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POPULATION THEORY FOR BOOSTING ENSEMBLES
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Tree ensembles are looked at in distribution space, that is, the limit
case of “infinite” sample size. It is shown that the simplest kind of trees is
complete in D-dimensional L2(P ) space if the number of terminal nodes
T is greater than D. For such trees we show that the AdaBoost algorithm
gives an ensemble converging to the Bayes risk.

1. Introduction. Using ensembles of predictors for classification and regres-
sion has proved to give more accurate results than use of a single predictor. The
most well-known ensemble method is the AdaBoost algorithm, introduced by
Freund and Schapire [12]. Complex in form, it was originally designed to drive the
training set error rapidly to zero. But, surprisingly, empirical experiments showed
that the generalization error kept decreasing long after the training set error was
zero—in fact, slowly decreasing as hundreds of trees were added to the ensemble.

After its introduction, AdaBoost became known as the most accurate general
purpose classification algorithm available. (For performance benchmarks, see
[1, 8, 9].) Hundreds of papers covering various modifications of AdaBoost or
applications of AdaBoost were and are being published in the Machine Learning
literature. But the understanding of how and why AdaBoost worked was lacking
until a short time ago. During the intervening years I often referred, in prepared
talks and conversations, to the mystery of AdaBoost as the most important
unsolved problem in Machine Learning.

Schapire, Freund, Bartlett and Lee [17] constructed a bound on the generaliza-
tion error of ensembles in terms of the training set margin distribution and the
VC-dimension of the individual predictors in the ensemble. This led to the conjec-
ture that the key to the low generalization error of the AdaBoost algorithm was that
it produced a high margin distribution. But Breiman [5] constructed an algorithm
that on a variety of data sets produced uniformly higher margin distributions than
AdaBoost using predictors with the same VC-dimension, yet had higher general-
ization error.

A significant discovery, due to Breiman [3] (and rediscovered several times
afterward) was that AdaBoost was a down-the-gradient method for minimizing
an exponential function of the error (see Section 3). Then “boosting” became a
generic term for greedy down-the-gradient minimization of various loss functions.
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This context allowed more focused research on how AdaBoost works. An
outstanding question has been whether AdaBoost is Bayes-consistent. The author
believed for some years that it is. The empirical evidence seemed supportive, but
recent work proved otherwise.

The present article first appeared as a technical report [6]. Even though it
assumed “infinite sample size” it was suggestive that in this setting the AdaBoost
algorithm produced an ensemble with risk converging to the Bayes risk. However,
it also indicated that the population case may differ intrinisically from the finite
sample case. In the population case, the sum of the squares of the coefficients
of each new tree added to the ensemble converges and this result is vital to the
proof (see the Appendix). In the finite sample case, the sum of the squares of the
coefficients diverges no matter how large the sample size.

Intense recent work in the finite sample case, partly stimulated by the technical
report containing these population results, has largely resolved the situation.
AdaBoost is not Bayes-consistent. It is Bayes-consistent only if it is regularized.
Some of these clarifying and elegant results are contained in work by Jiang [14],
who regularizes by early stopping, Lugosi and Vayatis [15], who smoothed the loss
function and restricted the sum of the coefficients, Mannor, Meir and Zhang [16],
who assume smooth Bayes region boundaries, and Zhang and Yu [20], who study
early stopping. There has also been illuminating theoretical work in the case of L2
loss [7].

We now have a better idea of how AdaBoost works. In its early stages, while
performing the gradient descent, it mimics the population version getting close to
the Bayes risk. Then, when it cannot get convergence, it “gives up” and goes into
a second phase of increasing generalization error. What it is doing in this second
phase is so far unknown.

An interesting observation is that although AdaBoost and its many subsequent
applications and generalizations were developed in the Machine Learning commu-
nity, the work on its theory and on the Bayes-consistency has been largely carried
out by statisticians. The theoretical analysis and understanding of algorithms that
are important in practice is a gratifying development in statistics.

2. Theoretical assumptions and outline of results.

2.1. Framework. We work in population space. The outputs and inputs are
represented by two random vectors Y , X whose distributions are known and X is
assumed distributed on a finite closed D-dimensional Euclidean rectangle, R

D .
The distribution of X is given by P (dx) which is assumed to be absolutely
continuous w.r. to Lebesgue measure on D dimensions so that P (dx) = f (x) dx.
The distribution of Y is given by P (y|x). Both distributions are assumed known.

Only the two-class situation is considered. The members of the ensemble will
be trees, all with the same number T of terminal nodes, formed by cuts parallel
to the axes (although it will become clear how this generalizes). Also, they will
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be ±1 trees. This means that to each terminal node is assigned the value either
+1 or −1. Trees with arbitrary values attached to their terminal nodes could be
used, but in our context they offer no advantage over ±1 trees.

2.2. Nontechnical outline of results. In Section 3 we define a set of classi-
fiers ζ to be complete on R

D if every real-valued function on R
D is equal to

a linear combination (perhaps infinite) of classifiers in ζ . We show that the class
of ±1 trees with T terminal nodes is complete if T > D. A simple example shows
that stumps, with T = 2, are not complete if D = 2.

The implication is that a linear combination of trees with T > D terminal
nodes can achieve the minimal error rate (Bayes risk). The question that rises is
how to compute the coefficients of a combination that will give minimum error.
The fundamental down-the-gradient algorithm is defined in Section 4. This gives
a method for evaluating coefficients that minimize any target function. In Section 5
the minimization algorithm applied to an exponential function (AdaBoost analog)
is shown to converge to the minimum possible error (Bayes rate).

3. Completeness. First some familiar Hilbert space definitions and properties
are given (see, e.g., [10]).

DEFINITION 1. Let L2(P ) be the space of functions on R
D that are square-

integrable with respect to P (dx). A set of functions F in L2(P ) will be called
complete if the L2 closure of the set of all finite linear combinations of functions
in F , denoted by c̄(F ), equals L2(P ).

PROPERTY 1. A set of functions F is complete if and only if there is no
nonzero function g in L2(P ) such that (g, f ) = 0 for all f ∈ F .

Note: (f, g) = ∫
f (x)g(x)P (dx).

PROPOSITION 1. A set of functions F is complete if c̄(F ) includes the
indicators of all D-dimensional subrectangles of R

D .

PROOF. The proof is well known. �

3.1. ±1 trees. The ±1 trees are that set of trees most commonly used in two-
class classification.

DEFINITION 2. h(x) is a ±1 tree if the T terminal nodes are formed by
successive univariate splits of the input variables such that for all x in a given
terminal node, h(x) is always +1 or always −1.

PROPOSITION 2. If T > D the class of ±1 trees is complete in L2(P ).
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PROOF. We will show that the indicator of any rectangle can be gotten as a
finite linear combination of ±1 trees and apply Proposition 1. To form the indicator
function of the rectangle

R0 = {r1 < x1 ≤ s1, r2 < x2 < s2, . . . , rD < xD < sD},
proceed as follows: Trees with T terminal nodes use T − 1 splits. If T > D, the
splits can be used to make a tree Tr1 which contains the rectangle

R1 = {x1 < s1, x2 < s2, . . . , xD ≤ sD}
as one of its terminal nodes with the value +1. Let Tr2 be a tree with exactly the
same terminal nodes as the first but with the value of each node reversed except
for R1. Then 0.5 ∗ Tr1 + 0.5 ∗ Tr2 is the indicator of R1. Repeating the above
process, construct the indicator function of

R2 = {x1 < r1, x2 < s2, . . . , xD ≤ sD}.
Subtracting this from the indicator of R1 gives the indicator of

R3 = {s1 < x1 < r1, x2 < s2, . . . , xD ≤ sD}
and continuing this process leads to the indicator of R0.

Proposition 2 is probably if and only if. For instance, the class of stumps (two
terminal node trees) is not complete in D = 2. Take P uniformly distributed on the
square (−1,+1)2. Take g(x) to equal +1 in the first and third quadrants, and −1
in the second and fourth. Then (h, g) = 0 for every two-node ±1 tree h(x). �

3.2. Implications for predicting with ensembles. The implications of com-
pleteness in terms of using ensembles for prediction are encouraging. Suppose that
the loss function L(Y,φ(X)) is a measure of the error in using φ(X) to predict Y .
The expected loss is

L∗(φ) = EY,XL2(Y,φ(X)
)
,

where the subscripts indicate expectation with respect to Y,X. Assume that
functions exist in L2(P ) that minimize L∗(φ). Then:

THEOREM 1. In R
D there exist linear combinations of ±1 trees with T > D

that converge in L2(P ) to any minimizer of L∗(φ) that is in L2(P ).

We illustrate with classification. Here

L∗(φ) = PY,X
(
Y �= φ(X)

)
.

To put this into a more familiar ensemble context, assume that φ(x) predicts y = 1
if φ(x) > 0, else predicts −1. Then

L∗(φ) = PY,X
(
Y �= sign(φ(X))

)
.
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Let P (i|x) = P (Y = i|x). Then

L∗(φ) =
∫

I
(
φ(x) ≤ 0

)
P (1|x)P (dx)+

∫
I
(
φ(x) > 0

)
P (−1|x)P (dx),

where I is the indicator function. Take finite combinations of ±1 trees∑
m

cmhm(x)

that converage to a nonpositive function on the set P (1|x) < P (−1|x) and a
positive function on the complement of the set. Then the loss converges to∫

min
(
P (1|x),P (−1|x)

)
P (dx),

which is the Bayes risk.
In the following sections we adopt the convention that “all trees” refers to all

±1 trees with T terminal nodes where T > D.

4. A constructive algorithm. The results in Section 3 are nonconstructive.
They assert existence, but give no idea as to how to construct linear combinations
of trees that converge to a desired function. There is an algorithm, first introduced
in [3], further elaborated in [5] (and often rediscovered), that offers a construc-
tive method for producing such sequences. The finite-dimensional numerical op-
timization version of this algorithm has been around for a while and is called the
Gauss–Southwell method (see [11]).

The Gauss–Southwell method for minimizing a differentiable function
f (x1, . . . , xm) of m real variables goes this way: at a point x compute all the
partial derivatives ∂f (x1, . . . , xm)/∂xk. Let the minimum of these be at xj . Find
the step of size α that minimizes f (x1, . . . , xj + α, . . . , xm). Let the new x be
x1, . . . , xj + α, . . . , xm for the minimizing α value. If f is strictly convex on its
domain, this algorithm converges to the global minimum.

The analog “boosting” algorithm produces a sequence of linear combinations
of trees that minimize (under appropriate conditions) a given real-valued target
function of the sequence. Just as the Gauss–Southwell method does, it finds the
largest negative gradient at each x and then does a line minimization, but there are
an infinite number of gradient directions.

4.1. Minimization algorithm. To find the coefficients of a sum of trees that
minimizes

EXθ

( ∞∑
1

cmhm(x),x

)
,

where θ(s,x) is real-valued, continuous and differentiable in s for each value of x,
proceed as follows: After M steps:
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(i) Compute the minimum over all trees h(x) of

EX

[
θs

(
M∑
1

cmhm(x),x

)
h(x)

]
,

where θs is the partial with respect to s. Denote a minimizing tree by hM+1(x).
(ii) Find the α that minimizes

EXθ

(
M∑
1

cmhm(x) + αhM+1(x),x

)

and let cM+1 equal the minimizing value of α.
(iii) Repeat until convergence.

Regarding (i), it is simple to show that there exist minimizing trees (see the
Appendix). Uniqueness is difficult and may not hold.

As pointed out in [3], this algorithm can be implemented with finite data and
reweighting of the training set.

4.2. Heuristic proof of convergence. A sketch of a convergence proof is given
with strong assumptions. When the algorithm is applied in the next section to
AdaBoost, the assumptions will be partly lifted.

Assume the following:

(i) The domain of x is a closed finite rectangle.
(ii) The functional EXθ(f (x),x) is strictly convex on L2(P ).

(iii) The sequence of functions sM(x) = ∑M
1 cmhm(x) is sequentially compact

in L2(P ), that is, every subsequence contains a convergent subsequence.
(iv) The function θ(s,x) and its first and second derivatives with respect to s

are uniformly bounded.

From (ii) there is a unique function s(x) minimizing EXθ(s(x),x).

THEOREM 2. Under the above assumptions, the sequence sM(x) converges in
L2(P ) norm to s(x).

PROOF. Suppose that the minimum value over all trees h of

EX[θs(sM,x)h(x)](1)

is zero. Then the maximum value is also zero since the trees can be reversed. Since
linear combinations of trees are dense in L2(P ), then

EX[θs(sM,x)f (x)] = 0

for all functions f in L2(P ). This implies that for small ε and any f

EX
[
θ
(
sM + εf (x),x

)] ≈ 0.
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These are the first-order necessary conditions for a minimum. The second-order
conditions are automatically satisfied by the convexity. Thus, sM equals the
minimizing function s.

If the iterations do not stop, let hM+1 be the minimizing tree at step M + 1, and
−bM+1 the minimum value of (1). Now

EX[θ(sM + αhM+1,x)] ≤ θ0 − αbM+1 + Bα2,(2)

where B is the upper bound of the second partial of θ and θ0 = EXθ(sM,x). From
(2) it follows that the decrease in EXθ(sM,x) given by the (M +1)st step is greater
than (bM+1)

2/2B . Since the sum of the decreases must be finite, bM → 0.
Take a subsequence sm that converges in 2-norm to a function g [assumption

(iii)]. For any tree h,

EX[θs(sm,x)h(x)] → 0.

At the same time

EX[θs(sm,x)h(x)] → EX[θs(g,x)h(x)].
This gives the necessary conditions for the minimum and implies that g = s.
Therefore, the entire sequence sM converges in norm to s. (Note that for a convex
function, second-order conditions are automatically satisfied.) �

However, the hard thing is showing the sequential compactness of the {sM}
sequence—a difficulty we have assumed away. The assumptions for Theorem 2
can be weakened with more technical arguments.

5. AdaBoost converges to the Bayes risk. For a sequence of trees {hm}
define a voting function as

φ(x) = ∑
m

cmhm(x)

and vote for class 1 if φ > 0, else for class −1. As noted in Section 3, the expected
error for φ is

L∗(φ) =
∫

I
(
φ(x) ≤ 0

)
P (1|x)P (dx)+

∫
I
(
φ(x) > 0

)
P (−1|x)P (dx).

This is not a pleasant functional to try and minimize. Using the inequalities

I (φ ≤ 0) ≤ exp(−φ), I (φ > 0) ≤ exp(φ)(3)

gives L∗(φ) ≤ L(φ), where

L(φ) =
∫

exp
(−φ(x)

)
P (1|x)P (dx)+

∫
exp(φ(x))P (−1|x)P (dx).(4)

This functional has a more workable form and is the functional that AdaBoost
minimizes using the algorithm given in Section 4.

The following two assumptions are made:



8 L. BREIMAN

(i) The domain of x is a closed finite D-dimensional rectangle.
(ii) The function log(p(−1|x)/p(1|x)) is continuous on this rectangle.

Let

r(x) = log
(
p(−1|x)/p(1|x)

)
/2.

Then (4) can be rewritten as

L(φ) =
∫

cosh
(
φ(x) + r(x)

)[√
p(1|x)p(−1|x)

]
P (dx).

Let the probability Q be defined by

Q(dx) = [√
p(1|x)p(−1|x)

]
P (dx)

/∫ [√
p(1|x)p(−1|x)

]
P (dx).

Up to a constant factor, then

L(φ) =
∫

cosh
(
φ(x) + r(x)

)
Q(dx).(5)

Note that P and Q differ only by multiplication by a bounded positive function.
Apply the minimization algorithm to (5) building up a sum of trees for φ,

sM(x) =
M∑
1

cmhm(x).

THEOREM 3. sM(x) converges in L2(P ) norm to −r(x).

The proof is not difficult but has various details. It is deferred to the Appendix.

PROPOSITION 3. The error in using −r(x) as a decision function is the Bayes
risk.

PROOF. Look at the loss

L(φ) =
∫

I
(−r(x) ≤ 0

)
P (1|x)P (dx)+

∫
I
(−r(x) > 0

)
P (−1|x)P (dx).

A simple computation shows that

L(φ) =
∫

min
(
P (−1|x),P (1|x)

)
P (dx),

which is the Bayes risk. �
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APPENDIX

Minimizing trees exist. Let f (x) be in L2(P ). Denote by H the set of all ±1
trees with T + 1 terminal nodes and let

α = inf
h∈H

(f,h).

We show that there is a tree h∗ in H such that α = (f,h∗). Take hn a sequence of
trees in H such that (f,hn) → α.

The skeleton (h) of a tree is a set of integers (i1, i2, . . .) that describes the tree’s
architecture and the labeling by +1 or −1 of its terminal nodes. For instance, i1 is
the number of the variable used in the first split. Over H , skeleton (h) takes on
only a finite number of values. So we can select a subsequence {hn′} of the {hn}
such that all hn′ have the same skeleton.

For this subsequence, let s(n′) = (s
(n′)
1 , s

(n′)
2 , . . . , s

(n′)
T ) be the set of T split points

for the tree hn′ . Allowing ±∞ as limit points, there is a subsequence {n′′} such that
s(n′′) → s∗. Let h∗ be the tree having the same skeleton as the hn′′ with split points
at s∗. By the Schwarz inequality

(f,hn′′ − h∗) ≤ ‖f ‖ · ‖hn′′ − h∗‖.
But clearly, ‖hn′′ − h∗‖ → 0

PROOF OF THEOREM 3. (a) If the algorithm stops at a finite M , then∫
sinh

(
r(x) + SM(x)

)
h(x)Q(dx) = 0

for all trees h. Hence, for all functions f in L2(P )∫
sinh

(
r(x) + sM(x)

)
f (x)Q(dx) = 0,

which implies that sM(x) equals −r(x) a.s.
(b) If the algorithm continues indefinitely, let

IM =
∫

cosh
(
r(x) + sM(x)

)
Q(dx),

bM+1 = − inf
h

∫
sinh

(
r(x) + sM(x)

)
h(x)Q(dx)/IM

and hM+1 a minimizing tree. Using

cosh(A + B) = cosh(A) cosh(B) + sinh(A) sinh(B),

cosh(αhM+1) = cosh(α), sinh(αhM+1) = hM+1 sinh(α)

we get that ∫
cosh

(
r(x) + sM(x) + αhM+1(x)

)
Q(dx)

= (
cosh(α) − bM+1 sinh(α)

)
IM.
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The minimizing value of α is

cM+1 = 1
2 log

(
(1 + bM+1)/(1 − bM+1)

)
(6)

= bM+1 + O(b2
M+1)

and

I 2
M+1 = I 2

M(1 − b2
M+1).

Since IM is greater than or equal to one, this implies that
∑∞

1 b2
m < ∞. We will

use the inequality

∣∣∣∣
∫

sinh
(
r(x) + sM(x)

)
sM(x)Q(dx)

∣∣∣∣ ≤ I1bM+1

M∑
1

cm.(7)

(c) There is a subsequence {m′} such that ‖r + sm′‖ → 0. To show this, note
(
bM+1

M∑
1

cm

)2

≤ Mb2
M+1

M∑
1

c2
m.(8)

Suppose lim infM(bM+1
∑M

1 cm) > 0. Then since
∑∞

1 c2
m < ∞, for all M

sufficiently large, b2
M+1 > a/M , which cannot be. Thus, there is a subsequence

such that the left-hand side of (7) goes to zero.
For f any finite sum of trees,

∫
sinh(r(x)+ sM(x))f (x)Q(dx) → 0. Since r(x)

is continuous and bounded, for any ε > 0 there is a finite sum of trees r̃(x) such
that supx∈S |r(x) − r̃(x)| ≤ ε. Hence∣∣∣∣

∫
sinh

(
r(x) + sM(x)

)
r(x)Q(dx)

∣∣∣∣
(9)

≤
∣∣∣∣
∫

sinh
(
r(x) + sM(x)

)
r̃(x)Q(dx)

∣∣∣∣ + ε

∫ ∣∣ sinh
(
r(x) + sM(x)

)∣∣Q(dx).

The last term in (9) can be bounded by

ε

∫
cosh

(
r(x) + sM(x)

)
Q(dx) ≤ Cε,

leading to the conclusion that
∫

sinh(r(x) + sM(x))r(x)Q(dx) → 0. Thus,∫
sinh

(
r(x) + sm′(x)

)(
r(x) + sm′(x)

)
Q(dx) → 0.

Since x sinh(x) ≥ x2 this proves assertion (c).
(d) On the full sequence ‖r + sM‖ → 0. This follows by noting that x sinh(x) ≥

coshx − 1. Hence, on the subsequence Im′ → 1. Since IM is nonincreasing in M ,
on the whole sequence IM → 1. Now use coshx − 1 ≥ x2 to prove (d). �
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