 71 X 0 (log 1)
1

= O(mZ(Ho—A)—l + (log m)3/2m—1/2)
=o0(l) asn — o,
where the penultimate equality results from separate consideration of the

cases 2(A — Hy) — < —1 and 2(A — H,) — > —1. To deal with the final
contribution to (3.14), Write

2nl;— 1= _2(3; - 1) + —ZZcos{(s - )\ }e, e,

s#i
so that
m=1, p \2A-Hp+1 1
— -1
L (%) )
1 m 2A-Hp+1 1
(318) < ; (St — 1) ( ) ;

+

Y'Y e, atz cos{(s — t)A;}|.

n s#t

n

)

1

m 2(A-Hg)+1 1
r()

1 r2
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Under Assumption A3,
1 n
(3.19) Py Z(8t2 - 1) -, 0
1

from Theorem 1 of Heyde and Seneta (1972), so the first term on the right of
(3.18) is 0,(1). Assumption A3 also implies that

(ZZa a,Z cos{(s — ¢)A, })

s#t

(3.20) = 222( cos{(s — t),\j})2

=rn? - 2r’n
for 1 < r < 3n, so that the second term on the right of (3.18) is

m 2(A-Hy+1
O( Y (—) r_3/2) = O(m* =971 4 (log m)m™/%) = o(1)
T\m
as n — «. Because 7 is arbitrary, we have proved that (3.13) is 0,(1). Using
the same techniques, as n — o,
1 m 1 lo gJ)
- L -1]|=0,[n+ — ( +o0,(1) =0,(1),
(2] ofre B (1) = 0,(1)
so the second term on the right of (3.12) is 0,(1). Thus as n — =, Supg, |ACH)|
-, 0 and, with (3.9) and (3.11), Supg, IG(H)/G(H) -1 -, 0. In view of(3 4)
it follows that (3. 3) —>0as n — »,

In case H, < 3 + A,, the proof of the theorem is completed. In case
H, > % + A, the second probability on the right of (3.2) can be nonzero. Put
p =p,, = exp(m~'X"log j) and S(H) = log{D(H)/D(H,)}, where

m 2AH-Hy)
D(H) = —Z( ) JZHO_IIJ-.

Because 1 < p < m and infg (j/p)*#~#0 > (j/p)**~# for 1 <j < p, while
infg (j/pY*H=HO) = (j/p)**17H0) for p < j < m, it follows that

A 1 m
inf D(H) > — J2H1L
in (H) = — Xlla,J f

where

—
o |~
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Thus,
1m "
. . o .9 —-1 )
(3.21) P(1@1)12fS(H) <0) < P( - ;(aj 1)j2H11, < 0.
Asm - o, p ~exp(logm — 1) = m/e and

Z a; ~p2(H0—A)f £ 2(0=Ho) o

(3.22) lsisp
p m/e

T2A—H)+1 2A-Hy)+1

It follows that
1

_Z(a_1)>;1<§<pa e(2(A—HO)+1)_1 as m — o,

Choose A < H, — 3 + e, which we may do with no loss of generality. Then
for all sufficiently large m, m 1Z"‘(a — 1) = 1 and thus (3.21) is bounded by

%i(aj— 1)(? - 1) > 1).

P

J
Now apply (3.14) again and first note from (3.15) and (3.16) that

1m g‘)[, nm
— Y (a; -1 1——’—’=0(— a; +1)| =0,(n),
mzl"( 7 )( f; gj p mzl:( J ) p(n)
using also (3.22) and

(323) Z a; ~p2(H0 Al)f x 28— Hg) dx_O(m)

p<jsm

Next we have from (3.17) and Theorem 2 of Robinson (1995) that

12 (a-1) 2 17 log(j + 1) \"?

G R S ORE E
(3.24) log m 12
=Op( ~ (Za +m )

by the Cauchy inequality. Because

P
iajg Sp4(H0—A)Zj4(A—HO) +p4(H0—A1) §j4(A1—Ho)
1 1 P
= O(m*H =% + mlog m),
it follows that (3.24) is O ((log m)3/2(m*Ho=2)~1 4 1 71/2)) = o (1). Finally,
p p

— (e~ D)2t 1) - %i(sf - 1)%?(% -1
+— ZZ& &— IZ::(aj — 1)cos{(s — t) A;}.

s+t
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From (3.19), (3.20), (3.22) and (3.23) the first term on the right is 0,(1), while
the second has variance

% Yy %i(aj - l)cos{(s - t))tj})

s#t 1

1
)

m m?n

’Z::(aj_lf— (i::(aj—l))2—>0

as n — . The proof is complete. O

4. Asymptotic normality of estimates. We now show that under con-
ditions somewhat stronger than those of the previous section,

(4.1) ml/%(H — H,) -, N(0,3).

The variance in the limiting distribution is thus constant over H, and indeed
completely free of unknown parameters, so (4.1) is simple to use in approxi-
mate rules of inference. (4.1) indicates that H is asymptotically more efficient
(for the same m sequence) than the estimate of Geweke and Porter-Hudak
(1983) as modified by Robinson (1992). Robinson (1992) developed a class of
estimates whose limiting variance after m'/? norming has upper bound
% /24 and lower bound %, though the lower bound is not precisely attainable
by members of this class. Moreover, the limiting distribution theory of
Robinson (1992) employed Gaussianity of x,, and it seems unlikely that this
assumption could be replaced by assumptions which are as mild or compre-
hensible as those under which we shall establish (4.1). The analogy with
parametric problems suggests that  can be identified with an efficiency
bound for semiparametric estimation of H, in the Gaussian case with a given
m sequence, but the verification of this conjecture remains an open question.
The question of optimal choice of m as a function of n is also important and
left for future research; some formulae for optimally choosing m in another
statistic of interest in the study of long range dependence were derived by
Robinson (1994c¢).

We have found it necessary to strengthen each of the assumptions A1-A4
in order to obtain (4.1). The new assumptions are described as follows.

AssUMPTION Al’.  For some g € (0, 2],
f(X) ~ GoA'"2Ho(1 + O(AF)) as A -0+,
where G, € (0, ©) and H, € [A,, A,].

AssUMPTION A2’. In a neighbourhood (0, §) of the origin, a(A) is differen-
tiable and

%a(/\) =O(|‘1(TA)|) as A —>0+.
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AssUMPTION A3'. Assumption A3 holds and also
E(8t3|F’t—1)=/’4’3’ a.s., E(et4)=/'4'4: t=09i' 1;--'9

for finite constants wy and wu,.
ASSUMPTION A4’. As n — o,

1 m'*28(log m)®
— + Y E— - 0.
m n

Assumption Al’ is equivalent to one employed by Robinson (1995), impos-
ing a rate of convergence on (1.1) analogous to the smoothness conditions
used in the asymptotic theory of power spectral density estimates. Assump-
tion A2’ implies A2 because f(A) = |a(A)|*/27. Assumption A3’ implies x, is
fourth-order stationary, and holds in case of independent and identically
distributed &, with finite fourth moment. Assumption A4, like A4, allows m
to increase arbitrarily slowly with m, but it also imposes an upper bound on
the rate of increase of m with n, the weakest version arising when g = 2.

THEOREM 2. Let Assumptions Al'-A4’ hold. Then

ml/z(ﬁ - H,) »4 N(0,;) asn — .

PrROOF. Theorem 1 holds under the current conditions and implies that
with probability approaching 1, as n — «, H satisfies

dR(H) dR(H,) d?R(H) . °
~—am ~ am " —amr (H~H),
where |H — H,| <|H — H,|. Now

(4.2) 0

dR(H) _G(H) 2

i ) - ;;log A
d’R(H) 4{G,(H)G(H) - G}(H))
dH?> . G*(H) ’

where
G, (H =l§:1 A)EAzH-1T
#(H) (log A;)"A; J
m
Defining also

; Lo ; RPN
F(H) = — Y (log ) 'L, Ey(H) = — ¥ (log /)" /"1,
1 1
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elementary calculation gives
d’R(H) _ 4{F,(H)F(H) - F}(H))
dH? Fe(H)
4{E,(H)E,(H) - E}(H))
E}(H)

(4.3)

Fix £ > 0 and choose n so that 2& < (log m). On the set M = {H: (log m)?
X|H — Hy| < ¢},

o) A 1 m
[By(H) = By(Hy)| < — ¥ 1740 — 1](log j)* 211
1

< 2e|lH — H0|Ek+1(H0)
< 2es(log m)* ?E,(H,),

where the second inequality uses 3|j%*# 5o — 1|/|H — H,| < (log j)m?*H~Hol
< (log j)m'/'°¢™ = ¢ log j on M. Thus for 5 > 0,

P16y - 0ty > o[ 27) |
(4.4)
< P(G(HO) > —2-—Z;(log m)2_k) + P((log m)*|H — Hy| > ¢).

For any 7> 0 and k = 0,1,2, the first probability on the right-hand side
tends to O for ¢ sufficiently small because G(H,) —, G, € (0, ) is implied by
the proof that supg |A(H)| —, 0 in the proof of Theorem 1. The second
probability is bounded by

P( inf S(H) < o) +P( inf S(H) <0) + P(infS(H) <0),
0,nN;nM ®,NN; O,

where M = (—», ©) — M. We have already shown in the proof of Theorem 1
that the last two probabilities tend to 0. The first probability is bounded by

(4.5) P( sup IT(H)| > - inf _U(H)).
0,0N, ®,nNN;n T

By applying (3.4), and then (3.5) and the orders of magnitude for (3.7) and
(3.8) noted in the proof of Theorem 1, it follows from (3.9) that (4.5) tends to 0
if

G(H) - G(H
( ()}(H)( ) =op((logm)_6).

(4.6) sup
®;NN;
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Making further use of the notation of (3.10) we have infy .y B(H) >
infg B(H ) = 1 for all large enough m from (3.11), and [cf. (3. 12) and (8.13)]

(G

m Ij
m¥(g‘1)'

We now state the following properties, to be established later:

1-26 1
sup |A(H>|<6Z( )
0,NN,

(4.7)

r

I.
(4 8) Z (Ej- - 277I€j) = Op(r1/3(].0g r)2/3 4+ pBtl,-8 4 rl/zn—1/4)
. 1 ;

as n — o,
and

(4.9) Y (27I; — 1) =0,(r'/?) asn -,
1

for 1 < r < m. Using A4’, we then deduce that (4.7)is O, (m~1/2), so it follows
from (3.9) and (4.5) that P(infy 5,7 S(H) < 0) - 0. The detailed nature
of the bounds in (4.8) and (4.9) will be of further use below. We have
established that (4.4) tends to 0 as n — . Thus
d’R(H)

dH?

4| {Ba(Ho) + 0, (21 ) By(Hy) + 0, (2707 1)) = {By(H,) + 0,(n?s~1)']
(Eo(Ho) + 0, (n?-1))’

_ 4{ﬁ2(H0)ﬁ0(H0) - F'12(H0)} +0,(1) asn—>®
F3(H,) ’ |

For £ > 0,

. 1m ‘
F,(H,) — Go— zaogm\
1

()

g |(log r)* — (log(r + 1))*|

m Ij
¥{5‘1}
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using summation by parts, (4.8), (4.9) and |(log r)* — (log(r + 1))*| < (log(r +
1)*~1/r for k = 1, 2. Thus from (4.3), as n — =,
d?R(H) 1 2
— =4 log j
a4 g( g Jj)
(4.10) 2
1™ .
= zl;logj (1+0,(1)) +0,(1) =, 4.

Now because G(H,) — » Go

m HO
CLCOISPRRTS PR R
dH "Gy + o0,(1)
9,(1) )'"
411 —om2f1- =2 \y, T
(411) ( Go+0,(1) | T 'g;

m I.

=2m /2 Zuj(—J - 1)(1 +0,(1)),
1 \&;

where v; = log j — m~ 1Y "log j satisfies YTv; = 0. From summation by parts,

(4.8) and X7'log j = O(m log m), (4.11) is

m
{Zm_l/2 Y vi(2nl,; - 1)
1

+Op(((log m)Y*mV 4 mB+1/2n-8 4 n/4)log m)}(l +0,(1)),

which from Assumption A4’ and Ef'v; = 0 is (2E72, + 0,(DX1 + 0,(1)), where
z; = 0 and, for ¢ > 2,
t-1
2t = & Z ECrs»
s=1

m
¢, =2n"'m™/2 Y v; cos(sA)),
1

supressing reference to n in 2z, and c,. Now the z, form a zero-mean
martingale difference array, and from a standard martingale CLT we can
deduce that £}z, tends in distribution to a N(0, 1) random variable if

(4.12) ZE(z IF,_1) —1-, 0,

(4.13) ZE(sz(Iz,I > 8)) » 0 forall 6> 0.
1

The left-hand side of (4.12) is

n t-1 n ,
(414) {2 ¥ et - 1} + Y Y e
t=2s=1

t=2 r+#s
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The term in braces is

n—1 n—t n—1n—t
(4.15) {2(33—1)Zc3}+{2 Zcf—l}.
1 s=1 1 1

Now
n—1n-—t n—-1n-—t

(4.16) Z Z c:
n J, k=1
4 m n—1n-—t

(4.17) =— Yv?r Y, Y cos®(sA)) t— XYY vy,

1 1 1 J#k

n—-1n-t

X 21: 21: [cos{s()tj + M)} + cos{s(A; — /\k)}].

From the trigonometric identities [see, e.g., Zygmund (1977), page 49],

r sin(r +3)6 1
cos 0t = ————— — —,
E’l ® 2sin 36 2
r cos 30 — cos(r + 3)0
in 6t = . 6+ 0,mod(27),
tglsm o sinlo mod(2)

and trigonometric addition formulae, we deduce

a-lg-r (cos@—cosqf) gq-—-1
4.18 o0t = - .
(4.18) E’l El cos 4sin?16 2

Thus, for j = 1,...,m < 3n,
n—-1n-t¢

Y. X cos®(sA))

1 1

n—1n-t¢

—;— 21: 21: {1 + cos(st\j)}

n(n — 1) n—l_(n—l)2
4 4 4

Because

2

1m (log m)?
— 2-1+0|——
m 21: g ( m

it follows that (4.16) tends to 1 as n — «. Using (4.18) again, for j, k& =
1,....m<3in,j+k,

n—1n-t

21: 21: [cos{s()\j + )} + cos{s(A; — )\k)}] = —n,

so that (4.17) is

—zzyyk_o(zm ) 0(—)—»0

mn Jj*k
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as n — «, Thus the second component of (4.15) tends to 0 as n — «. The first
component of (4.15) has zero mean and variance

n—-1({n-t 2
(4.19) o| Y. ( Y cf) .
1 s=1
Now
m m'/2log m
(4.20) lel <2m™2n71 Y |yl = O(——L),
1

whereas ¢, = ¢, _, and, by summation by parts,

m-1 J m
lesl =|2m™ 207" 3 (v, — v;,1) L cos(sA) + 2m™/?n,, ) cos(sA;)
1 1 1
4.21 m—1 1
(4.21) < Cm‘1/2s‘1( Y |log|1 + 7) + log m)
1

=0(m™/?s" log m),

for 1 <s < n/2, because [Z{ cos(sA))| = O(n/s) for such s [Zygmund (1977),
page 2], and because [log(1 + 1/j)| < 1/j for j > 1. The bound in (4.21) is at
least as good as that in (4.20) for n/m < s < n/2. From (4.20) and (4.21),

n m2logm\®  (log m)?
5 o2 o %( nog . (ogm) T g
§s= m s>n/m
(4.22) ' >/
o (log m)?
- n

and so (4.19) = O((log m)*/n). We have shown that (4.15) is 0,(1). The second
component of (4.14) has mean zero and variance

n  min(¢-1,u—1)

2 ZZ ZZ (ct—rct—scu—rcu—s)

t,u=2 r#s
n n t-1 u-1
=2 Z ZZC?_,C? s Z Z ZZ Ci—rCtsCy—rCu—s
t=2 r+s t=3 u=2 r+s

From (4.22) the first term on the right is O((log m)*/n). The second term has
absolute value bounded by

E3[Te Ty

(4.23) .

REESE!

t—u+1
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and the final bracketed factor is

n—-2 [n/2]
Y j(n—j-lei<2n ¥ jc?
Jj=1 1
[n/m2/3] [n/2]
<2n ) jel+2n ) Jje;
2 [n/m?3]+1
nd (mY2logm\’ ,[log m 2 = _2
=0 PR VE - +n T Z s
[n/m?/3]
n(log m)?
=0 ml/3

as n - », so (4.23) is O((log m)*/m'/?) in view of (4.22). We have thus
verified (4.12). We shall prove (4.13) by checking the sufficient condition

n
Y E(z{) >0 asn— .
1
The left-hand side of this equals
n t—1 4
wEE( T
2 1

n t—1
< CZE( ZZZZ gs & sq spct—sct—rct—qct—p
2 1

n t-1

+CY XYl e,
1 1

n

scz(zc;&s
1 1

IA

ofs]

log m)*
_ o( (log m) )
n
from (4.22). We have shown that 2Y7z,, and thus (4.11), is asymptotically
N(0, 4), so that in view of (4.2) and (4.10) the proof of the theorem will be
completed on verifying (4.8) and (4.9). To prove (4.9), we have

r r n n t—1
(4.24) Y (27l - 1) = —~ Y(e2 -1+ X&) &d,
1 1 2 s=1

where d; = (2/n)Licos(s))). We have |d,| < 2r/n, on the one hand, and
d,=d,_,, |dJ|<2/ms for 1 <s <n/2. Both terms on the right of (4.24)

8
have zero mean, and they have variances, respectively, O(r%/n) and

O(n%df) =O(n%(£)2 n Y s‘z) - o(r).

[n/r]
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To prove (4.8), first choose an integer I < r. From (3.16) and EQ2#I, ) = 1,

I
g—J — 27TI€J-)

J

(4.25) E =0(l) asn —> x,

H

From (3.16) and Al’,

r (LI r g;
EZ(—’——J—)ch 1--=2
1\& T 1+1 fi
rﬁ+1
= (nﬁ) as n — «©,

Write u; = w;/la;l, v; = w,;. Then we are left with consideration of

r I 2
E Z(_f—zﬂsj)} = (27)%(a + b),

w1\

where

,
a= Y (Elul* - 2Elup,® + Elvjl*),
I+1

b= 222(E|ujuk|2 - Elujvkl2 - Elukvjl2 + Elvjvk|2).
<k
I+1

We then have a = a; + a, and b = b, + b,, where

> {Z(Eluj|2)2 +1E(u}))” ~ 20 E(uv)l* - 21E(u5))”

I+1

a,

~2Elu,PElv) + 2(EloP) + B(o})1),
I+1
by = 2L Y {Elu,PElu, P + |E(w;u,)* + |E(u,) — Elu,’Elv, [

J<k ‘
I+1

—|E(u;0,)* = |E(u;5,)1* — Eluy*Elv;” — | E(u;)I?
—|E(w,,)1* + Elv;Elv,* + |E(vv,)* +1E(v;5,)1%},

,
by=233 {cum(uj, Uy, Gj, ) — cum(u;, vy, @;, U )
J<k
1+1

—cum(v;, uy, j, ﬁk) + cum(vj, Vi, U, Ek)},
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where cum(-, -, -, - ) is the joint cumulant of the argument random variables.
Because Elvjl2 =1,
r

a, =Y {2(E|uj|2 _ 1)2 + 2(E|uj|2 1) +E(u)? - 21E(up,)l

I+1
~20E(u;3;) — 11 - 2(Bu,3, - 1) - 2(Eay, — 1) + (o))
cof 2] o
b, =2 zrz {(Elujlz — 1)(Elu,® - 1) + |E(uju,) 1 + |E(u;g,))”
i<k
(4.26) s

—|E(uvp)l” —1E(u;0,)1* = |E(uy)* = 1E(uy0))I"
+HE(up) I+ 1E(u3,))

sl )

j=l+1

ro k-1 2
ofuerr £ | of )]
k=1+2 j=1+1

as n — «, using Theorem 2 of Robinson (1995). Choosing I ~ r'/3(log r)?/? in
(4.25) and (4.26) gives the 0,(r'/*(log r)*/?) component in (4.8). Now consider
a, and b,. Applying formulae of Brillinger [(1975), (2.6.3), page 26, and
(2.10.3), page 39], we deduce after straightforward calculation that the sum-
mand of (27)° b, is

a(A+p+)a(—u) a(=A)a(-7¢)
(4.27) n? Uf { |2 _1}{ |a,|? _1}

Ejk(ArfLy{)d/\degy
where k = u, — 3 and
Ep(Mu,d) =D(A— A= p={)D(X + 1) D(p — A)D(& = My),

D(A) = ) eith,
=1

Now use the identity

'S

4

4
(c1e9 — 1)(escy — 1) = I:I(cj - 1) Z I:Il(c - 1)

Jj#i

2
+ 222 (e = 1) (cjp — 1)

i,j=1
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to observe that (4.27) has components of three types. The first is

n_’;_f]’f a(A +al.‘«+§) _ 1}{0‘(;#«) B 1}{“(6;7\) B 1}{“(;’25) _ 1}

J
Ey(Aund) drdpdl.

By the Schwarz inequality and periodicity, this is bounded in absolute value
by

(4.28) (27)°kP,P,,
where
2
T a(/\)
P= —— — 1] K(A~ ;) dA
A a
and
ID(A)?
A) =
K(X) 2m7n

is Fejér’s kernel. The second sort of component of (4.27) is typified by

a()\+#+§) a(—p) a(—¢)
(2wn) fff{ 1}{ a _1}{ @ _1}

J
jk( A’M,g) dA d/‘l‘ d{
The modulus of this is bounded by

(4.29) (277) kP, P,/?
because
(4.30) [ Ky da=1.

An example of the third type of component of (4.27) is
K el a(r+ m+ < a(—A
e R VEIC
(27”7') - a; ap
Ep(Ap,8)drdpdd

_w e\ fe(=1)
_(27Tn)2 j_.f[{ a; 1}{ a, 1}

Eu(M6— A= ¢,¢)drdpdg

(4.31) _ n_K2 j-} { afj)) B 1}{01(0;)&) _ 1}

J
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because
/" D(u+N)D(v - 1) dA = 20D (u + v).
The absolute value of (4.31) is bounded by

(27)%
1/2pl/2
nl/2 Pj/ Pk .

(4.32)

The summand of a, is (4.27) with j = k£ and has components bounded by
(4.28), (4.29) or (4.32), with j = k. Applying Lemma 3, we deduce that

a = o(z(j-z +J72 4 72| 2 0(D),
1

b, =0

r
ZZ(j_lk_l +j—1k—1/2 +j—1/2k—1 + n—l/Zj—1/2k—l/2))
Jj<k
I+1

= O((log r)* + r'/2 log r + rn~1/%),

to complete the proof of the theorem. O
5. Technical lemmas.

LEMMA 1. For £ €(0, 1] and C € (&, ®), as m — o,
m pyv-1 1
ol
mT\m m

PROOF. Because [fx" 'dx =a”/y for y > 0,
m Fyr1 1\7!
IZ(L) -1 syfl/m{(—) +x7‘1}dx
m 0 m
m
+ vy

1 m
[j/m (i)y_l—xv—l dx
9 |["G-D/m\\M

y 1 vlv—ll’"(j)y‘z

sup
Czy=e

S_+—+—ZZ

m” .m" m \m

by the mean-value theorem. The last term is O(y2m™~1!) for y > 1, zero for
v=1and O(m™?) for 0 < y < 1, whence the conclusion follows straightfor-
wardly. O

LEMMA 2. Forallm > 2,
2 +log(m — 1)

m

1 m
(5.1) — Y logj—logm + 1’ <
m
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PrROOF. Because [(;"log xdx = m(log m — 1), the left-hand side of (5.1) is
flogxdx— — f log( )

2 + log(m — 1)

. O
m

&.||—AN’

1 1 m-
< R— R—
T m m fl"’
LEMMA 3. Under Al and

A2', uniformly in integer j such that j/n — 0 as
n — o,
T C((/\)
We split the integral up as follows:
-5 - /2
[l L o L h

for 6 € (2, m). For n sufficiently large, A1 and A2’ imply that we can choose
8 such that, for some C < o,

2
1
1) K(Ar - )tj)d)t=0(7) as n — o,

Proor.

la(A) < CIAMY2Ho o' (D)< CIAT2 P, o< Al <8.
Now
A -5
J sf{[ FIVK(A=A)dr+f [ K(A—Aj)dA}
- J - -

1 1 T d 2'77
e v i)
2H 1

o[22 )]0 4 ) -of2),

where the second inequality uses the property [Zygmund (1977), pages
49-51]

(5.2) ID(A)] < 2/IAl, 0<A<m;
also | [7'| has the same bound by the same proof. Using (5.2) again,

f;“ﬂ ;{f f(A)K(,\—/\)dA+ff K()t—/\)d)t}

1 ks m
< AT 2HEGA + f A2dA
27Tnfj {'I;‘j/2 f; }

A2
“o[ %] -of2)
nf; i)
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|12 A,~| has the same bound by the same proof. Next,

f&/2
-A;/2

<f? max K(A- A){f 22f()t)d)\+)tjfj}

IAl<a,/2

ol -of)

Finally, by the mean-value theorem,

1

sz <

5 max
n2| o lal® az<asay,

da(r) |?
dA

J7HIN = APE(A = A)) dA
\,/2

6. Numerical work. The finite-sample behaviour of H was investigated
in a small Monte Carlo study. H was also compared with a simple closed-form
estimate:

6.1) fe 1 Eit,logl (logj — (1/m)X log )
(6. ~ 2|7 T log j(log j — (1/m)X log 1)

This estimate is a slightly simplified version of the one proposed by Geweke
and Porter-Hudak (1983). Robinson (1995) derived asymptotic theory for a
modified form of H, in which the contribution from a slowly increasing (with
m) number [ of the lowest frequencies A;,..., A, are deleted from (6.1).
[Kiinsch (1986) earlier suggested such a trimming.] It is not known whether
the trimming is necessary in order to achieve the desirable asymptotic
property

~ ’7T2
(6.2) m'/>(H — H) -, N(O,a)

obtained by Robinson (1995); the bulk of the many empirical applications of
the Geweke—Porter-Hudak approach have used all of the m lowest frequen-
cies. (We omit the zero subscript on H throughout this section and Tables
1-8.) In view of this, and for simplicity and ease of comparison with respect to
degrees of freedom, we employ the untrimmed estimate (6.1) here.

Using an algorithm of Davies and Harte (1987) and random number
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generator GO5DDF from the NAG library, Gaussian time series were gener-
ated with mean zero, variance unity and lag-j autocovariance

(6.3) vy = 5(1j + 17 = 27 +1j — 11°7).

We call this Model A. The corresponding spectral density satisfies (1.1);
indeed it satisfies Assumption Al’ with B = 2. Five values of H were
employed: H = 0.1, 0.3, 0.5, 0.7 and 0.9; H = 0.5 corresponds to white noise
in this model. The sample sizes chosen were n = 64, 128 and 256, and for
each of these, three values of m were tried: n/16, n/8 and n /4. For each (H,
n, m)Acombination, 5000 replications were generated. From each of these, H
and H were computed, in the latter case using a simple golden section search
applied to the first derivative of the objective function. No difficulties were
encountered in computing H, and for selected replications R(H) was plotted
and always found either to have a single relative minimum or (in some cases
when H = 0.1 or 0.9) to be minimized at 0.001 or 0.999, these being our
chosen values of A; and A,. Tables 1-6 give the Monte Carlo biases,
standard deviations, mean squared errors (MSE), relative efficiencies (ratios
of the H and H MSE’s) and 95% and 99% coverage frequencies based on the
limit distributions in (4.1) and (6.2). In Tables 1-3 and 5-6, “log” refers to the
log-periodogram estimate H and “eff” refer to the more efficient estimate H.

For the most part, H seems more biased than H, though this effect tends
to be reversed when m = n / 8 and n/4 for n = 256, and when m = n /4 for
the other values of n. H is apt to be negatively biased for small H and
positively biased for large H, but a negative bias in H is more pervasive.
Unsurprisingly, bias tends to increase with m. The standard deviations in
Table 2 all diminish as both m and n increase, and the H standard
deviations are always decisively the smaller. Table 3 presents a similar
picture, and in only one case does MSE show an increase with m. The entries
in Table 4 are to be compared with 0.608, which is the asymptotic relative
efficiency [from (4.1) and (6.2)]. Though the finite-sample superiority of H
tends not to be as great for the central values of H, for H = 0.9 and
especially H = 0.1, it is much better. Much the same can be said of the
relative accuracy of the 95% and 99% interval estimates, but whereas H is
best in 24 of the 45 cases in Table 5, in Table 6 it is best on 29 occasions, with
one tie.

Model A, (6.3), is favourably disposed: toward both H and H for any value
of m, because the approximation

(6.4) f(A) % GA-2H

is good for all A € (9, w]. However, both H and H are motivated by the far
wider range of circumstances (1.1). In many of these there is the possibility
that (6.4) is not good over (0, 2mm /n], and this is a potential source of bias.
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Consider, in particular, the process
(6.5) X, =y, tz,

where {y,} is Gaussian with autocovariances given by (6.3), and {z,} is a
second-order autoregressive (AR) process

(6.6) z,taz,_tagz,_y=mn,

such that 7, is an iid N(0, 1) sequence. When the quadratic x? + a;x + a,
has complex zeroes, the spectral density of z, has a peak at a frequency in
(0, 7], in particular, at A = arccos{—a,(1 + a,)/4a,}. For example,

(6.7) a, = —1.34, a; =09 = A=m/4,
(6.8) a, = —0.725, a,=09 = X=3m/8

and the amplitude of the peak is very sharp (the zeroes of x2? + a;x + a,
have moduli 0.948 in both cases). Because it is just the sum of the spectra of
v, and z,, f(A) will have a peak at around A, while at A = 0 it will be infinite
when H > 0.5 and small but positive when H < 0.5. The values of m and n
chosen in the Monte Carlo study reported above entail the frequency bands
(0, w/8], (0, w/4] and (0, /2], respectively, over which f(A) corresponding to
(6.5), (6.6) and (6.7) or (6.8) would be influenced in various ways by the peak
at A.

The Monte Carlo experiment was repeated for (6.5)—(6.8), using the same
values of H, m and n and the same number of replications as before. Only
biases are reported. Tables 7 and 8, respectively contain results for the
parameter values in (6.7) and (6.8), referring to these as, respectively, Models
B and C. For Model B, (6.7), the AR peak happens to occur around the
m = n /8 cutoff point, and the serious negative biases when H > 0.5 are not
unexpected. For m = n /4, the whole peak is included and the biases are less,
owing to some cancellation effect, but evidently meaningful estimates of H
are not achieved. For m = n/16, the AR peak has some negative impact on
bias when H > 0.5, as comparison with Table 1 indicates, but it is not nearly
as significant as in the other cases. When H < 0.5 in (6.3) for Models B and
C, (1.1) is actually misspecified (or rather, it has H = 0.5), and this appears
to be dominant in producing the positive biases in Table 7 when H = 0.1 and
m = n/16, while the AR peak is responsible for the large negative biases
when H = 0.3 and m = n/8. In Table 8, the more distant AR peak at 37/8
produces a larger bias for m = n /4, but a smaller one for m = n /8. In both
Tables 7 and 8, the overwhelming tendency when H > 0.5 is for H to be less
biased than H and for bias to decrease in n, though the reverse phenomenon
predominates when H = 0.1. To place these results in perspective, it should
be observed that if m had been chosen according to some optimal bandwidth
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scheme [see, e.g., Robinson (1994¢)], it would increase more slowly with n
than the proportionate increase employed in the Monte Carlo, while a prelim-
inary plot of the logged periodogram can help to avoid pitfalls.

In the long range dependence literature, various parametric and semipara-
metric estimates of H have been reported for the time series of 663 annual
minimum water levels of the River Nile measured at the Roda Gorge near
Cairo during the years 622 through 1284. [The data are in Toussoun (1925);
for subsequent years there are missing observations.] For m = 41, we ob-
tained H = 1.033 and H = 0.941, so that H is outside the stationary region.
For m = 82, H = 0.920 and H = 0.905. For m = 164, the estimates are again
smaller but the order is reversed: H = 0.855 and H = 0.866.
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