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of Technology

In a nonparametric regression setting with multiple random predictor
variables, we give the asymptotic distributions of estimators of global
integral functionals of the regression surface. We apply the results to the
problem of obtaining reliable estimators for the nonparametric coefficient
of determination. This coefficient, which is also called Pearson’s correla-
tion ratio, gives the fraction of the total variability of a response that can
be explained by a given set of covariates. It can be used to construct
measures of nonlinearity of regression and relative importance of subsets
of regressors, and to assess the validity of other model restrictions. In
addition to providing asymptotic results, we propose several data-based
bandwidth selection rules and carry out a Monte Carlo simulation study of
finite sample properties of these rules and associated estimators of ex-
planatory power. We also provide two real data examples.

1. Introduction. For regression experiments where the relationship be-
tween a random covariate vector X and a response variable Y does not
necessarily follow either a linear or other specified parametric model, a
natural measure of the strength of the relationship between X and Y is
Pearson’s correlation ratio

_ Var(m(X))

1.1 2
(1.1) n Var(Y)
where m(x) = E(Y|X = x), X € R%, Y € R!. The correlation ratio n? is based
on the ANOVA decomposition

(1.2) Var(Y) = Var(m(X)) + E(co?(X)),

where o 2(x) = Var(Y|X = x), and thus gives the fraction of the variability of
Y which is explained with the best predictor based on X, m(X), and can be
interpreted as a nonparametric coefficient of determination or nonparametric
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R-squared. It can also be defined via the extremal correlation property

(1.3) n® = Corr?(m(X),Y) = supCorr?(g(X),Y),
g

where the supremum is taken over all real-valued functions g(X) with finite
second moments. Equation (1.3) is easily proved using the iterated expecta-
tion property and the Cauchy—Schwarz inequality.

The quantity n* can also be interpreted in terms of signal-to-noise ratio,
which is usually defined as the variability (or energy) of the signal X over
that of the noise £ = Y — m(X):

signal n?
noise 1 — 2’

Restricting for a moment attention to the case d = dim(X) = 1, we note
that #* = n?, is an asymmetric measure. In fact, it is possible that nZ, =1,
while n2, < 1. Asymmetry of n? reflects the fact that it is a regression rather
than correlation measure of association. As such, it avoids some of the
“pathologies” of ACE and the maximum correlation coefficient [see Rényi
(1959), Breiman and Friedman (1985) and Buja (1990)].

The quantity n® is not a “strong” measure of association: while indepen-
dence of X and Y clearly implies n* = 0, even max(nZ,n%) = 0 does not
imply that X and Y are independent. In fact, it is possible that max(n2,, nZ,)
=0 while X and Y are functionally dependent: just consider a uniform
distribution on the unit circumference. The point, of course, is that X and Y
may be dependent not through the conditional means but in many other
ways. On the other hand, if Y = m(X) + ¢ with X and ¢ independent, n% = 0
is equivalent to independence of X and Y.

Unlike “strong” measures of dependence, such as maximum correlation
coefficient or Rényi’s (1959) mean square contingency, 5% is not invariant
with respect to arbitrary transformations of X and Y [cf. Rényi (1959), Axiom
E]. It is invariant, however, with respect to affine transformations of X and Y
and one-to-one transformations of X.

It is well known that,unless the dimensionality d is very small or n is very
large, reliable nonparametric estimation of the regression function m(x) is
impossible because of the sparsity of the data, or what is known as the curse
of dimensionality. The main idea of the paper is to use more accurately
estimable integral functionals of m(x) to assess the explanatory power of
covariates and the validity of various restrictions on the model, which allow
for one or other form of dimensionality reduction.

In the nonparametric setup, estimates of the correlation ratio n? are quite
sensitive to values of X near the boundary of its support Sy. By introducing a
weight function w(X) which is equal to 1 in the central part of Sy and is zero
near the boundary of Sy, we get a more “robust” measure that focuses on the
explanatory power of X without being too sensitive to values near the
boundary. We thus consider the weighted functional 72, defined in (2.1), with
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a bounded nonnegative weight function w(x) which reduces the influence of
outlying X values, or high leverage points.

We consider the problem of nonparametric estimation of 12 as well as of
closely related measures of nonlinearity and of the relative importance of
subsets of covariates. The problem is essentially that of estimating a particu-
lar type of functional of the joint distribution F' of (X,Y). Following Le Cam
(1956), Hasminskii and Ibragimov (1979) and Bickel and Ritov (1988), we
consider a “one-step” estimator based on the influence function of the func-
tional in question. The advantages of this approach are discussed in the
recent monograph by Bickel, Klaasen, Ritov and Wellner (1993), where many
additional references are given. We also consider two other estimators of 12
obtained by considering sample counterparts of the weighted versions of (1.1)
and (1.3) with plugged-in nonparametric regression estimators [see (2.13) and
(2.14)]. We refer to these three estimators as the one-step type, the regression
variance type and the correlation type, respectively.

To obtain the asymptotic distribution of the three estimators of 12 as well
as of the measures of nonlinearity and subset importance, we prove a
theorem which establishes the asymptotic normality at the root-n rate of the
one-step estimates of functionals of the form S(F) = E¢(X, m(X)), where ¢ is
a smooth real-valued function on R?* !, This result, together with Theorem 1
of Samarov (1993), is shown in Sections 2 and 6 to yield the asymptotic
normality at the root-n rate of all our estimators.

Our estimators of 12 depend on the bandwidth 4 of the kernel estimator
m(X,) of regression m(X,). In Section 3 we consider a data-dependent rule for
selecting ~ based on the maximization of the correlation-type estimator with
a “leave-one-out” regression estimator together with the usual cross-valida-
tion rule. We summarize in that section the results of Monte Carlo compar-
isons of the estimators and find that the one-step and correlation-type
estimators are rather stable with respect to bandwidth choice while the
regression variance-type estimator is quite unstable. The correlation-type
estimator is slightly more stable than the one-step type, but the difference
between them is very small for the relevant range of A’s.

In Section 4 we consider estimators of the functionals measuring the
extent of nonlinearity of regression and of the relative importance of subsets
of covariates, and we show their asymptotic normality at the root-n rate.
Section 5 contains two real data examples. In particular, we analyze the
famous Boston housing data in terms of the explanatory power of selected
covariates, the degree of nonlinearity and the relative importance of subsets
of covariates. Proofs are given in Section 6.

The functional »? was considered by Pearson (1905), Kolmogorov (1933),
Cramér (1945), Kruskal (1958), Rényi (1959), Kendall and Stuart (1962) and
Rao (1973), among others. Estimation of global, or integral, smooth function-
als has been considered in a large number of works from both theoretical and
applied points of view. Important theoretical results are obtained in
Koshevnik and Levit (1976), Levit (1978), Hasminskii and Ibragimov (1979),
Ibragimov, Nemirovsky and Khasminskii (1986), Hall and Marron (1987),
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Bickel and Ritov (1988), Donoho and Nussbaum (1990), Donoho and Liu
(1991), Fan (1991) and Goldstein and Messer (1992), where, in various
settings, conditions for n!/2-consistency, asymptotic normality and efficiency
are established for nonparametric estimators of functionals of the integral
type; see dlso the recent book by Bickel, Klaasen, Ritov and Wellner (1993).

In applications, nonparametric functional estimation has been recently
used to assess various aspects of parametric and nonparametric models [see,
e.g., Azzalini, Bowman and Hardle (1989), Hirdle and Stoker (1989), Joe
(1989), Eubank and Spielgelman (1990), Kozek (1991), Staniswalis and
Severini (1991), Abramson and Goldstein (1991), Robinson (1991) and
Samarov (1993)]. Another recent area of application is efficient smoothing
parameter selection [see Fan and Marron (1992) and Hall and Johnstone
(1992)].

Estimation of the functional n? is closely related to the estimation of the
residual variance 72 = E[Var(Y|X)] = E(Y — m(X))? [see (1.2)]. Breiman and
Meisel (1976) proposed estimators of 72 based on piecewise linear approxi-
mation of m(x), when ¢, =Y, — m(X,) are i.i.d. N(0, 72). Gasser, Sroka and
Jennen-Steinmetz (1986), Buckley, Eagleson and Silverman (1988) and Hall
and Marron (1990) considered estimation of 72 for the case of fixed one-
dimensional predictors. In these papers estimators of residual variance,
based on spline and kernel regression estimators, are shown to be n'/2-con-
sistent and to satisfy certain optimality criteria. Estimation in the known or
controlled design case may be considerably different from the estimation
problem in our setting (see, e.g., Remark 2.2). The time series literature also
examines the problem of estimating residual variance [see Skaug and
Tjostheim (1993), Cheng and Tong (1993) and Bhansali (1993)].

2. Estimation of explanatory power of covariates. In this section we -
discuss the problem of estimating 12, based on a sample of i.i.d. observations
X,,Y),...,X,,Y,) from a common distribution F(x, y), and we introduce
estimators that, under suitable conditions, are asymptotically normal at the
Vn rate. In order to avoid boundary effects and to have a measure of
explanatory power for which Vn asymptotics would be available, we will
include in the definition of 72 a bounded nonnegative weight function w(x)
supported on a set where the density f(x) of covariates X is bounded away
from 0. Weight functions are invariably introduced when global measures of
deviation (such as average square error or mean integrated square error) are
used in order to avoid problems with the density f(x) approaching zero and of
large bias near the boundary of the support of f(x) [cf. Marron and Hardle
(1986), Hardle (1990) and Fan (1992)].

We thus consider the functional

_ J(m(®) = py,) R w(x) dx

2
Oy, w

(2.1) ng
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based on the ANOVA decomposition

0fw = [(M(x) = py,,) F(R)w(x) dx
(2.2)

+[(y = m(x))*f(x, y)w(x) dx dy,

where

pyw= [wE)f(x,9)dxdy, o}, = [(y = wy,.) f(x, y)w(x) dx dy,

and f(x, y) is the density of F(x, y).
Note that if we introduce ¢, = [f(x)w(x) dx and the new densities

) = T g,y = LD,

then on the set {x: w(x) # 0}, the conditional density of Y|x based on f,(x, y)
would remain the same as Y|x based on f(x, y), so that m,(x) = m(x) and
Var,(Y|x) = Var(Y|x) on this set. Equation (2.2) is the ANOVA decomposi-
tion (1.2) for the density £, (x, y). Using this weighted density, we can write
nZ, similarly to (1.3), as ’

(2.3) n2 = CorrZ(m(X),Y).

Typically, the weight function w(x) will be chosen to be one in the central
part of the support of f(x) and to descend smoothly to zero near the boundary
of the support of f(x). In this case the weighted 7?2 is nearly indistinguish-
able from the unweighted »? given by (1.1). On the other hand, the weighted
correlation ratio (2.1) is important in its own right because it gives a measure
of explanatory power which is not sensitive to how f(x) approaches zero near
the boundary.

In the rest of the paper, we do not reflect in our notation the dependence of
functionals and estimators on a weight function which will invariably be
included in their definition (with the exception of Remark 2.4).

Estimation of n* = {fw(x)m?(x)f(x) dx — u%}/0¢ involves nonparametric
estimation of the quadratic functional

(2.4) T(F) = [w(x)m*(x)f(x) dx.

More generally, it will be useful to consider estimation of a class of
functionals of the form

(2.5) S(F) = E¢(X, m(X)),

with a real-valued smooth function ¢, which includes the functional T'(F).
Estimation of a somewhat bigger class of functionals, involving also deriva-
tives of m(x), was addressed in Samarov (1993) using a sample version of
S(F) with plugged-in kernel regression estimators. The asymptotic normality
result in the present paper requires less stringent regularity conditions.
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We consider here “one-step” estimators of S(F) based on the influence
function [cf. Bickel, Klaasen, Ritov and Wellner (1993)]. One-step estimators,
originally based on the first Newton—Raphson iteration of the likelihood-type
equations, are often used in parametric and nonparametric estimation to
construct asymptotically efficient estimators. To construct a one-step estima-
tor, we need to compute the influence function of S(F'), which is easily shown
to be

IF(x,y;S,F) =D(x,y,m(x)) — S(F),

where

(2:6)  D(x,y,m(x)) = $(x, m(x)) + ¢D(x, m(x))(y — m(x)),

and ¢(x, ) is the partial derivative of ¢ with respect to its last argument.
An interesting feature of the functionals (2.5) is that its influence function is
centered with S(F) itself, and so, there is no need here either to construct an
initial estimator or to split the sample, as is done in many other situations
where a one-step estimator is used [cf. Bickel and Ritov (1988)]. The one-step
estimator of S(F) then has the form

n
(2.7) S, =n"' ¥ D(X,,Y;, m(X,)),
i=1

where (X)) is a nonparametric regression estimator. In the following theo-
rem, the proof of which is given in Section 6, we consider the estimator S,
with the “leave-one-out” kernel estimator defined as follows:
(n— 1)_12jaeiYiKh(Xj - Xi) _ £(X,)
(n=D7L KX -X)  f(X)]

(2.8) m(X,) = say,

where g(x) and f(x) are “leave-one-out” kernel estimators of g(x) =
[yf(x, y) dy and f(x), respectively, K,(u) = h~?K(u/h), and a multivariate
kernel K(-) and a bandwidth A are chosen in Conditions 4 and 5 of the
theorem. We will be using “leave-one-out” estimators throughout this section
without showing it in the notation; see Remark 2.9 and Section 3 on using
“all-in” kernel estimators, and see Remark 2.4 and Section 3 on using other
regression estimators.

THEOREM 2.1. Consider the estimator S, with the “leave-one-out” kernel
estimator (2.8), and assume that the following conditions are satisfied:

Condition 1. E|Y|* < © and o2(x) = E(Y — m(X))%|X = x) is bounded for
x € Sx, where Sx is the support of f(x).

Condition 2. The function ¢(x, m(x)) is supported, as a function of X, on
an open convex set ® € R? such that inf, .4 f(x) > 8 for some 6 > 0; ¢(x, t)
is bounded and continuous in x and has bounded partial derivatives up to the
order 3 with respect to t for x € ® and t €[ —b, b], for some b < .
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Let k be an integer, k > d.

Condition 3. Partial derivatives of f(x) and g(x) up to the order k satisfy a
Lipschitz condition uniformly on Sx.

Condition 4. (a) n'/2h**1 = 0(1) and (b) n'/?h? — ® as n — .

Condition 5. The kernel K(u) is a bounded function with support {u:
llall < 1} such that

K(—-u) = K(u), fK(u) du=1,
and
fK(u)uilulz2 ulida=0 forj=1,... k,

where j =1, + 1, + -+ +1; and l; are nonnegative integers.
Then the estimator (2.7) is asymptotically linear, that is, as n — %,

(29) 8, -S(F) = — ¥ D(X,, Y, m(X,)) ~ S(F) + o,(n /%),
-1

REMARK 2.1. Conditions 3, 4(a) and 5 are used to control the bias. Note
that Condition 4 implies that 4 decreases to zero faster than the optimal rate
for curve estimation [cf. Stone (1982)], that is, we undersmooth to keep the
bias of our estimator of the order o(n~1/2). The variance remains of the order
n~! because of the additional averaging in (2.7). Note also that Condition 2 is
weaker than the corresponding condition in Samarov (1993) and that the
proof of Theorem 2.1 is considerably simpler than that of Theorem 1 of
Samarov (1993) because there is no need to use a U-statistics projection
argument for the one-step estimator.

For the special case of the functional T'(F), Theorem 2.1 implies the
following corollary.

COROLLARY 2.1. We assume the following condition.

Condition 6. The function w(x) is a bounded continuous nonnegative weight
function supported on an open convex set W € R? such that inf, _y f(x) > &
for some & > 0.

Under conditions 1, 3, 4, 5 and 6, the estimator

S| =

(2.10) T= 2 ¥ [2Y(K) - m2(X,)]w(X,),
i=1

with m(X,) as in (2.8), has the following expansion as n — o:

A 1z
T~ T(F) = ~ ¥ w(X)[2¥,m(X,) - m*(X,)]
(2.11) "i=1

= T(F) +o,(n"'/?).
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REMARK 2.2. The expansion (2.11) implies that 7' is asymptotically nor-
mal with the asymptotic variance

4E(w*(X) o ?(X)m?(X)) + Var(w(X)m?(X)).

When the design density is known, the asymptotic variance can be made
smaller by the term Var(w(X)m2(X)) [cf. Pastukhova and Khasminskii (1989)].
This term equals the error variance of the standard Monte Carlo method of
approximate calculation of the integral [w(x)m?%(x)f(x) dx. This means that
when the design density is known, the leading term of the error comes only
from the noisy measurements of the regression function, while in the un-
known design case, the Monte Carlo error of calculation of the integral with
noiseless measurements is of the same order as the regression “measure-
ment” error. When there is also a possibility of controlling the design, it may
be possible to construct asymptotically efficient estimators of the functionals
T(F) and 7% which do not require any smoothness of the regression function.
For example, if we can perform repeated (e.g., two) measurements at the
same design points, we can estimate the residual variance using the differ-
ences between those measurements, and use this estimate to estimate 2 and
T(F).

The following proposition, which will be used several times in the rest of
the paper, follows immediately from Samarov [(1993), Theorem 1] and (2.11).

PropoSITION 2.1. Let Conditions 1, 3, 4, 5 and 6 be satisfied, and, in
addition, the weight function w(x) satisfies the following condition:

Condition 7. Partial derivatives of w(x) up to the order k satisfy a Lipschitz
condition uniformly on the set ® defined in Condition 2.

Then, as n = «, we have the following:

1 1
) —TwE)RX) = — Lw(X)[2Yim(X,) - m*(X;)]

+o0,(n"1?);
1 1
@) - TwE)nX) = SuX,)Y,
+o,(n"1?);
1 1
() TwE)AX)Y, = Tu(X)[2%m(X,) - mi(X,)]

+o,(n"1?).

(Note that the summation over i here and below will always be from 1 to
n, unless indicated otherwise.)
Writing 72 as (T(F) — u%)/0 and using the estimator (2.10) of T'(F),

together with the (weighted) sample mean Y = n"!YY,w(X,) and variance

s2 = n"15(Y; - Y)?w(X,), we obtain the following estimator of 72, using
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again the “leave-one-out” kernel estimator m(X,):
Lw(X) [2Ym(X,) - m*(X)] - n¥?

nsy

(2.12) H?

Note that here and in the rest of the paper we use the weight function w(-) in

Y, s? and in other sample moments without reflecting it in our notation.

REMARK 2.3. Note that 72 can be written as
e X)(Y - X)) (1-m)F
- +

ns? s2

= ;
w = n~'Xw(X,), which shows that %2 is a function of the weighted prediction
mean square error used in cross-validation bandwidth selection procedures

(cf. Section 3).

The next proposition states the asymptotic linearity of %7 together with
two other estimators of 2 which are based on the sample versions of (2.1)
and (2.3), respectively, with the plugged-in kernel estimator (2.8):

n (X)) — ™) w(X,)

(2.13) H2 = 5
Sy

and

. _ - 2
@10 o2 _ LA/WECRE) —m)(¥: — V)w(X))]
i (1/m)E((X;) — m) w(X,)sy
where m = n ' LmX)wX,).
PropPoOSITION 2.2. Let Conditions 1, 3, 4 and 5 be satisfied, and also
assume that, for the estimator 3?2, Condition 6 holds and, for the estimators

%2 and 2, Conditions 6 and 7 hold. Then all three estimators ﬁjz, Jj=12,3,
have the same first-order asymptotic expansion: as n — o,

(2.15) nV2(3f - n?) = n 21— n?) X (e — u?)w(X,) + o,(1),

where e; = (Y, — uy)/oy is the standardized response and u;,=[Y; —
mX)]/ay(1 — n®)1/2 is the standardized residual.

Proor. Applying the identity

2.16 d—a+8-1‘ b— b2

and the obvious expansions
Y? -y = 2#1/(? - MY) + Op(n_1/2)9

s3— o =n" P N wX)(Y; — py)? — 0f +0,(n"1/?),
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we obtain (2.15) for j = 1 from (2.11) and for j = 2, 3 using Proposition 2.1,
after straightforward algebra. O

Proposition 2.2 implies that all three estimators ”'71 have the same first-
order asymptotic properties. In Section 3 we compare their ﬁmte sample
properties using Monte Carlo simulation and find that estimators 72 and %2
are much less sensitive to the choice of bandwidth than #Z. The estimator 72
also has another advantage. While 72 is always between 0 and 1, the
estimators %2 and %2 may, with some small probability, be negative or
greater than 1, respectively; 77 is clearly always between 0 and 1.

REMARK 2.4. In the case of a one-dimensional predictor X, it is possible to
obtain results similar to Corollary 2.1 and Proposition 2.2 under somewhat
weaker conditions and without including a weight function in the definition of
the functionals; see Doksum and Samarov (1993) for details. Also, other
nonparametric regression estimators, for example, £ — NN, Yang-Stute
[Yang (1981) and Stute (1984)] and splines [Silverman (1985)], or locally
linear [Fan (1992)] estimators could be used in the above functional estima-
tors and may, in fact, have some advantages over kernel estimators. The
Monte Carlo simulations reported in Sections 3 and 4 provide results for
kernel as well as locally linear estimates.

REMARK 2.5. Under additional regularity conditions (yet to be worked
out), which would guarantee pathwise differentiability of the functional
T(F), Proposition 3.3.1 of Bickel, Klaasen, Ritov and Wellner (1993) together
with our Corollary 2.1 implies that the estimator 7' will be asymptotically
efficient in the class of regular estimates [see Bickel, Klaasen, Ritov and
Wellner (1993)]. Similarly, under those conditions, 77, , J=1,2,8, will be
asymptotically efficient estimators of 12

REMARK 2.6. One of the key questions in nonparametrics has always been
[see, e.g., Pitman (1948) and Bickel, Klaasen, Ritov and Wellner (1993)]: how
much efficiency is lost if a nonparametric procedure is used when the true
model is, in fact, a simple parametric one, such as the normal model. We find
that asymptotically there is no loss in using the nonparametric R-squared %2
over the parametric R-squared in the multivariate normal model. In terms of
Bickel, Klaasen, Ritov and Wellner (1993), the extension from the normal
model to the general nonparametric one is “free” and %2 is “adaptive.” More
specifically, it can readily be shown, using algebra and the 8-method, that,
under the conditions of Proposition 2.2, the asymptotic dlstmbutlon of nl/ 2(H2
- n?) 1s the same as the asymptotic distribution of n'/2(p2 — p?2), where
pZ = n? is the correlatlon coefficient between m(X) and Y (assumlng m is
known), and p2 is the squared sample correlation between m(X) and Y. In
the parametric setting where m is known and m(X) and Y are bivariate
normal, p2 is the MLE of p2 and is asymptotically efficient. It follows then
that, in this case, 77 is as efficient as p2; that is, %2, which does not require
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that m is known, is as efficient as the most efficient estimate with m
assumed known.

REMARK 2.7. Proposition 2.2 implies that n'/?(f? — n?) is asymptotically
normal with mean zero and variance (1 — 1%)? Var[(e? — u?)w(X,)]. When
1% =0 or 1, this variance is zero and our result only implies degenerate
normality. Thus we need to study the next term in the expansions to obtain a
meaningful distributional convergence result. This is a nontrivial task which
will be considered in our future work.

REMARK 2.8. Note that the sample nonparametric ANOVA decomposition
does not quite hold:

1 2 1 2
sy = ;Z(éz -z)wX,;) + W Y (m(X;) - m) w(X,;)
(2.17)

2
+— L (&~ B) (X)) - m)w(X),

where 2, =Y, — m(X,) and & =n"'X2,w(X,). By comparison, for the best
linear predictor 7:;(X), the ANOVA decomposition holds because of the
orthogonality of the sample least squares. Even though s% does not break up
into its components in the general nonlinear model exactly, it does so
asymptotically.

ProPOSITION 2.3.  Under the assumptions of Proposition 2.1,

s? 1 3 —3) wX, 1 m(X,) —m)w(X,
(218) Y n Z( 1 ) (Xl) + n Z( (Xl) m) (Xl)

The proposition is proved by applying Proposition 2.1 to the cross product
term in (2.17).

REMARK 2.9. In all of the above estimators of 1%, we have used “leave-
one-out” kernel estimators because they are somewhat easier for the asymp-
totic analysis than “all-in” estimators [cf. Levit (1978) and Hall (1989)]. The
asymptotic properties of the estimators ﬁf, Jj =1,2,3, stated in Proposition
2.2 remain unchanged, however, when the “all-in” kernel estimators are used.
To prove this it is sufficient to show that, under the assumptions of Proposi-
tion 2.1, the replacement of the “one-out” kernel estimator with the “all-in”
one in the left-hand sides of (2.11) and of the expressions in claims (i) and (ii)
of Proposition 2.1 results in a change of the order o0,(n"'/?); see Section 6 for
the proof.

_ Note, however, that, with a “leave-one-out” estimator m(X,), the estimator
T in (2.10) is easily shown to have negative bias:

(2.19) E(T) = T(F) — MISE,
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where MISE is the familiar mean integrated square error of regression [see,
e.g., Hardle (1990)], which explains the negative bias of the one-step-type
estimator %2 in simulations reported in Section 3. The point here is that with
a “leave-one-out” estimator we effectively estimate the mean square error of
prediction E[n~'X(Y; — #m(X,))?], while »? is based on the residual variance
72 = E(Y — m(X))?, the difference being equal to MISE. In the next section
we study finite sample properties of both “one-out” and “all-in” estimators
and find that in a number of examples a combination of the two gives better
results.

3. Bandwidth selection and simulation results. There have been
many papers in recent years addressing the problem of data-based bandwidth
selection for nonparametric (mostly density or regression) curve estimation
[e.g., Park and Marron (1990), Hirdle (1990), Hall and Johnstone (1992) and
references therein]. The methods are typically based either on some form of
cross-validation or on plugging some preliminary nonparametric estimators
into an asymptotic approximation to the integrated square error, or on a
mixture of the two.

Much less is known about smoothing-parameter selection for integral
functionals. For the estimation of the integrated square density, Schweder
(1975), Jones and Sheather (1991) and Sheather, Hettsmansperger and Don-
ald (1994) proposed bandwidth choice based on minimization of an approxi-
mate bias.

Recent works on optimal bandwidth selection for curves show that the
behavior of those selectors importantly depends on how bandwidth is selected
for estimators of integral functionals appearing in the asymptotic curve
estimation error [see Hall and Johnstone (1992) and references therein].

As we have seen in Section 2, the estimators of integral functionals are,
under certain conditions, n!'/2-consistent and asymptotically normal, so that
the leading term in the MSE does not depend on the bandwidth, as long as it
is chosen within certain limits; see Condition 5 of Theorem 2.1 and Remark
2.1. This means that the asymptotically optimal choice of % can only be made
based on the higher-order terms, which makes this approach extremely
cumbersome [cf. Hardle, Hart, Marron and Tsybakov (1992) and Skaug and
Tjostheim (1993)]. When a functional is not n!/%-estimable, which would
happen in our context, for example, when m(:) is not smooth enough, the
bandwidth choice will affect the rate of convergence itself and thus will be
even more important. Since in practice the precise degree of smoothness of
the underlying curve is unknown, the data-based bandwidth selection should
not depend on specific assumptions about it.

We consider here just one such choice and evaluate its performance using
two Monte Carlo simulation examples. Other bandwidth selection rules are
discussed in Doksum and Samarov (1993). Our proposal is based on the
extremal property (1.3) of n?: choose bandwidth as Aoy = argmax, 72,
where 72, defined in (2.14), is based on the “leave-one-out” version of 7. In
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TABLE 1
Values of the linear and nonparametric coefficients of
determination for the bump model (3.1)

2 1 1 4 16
n? 0.947 0.816 0.526 0.217
p2 0.445 0.384 0.247 0.102

the Monte Carlo experiments below, we compute 72(hgog) using the “all-in”
regression estimators.

For comparison, we also consider the standard cross-validation method for
curve estimation, which is equivalent to choosing the A that maximizes the
“leave-one-out” version of the one-step estimator 72 (see Remark 2.3). We will
refer to this bandwidth choice as Ay.

ExampPLE 3.1. Suppose that X and Y are related by the equation
(3.1) Y =2-5X + 5exp{~100(X - §)*} + 72,

where X and ¢ are independent with respective distributions U(0,1) and
N(0,1). This is the “bump” model [e.g., Hirdle (1990)]. As can be seen from
Table 1, we cover a reasonable range of values of 72 and pZ%, where p? is the
usual Pearson correlation coefficient, by choosing 72 equal to %, 1, 4 and 16.
It is easy to check that p? = 0.470172

Figure 1a shows a scatter plot of n = 200 points generated by this model
with 72 = 1 and the true regression curve m(x). Figure 1b and c¢ shows the
results of a Monte Carlo study where 400 simulated samples of size n = 200
were generated from the bump model (8.1) with 72 = 1. The results for
72 = 1 4 and 16 were qualitatively similar. We have used kernel regression
estimators with quartic kernel K(u) = 15/16(1 — u*)*1{|u| < 1} and weight
function w(x) = I[ f(x) = b] with b = 0.01, which roughly corresponds to 5%
trimming. Experiments with no trimming (b = 0) led to more unstable esti-
mators, while larger trimming constants (b = 0.02) produced results roughly
similar to those with & = 0.01 reported here.

Figure 1b shows medians over 400 realizations of four estimators of 72, as
a function of the bandwidth 4. The bandwidth % is measured in units of the
standard deviation of X. The four plotted estimators are the estimators
ﬁjg(h, l-out), j=1,2,3, with the “leave-one-out” kernel regression [see
(2.12)~(2.14)], and the estimator 72(k, all-in) with the “all-in” kernel regres-
sion. Figure 1b shows that 7,(k, 1-out) is very sensitive to the choice of
bandwidth, which, together with similar evidence from other experiments,
makes it less attractive than the other two estimators. Figure 1b also shows
that §2(h, 1-out) underestimates the true value 7% = 0.8159 for all 4, as is to
be expected from (2.19). We can also see that #2(#, all-in) is much larger than
2%(h, 1-out) for small 4 and approaches 1 as & — 0, as is to be expected from
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the overfitting aspect of the “all-in” estimate. Note that formula (6.8) implies
that the estimator "71(h all-in) will be greater than ﬁlz(h 1-out) for all % as
long as the kernel is nonnegatlve which is the case in our calculations. The
estimates 7)7(%, 1-out) and 72(k, 1-out) are very close to each other and both
are relatively stable as functions of 4, with %; being somewhat more stable.

Figure 1c shows boxplot summaries of the performance of estimates of 7?2
with bandwidth selectors Zqop and hqy. The first two boxplots both use
the bandwidth choice Zog: the one on the left is #2(hgog, 1- out) while the
second one is H2(hgop, all- 1n) The first tends to underestimate n while the
second one overestimates 7Z. The rightmost boxplot is for )7 (hcv, 1-out),
which tends to underestimate »? and is quite similar to n3(hCOR, 1-out).

The overall conclusion from this simulation experiment is that the “leave-
one-out” versions of 77 and 72 are rather stable within a relatively wide
range of bandwidths, so that some oversmoothing or undersmoothing should
not cause a problem for these estimates. A significant variability of the
selectors hcy and hgog, resulting from relatively flat maxima of #2(%, 1-out)
and $3(#, 1-out), is not a drawback of these selecbors but rather an indication
of very desirable stablhty of the estimators. Since #%? and 7 n3 are quite close to
each other and %3 is a bit more stable, we will focus on #2(kgg, 1-out).

Note also that Figure 1c shows that #2(hqog, 1-out) underestimates 52 by
roughly the same amount that §2(h¢gg, all-in) overestimates it, which sug-
gests to try the average, or mixed, estimator

(3.2) 713 (mixed) =3[9 (Acor, 1-out) + #2(Acog, all-in)].

We show next 31mulat10n results for this estimator and also compare it with
the estimator 73 based on locally linear estimates 7(x) of m(x) [see Fan
(1992) for properties and bibliography]. To define 7 (x), let a(x) and b(x) be
the values of a and b that minimize the locally linear weighted least squares
criterion

(3.3) S(a,b) = Z{Yj—[a+bT(Xj—X)]}2K(th_x)’

where K is a kernel function, and define /m(x) to be equal to a(x). As with the
kernel estimates, one can consider “one-out” and “all-in” versions of m(X;)
depending on whether or not (X, Y;) is left out of the sum in (3.3).

Table 2 gives the results of this Monte Carlo simulation, with locally linear
and kernel regression estimators, respectively, where 500 simulated samples
of size n = 200 were generated from the bump model (3.1), with 72 = 11,4
and 16, while Figure 2 shows the corresponding boxplots for 72 = 1 and 4.
The results shown are for the same quartic kernel K and indicator weight
function w with & = 0.01 as above. The results in Figure 2 show that, for this
model and A = hqog, i3 3(mixed) is much better than #2(all-in) and nf(l-out)
This is also reflected in Table 2, which gives the bias, variance and mean
squared errors of those estimates. The mixed estimate is much better than
the other estimates in terms of mean squared error except in the case of the
locally linear estimate when 7 = 4. In this one case, the one-out estimate
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TABLE 2
Monte Carlo bias, variance and mean squared error (mse) (times 102) of the estimates of n>

based on locally linear and kernel estimates of m(x). the numbers in the table should be
multiplied by 1072 to get the correct values; the results are based on 500 simulations for each

fixed 7 in the bump model (3.1); the weight function used is I[ f(x) > 0.01]

Locally linear Kernel
Bias Var mse Bias Var mse
(@) 7=05
One-out —-5.87 0.055 0.089 —6.6 0.070 0.113
All-in 4.50 0.047 0.068 4.03 0.062 0.079
Mixed —0.68 0.0499 0.0504 —1.28 0.064 0.065
b) r=1
One-out —12.00 0.572 0.716 —16.94 0.548 0.835
All-in 16.16 0.489 0.751 10.02 0.514 0.616
Mixed 2.08 0.517 0.522 —-3.42 0.510 0.521
@7r=2
One-out —34.35 2.23 3.41 —26.05 2.331 3.01
All-in 27.21 2.68 3.42 25.78 2.35 3.02
Mixed -3.57 2.28 2.29 0.1 2.27 2.27
@@r=14
One-out —31.68 2.54 3.54 —34.02 2.28 3.44
All-in 52.24 6.99 9.72 35.56 4.24 5.51
Mixed 10.28 3.55 3.65 0.76 2.78 2.78
locally linear kernel
t=0.5
1.00 1.00
0.98 098 -
T
0.96 T 0.96 - T
H Loy n2 i =
LETE i ——— = 094 {  F——] 1  E—
T 1 v . 1
0.92 1 . : 0.92 - L !
0.90 0.90
1-out all-in mixed 1-out all-in mixed
=2 =2
0.8 , 08
0.7 0.7 1 .
: T
06 T i 06 | T ! T
. = —— 2 s ' = ——
05 0 5 | . !
l:_,—_, 1 | I::' i |
0.4 - i ) 4 0.4 1 ' 4
0.3 1 0.3
1-out all-in mixed 1-out all-in mixed

Fic. 2. Boxplots of the three correlation-type estimates of n?: “one-out”, “all-in” and mixed [ see

(3.2)]. Results are based on 500 Monte Carlo samples of size 200 from model (3.1). The weight
function is w(x) = I[ f(x) = 0.01].
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is slightly better than the mixed. The locally-linear-based mixed estimate is
better than the kernel-based mixed estimate when 7 is 0.5, the kernel is
better when 7 is 4 and, when 7 is 1 and 2, there is no difference.

In Doksum and Samarov (1993) we also report simulation results for
evaluation of confidence intervals based on the asymptotic distribution of
Vn (#2 — n?) for this and other examples. The results show that even though
the observed coverage probabilities approximate the nominal confidence lev-
els reasonably well, the asymptotic theory tends to underestimate the actual
variability. Other methods, such as bootstrap, may produce better estimates
of variability. Fisher’s variance stabilizing transformation leads to somewhat
better results than the untransformed intervals.

ExamPLE 3.2. Consider next the model
(3.4) Y =05+4X, + 4(X, — 0.5)° + 4X1/2 + 12,
where X, X,, X; and ¢ are independent; X;, X, and X; are uniform on
[0, 1]; and & is N(0, 1). For this model n2 = 104 /(104 + 4572). As in Example
3.1, the mixed estimate #Z(hgor) performed best; see Figure 3 and Table 3.

Also, the estimate of 1% based on the locally linear regression estimate
performed better than the one based on the kernel regression estimate.

4. Explanatory power under restrictions; measures of nonlinearity
and covariate subset importance. Many restrictions on the general
regression model m(-) can be expressed in terms of m(-) belonging to a

locally linear kernel
1=0.5 t=0.5
1.00 1.00
095 1 T ) 0.95
0.90 1 = L__T_.u n? o0 T T n2
. 1 B 1 T
085 L : 085 1 i 1 !
. 1 L
0.80 1 0.80 '
=2 =2
07 | " o7
0.6 . 0.6 -
05 { . H T 05 ; T T
|
0.4 1 ! I:::I —— n2 04 | —— —— n2
03 I:|::| i L—"_Ji 03 1 I::T_—l [
02 L 02 1 + '
0.1 A 0.1 A

FiG. 3. Boxplots of the three correlation-type estimates of n%: “one-out”, “all-in” and mixed [ see

(3.2)]. Results are based on 200 Monte Carlo samples of size 200 from model (3.4). The weight
function is w(x) = I[ f(x) = 0.001].
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TABLE 3
Bias, variance and mean squared error (times 103) for the model (3.4), based on 200 Monte
Carlo trials, sample size n = 200 and trimming constant b = 0.001: the numbers in the table
should be multiplied by 10~2 to get the correct values

Locally linear Kernel
Bias Variance mse Bias Variance mse
(a) 7=05
One-out —-14.6 0.201 0.416 —38.2 0.325 1.179
All-in 9.2 0.170 0.257 —-17.7 0.274 0.58
Mixed —-2.6 0.179 0.186 -279 0.287 1.07
d)r=1
One-out -26.1 1.39 2.08 —43.7 1.44 3.36
All-in 154 141 1.65 4.0 1.15 1.17
Mixed -5.3 1.36 1.38 —-239 7.24 1.82
@ r=2
One-out —29.2 2.70 3.55 —38.90 2.790 4.30
All-in 334 3.44 4.56 27.95 2.96 3.74
Mixed 2.0 2.80 2.80 —-5.47 2.74 2.77
@ r=14
One-out —-29.1 1.59 2.44 -27.0 2.04 2.77
All-in 42.7 3.46 5.29 2.5 3.49 7.40
Mixed 6.7 2.07 2.11 17.7 2.40 2.72

subspace F C L,(f) of functions of X with finite second moments: (a) m(-)
linear; (b) m(-) piecewise linear; (¢) m(-) polynomial; (d) m(-) a function of a
subset of variables; (e) m(-) additive; (f) m(-) a sum of ridge functions. The
extent to which such restrictions hold or provide adequate approximations to
m(x) can be measured by estimating functionals of the form

2
_ E(m(X) — gp(X))

E(Y - g (X))2
where g7(X) = argmin, _ » E(Y — g(X))?, provided such a minimizer exists.
It follows from the identity
(42)  E(Y-g(X))" = E(Y - m(X))* + E(m(X) - g(X))",
that if F' is a linear subspace containing constants, then

E[m(X) - gz(X)]? < Var(m(X)).

Combining this inequality with (4.2) written for g = g, we obtain from (4.1)
that 0 < yz < n% The functional y, measures the fraction of the residual
variability left after fitting the best model from the subclass F. If F is a
linear subspace containing constants, it can be easily verified, using the

orthogonality E[(m(X) — gzXXY — m(X))] = 0, that y; can be also written
as

(4.3) ve = Corr®(m(X) - gp(X),Y ~ gp(X)).

(4.1) YF
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We will discuss here estimation of only two such functionals: measures of
nonlinearity and relative importance of subsets of covariates.

4.1. Assessing nonlinearity of regression. According to (4.1) and (4.3), the
nonlinearity index, which we will denote by y;, can be written as

_E(m(X) —my(X))"  E(m(X) - myX))’

(4.4) YL = E(Y _ mL(X))Z = 0_3(1 — pz)
or as
(4.5) yr = Corr?(m(X) — m(X),Y — m (X)),

where m;(X) = py + 0, 3, '(X — py) is the best linear predictor of Y, uy =
E(Y), px = EX), 3, = Var(X), g,, = Cov(X,Y), o = Var(Y) and the linear
(population) coefficient of determination p? is defined as follows:
Var(my(X)) ol 3.,
-~ Var(Y) o2
All the expectations, as usual, are taken here with respect to the weighted
density f,,(x, y) = f(x, y)w®)/ [f(x)w(x) dx and its marginals [cf. discussion
below (2.2)].
Using the form of m; (X) and the fact that Cov(m(X), m (X)) =
Cov(Y, m (X)), we can also write vy, as

2

2 2
n°—p
4.6 = 7.

( ) YL 1 p2

Sample versions of all three forms (4.4), (4.5) and (4.6) provide reasonable
estimators of y;, the last one being easier for the asymptotic analysis since
one can directly use the asymptotic linearity of estimators of n? established
in Section 2. Let p* =s],S;'s,,/S7 be the estimator of p? obtained by
replacing the (weighted) population moments in the definition of p? with the
corresponding sample moments. Then, applying to p% an argument similar to
that given in the proof of Proposition 2.2, one can easily show that, provided
the fourth moments of X and Y exist, 3, has full rank and p?=
Corr?(Y, m;(X)) < 1:

n
(47)  nV3(p% = p?) =n (1= p?) ¥ (e — ul)w(X,) + o,(1),
© =1
where e, = (Y; — uy)/oy and u;; = (Y, — m;(X,))/oy(1 — p?)*/? [as usual,
the weight w(-) is assumed to be included in calculation of all moments here].
Let /iy, = my(X,) =Y + sT, S, (X; — X) be the sample version of m (X)),
where all sample moments are calculated with weights w; = w(X,); and also
write My, = n 'L 7,(X)w; and 7, = m(X,). Combining asymptotic linear-
ity expansions for estimators of 12 in Proposition 2.2, (4.7) and (2.16), we
obtain the proof of the part of the following proposition concerning the
estimator 9.
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PROPOSITION 4.1. Assume that the conditions of Proposition 2.1 are satis-
fied, that the fourth moment of X exists, that 3% has full rank and that
p% = p2 = Corr2(Y, m; (X)) < 1. Then these three estimators of v;,

A9 A2
; N n-p
(1) YiL = 77 57

with 7? one of A7, j =1, 2 or 3 [see (2.12)-(2.14)],
.o A —_ A A — — 2 A
() Sa = E (g = 74 b1 - ),

[n‘lZ(Yi — ;) (i — ﬁm)wi]2

[n_lz(’ﬁi =y = ("_7' - mL))zwi][n_lz(Yi - thi)zwi] ,

Gil) Y5y, =
all have the same first-order asymptotic expansion: as n — ©,
(4.8) nl/z(/}\’jL - 'YL) = n—1/2(1 - ) i (u%z - utz)wt + Op(]‘)’
i=1
where u; is defined right after (2.15).

The proof of (4.8) for the estimators ¥,; and ¥,; is given in Section 6.

As in Section 3, we prefer the “correlation-based” estimator y5; based on
our experience with its finite sample behavior and the fact that, unlike
estimators ¥,; and ¥,;, it always takes values between 0 and 1.

Here we summarize Monte Carlo results for the nonlinearity index in the
bump model, Example 3.1. We use both kernel and locally linear versions of
3., and in each case choose /& to maximize the “leave-one-out” version of 32,
The final estimate is the “all-in” version of y;; with this choice of bandwidth
h. Table 4 indicates that when the standard deviation 7 of the noise is small,
the kernel estimate is slightly better than the locally linear estimate, while
the locally linear estimate is much better when 7 = 2 and 4.

TABLE 4
Bias, variance and mean squared error (times 10%) of the estimated index of nonlinearity ¥5;,
for the bump model (3.1): the numbers in the table should be multiplied by 10~ to get the
correct values; the kernel version is computed for 400 Monte Carlo replicates while the locally
linear version of %35 is computed for 200 Monte Carlo replicates, both with samples of

size 200
Locally linear Kernel
Bias Variance mse Bias Variance mse
7=0.5, v, = 0.904 7.02 0.272 0.321 7.54 0.219 0.276
T=1, vy, = 0.701 18.34 1.69 2.03 15.68 1.51 1.77
T=2, v;, = 0.369 39.02 4.10 5.62 81.47 4.88 11.52
T=4, v;, = 0.128 56.86 10.02 13.26 122.39 6.83 21.81
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REMARK 4.1. Note that combining (4.4) and (4.6) one obtains another
expression for n2:

n? = p? + (1 — p?)Corr?(m(X) — my(X),Y — my (X)),

the sample version of which leads to yet another estimator %2, which, unlike
the estimators of n? considered earlier, satisfies the inequality 5% < %2 < 1.

4.2. Measuring the relative importance of a subset of covariates. In order
to measure the importance of X; = {X s JEed } relative to the full set of
variables X, we follow the pattern of (4.1) and define a measure of relative
importance of X ; as

P -0}
(AR Y
(4.9) E(m(X) — m,(X,))"

2
E(Y -m,(X,))
= Corr®(m(X) — m,;(X,),Y — m;(X,)).
Note that the smaller values of y; correspond to the greater importance of
X . As in the previous subsection, we can take a sample version of any of the

three expressions in (4.9) as an estimator of y;, and, for the same reasons as
before, we prefer the third one:

2 . .
(4.10) ¥y = Corr (m(X) — m;(X,),Y - m;(X,)),
where Corr is the usual sample correlation in which as before we include the

weight w(X).

PrOPOSITION 4.2. Assume that the conditions of Proposition 2.1 are satis-

fied and the same conditions hold with X replaced by the subset of variables
X ;. Then

nl/2(’§’J - ‘YJ)

4.11 7
( ) =n 121 -v;) ) (u3; —uf)w(X;) +0,(1) asn - =,
i=1

where u;; = (Y, —m ;X ;) /0,1 — pP)'/2.

The proof of the proposition is given in Section 6. We illustrate the use of
¥; in the next section.

5. Data examples. The estimators of 72, y; and v;, used in this section
are the correlation-type estimators %2, 9; and ¥,;.

ExamPLE 5.1. We consider first the “food” data analyzed by Hardle (1990)
where the expenditure on food in a household is linked to the net income of
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the household. The sample size is n = 7125. We select the bandwidth which
maximizes the “one-out” version of 7%. Only the estimators based on kernel
regression are considered. We find that the mixed estimate of the nonpara-
metric correlation is 72 = 0.433, with a standard error of 0.012, while the
“all-in” version of the nonlinearity index is 92 = 0.154, with a standard error
of 0.013. Thus after linear prediction there is 15.4% more variability to
explain.

ExampLE 5.2. Next we consider the “Boston housing data” analyzed by
Breiman and Friedman (1985). The response variable Y is the median value
of a house in a given area, while the covariates we consider are as follows: X;
is the average number of rooms per house in the area; X, is the percentage of
the population of lower status in the area; and X is the weighted distance to
five Boston employment centers from houses in the area. The explanatory
power of the three covariates is estimated as %%(mixed) = 0.829 by the
kernel-based method, with a standard error of 0.019, and as 7%(mixed) =
0.838 by the locally-linear-based method. By comparison, the ACE model with
these three covariates [see Breiman and Friedman (1985)], that is, the “best”
additive model with the “optimally” transformed response, has the coefficient
of determination 0.812 (computed using the S-PLUS version of ACE).

Table 5 gives the result of an analysis of explanatory power, of subset
importance and of nonlinearity. For each subset JJ of covariates it gives the
estimated explanatory power %7, the measure of subset importance %, and
the nonlinearity index %;. The linear model coefficient of determination R? is

TABLE 5
The estimated subset explanatory power 72, measure of subset importance ¥; and the
estimated linearity index y; for the covariates in the Boston housing data: the results are for
the kernel-based estimate with b = 0.001; 7% is the mixed version of 72 with the bandwidth
hoor; P2 is the coefficient of determination R? for the indicated subset; standard errors are
indicated in the parentheses underneath the values

Subset J [k W% Y A
{Rooms} 0.484 0.570 0.648 0.197
(0.046) (0.034) (0.031)
{% lower status} (L.S) 0.541 0.679 0.554 0.320
(0.028) (0.040) (0.045)
{Distance} (Dist.) 0.063 * 0.176 0.830 0.157
(0.034) (0.021) (0.025)
{Rooms, % LS} 0.639 0.779 0.315 0.365
(0.030) (0.056) (0.049)
{Rooms, Dist.} 0.496 0.575 0.621 0.277
(0.051) (0.042) (0.047)
{% LS, Dist.} 0.562 0.724 0.395 0.505
(0.020) (0.057) (0.033)
{Rooms, % LS, Dist.} 0.647 0.829 0.616

(0.019) (0.034)
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included for comparison in the first column. The n? column shows that
{Distance} explains 17.6% of the variability, while all three variables explain
82.9%. Since v, = (92 — 2)/(1 — 1), small values of ¥; indicates strong
subset importance. Thus the most important proper subset is {Rooms, %
lower status}, while the least important subset is {Distance}. In fact, after
prediction by {Distance}, there is 83.0% more variability to explain, while
after prediction by {Rooms, % lower status} there is 31.5% more variability to
explain.

The results in Table 5 show strong nonlinearity. For instance, for the
subset J = {% lower status}, 32.0% of the residual variability left after
subtracting out the variability explained by the linear predictor can be
explained by the nonparametric predictor. Similarly, for J the subset of all
three variables, 61.6% of the variability left after linear prediction can be
explained by the nonparametric predictor.

6. Proofs. Throughout the proofs we will use the subscript i in place of
the argument X;, so that M(X,) — m(X,), for example, will be written as
m; —m; and o(X,) as o;.

We will need the following lemma, which can be checked by direct compu-
tation [cf. Prakasa Rao (1983)].

LEMMA 6.1. Under Conditions 3, 4,5 and 6, we have the following for the
estimators f and g defined in (2.8):

E [w(x)(f(x) - f(x))’ dx = o(n"/?) asn > .
If, in addition, Condition 1 holds,

E [w(x)(4(x) - 2(x))* dx = o(n"1/?).

Proor oF THEOREM 2.1. The Taylor expansion of the influence function
D(x, y, m(x)) in (2.7) gives

- = Z D(X;,Y;, m;)
L 1 A
(6.1) ; ; DYX,,Y;, m;)(m; —m,;)
5 & DO, ¥ ) (it~ )’
=1, +1,, say,

where DO(x, y, m) = ¢@(x, m)e and DA (x, y, m) = ¢®(x, m)e — ¢P(x, m)
are the first and second derivatives of D with respect to the argument m,
o™, kB =1,2,3, are the derivatives of ¢ with respect to m, e =y — m(x) and
m; is between m; and m,.
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Writing m; — m; as

A'_A'mi i_:‘ Ai_:‘mi
(6.2) ﬁz,.—m,:g’ fi +(f f)(A ),
fi fifi
we have
1 g — fim,
I, = — X, m)e —Lt L
1 n;d’ ( L’ml)gl fl

6.3 .
(6.3) +%Z¢<2)(Xi’mi)gi(fz fi)( )

=Ill +Il2’ Say.
Now writing I;; as

¢(2)(Xl’ml) L
I, = n(n — 1) Z Z -z

f (Y m; )Kh(UlJ)
i j*i i

where U;; = X, — X;, we have EI,;, = 0 and
A(X;, m;) (X, m)K,(U;;)K,(U,
E1121 Zzzzz{d’(t L)¢(l l) h( 1) h(lk)
n*(n —1) i=1j#il=1k#l fifi

Xé‘ié‘l(ej + mJ - mi)(é‘l + m; — mk)}.

Using the fact that E[s”ls"za, sgpt|X™] = 0, when all indexes i,j,[, k are
different, 1 < v, + v, + v5 + v, <4 and at least one of the integers v,
r=123,4, 1sequalt01 we have

2) X, m; K; (U,
EI}, = (1) Z ) (¢ ( mz)) il J)(O'; (m; - ,) + oo 2)
( _1) i=1j#i f
6K, m) $P(X), m)KR(U,) }
! if T

Using now that |K,(U,))| < C/h? and that under Conditions 1, 2 and 3 the
functions ¢2(x), 1 /f(x) m(x) and ¢@(x, m(x)) are bounded on the set ®, we
have EI11 = O((n(n — 1)h%4)~1), which, together with Condition 4, implies
that EIZ = o(n™1).

From the uniform consistency of the kernel density estimator f(x) for
x € ® [see, e.g., Prakasa Rao (1983)], we have, as n — =,

1
— 177 = %1),
infy ol ()| 7
which, together with Conditions 1 and 3, implies that
(6.5) sup |(x)| = 0,(1)

xed

(6.4)
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and

(6.6) sup [¢®(x, m(x))| = 0,(1), k=1,2,3.

xed

This implies that I;, = 0,(1)J,, where
|ai| It — £1(8; — &l + If, — £il Im,])
f‘i b

where v; = v(X;) with some bounded continuous weight function v(x) sup-
ported on ®. Using conditioning on X", we have

EJ, < E [v(x) o (x)| f(x) - f(%)]

x(18(x) — g(®)| +|f(x) — f(x)|Im(x)]) dx,

and the Cauchy-Schwarz inequality together with Lemma 1 and bounded-
ness of o(x) and m(x) implies now that EJ; = o(n~!/2), which in turn
implies that I,, = 0,(n"'/?).

(6.7)

Turning now to the term I, in (6.1), we have, using (6.6),

0()

I, = vi(le;l + Im; — gl + 1) (A — m;)?,
i= 1
where v, = v(X;) and v(x) is again a bounded continuous weight function
supported on ®. Using the fact that m, is between m; and m;, (6.5) and
Condition 3, we have

- 2 ¢

)(; = m;),
Writing m; — m; as (3, — f-mi)/fi and using (6.4), we get

( ) & s 2
I,=—2—— Z v(l&l + 1)(&, — fim;) = 0,(1)J,.

Now, similarly to J; in (6.7), it can be shown, using Lemma 6.1, that
EJ, = o(n~1/2?), which implies that I = 0,(n"'/2). The proof of the theorem
is complete O

REMARK 6.1. Note that, to justify the application of Theorem 1 of Samarov
(1993) to the proof of Proposition 3.1 there and to the functionals in this
paper, one should add the argument similar to that leading to formulas (6.4),
(6.5) and (6.6) of this paper, and in the proof of step 1 of that theorem, replace
a deterministic constant C with O,(1).

PROOF OF THE RESULTS CLAIMED IN REMARK 2.9. We will prove the claim for
the estimator (2.10); for the other two expressions, it is proved with an almost
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identical argument. Denote the weights of the “leave-one-out” kernel estima-
tor

K,(X; - X,)
Z"kaéiI{h(Xk - Xl) ’

‘an(xi) =
so that
(X)) = X W,(X,)Y;.

J*i
The corresponding “all-in” estimator /m; can be then written as

1
m(X;) = ¢;m(X;) + (1 —c¢;,)Y;, wherec; = 1+ W,(X,)
and
K, (0) _ K(0)
Ly i KX, — X)) (n— 1)hdf°(Xi) .

wIin(xi) =

It is easy to check that the difference between the “one-out” and “all-in”
estimators (2.10), that is,

1n . - 1z 9 o
=;§ (772 ma) and Tn=;i§1wi(mi+2misi),

can be written as
- " 17
(6.8) T,-T,= Py Z wi(l - cf)éiz.
i

Condition 4(b), the uniform consistency of the kernel estimator f(x) for
x € ® [already used in the proof of Theorem 2.1 just above (6.4)] and (6.4)
imply that max, 1.1 —¢?)=0,(n"'/?). This together with the fact that
n e w; & =0, (1), which follows from Proposition 2.1, gives the claimed

result T — T =0 (n'l/z) |

ProoF OF PROPOSITION 4.1. The claim concerning the estimator ¥,; was
proved just above Proposition 4.1. To prove (4.8) for the remaining two
estimators, it is sufficient to show that

(6.9) Yo = 1L = 0,(n7/?)
and

(6.10) Yar — Yor = Op(n_1/2)‘
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Using the definition of #;; = m(X,) given just above Proposition 4.1, we
have

Z('ﬁi -y — (m - mL))Zwi
= Z(ﬁ"z - m)zwi + Z(thi - mL)zwi
(6.11) -2} (h;, —m)(thy; —my)
=Y (?; - ﬁ)2wi + nsL Sx's,,
— 257,85 X (i, — 7)(X, — X)uw,.
Using the second claim of Proposition 2.1 and the expansion

n~t Zﬁlixiwi =n! ZYixiwi + Op(n_l/z)’

which is obtained by the componentwise application of Theorem 2.1 to the

functional Ew(X)m(X)X, we get the following expression for the last term in
(6.11):

= 257, 8; (LY, Xw, — (2 — B)YX) + 0,(n'/?)
= 2nsl,Sx's,, + 0,(n'?),

and (6.9) follows.
Noting that n ™' X(Y; — m(X,))* = s? — s, Sy's, , we have
2

s — s,fyS,zlsxy
_ N A NS _ N 2
=n 'Y (=R, — (M —-m))w,+n ' Y (3 - %) w,
+2n71 Y (8 — 7)(hy — g — (M — my))w;.
The last expression can be rewritten, using the proof of (6.9), as
_ _ A 2 _
s2 — sfysxlsxy =n"'Y (h;, —m) w, — sl Sx's,,
_ _ A 2
+o,(n V) +n Y (& -F)w,
+ 2071 Y (Y, — ) (R — iy — (M — M) w;
_ A R W2
—2n71 ) (1, T My~ (m —my)) w;,
where we also used the fact that &, = (Y, — ;) — (/; — ;) and Y = m.

It follows from Proposition 2.3 that the last two terms in the preceding
expression are of order o,(n~'/?), which implies (6.10). O

PROOF OF PROPOSITION 4.2. The structure of the proof is very similar to
that of Proposition 4.1. Write
o 1 1 A —\2 _ " 2
Yo T T 1o A —— |- L (P —m) w, —nt Yy, — ) w,
n Z( 8Ji - 8J) wi n
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and
1 1

A A — — 2
m., —m; —\m—m w;
n_IZ(éJi _ EJ)zwi n Z[ i Ji ( J)] i

Yog =

Where gJi = Y'l - ";lJ(XJi), _8.J = n_lZé\'Jiwi, ﬁ'lJi = ﬁlJ(XJi) and n_'lJ =
n~'Ym ;X ;,)w;. The proposition follows from the following three facts, which
are proved below:

(6.12) nl/z(’%J - )

nTVA(L = ) X (ud — u)w; + 0,(1);

1

(6.13) Yog — Yig T op(ﬁ);
A A 1

(6.14) Yo~ Y20 T 0p Tn !

Applying Proposition 2.3 to X ;, we can write ¥,;, = (2 — §2,)/(1 — n2, +
0,(n"1/2)), and (6.12) follows now from Proposition 2.2, applied to X and X ;,
and also using (2.16).

Next we have

nt Y [y =y — (M~ mJ)]Zwi
(6.15) =n"1)Y (M, —n_z)zwi —n 'Y (R, —ﬁJ)Zwi
-2n7! Z('ﬁz -m— (g —m;))( Ry —m,)w,,
where the last term, which we denote by I, can be written as
(6.16) I=—2n"1'Y} Mmmyw, +2n ' Y miw, + 2(m —m,)m,.

Applying to (6.16) the second claim of Proposition 2.1 and the expansions

6.17 m;=n"1YYw, +o,(n"1?)),
J i T %
6.18 n Y miw, =n"? 2Y,m;; — m%,)w; + o,(n"1/?
J i i1 Ji Ji P
and

(6.19) n 'Y mA w, =n"1 Z(2YimJi - m?,i)wi + op(n_l/z)

[the first two of which follow from Proposition 2.1 with the predictor X ; and
the last of which is proved by repedting the argument of Theorem 1 of
Samarov (1993) for the functional Ew(X)m(X)m ;(X )], we obtain that I =
0,(n"'/?), which implies (6.13).
Now, writing &;, = &, + m; — m;;, we have
nTt Y (= g — (M —Ty))(8, — &5)w;
(6.20) =n LY (= g, — (- ) w,

+n Y (i =y — (M —my))(& — )w,.
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It follows from Proposition 2.1 that
n Y (h, —m)(& — 2)w; = 0,(n" %)
and
nt Y (Mg — M) (&g — Er)w; = 0,(n7?);
so, using formulas (6.15)—(6.20), we have
nt Y (=t — (M- my)) (& — E)w

_n_l Z(’ﬁJi - m)(éh - EJ - ";li + ﬁlJi + Fl _mJ)wi + Op(n_l/z)

=n"t Y (g —m)(h; — 1y, — (A —m;))w, + o,(n~"?)
=—1I+ op(n_l/z) = op(n_l/z),

and (6.14) follows. O
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