ESTIMATING DEFORMATIONS OF STATIONARY PROCESSES

By Maureen Clerc ${ }^{1}$ and Stéphane Mallat ${ }^{2}$
Ecole Nationale des Ponts et Chaussées, and Ecole Polytechnique and Courant Institute

Abstract

This paper studies classes of nonstationary processes, such as warped processes and frequency-modulated processes, that result from the deformation of stationary processes. Estimating deformations can often provide important information about an underlying physical phenomenon. A computational harmonic analysis viewpoint shows that the deformed autocovariance satisfies a transport equation at small scales, with a velocity proportional to a deformation gradient. We derive an estimator of the deformation from a single realization of the deformed process, with a proof of consistency under appropriate assumptions.

1. Introduction. When a nonstationary process X results from the deformation of a stationary process Y, estimating the deformation can provide important information about an underlying physical process of interest. From one realization of $X=D Y$, we wish to recover the deformation operator D, which is assumed to belong to a specific transformation group \mathfrak{D}. For example, a Doppler effect produces a warping deformation in time $X(x)=Y(\theta(x))$, where $\theta^{\prime}(x)$ depends on velocity. The deformation of a stationary texture by perspective in an image also produces a warping, where $x \in \mathbb{R}^{2}$ is a spatial variable; recovering the Jacobian matrix of $\theta(x)$ characterizes the shape of the three-dimensional surface that is being viewed [9]. The frequency modulation of a stationary process $X(x)=Y(x) \exp (i \theta(x))$ corresponds to another class of deformations encountered in signal processing, in transmissions by frequency modulation, where the message is carried by $\theta^{\prime}(x)$.

Estimating the deformation $D \in \mathscr{D}$ from $X=D Y$ is an inverse problem. As we suppose no prior knowledge about the stationary process Y, the deformation D can only be recovered up to the subgroup \mathcal{C} of \mathscr{D} which leaves the set of stationary processes globally invariant. Rather than the deformation itself, we therefore seek to estimate the equivalence class of D in $\mathscr{D} / \mathscr{g}$. We consider cases where \mathcal{G} is a finite-dimensional Lie group. Under appropriate assumptions, this equivalence class can be represented by a vector field on \mathcal{G}, which corresponds to a deformation gradient. A local analysis of the deformation is performed by decomposing the

[^0]autocovariance of X over an appropriate family of localized functions, which are called atoms in the harmonic analysis literature. The deformation gradient is shown to appear as a velocity vector in a transport equation satisfied by a localized autocovariance. This general result is applied to one-dimensional warping and frequency modulation, where the atoms are classical wavelets, and multidimensional warping, where the atoms are called warplets.

Computing the deformation gradient requires estimating the autocovariance of X projected over a family of localized atoms, from a single realization. Under certain conditions on the autocovariance of the stationary process Y, one can obtain consistent estimators for one-dimensional warping and frequency modulation. Numerical examples illustrate these results. Let us mention that the stationarity hypothesis on Y can be relaxed by supposing only that Y has stationary increments, in which case our estimation of the deformation gradient remains consistent.

The paper is organized in three main sections: after discussing the wellposedness of the inverse problem in Section 2, we establish in Section 3 a transport equation for the localized autocovariance of a deformed process; Section 4 introduces estimators and proves their consistency.
2. Inverse problem. We want to estimate a deformation operator D, which belongs to a known group \mathscr{D}, from a single realization of $X=D Y$. The process Y, which is not known a priori, is assumed wide sense stationary. Since we are limited to a single realization, we concentrate on second-order moments. For this reason, stationarity will always be understood in the wide sense, meaning that

$$
\mathbb{E}\{Y(x)\}=\mathbb{E}\{Y(0)\}
$$

and

$$
\mathbb{E}\left\{Y(x) Y^{*}(y)\right\}=c_{Y}(x-y) \quad \text { with } c_{Y}(0)<+\infty
$$

where z^{*} denotes the complex conjugate of $z \in \mathbb{C}$. We shall further suppose that $Y(x)$ is stochastically continuous, which means that its covariance $c_{Y}(x)$ is continuous at $x=0$. The deformation operators D that we shall consider are defined over distributions, but, for simplicity, we restrict their domain to functions of \mathbb{R}^{d}. An operator D acts on a stochastic process Y realization by realization. We shall thus consider processes Y whose realizations are functions of \mathbb{R}^{d}. For example, if Y is a Gaussian process and $\left|c_{Y}(x)-c_{Y}(0)\right|=O\left(|\log | x| |^{-1-\varepsilon}\right)$ for some $\varepsilon>0$, then one can prove that its realizations are continuous with probability 1 [2]. This hypothesis will be satisfied by our estimation theorems.
2.1. Class of solutions. Since we only know that the process Y is stationary, the set of solutions to the inverse problem is the set of all operators $\tilde{D} \in \mathscr{D}$ such that $\tilde{D}^{-1} X$ is stationary. In general, this set is larger than $\{D\}$. Let \mathcal{G} be the set of all operators $G \in \mathscr{D}$ such that if Y is a wide-sense stationary process, then $G Y$
is also wide-sense stationary. One can verify that \mathcal{G} is a subgroup of \mathscr{D}, which we call the stationarity-invariant group. Clearly, if D is a solution of the inverse problem, any operator $\tilde{D}=D G$ with $G \in \mathcal{g}$ is also a solution. The set of solutions of the inverse problem therefore contains the equivalence class of D in the quotient group $\mathscr{D} / \mathscr{G}$. In order for the set of solutions to the inverse problem to be exactly equal to the equivalence class of D in $\mathscr{D} / \mathscr{G}$, we need to impose a condition on the stationary process Y, so that any deformation $\tilde{D} \in \mathscr{D}$ such that $\tilde{D} Y$ is wide-sense stationary necessarily belongs to \mathcal{G}. This is not true for all stationary processes Y, but we give sufficient conditions on the covariance of Y to guarantee this form of uniqueness. In this paper, we concentrate on three deformation groups.

EXAMPLE 1. The frequency modulation group modifies the signal frequency:

$$
\begin{equation*}
\mathscr{D}=\left\{D: D f(x)=e^{i \theta(x)} f(x), \text { where } \theta(x) \text { is real and } \mathbf{C}^{4}\right\} . \tag{1}
\end{equation*}
$$

In transmissions with frequency modulation, $\theta^{\prime}(x)$ is proportional to the signal to be transmitted, and the stationary process Y, which is in this case assumed to have zero mean, is the carrier. The stationarity-invariant group is

$$
\mathcal{G}=\left\{G_{(\phi, \xi)}: G_{(\phi, \xi)} f(x)=e^{i(\phi+\xi x)} f(x), \text { with }(\phi, \xi) \in \mathbb{R}^{2}\right\} .
$$

Two operators D_{1} and D_{2} such that $D_{1} f(x)=e^{i \theta_{1}(x)} f(x)$ and $D_{2} f(x)=$ $e^{i \theta_{2}(x)} f(x)$ are in the same equivalence class in $\mathcal{D} / \mathscr{G}$ if and only if $\theta_{1}(x)=$ $\phi+\xi x+\theta_{2}(x)$ and hence

$$
\begin{equation*}
\theta_{1}^{\prime \prime}(x)=\theta_{2}^{\prime \prime}(x) \tag{2}
\end{equation*}
$$

The following proposition gives a sufficient condition on the covariance $c_{Y}(x)$ to identify $\theta^{\prime \prime}(x)$ from the covariance of $X=D Y$. The proof is given in Appendix A.

Proposition 2.1. Let $X=D Y$, where Y is a stationary process and D belongs to the frequency modulation group \mathfrak{D} in (1). If there exists an $\varepsilon>0$ such that

$$
\forall x \in[-\varepsilon, \varepsilon], \quad c_{Y}(x)>0
$$

then the equivalence class of D in $\mathscr{D} / \mathscr{G}$ is uniquely characterized by the covariance of X.

EXAMPLE 2. The one-dimensional warping group is defined by

$$
\begin{equation*}
\mathscr{D}=\left\{D: D f(x)=f(\theta(x)), \text { where } \theta(x) \text { is } \mathbf{C}^{3} \text { and } \theta^{\prime}(x)>0\right\} . \tag{3}
\end{equation*}
$$

Such time warping appears in many physical phenomena, such as the Doppler effect. We easily verify that the stationarity-invariant group is the affine group

$$
\mathcal{G}=\left\{G_{(u, s)}: G_{(u, s)} f(x)=f(u+s x), \text { with }(u, s) \in \mathbb{R} \times \mathbb{R}^{+*}\right\}
$$

Note that operators in the stationarity invariant group \mathcal{q} are not time invariant: they do not commute with translations.

Two warping operators D_{1} and D_{2} are in the same equivalence class in $\mathscr{D} / \mathcal{g}$ if and only if there exists (u, s) such that $\theta_{1}(x)=u+s \theta_{2}(x)$ or, equivalently,

$$
\begin{equation*}
\frac{\theta_{1}^{\prime \prime}(x)}{\theta_{1}^{\prime}(x)}=\frac{\theta_{2}^{\prime \prime}(x)}{\theta_{2}^{\prime}(x)} \tag{4}
\end{equation*}
$$

The following proposition, whose proof is given in Appendix A, gives a sufficient condition on Y to characterize the equivalence class of D uniquely. Perrin and Senoussi [13] provide a similar result.

Proposition 2.2. Let $X=D Y$, where Y is stationary, and $D \in \mathscr{D}$, where \mathfrak{D} is the warping group (3). If there exists an $\varepsilon>0$ such that c_{Y} is \mathbf{C}^{1} on $(0, \varepsilon]$ and

$$
\begin{equation*}
\forall x \in(0, \varepsilon], \quad c_{Y}^{\prime}(x)<0 \tag{5}
\end{equation*}
$$

then the equivalence class of D in $\mathcal{D} / \mathcal{G}$ is uniquely characterized by the covariance of X.

Condition (5) is met by a very wide range of stationary processes, including Poisson pulse processes, and Ornstein-Uhlenbeck processes [16]. White noise, however, violates (5) since $c_{Y}(x)=0$ for $x \neq 0$.

EXAMPLE 3. The warping problem in two dimensions has an important application in image analysis, particularly in recovering a three-dimensional surface shape by analyzing texture deformations. Warping deformations are also used in geostatistics (see [12] and [15]) to model nonstationary phenomena. Stationarizing the data is suggested as an initial step before applying classical geostatistical methods such as kriging. We study a d-dimensional warping problem, specified by an invertible function $\theta(x)$ from \mathbb{R}^{d} to \mathbb{R}^{d} with

$$
\theta\left(x_{1}, \ldots, x_{d}\right)=\left(\theta_{1}\left(x_{1}, \ldots, x_{d}\right), \ldots, \theta_{d}\left(x_{1}, \ldots, x_{d}\right)\right)
$$

The Jacobian matrix of θ at position $x \in \mathbb{R}^{d}$ is written as

$$
\begin{equation*}
J_{\theta}(x)=\left(\frac{\partial \theta_{i}(x)}{\partial x_{j}}\right)_{1 \leq i, j \leq d} \tag{6}
\end{equation*}
$$

If the Jacobian determinant det $J_{\theta}(x)$ does not vanish, it corresponds to a change of metric and $\theta(x)$ is invertible. We consider a group of regular warping operators

$$
\begin{equation*}
\mathscr{D}=\left\{D: D f(x)=f(\theta(x)), \text { where } \theta(x) \text { is in } \mathbf{C}^{3}\left(\mathbb{R}^{d}\right) \text { and } \operatorname{det} J_{\theta}(x)>0\right\} . \tag{7}
\end{equation*}
$$

Let $G L^{+}\left(\mathbb{R}^{d}\right)$ be the group of linear operators in \mathbb{R}^{d} with a strictly positive determinant. We easily verify that the stationarity-invariant group is the affine group

$$
\mathcal{G}=\left\{G_{(u, S)}: G_{(u, S)} f(x)=f(u+S x), \text { with }(u, S) \in \mathbb{R}^{d} \times G L^{+}\left(\mathbb{R}^{d}\right)\right\}
$$

Two operators D and \tilde{D} such that $D f(x)=f(\theta(x))$ and $\tilde{D} f(x)=f(\tilde{\theta}(x))$ are in the same equivalence class in $\mathscr{D} / \mathcal{G}$ if and only if

$$
\begin{equation*}
\exists(u, S) \in \mathbb{R}^{d} \times G L^{+}\left(\mathbb{R}^{d}\right), \quad \theta(x)=u+S \tilde{\theta}(x) \tag{8}
\end{equation*}
$$

The partial derivative of the Jacobian matrix in a fixed direction x_{k} is again a matrix:

$$
\frac{\partial J_{\theta}(x)}{\partial x_{k}}=\left(\frac{\partial^{2} \theta_{i}(x)}{\partial x_{k} \partial x_{j}}\right)_{1 \leq i, j \leq d}
$$

We will use the notation $\vec{\nabla} J_{\theta}(x)$ to denote the set of matrices $\left\{\partial J_{\theta}(x) / \partial x_{k}\right\}_{k=1, \ldots, d}$. Condition (8) is equivalent to the following matrix equalities, which generalize (4):

$$
\begin{equation*}
\forall k \in\{1, \ldots, d\}, \quad J_{\theta}^{-1}(x) \frac{\partial J_{\theta}(x)}{\partial x_{k}}=J_{\tilde{\theta}}^{-1}(x) \frac{\partial J_{\tilde{\theta}}(x)}{\partial x_{k}} . \tag{9}
\end{equation*}
$$

Proof of this equivalence can be found at the end of the proof of Proposition 2.3 in Appendix A.

There are cases for which the inverse warping problem cannot be solved. For example, consider a stationary process $Y(x)=Y_{1}\left(x_{1}\right)$ that only depends on the first variable and a warping deformation that leaves x_{1} invariant: $\theta\left(x_{1}, \ldots, x_{d}\right)=$ $\left(x_{1}, \theta_{1}\left(x_{2}, \ldots, x_{d}\right)\right)$. In this case,

$$
\begin{equation*}
X(x)=Y\left(x_{1}, \theta_{1}\left(x_{2}, \ldots, x_{d}\right)\right)=Y_{1}\left(x_{1}\right)=Y(x) \tag{10}
\end{equation*}
$$

Hence, θ cannot be recovered. The following proposition, whose proof is given in Appendix A, gives a sufficient condition on $c_{Y}(x)$ to guarantee that the inverse warping problem has a unique solution in $\mathscr{D} / \mathscr{G}$.

Proposition 2.3. Let $X=D Y$, where Y is stationary, and $D \in \mathscr{D}$, where \mathfrak{D} is the multidimensional warping group (7). If the covariance of Y satisfies

$$
\begin{equation*}
c_{Y}(0)-c_{Y}(x)=|x|^{h} \eta(x) \quad \text { with } h>0 \text { and } \eta(0)>0 \tag{11}
\end{equation*}
$$

where $\eta(x)$ is \mathbf{C}^{2} in a neighborhood of 0 , then the equivalence class of D in \mathscr{D} / g is uniquely characterized by the autocovariance of X.

The inverse warping problem has been applied to the reconstruction of threedimensional surfaces from deformations of textures in images [6]. One can model the image of a textured three-dimensional surface as

$$
X(x)=Y(\theta(x))
$$

The stationary process Y depends on the textured reflectance of the surface, and $\theta(x)$ is the two-dimensional warping due to the imaging process, which projects the surface onto the image plane [5]. We showed in (9) that solving the inverse
warping problem is equivalent to computing normalized partial derivatives of the Jacobian matrix J_{θ} :

$$
\begin{equation*}
J_{\theta}^{-1}(x) \frac{\partial J_{\theta}(x)}{\partial x_{1}} \quad \text { and } \quad J_{\theta}^{-1}(x) \frac{\partial J_{\theta}(x)}{\partial x_{2}} \tag{12}
\end{equation*}
$$

Differential geometry derivations by Gårding [9] have proved that these matrices specify the local orientation and curvature of the three-dimensional surface in the scene. Knowing these surface parameters, it is then possible to recover the threedimensional coordinates of the surface, up to a constant scaling factor. We will see in Section 3.4 that the Jacobian matrices (12) appear as velocity vectors in a transport equation satisfied by the autocovariance of X.
2.2. Stationarity-invariant group. The stationarity-invariant group \mathcal{Q} specifies the class of solutions of the inverse problem $X=D Y$, and Section 3 will show that it is also an important tool to identify the equivalence class of D in $\mathscr{D} / \mathcal{G}$. This section examines the properties of operators that belong to such a group. Recall that an operator G is said to be stationarity invariant if, for any wide-sense stationary and stochastically continuous process Y, the process $X=G Y$ is also wide-sense stationary.

The following theorem characterizes this class of operators. We denote by $x \cdot y$ the inner product between two vectors x and y of \mathbb{R}^{d}.

THEOREM 2.1. An operator G is stationarity invariant if and only if there exists $\hat{\rho}(\omega)$ from \mathbb{R}^{d} to \mathbb{C} with $\operatorname{ess} \sup _{\omega \in \mathbb{R}^{d}}|\hat{\rho}(\omega)|<\infty$, and $\lambda(\omega)$ from \mathbb{R}^{d} to \mathbb{R}^{d}, such that

$$
\begin{equation*}
G e^{i \omega \cdot x}=\hat{\rho}(\omega) e^{i \lambda(\omega) \cdot x} \tag{13}
\end{equation*}
$$

The proof is given in Appendix A. This theorem proves that a stationarityinvariant operator acts on a sinusoid by transposing its frequency and modifying its amplitude. The examples given in the previous section correspond to specific classes of such operators, where $\lambda(\omega)$ is affine in ω. Suppose that $\lambda(\omega)=\bar{S} \omega+\xi$, with $\xi \in \mathbb{R}^{d}$ and where S is an invertible linear operator in \mathbb{R}^{d} whose adjoint is denoted \bar{S}. In this case, the operator G in (13) satisfies

$$
\begin{equation*}
G f(x)=e^{i \xi \cdot x} f \star \rho(S x) \tag{14}
\end{equation*}
$$

where $\rho(x)$ is the inverse Fourier transform of $\hat{\rho}(\omega)$. If $\rho(x)=e^{i \phi} \delta(x-v)$, then the operator G defined in (14) consists of both a frequency modulation and a warping.

Let us define the translation operator T_{v} for $v \in \mathbb{R}^{d}$ by

$$
T_{v} f(x)=f(x-v)
$$

The following proposition proves that linear operators of the form (14) are characterized by a weak form of commutativity with T_{v}.

Proposition 2.4. A linear operator G that is bounded in $\mathbf{L}^{2}\left(\mathbb{R}^{d}\right)$ is stationarity invariant and satisfies (14) if and only if it satisfies

$$
\begin{equation*}
\exists \xi \in \mathbb{R}^{d}, \exists S \in G L^{+}\left(\mathbb{R}^{d}\right), \forall v \in \mathbb{R}^{d}, \quad G T_{S v}=e^{i \xi \cdot v} T_{v} G \tag{15}
\end{equation*}
$$

This result, which can be viewed as a transport property, is proved in Appendix A. In the rest of the paper, we concentrate on deformations for which the stationarity-invariant operators satisfy (15).
3. Conservation and transport. The stationarity of a random process Y is a conservation property of its autocovariance through translation. After deforming Y, one obtains a process $X(x)=D Y(x)$, which is no longer stationary and whose autocovariance thus does not satisfy the same conservation property. Yet, we show that the stationarity of Y implies a conservation of the autocovariance of X, along characteristic curves in an appropriate parameter space. These characteristic curves, which identify the equivalence class of D in $\mathscr{D} / \mathscr{G}$, are computed by locally approximating D^{-1} by a "tangential" operator $G_{\beta(v)} \in \mathcal{G}$. Assuming that the stationarity-invariant operators satisfy the transport property (15), the conservation equation can be rewritten as a transport equation whose velocity term, called the deformation gradient, is related to $\vec{\nabla}_{v} \beta(v)$. This deformation gradient characterizes the equivalence class of D in $\mathscr{D} / \mathscr{G}$. Section 3.1 gives the general transport equation and Sections 3.2-3.4 apply this result to one-dimensional warping, frequency modulation and multidimensional warping.
3.1. Transport in groups. We consider a stationarity-invariant group \mathcal{G} whose elements satisfy the transport property (15) and can be written under a parametric form

$$
G_{\beta} f(x)=G_{(\phi, \xi, S, v)} f(x)=e^{i(\xi \cdot x+\phi)} f \star \rho(S x-v)
$$

where ρ is a tempered distribution. With this assumption, the stationarity-invariant group \mathcal{G} is a finite-dimensional Lie group. The translation parameter v is isolated because of its particular role, and since the phase ϕ has no influence on the autocovariance, we also set it apart and write

$$
G_{\beta}=e^{i \phi} F_{\alpha} T_{v},
$$

with

$$
F_{\alpha} f(x)=e^{i \xi \cdot x} f \star \rho(S x) \quad \text { and } \quad \alpha=(\xi, S)
$$

The group product and inverse are denoted by

$$
F_{\alpha_{1}} F_{\alpha_{2}}=F_{\alpha_{1} * \alpha_{2}} \quad \text { and } \quad F_{\alpha}^{-1}=F_{\alpha^{-1}} .
$$

To identify the tangential deformation $G_{\beta(v)} \in \mathcal{G}$, which approximates D^{-1} for functions supported in a neighborhood of $v \in \mathbb{R}^{d}$, we use a family of test functions
constructed from a single function $\psi(x)$ whose support is in $[-1,1]^{d}$. For $\sigma>0$, $\psi_{\sigma}(x)=\psi(x / \sigma)$ has its support in $[-\sigma, \sigma]^{d}$. Let \bar{F}_{α} be the adjoint of F_{α}. An atomic decomposition of a process $X(x)$ is obtained by applying its autocovariance operator to a family of deformed and translated test functions, which are called atoms:

$$
A_{X}^{\sigma}(u, \alpha)=\mathbb{E}\left\{\left|\left\langle X, T_{u} \bar{F}_{\alpha} \psi_{\sigma}\right\rangle\right|^{2}\right\}
$$

This atomic decomposition only depends on X through its autocovariance.
Let us now explain how to identify the tangential deformation $G_{\beta(v)}$ from a conservation property of atomic decompositions. If Y is a stationary process, then $A_{Y}^{\sigma}(u, \alpha)$ does not depend on u; therefore, $\vec{\nabla}_{u} A_{Y}^{\sigma}(u, \alpha)=0$. This is not the case for the atomic decomposition of the deformed process $X=D Y$:

$$
A_{X}^{\sigma}(u, \alpha)=\mathbb{E}\left\{\left|\left\langle X, T_{u} \bar{F}_{\alpha} \psi_{\sigma}\right\rangle\right|^{2}\right\}=\mathbb{E}\left\{\left|\left\langle Y, \bar{D} T_{u} \bar{F}_{\alpha} \psi_{\sigma}\right\rangle\right|^{2}\right\} .
$$

However, we now show that this atomic decomposition satisfies a conservation property along characteristic lines that depend on D. The following proposition proves that if $\overline{D^{-1}}$ can be approximated by a certain $\bar{G}_{\beta(v)}$, for functions having support in a neighborhood of v, then there exists a function γ such that, for all u and α,

$$
\vec{\nabla}_{u} A_{X}^{\sigma}(u, \alpha * \gamma(u)) \approx 0 \quad \text { for } \sigma \text { small. }
$$

Before stating the proposition, let us set some notation. If $f(x)$ and $g(x)$ are two functions defined in \mathbb{R}^{d}, then $\vec{\nabla}_{x} g$ is a vector with d components and $\left\langle f, \vec{\nabla}_{x} g\right\rangle$ is also a vector, whose d components are the inner products $\left\langle f, \partial g / \partial x_{k}\right\rangle$. We denote by $\operatorname{Re}\left\langle f, \vec{\nabla}_{x} g\right\rangle$ the real part of this vector. We write $c(\sigma)=O(\sigma)$ if there exists a constant C such that, for σ small, $|c(\sigma)| \leq C \sigma$, without specifying the sign. We define the covariance operator of X by

$$
K_{X} f(x)=\int \mathbb{E}\left\{X(x) X^{*}(y)\right\} f(y) d y
$$

Proposition 3.1. Let $X=D Y$, with Y stationary. Suppose that, for each $v \in \mathbb{R}^{d}$, there exists $\beta(v)$ such that, for each α, the function $\psi_{v, \alpha, \sigma}=$ $\bar{G}_{\beta(v)} T_{v} \bar{F}_{\alpha} \psi_{\sigma}$ satisfies

$$
\begin{array}{r}
\left|\operatorname{Re}\left\langle K_{X} \psi_{v, \alpha, \sigma}, \overline{D^{-1}}\left(\vec{\nabla}_{v}+\vec{\nabla}_{x}\right) \bar{D} \psi_{v, \alpha, \sigma}\right\rangle\right| \\
=O(\sigma)\left|\operatorname{Re}\left\langle K_{X} \psi_{v, \alpha, \sigma}, \vec{\nabla}_{x} \psi_{v, \alpha, \sigma}\right\rangle\right| . \tag{16}
\end{array}
$$

If there exist a differentiable invertible map $u(v)$ and two functions $\phi(u)$ and $\gamma(u)$ such that

$$
\begin{equation*}
\bar{G}_{\beta(v)} T_{v}=e^{i \phi(u(v))} T_{u(v)} \bar{F}_{\gamma(u(v))}, \tag{17}
\end{equation*}
$$

then, for each (u, α), we have, at $t=u$,

$$
\begin{equation*}
\left|\vec{\nabla}_{u} A_{X}^{\sigma}(u, \alpha * \gamma(t))+\vec{\nabla}_{t} A_{X}^{\sigma}(u, \alpha * \gamma(t))\right|=O(\sigma)\left|\vec{\nabla}_{u} A_{X}^{\sigma}(u, \alpha * \gamma(t))\right| . \tag{18}
\end{equation*}
$$

The norms in (18) are Euclidean norms of d-dimensional vectors. The proof of Proposition 3.1 can be found in Appendix B.

We have assumed that the stationarity-invariant group \mathcal{G} is composed of elements of the form $G_{\beta}=e^{i \phi} F_{\alpha} T_{v}$.

To shed some light on the meaning of (16) and the role of the function $\beta(v)$, we examine the case when the deformation operator D itself is a stationarity-invariant operator. In this case, a function β such that $\bar{G}_{\beta(v)} T_{v} \bar{F}_{\alpha} \psi_{\sigma}$ satisfies (16) can be chosen independently of v. Indeed, $\bar{G}_{\beta(v)}=\overline{D^{-1}}$ yields $\bar{D} \psi_{v, \alpha, \sigma}=T_{v} \bar{F}_{\alpha} \psi_{\sigma}$. For any function $f(x),\left(\vec{\nabla}_{v}+\vec{\nabla}_{x}\right) T_{v} f(x)=0$. Therefore,

$$
\left(\vec{\nabla}_{v}+\vec{\nabla}_{x}\right) \bar{D} \psi_{v, \alpha, \sigma}=\left(\vec{\nabla}_{v}+\vec{\nabla}_{x}\right) T_{v} \bar{F}_{\alpha} \psi_{\sigma}=0,
$$

and the left-hand side of (16) vanishes. When D is not stationarity invariant, $\beta(v)$ must be chosen so that (16) holds when $\sigma \rightarrow 0$. This imposes a form of tangency between $\bar{G}_{\beta(v)}$ and $\overline{D^{-1}}$, when applied to functions supported in a neighborhood of v. In the following three sections, we will identify the β which are appropriate for each type of deformation considered.

The partial differential equation (18) that results from the above proposition can be written as a transport equation in the $(u ; \alpha)$ domain by expanding the gradient with respect to t :

$$
\vec{\nabla}_{t} A_{X}^{\sigma}(u, \alpha * \gamma(t))=\vec{\nabla}_{t}(\alpha * \gamma(t)) \cdot \vec{\nabla}_{\alpha} A_{X}^{\sigma}(u, \alpha * \gamma(t)),
$$

where $\vec{\nabla}_{\alpha} A_{X}^{\sigma}(u, \alpha)$ is a vector of partial derivatives with respect to each component of parameter α. Replacing the free variable α by $\alpha * \gamma^{-1}(u)$ in (18) gives, at $t=u$,

$$
\begin{equation*}
\left|\vec{\nabla}_{u} A_{X}^{\sigma}(u, \alpha)+\vec{\nabla}_{t}\left(\alpha * \gamma^{-1}(u) * \gamma(t)\right) \cdot \vec{\nabla}_{\alpha} A_{X}^{\sigma}(u, \alpha)\right|=O(\sigma)\left|\vec{\nabla}_{u} A_{X}^{\sigma}(u, \alpha)\right| . \tag{19}
\end{equation*}
$$

When σ is sufficiently small, the right-hand side can be neglected, yielding a transport partial differential equation. This is illustrated in the next three sections, in which we apply this proposition to the warping deformation and the frequency modulation problems. Section 4 will afterwards show how, from a single realization of X, we can estimate the partial derivatives of $A_{X}^{\sigma}(u, \alpha)$ and compute the deformation gradient.
3.2. Scale transport. If D is a one-dimensional warping deformation $D f(x)=$ $f(\theta(x))$ with $x \in \mathbb{R}$, then $\overline{D^{-1}} f(x)=\theta^{\prime}(x) f(\theta(x))$. The stationarity-invariant subgroup is the affine group, whose elements are $G_{\beta} f(x)=f(u+s x)$ with $\beta=(u, s)$. The adjoint of G_{β} is

$$
\bar{G}_{\beta} f(x)=s^{-1} f((x-u) / s)=T_{u} \bar{F}_{s} f(x) \quad \text { with } \bar{F}_{s} f(x)=s^{-1} f(x / s) .
$$

Let ψ be a function whose integral vanishes: $\int \psi(x) d x=0$. The function ψ is called a wavelet [11]. Using the above expression of the adjoint operator \bar{F}_{S}, the atomic decomposition $A_{X}^{\sigma}(u, s)=\mathbb{E}\left\{\left|\left\langle X, T_{u} \bar{F}_{s} \psi_{\sigma}\right\rangle\right|^{2}\right\}$ can be written as

$$
A_{X}^{\sigma}(u, s)=\mathbb{E}\left\{\left|\left\langle X(x), s^{-1} \psi\left((s \sigma)^{-1}(x-u)\right)\right\rangle\right|^{2}\right\} .
$$

We reduce the number of parameters by dividing $A_{X}^{\sigma}(u, s)$ by σ^{2} and replacing the product $s \sigma$ by a single scale parameter s. The resulting atomic decomposition

$$
\begin{equation*}
A_{X}(u, s)=\mathbb{E}\left\{\left|\left\langle X(x), s^{-1} \psi\left(s^{-1}(x-u)\right)\right\rangle\right|^{2}\right\} \tag{20}
\end{equation*}
$$

is called a scalogram and can be interpreted as the expected value of a squared wavelet transform. Figure 1 (a) shows the scalogram $A_{Y}(u, s)$ of a stationary process Y. As expected, its value does not depend on u. Figure 1(b) gives $A_{X}(u, s)$ for a warped process $X(x)=D Y(x)=Y(\theta(x))$. The warping causes the values of the scalogram of Y to migrate in the $(u ; \log s)$ plane.

Let us now give the expression of $\beta(u)$ corresponding to the tangential approximation of Proposition 3.1. A tangential approximation of $\overline{D^{-1}}$ can be found by noting that, for a regular function f supported in a neighborhood of $v=\theta(u)$,

$$
\begin{equation*}
\overline{D^{-1}} f(x) \approx \theta^{\prime}(u) f\left(v+\theta^{\prime}(u)(x-u)\right) \tag{21}
\end{equation*}
$$

The right-hand side of (21) can be written as $\bar{G}_{\beta(v)} f(x)$, and operators $\overline{D^{-1}}$ and $\bar{G}_{\beta(v)}$ both translate the support of f from a neighborhood of v to a neighborhood of $u(v)$.

To derive a transport equation from Proposition 3.1, we must make some assumptions on the autocovariance of Y, which will guarantee the uniqueness of the inverse warping problem at the same time. Proposition 2.2 shows that it is necessary to specify the behavior of the autocovariance kernel $c_{Y}(x)$ in a neighborhood of 0 . The following theorem supposes that $c_{Y}(x)$ is nearly h-homogeneous in a neighborhood of 0 . We denote $\partial f / \partial a=\partial_{a} f$ and $\partial_{\log s} f=$ $\partial f / \partial \log s=s \partial f / \partial s$.

Fig. 1. (a) Scalogram $A_{Y}(u, s)$ of a stationary process Y. The horizontal and vertical axes represent u and $\log s$, respectively. The darkness of a point is proportional to the value of $A_{Y}(u, s)$. (b) Scalogram $A_{X}(u, s)$ of a warped process X.

THEOREM 3.1 (Scale transport). Let Y be a stationary process whose covariance satisfies

$$
\begin{equation*}
c_{Y}(0)-c_{Y}(x)=|x|^{h} \eta(x), \quad \text { with } h>0, \eta(0)>0 \tag{22}
\end{equation*}
$$

and where η is \mathbf{C}^{1} in a neighborhood of 0 . Let $\psi(x)$ be a \mathbf{C}^{1} function supported in $[-1,1]$ such that

$$
\begin{equation*}
\int \psi(x) d x=0 \quad \text { and } \quad \operatorname{Re} \iint|x-y|^{h} \psi^{*}(x) \psi(y) d x d y \neq 0 \tag{23}
\end{equation*}
$$

If

$$
X(x)=Y(\theta(x))
$$

where $\theta(x)$ is \mathbf{C}^{3} and $\theta^{\prime}(x)>0$, then, for each $u \in \mathbb{R}$ such that $\theta^{\prime \prime}(u) \neq 0$, when s tends to 0

$$
\begin{equation*}
\partial_{u} A_{X}(u, s)-\left(\log \theta^{\prime}\right)^{\prime}(u) \partial_{\log s} A_{X}(u, s)=O(s) \partial_{u} A_{X}(u, s) \tag{24}
\end{equation*}
$$

The proof is given in Appendix B. The conditions imposed on c_{Y} and ψ in this theorem guarantee that $\partial_{\log s} A_{X}(u, s)$ does not vanish for $s>0$. The deformation gradient $\left(\log \theta^{\prime}\right)^{\prime}(u)$, which specifies the equivalence class of D in $\mathscr{D} / \mathcal{G}$, can thus be computed from (24) by letting s go to 0 . It is therefore not surprising that (22) imposes a stronger condition on c_{Y} than the uniqueness condition (5) of Proposition 2.2. The estimation of $\left(\log \theta^{\prime}\right)^{\prime}(u)$ from a single realization of X will be studied in Section 4.1.

REMARK 3.1. Since $\psi(x)$ has a zero integral, one can verify that $A_{X}(u, s)$ can be expressed from the covariance of the increments of $X(x)$, which itself depends on the covariance of the increments of $Y(x)$. It is therefore possible to extend this theorem by supposing only that $Y(x)$ has stationary increments and by replacing (22) by a similar condition on the autocovariance of the increments. Fractional Brownian motions (see [1] and [7]) are examples of processes $Y(x)$ with stationary increments whose deformations by warping satisfy (24).
3.3. Frequency transport. If the deformation operator D is a frequency modulation, $D f(x)=e^{i \theta(x)} f(x)$, the stationarity-invariant subgroup g is composed of operators G_{β} such that

$$
G_{\beta} f(x)=e^{i(\phi+\xi x)} f(x)
$$

In this case, $F_{\xi} f(x)=e^{i \xi x} f(x)$. Let us choose an even, positive window function $\psi(x) \geq 0$, with a support equal to $[-1,1]$. The atomic decomposition of process X is the well-known spectrogram:

$$
\begin{aligned}
A_{X}^{\sigma}(u, \xi) & =\mathbb{E}\left\{\left|\left\langle X(x), \psi_{\sigma}(x-u) e^{-i \xi(x-u)}\right\rangle\right|^{2}\right\} \\
& =\mathbb{E}\left\{\left|\left\langle X(x), \psi_{\sigma}(x-u) e^{-i \xi x}\right\rangle\right|^{2}\right\}
\end{aligned}
$$

FIG. 2. (a) Spectrogram $A_{Y}^{\sigma}(u, \xi)$ of a stationary process Y. The horizontal and vertical axes represent position u and frequency ξ, respectively. The darkness of a point is proportional to the value of $A_{Y}^{\sigma}(u, \xi)$. (b) Spectrogram $A_{X}^{\sigma}(u, \xi)$ of a frequency-modulated process X.

Figure 2(a) shows a spectrogram $A_{Y}^{\sigma}(u, \xi)$, whose values do not depend on u because Y is stationary. Figure 2(b) depicts $A_{X}^{\sigma}(u, \xi)$ for $X(x)=D Y(x)=$ $e^{i \theta(x)} Y(x)$, with $\theta(x)=\lambda_{1} \cos \left(\lambda_{2} x\right)$, where λ_{1} and λ_{2} are two constants. The frequency modulation translates the spectrogram of Y nonuniformly along the frequency axis.

Let us now give the expression of $\beta(v)$ corresponding to the tangential approximation of Proposition 3.1, when D is a frequency modulation. A tangential approximation of $\overline{D^{-1}}$ can be found by noting that if f is supported in a neighborhood of v, then

$$
\overline{D^{-1}} f(x)=e^{i \theta(x)} f(x) \approx e^{i\left(\theta(v)+\theta^{\prime}(v)(x-v)\right)} f(x)
$$

and one can define a stationarity-invariant approximation of $\overline{D^{-1}}$ by $G_{\beta(v)}$ such that

$$
\begin{equation*}
\bar{G}_{\beta(v)} f(x)=e^{i\left(\theta(v)+\theta^{\prime}(v)(x-v)\right)} f(x) \tag{25}
\end{equation*}
$$

The following theorem uses this tangential approximation to derive from Proposition 3.1 a transport equation, satisfied by the spectrogram $A_{X}^{\sigma}(u, \xi)$ in the $(u ; \xi)$ plane, when the window width σ decreases to 0 . The frequency ξ is chosen large enough so that the period of $e^{i \xi x}$ is smaller than the support size σ of ψ_{σ}. We set $\xi=\xi_{0} / \sigma$ and select ξ_{0} so that $\hat{\psi}(\omega)$ and its first $\lceil h\rceil+2$ derivatives vanish at $\omega=\xi_{0}$, where $\lceil h\rceil$ denotes the smallest integer greater than or equal to h.

THEOREM 3.2 (Frequency transport). Let Y be a stationary process such that there exists $h>0$ with

$$
\begin{equation*}
c_{Y}(0)-c_{Y}(x)=|x|^{h} \eta(x) \tag{26}
\end{equation*}
$$

where η is continuous in a neighborhood of 0 and $\eta(0)>0$. Let ψ be an even, positive \mathbf{C}^{1} function supported in $[-1,1]$ and let ξ_{0} be such that $\hat{\psi}(\omega)$ and its first
$\lceil h\rceil+2$ derivatives vanish at $\omega=\xi_{0}$ but

$$
\iint|x-y|^{h}(x-y) \sin \left[\xi_{0}(x-y)\right] \psi(x) \psi(y) d x d y \neq 0
$$

If

$$
X(x)=e^{i \theta(x)} Y(x), \quad \text { where } \theta(x) \text { is } \mathbf{C}^{\lceil h\rceil+4}
$$

then, for each $u \in \mathbb{R}$ such that $\theta^{\prime \prime}(u) \neq 0$ and for $\xi=\xi_{0} / \sigma$, when $\sigma \rightarrow 0$,

$$
\begin{equation*}
\partial_{u} A_{X}^{\sigma}(u, \xi)-\theta^{\prime \prime}(u) \partial_{\xi} A_{X}^{\sigma}(u, \xi)=O\left(\sigma^{2}\right) \partial_{u} A_{X}^{\sigma}(u, \xi) \tag{27}
\end{equation*}
$$

The proof is given in Appendix B. To satisfy the theorem hypotheses, one may choose $\psi(x)$ to be a box spline obtained by convolving the indicator function $\mathbb{1}_{[-1 / 2 m, 1 / 2 m]}$ with itself m times: let $m \geq\lceil h\rceil+3$ and

$$
\begin{equation*}
\hat{\psi}(\omega)=\left(\frac{\sin (\omega /(2 m))}{\omega /(2 m)}\right)^{m} \exp \left(\frac{-i \varepsilon \omega}{4 m}\right) \tag{28}
\end{equation*}
$$

where $\varepsilon=1$ if m is odd and $\varepsilon=0$ if m is even. With $\xi_{0}=2 m \pi, \psi$ satisfies the theorem hypotheses. The deformation gradient $\theta^{\prime \prime}(u)$ can be characterized from (27) by letting σ go to 0 , and we proved in (2) that $\theta^{\prime \prime}(u)$ specifies the equivalence class of D in $\mathscr{D} / \mathscr{G}$. Section 4.2 will impose additional conditions on c_{Y} and θ to obtain a consistent estimation of $\theta^{\prime \prime}(u)$ from one realization of the frequency-modulated process X.
3.4. Multidimensional scale transport. For a multidimensional warping, where $D f(x)=f(\theta(x))$ with $x \in \mathbb{R}^{d}$, the adjoint of D^{-1} is $\overline{D^{-1}} f(x)=$ $\operatorname{det} J_{\theta}(x) f(\theta(x))$. The matrix $J_{\theta}(x)$ is the Jacobian matrix of θ at position x, as defined in (6). The stationarity-invariant group g is the affine group, composed of operators G_{β} with $\beta=(u, S) \in \mathbb{R}^{d} \times G L^{+}\left(\mathbb{R}^{d}\right)$, such that

$$
G_{\beta} f(x)=f(u+S x)
$$

The adjoint of G_{β} is

$$
\bar{G}_{\beta} f(x)=\operatorname{det} S^{-1} f\left(S^{-1}(x-u)\right)=T_{u} \bar{F}_{S} f(x)
$$

where $\bar{F}_{S} f(x)=\operatorname{det} S^{-1} f\left(S^{-1} x\right)$ and

$$
S=\left(s_{l, m}\right)_{1 \leq l, m \leq d} .
$$

Similarly to (21), we find a tangential approximation to $\overline{D^{-1}}$ by noting that, for a regular function f supported in a neighborhood of $v=\theta(u)$,

$$
\begin{equation*}
\overline{D^{-1}} f(x) \approx \operatorname{det} J_{\theta}(u) f\left(\theta(u)+J_{\theta}(u)(x-u)\right)=\bar{G}_{\beta(v)} f(x) . \tag{29}
\end{equation*}
$$

The operators $\overline{D^{-1}}$ and $\bar{G}_{\beta(v)}$ both translate the support of f from a neighborhood of v to a neighborhood of $u(v)=\theta^{-1}(v)$.

Let ψ be a function such that $\int_{\mathbb{R}^{d}} \psi(x) d x=0$. A multidimensional extension of the scalogram is given by

$$
\begin{aligned}
A_{X}^{\sigma}(u, S) & =\mathbb{E}\left\{\left|\left\langle X(x), \operatorname{det} S^{-1} \psi_{\sigma}\left(S^{-1}(x-u)\right)\right\rangle\right|^{2}\right\} \\
& =\mathbb{E}\left\{\left|\left\langle X(x), \operatorname{det} S^{-1} \psi\left(\sigma^{-1} S^{-1}(x-u)\right)\right\rangle\right|^{2}\right\} .
\end{aligned}
$$

As in the one-dimensional case, we divide $A_{X}^{\sigma}(u, s)$ by $\sigma^{2 d}$ and replace the product σS by a matrix, which we still denote S. The resulting atomic decomposition

$$
\begin{equation*}
A_{X}(u, S)=\mathbb{E}\left\{\left|\left\langle X(x), \operatorname{det} S^{-1} \psi\left(S^{-1}(x-u)\right)\right\rangle\right|^{2}\right\} \tag{30}
\end{equation*}
$$

is similar to the scalogram (20) but since the scale parameter s is replaced by a warping matrix S, we call it a warpogram.

For a one-dimensional warping, the velocity term of transport equation (24) is $\left(\log \theta^{\prime}\right)^{\prime}(u)=\theta^{\prime \prime}(u) / \theta^{\prime}(u)$. In two dimensions, it becomes a set of matrices, indexed by the direction k of spatial differentiation:

$$
\begin{equation*}
\text { for } 1 \leq k \leq d, \quad J_{\theta}^{-1}(u) \frac{\partial J_{\theta}(u)}{\partial u_{k}}=\left(\gamma_{l, m}^{k}(u)\right)_{1 \leq l, m \leq d} . \tag{31}
\end{equation*}
$$

This set of matrices has been shown in (9) to specify the equivalence class of D in \mathscr{D} / g. For each (l, m), we introduce the vector

$$
\vec{\gamma}_{l, m}(u)=\left(\gamma_{l, m}^{k}(u)\right)_{1 \leq k \leq d} .
$$

The partial derivative $\partial_{\log s} A_{X}(u, s)=s \partial_{s} A_{X}(u, s)$, which appears in the onedimensional transport equation (24), now becomes a matrix product between a matrix composed of partial derivatives with respect to the scale parameters and the transpose S^{t} of S :

$$
\begin{equation*}
\left(\frac{\partial A_{X}(u, S)}{\partial s_{i, j}}\right)_{1 \leq i, j \leq d} S^{t}=\left(a_{i, j}(u, S)\right)_{1 \leq i, j \leq d} \tag{32}
\end{equation*}
$$

The following theorem isolates $\sigma=(\operatorname{det} S)^{1 / d}$ by writing $S=\sigma \tilde{S}$ with $\operatorname{det} \tilde{S}=1$ and gives a d-dimensional transport equation when σ goes to 0 .

THEOREM 3.3. Suppose that $X(x)=Y(\theta(x))$, where Y is stationary, $\theta(x)$ is \mathbf{C}^{3} and $\operatorname{det} J_{\theta}(x)>0$. Suppose that the autocovariance kernel c_{Y} of Y satisfies

$$
\begin{equation*}
c_{Y}(0)-c_{Y}(x)=|x|^{h} \eta(x) \tag{33}
\end{equation*}
$$

with $\eta(0)>0$ and $\eta \in \mathbf{C}^{2}$ in a neighborhood of 0 . For each $u \in \mathbb{R}^{d}$ and for each \tilde{S} with $\operatorname{det} \tilde{S}=1$, if there exists $C(u, \tilde{S})>0$ such that, for $S=\sigma \tilde{S}$ and σ small enough,

$$
\begin{align*}
& \left|\operatorname{Re} \iint \vec{\nabla} c_{Y}(S(x-y)) \vec{\nabla} J_{\theta}(u) J_{\theta}^{-1}(u) S(x-y) \psi^{*}(x) \psi(y) d x d y\right| \tag{34}\\
& \quad \geq C(u, \tilde{S}) \sigma^{h}
\end{align*}
$$

then, when σ goes to 0 ,

$$
\begin{equation*}
\left|\vec{\nabla}_{u} A_{X}(u, S)-\sum_{l, m=1}^{d} \vec{\gamma}_{l, m}(u) a_{l, m}(u, S)\right|=O(\sigma)\left|\vec{\nabla}_{u} A_{X}(u, S)\right| \tag{35}
\end{equation*}
$$

The proof of this theorem is given in Appendix B.
The purpose of condition (34) is to ensure that $\left|\vec{\nabla}_{u} A_{X}(u, S)\right|$ on the righthand side of (35) is not too small. If $\theta(x)$ is a separable warping function of the form $\theta\left(x_{1}, \ldots, x_{d}\right)=\left(\theta_{1}\left(x_{1}\right), \ldots, \theta_{d}\left(x_{d}\right)\right)$, then one can verify (see Appendix B) that (34) holds for all functions θ_{i} such that $\theta_{i}^{\prime \prime}$ does not vanish if

$$
\begin{equation*}
\operatorname{Re} \iint|\tilde{S}(x-y)|^{h} \psi^{*}(x) \psi(y) d x d y \neq 0 \tag{36}
\end{equation*}
$$

The above condition is similar to the second part of condition (23) in Theorem 3.1. Condition (34) is more involved, however, because, in general, coupling occurs between different directions.

For σ sufficiently small, neglecting the right-hand side of (35) yields d scalar equations:

$$
\text { for } 1 \leq k \leq d, \quad \partial_{u_{k}} A_{X}(u, S)-\sum_{l, m=1}^{d} \gamma_{l, m}^{k}(u) a_{l, m}(u, S)=0 .
$$

For any (u, S), the values $\partial_{u_{k}} A_{X}(u, S)$ and $a_{l, m}(u, S)$ defined in (32) depend on the autocovariance of X and have to be estimated. For each direction k, there are a total of d^{2} unknown coefficients $\gamma_{l, m}^{k}(u)$, equal to the d^{2} matrix components of $J_{\theta}^{-1}(u) \partial_{u_{k}} J_{\theta}(u)$. To compute them, we need to select d^{2} warping matrices $\left\{S_{i}\right\}_{i=1, \ldots, d^{2}}$ and invert the linear system:

$$
\begin{align*}
& \left(\begin{array}{cccc}
a_{1,1}\left(u, S_{1}\right) & a_{1,2}\left(u, S_{1}\right) & \cdots & a_{d, d}\left(u, S_{1}\right) \\
\vdots & \vdots & \vdots & \vdots \\
a_{1,1}\left(u, S_{d^{2}}\right) & a_{1,2}\left(u, S_{d^{2}}\right) & \cdots & a_{d, d}\left(u, S_{d^{2}}\right)
\end{array}\right)\left(\begin{array}{c}
\gamma_{1,1}^{k}(u) \\
\gamma_{1,2}^{k}(u) \\
\vdots \\
\gamma_{d, d}^{k}(u)
\end{array}\right) \tag{37}\\
& =\left(\begin{array}{c}
\partial_{u_{k}} A_{X}\left(u, S_{1}\right) \\
\vdots \\
\partial_{u_{k}} A_{X}\left(u, S_{d^{2}}\right)
\end{array}\right) .
\end{align*}
$$

Changing the direction index k only modifies the right-hand side of (37). Note that, in order for the system to be invertible, the matrix on the left-hand side of (37) must have full rank. The matrices S_{k} must therefore be appropriately chosen, and the inverse warping problem must have a unique solution. This is not always the case, as shown by the example in (10).

The system (37) has been used in Computer Vision for relief reconstruction from photographs of surfaces with regular patterns, a problem called shape-from-texture [6]. Examples of such "textured surfaces" are provided in Figure 3.

FIG. 3. Shape from texture: examples of objects whose shape is inferred by analyzing texture (i.e., pattern) variations.

Perceptually, by analyzing the variations of size, shape and density of the patterns within the two-dimensional images, we can infer the three-dimensional shape of the objects. This cue to three-dimensional shape is monocular (i.e., it uses a single image), unlike stereo vision, in which two images of a scene taken from different viewing points are compared. Mathematically, one can model the pattern variations across the image by the two deformation gradient vectors

$$
\left(\begin{array}{l}
\gamma_{1,1}^{1}(u) \\
\gamma_{1,2}^{1}(u) \\
\gamma_{2,1}^{1}(u) \\
\gamma_{2,2}^{1}(u)
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{l}
\gamma_{1,1}^{2}(u) \\
\gamma_{1,2}^{2}(u) \\
\gamma_{2,1}^{2}(u) \\
\gamma_{2,2}^{2}(u)
\end{array}\right) .
$$

These two vectors represent the elements of the two matrices defined in (12), and as mentioned in Section 2.1, one can recover from them the normal vector field of the surface being viewed, and hence its shape.
4. Estimation of deformations. The deformation gradient appears as a velocity vector in the transport (19). To recover it from a single realization of X, the derivatives $\vec{\nabla}_{u} A_{X}^{\sigma}(u, \alpha)$ and $\vec{\nabla}_{\alpha} A_{X}^{\sigma}(u, \alpha)$ of the atomic decomposition of X have to be estimated. With a single realization, a sample mean estimator has a variance of the same order of magnitude as the term it estimates. This variance can be reduced with a spatial smoothing, while the bias, which is proportional to the width of the smoothing kernel, is controlled. The next two sections study the consistency of such smoothed estimators for the one-dimensional warping problem and the frequency modulation problem. Finally, Section 4.3 discusses multidimensional warping estimation.
4.1. Warping in one dimension. The scalogram of X is an expected value

$$
A_{X}(u, s)=\mathbb{E}\left\{\left|\left\langle X, \psi_{u, s}\right\rangle\right|^{2}\right\}
$$

with $\psi_{u, s}(x)=s^{-1} \psi((x-u) / s)$. If $X(x)=Y(\theta(x))$, then Theorem 3.1 proves
that

$$
\begin{equation*}
\partial_{u} A_{X}(u, s)-\left(\log \theta^{\prime}\right)^{\prime}(u) \partial_{\log s} A_{X}(u, s)=O(s) \partial_{u} A_{X}(u, s) . \tag{38}
\end{equation*}
$$

From $X(x)$ approximated at a resolution N, one can compute the empirical scalogram $\left|\left\langle X, \psi_{u, s}\right\rangle\right|^{2}$ at scales $s \geq N^{-1}$ and locations $u=k / N$ with $k \in \mathbb{Z}$ [11]. We introduce a kernel estimator $A_{X}(u, s)$, using the averaging kernel

$$
g(x)= \begin{cases}\Delta^{-1}(1-|x / \Delta|), & \text { if }|x| \leq \Delta \tag{39}\\ 0, & \text { if }|x|>\Delta\end{cases}
$$

Let

$$
\begin{align*}
& \widehat{\partial_{u} A_{X}}(u, s) \\
& \quad=2 N^{-1} \sum_{|k / N-u| \leq \Delta} g(u-k / N) \operatorname{Re}\left[\left\langle X, \psi_{k / N, s}\right\rangle\left\langle X, \partial_{u} \psi_{k / N, s}\right\rangle^{*}\right], \tag{40}\\
& \widehat{\partial_{\log s} A_{X}}(u, s) \\
& \quad=2 N^{-1} \sum_{|k / N-u| \leq \Delta} g(u-k / N) \operatorname{Re}\left[\left\langle X, \psi_{k / N, s}\right\rangle\left\langle X, \partial_{\log s} \psi_{k / N, s}\right\rangle^{*}\right] .
\end{align*}
$$

In view of (38), we suggest the following estimator for $\left(\log \theta^{\prime}\right)^{\prime}(u)$:

$$
\left(\widehat{\left.\log \theta^{\prime}\right)^{\prime}}(u)=\frac{\widehat{\partial_{u} A_{X}}\left(u, N^{-1}\right)}{\widehat{\partial_{\log S} A_{X}}\left(u, N^{-1}\right)} .\right.
$$

One must guarantee that, when $s=N^{-1}$ and N increases, $\widehat{\partial_{u} A_{X}}(u, s)$ and
 we introduce a Gaussian assumption on the underlying stationary process Y. This assumption allows us to derive the consistency of the estimators from the fast spatial decorrelation (in k) of $\left\langle X, \psi_{k / N, s}\right\rangle$ and $\left\langle X, \partial_{\log s} \psi_{k / N, s}\right\rangle$. Fast decorrelation of these two random variables will be ensured by adjusting the choice of wavelet ψ to the behavior of the autocovariance function c_{Y} in a neighborhood of 0 .

The following theorem proves the weak consistency of the proposed estimator $\left(\widehat{\log \theta^{\prime}}\right)^{\prime}(u)$ of $\left(\log \theta^{\prime}\right)^{\prime}(u)$ by selecting the averaging interval Δ according to the scale $s=N^{-1}$. A wavelet $\psi(x)$ is said to have p vanishing moments if

$$
\int x^{k} \psi(x) d x=0 \quad \text { for } 0 \leq k<p
$$

THEOREM 4.1 (Consistency, warping). Let $X(x)=Y(\theta(x))$, where Y is a stationary Gaussian process whose covariance satisfies

$$
\begin{equation*}
c_{Y}(0)-c_{Y}(x)=|x|^{h} \eta(x) \quad \text { with } h>0 \text { and } \eta(0)>0 . \tag{42}
\end{equation*}
$$

Let ψ be a \mathbf{C}^{2} wavelet supported in $[-1,1]$ with p vanishing moments such that

$$
2 p-h>1 / 2 \quad \text { and } \iint|x-y|^{h} \psi^{*}(x) \psi(y) d x d y \neq 0
$$

Let $\Delta=N^{-1 / 5}$. If $\eta(x)$ is $\mathbf{C}^{2 p}$ in a neighborhood of 0 and if $\theta(x) \in \mathbf{C}^{3} \cap \mathbf{C}^{2 p}$, then, for each $u \in \mathbb{R}$ such that $\theta^{\prime \prime}(u) \neq 0$,

$$
\begin{equation*}
\operatorname{Prob}\left\{\left|\widehat{\left(\log \theta^{\prime}\right)^{\prime}}(u)-\left(\log \theta^{\prime}\right)^{\prime}(u)\right| \leq 2(\log N) N^{-1 / 5}\right\} \underset{N \rightarrow \infty}{\longrightarrow} 1 \tag{43}
\end{equation*}
$$

The proof is given in Appendix C. Since all estimations are based on wavelet coefficients, one can easily verify that the results still hold if Y is not stationary but has stationary increments. In particular, it applies to fractional Brownian motion (see [1] and [7]), for which $\eta(x)=1$.

Figure 4 displays a numerical experiment conducted on a single realization of a warped process. The signal X in Figure 4(b) is obtained by warping a stationary signal Y, depicted in Figure 4(a). Figure 4(c) shows (dotted line) the estimate $\widehat{\log \theta^{\prime}}$

FIG. 4. (a) Stationary signal Y and its empirical scalogram $\left|\left\langle Y, \psi_{u, s}\right\rangle\right|^{2}$. (b) Warped signal $X(x)=Y(\theta(x))$ and its empirical scalogram. (c) $\log \theta^{\prime}(x)=\lambda_{1}+\lambda_{2} \operatorname{sign}(1 / 2-x)|x-1 / 2|^{2}$, where λ_{1} and λ_{2} are two constants (solid line), and its estimation from X (dashed line). (d) Stationarized signal and its empirical scalogram.
of $\log \theta^{\prime}$ obtained by integrating the estimate $\left(\widehat{\log \theta^{\prime}}\right)^{\prime}(u)$ and choosing the additive integration constant so that $\int_{0}^{1} \exp \left(\widehat{\log \theta^{\prime}}\right)=\int_{0}^{1} \theta^{\prime}$. An estimate $\widehat{\theta}$ for the warping function can be obtained up to an additive constant by integrating $\exp \widehat{\log \theta^{\prime}}$. It is then possible to stationarize the deformed signal X by computing $X \circ(\widehat{\theta})^{-1}$. Figure 4(d) displays such a stationarized signal. We refer the reader to [6] for details on the numerical implementation of this method.
4.2. Frequency modulation. For a frequency-modulated process, $X(x)=$ $Y(x) e^{i \theta(x)}$, Theorem 3.2 shows that the deformation gradient $\theta^{\prime \prime}(u)$ can be computed from the spectrogram

$$
A_{X}^{\sigma}(u, \xi)=\mathbb{E}\left\{\left|\left\langle X(x), \psi_{\sigma}(x-u) e^{i \xi(x-u)}\right\rangle\right|^{2}\right\}
$$

with the equation

$$
\begin{equation*}
\partial_{u} A_{X}^{\sigma}(u, \xi)-\theta^{\prime \prime}(u) \partial_{\xi} A_{X}^{\sigma}(u, \xi)=O\left(\sigma^{2}\right) \partial_{u} A_{X}^{\sigma}(u, \xi) \tag{44}
\end{equation*}
$$

evaluated at a frequency $\xi=\xi_{0} / \sigma$.
To compute an estimator of the smoothed partial derivatives of the spectrogram, we relate the spectrogram coefficients to a particular wavelet transform. Observe that

$$
\begin{equation*}
\psi_{\sigma}(x-u) \exp \left(i \xi_{0} \frac{x-u}{\sigma}\right)=\psi^{1}\left(\frac{x-u}{\sigma}\right) \tag{45}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi^{1}(x)=\psi(x) e^{i \xi_{0} x} \tag{46}
\end{equation*}
$$

Since ψ is real, $\hat{\psi}(\omega)$ is even, and if $\hat{\psi}(\omega)$ has a 0 of order $\lceil h\rceil+3$ at $\omega=\xi_{0}$, then

$$
\int x^{k} \psi^{1}(x) d x=(-i)^{k} \frac{d^{k} \hat{\psi}^{1}}{d \omega^{k}}\left(-\xi_{0}\right)=0 \quad \text { for } k \leq\lceil h\rceil+2
$$

This means that ψ^{1} is a wavelet with $\lceil h\rceil+3$ vanishing moments [11]. We write $\psi_{u, \sigma}^{1}(x)=\sigma^{-1} \psi^{1}\left(\sigma^{-1}(x-u)\right)$. The scalogram associated to this wavelet is defined by $A_{X}(u, \sigma)=\mathbb{E}\left\{\left|\left\langle X, \psi_{u, \sigma}^{1}\right\rangle\right|^{2}\right\}$. From (45),

$$
A_{X}^{\sigma}\left(u, \xi_{0} / \sigma\right)=\mathbb{E}\left\{\left|\left\langle X(x), \psi^{1}\left(\sigma^{-1}(x-u)\right)\right\rangle\right|^{2}\right\}=\sigma^{2} A_{X}(u, \sigma)
$$

and hence

$$
\partial_{u} A_{X}^{\sigma}\left(u, \xi_{0} / \sigma\right)=\sigma^{2} \partial_{u} A_{X}(u, \sigma)
$$

Let $\widehat{\partial_{u} A_{X}}(u, \sigma)$ be the estimator calculated in (40) at a scale $\sigma=N^{-1}$ for a certain averaging width Δ from a single realization of $X(x)$ sampled at a resolution N.

We introduce the estimator

$$
\widehat{\partial_{u} A_{X}^{\sigma}}\left(u, \xi_{0} / \sigma\right)=\sigma^{2} \widehat{\partial_{u} A_{X}}(u, \sigma)
$$

To compute an empirical estimator of the other partial derivative, $\partial_{\xi} A_{X}^{\sigma}\left(u, \xi_{0} / \sigma\right)$, observe that
$\partial_{\xi} A_{X}^{\sigma}(u, \xi)=2 \operatorname{Re}\left[\mathbb{E}\left\{\left\langle X(x), \psi_{\sigma}(x-u) e^{i \xi(x-u)}\right\rangle\left\langle X(x), \partial_{\xi}\left[\psi_{\sigma}(x-u) e^{i \xi(x-u)}\right]\right\rangle^{*}\right\}\right]$.
Introducing a new wavelet

$$
\begin{equation*}
\psi^{2}(x)=x \psi^{1}(x)=x \psi(x) e^{i \xi_{0} x} \tag{47}
\end{equation*}
$$

and $\psi_{u, \sigma}^{2}(x)=\sigma^{-1} \psi^{2}\left(\sigma^{-1}(x-u)\right)$, this partial derivative can be rewritten, for $\xi=\xi_{0} / \sigma$, as

$$
\partial_{\xi} A_{X}^{\sigma}\left(u, \xi_{0} / \sigma\right)=2 \sigma^{3} \operatorname{Im}\left[\mathbb{E}\left\{\left\langle X, \psi_{u, \sigma}^{1}\right\rangle\left\langle X, \psi_{u, \sigma}^{2}\right\rangle^{*}\right\}\right] .
$$

Similarly to (41), for $\sigma=N^{-1}$, we define the averaging kernel estimator

$$
\begin{align*}
& \widehat{\partial_{\xi} A_{X}^{\sigma}}\left(u, \xi_{0} / \sigma\right) \\
& \quad=2 \sigma^{3} N^{-1} \sum_{|k / N-u| \leq \Delta} g(u-k / N) \operatorname{Im}\left[\left\langle X, \psi_{k / N, \sigma}^{1}\right\rangle\left\langle X, \psi_{k / N, \sigma}^{2}\right\rangle^{*}\right] . \tag{48}
\end{align*}
$$

The following theorem proves that, for $\sigma=N^{-1}$ and an appropriate choice of the averaging interval Δ,

$$
\widehat{\theta^{\prime \prime}}(u)=\frac{\widehat{\partial_{u} A_{X}^{\sigma}}\left(u, N \xi_{0}\right)}{\widehat{\partial_{\xi} A_{X}^{\sigma}}\left(u, N \xi_{0}\right)}
$$

is a weakly consistent estimator of $\theta^{\prime \prime}(u)$ when $N \rightarrow \infty$. The proof resides in the spatial decorrelation of wavelet coefficients of X, and for the same reasons as in Theorem 4.1, we introduce a Gaussian assumption on the underlying stationary process Y.

THEOREM 4.2 (Consistency, frequency modulation). Let $X(x)=Y(x) e^{i \theta(x)}$, where Y is a stationary Gaussian process such that there exists $h>0$ with

$$
\begin{equation*}
c_{Y}(0)-c_{Y}(x)=|x|^{h} \eta(x) \quad \text { and } \quad \eta(0)>0 \tag{49}
\end{equation*}
$$

Suppose that $\psi^{1}(x)=\psi(x) e^{i \xi_{0} x}$ is a compactly supported wavelet with $p \geq$ $\lceil h\rceil+3$ vanishing moments such that

$$
\iint|x-y|^{h}(x-y) \sin \left[\xi_{0}(x-y)\right] \psi(x) \psi(y) d x d y \neq 0
$$

Let $\Delta=N^{-1 / 5}$. If $\eta \in \mathbf{C}^{2 p}$ in a neighborhood of 0 and if $\theta \in \mathbf{C}^{2 p}$, then, for each $u \in \mathbb{R}$,

$$
\begin{equation*}
\operatorname{Prob}\left\{\left|\widehat{\theta^{\prime \prime}}(u)-\theta^{\prime \prime}(u)\right| \leq 2(\log N) N^{-1 / 5}\right\} \underset{N \rightarrow \infty}{\longrightarrow} 1 \tag{50}
\end{equation*}
$$

FIG. 5. (a) Stationary signal Y and its empirical scalogram $\left|\left\langle Y, \psi_{u, s}^{1}\right\rangle\right|^{2}$. (b) Frequency-modulated signal $X(x)=Y(x) \exp (i \theta(x))$ and its empirical scalogram. (c) Frequency modulation $\theta^{\prime}(x)$ (solid line) and its estimation from X (dashed line). (d) Stationarized signal and its empirical scalogram.

The proof is given in Appendix C. The numerical example in Figure 5 shows the estimation of a frequency modulation, with a box spline window $\psi(x)$ defined in (28). We explained that the empirical estimator $\widehat{\theta^{\prime \prime}}(u)$ is, in fact, computed from wavelet coefficients associated to the two wavelets ψ^{1} and ψ^{2} defined in (46) and (47). Figure 5(a) shows a realization of a stationary signal $Y(x)$ and the corresponding empirical scalogram $\widehat{A_{Y}}(u, s)=\left|\left\langle Y, \psi_{u, s}^{1}\right\rangle\right|^{2}$. The frequency-modulated signal $X(x)=Y(x) \exp (i \theta(x))$ and its empirical scalogram are shown in Figure 5 (b). The derivative θ^{\prime} of the frequency modulation is plotted in Figure $5(\mathrm{c})$ (solid line). An estimate $\widehat{\theta^{\prime}}$ of θ^{\prime} is obtained by integrating $\widehat{\theta^{\prime \prime}}$ and choosing the additive integration constant so that $\int_{0}^{1} \widehat{\theta^{\prime}}=\int_{0}^{1} \theta^{\prime}$. Figure 5(c) plots $\widehat{\theta^{\prime}}$ (dashed line) superposed on the theoretical function θ^{\prime} (solid line). Finally, Figure 5(d) represents the stationarized process $X(x) \exp (-i \widehat{\theta}(x))$ and its empirical scalogram.
4.3. Warping in higher dimensions. For a multidimensional warping, at each position u, the deformation gradient corresponds to a set of d matrices $\vec{\gamma}_{l, m}(u)=$ $\left(\gamma_{l, m}^{k}(u)\right)_{1 \leq k \leq d}$ defined in (31). Theorem 3.3 shows that these coefficients appear
in the velocity term of the transport equation (35) satisfied by the warpogram of X :

$$
A_{X}(u, S)=\mathbb{E}\left\{\left|\left\langle X, \psi_{u, S}\right\rangle\right|^{2}\right\}
$$

with

$$
\psi_{u, S}(x)=\left(\operatorname{det} S^{-1}\right) \psi\left(S^{-1}(x-u)\right)
$$

At a sufficiently small scale σ, the error on the right-hand side of the transport equation (35) can be neglected. The vector transport equation can then be written as a linear system

$$
\begin{gather*}
\left(\begin{array}{cccc}
a_{1,1}\left(u, S_{1}\right) & a_{1,2}\left(u, S_{1}\right) & \cdots & a_{d, d}\left(u, S_{1}\right) \\
\vdots & \vdots & \vdots & \vdots \\
a_{1,1}\left(u, S_{d^{2}}\right) & a_{1,2}\left(u, S_{d^{2}}\right) & \cdots & a_{d, d}\left(u, S_{d^{2}}\right)
\end{array}\right)\left(\begin{array}{c}
\gamma_{1,1}^{k}(u) \\
\vdots \\
\gamma_{d, d}^{k}(u)
\end{array}\right) \tag{51}\\
=\left(\begin{array}{c}
\partial_{u_{k}} A_{X}\left(u, S_{1}\right) \\
\vdots \\
\partial_{u_{k}} A_{X}\left(u, S_{d^{2}}\right)
\end{array}\right),
\end{gather*}
$$

where

$$
\left(a_{l, m}(u, S)\right)_{1 \leq l, m \leq d}=\left(\partial_{s_{i, j}} A_{X}(u, S)\right)_{1 \leq i, j \leq d} S^{t}
$$

If the process X is measured at a resolution N, we compute the warpogram with functions $\psi_{u, S}$ whose support in any direction is larger than N^{-1}. We therefore require that $S=\sigma \tilde{S}$, where $\sigma \geq K N^{-1}$ and all the eigenvalues of \tilde{S} are greater than K^{-1}. The position parameter is also restricted to a uniform grid $u=N^{-1} k$, with $k \in \mathbb{Z}^{d}$. For $a=u$ or $s_{i, j}$, we have $\partial_{a} A_{X}(u, S)=$ $2 \operatorname{Re} \mathbb{E}\left\{\left\langle X, \psi_{u, S}\right\rangle\left\langle X, \partial_{a} \psi_{u, S}\right\rangle^{*}\right\}$, and we introduce the kernel estimator

$$
\begin{aligned}
& \widehat{\partial_{a} A_{X}}(u, S) \\
& \quad=2 N^{-d} \sum_{\left|N^{-1} k-u\right| \leq \Delta} g_{2}\left(u-N^{-1} k\right) \operatorname{Re}\left\{\left\langle X, \psi_{N^{-1} k, S}\right\rangle\left\langle X, \partial_{a} \psi_{N^{-1} k, S}\right\rangle^{*}\right\},
\end{aligned}
$$

where $g_{2}\left(u_{1}, u_{2}\right)=g\left(u_{1}\right) g\left(u_{2}\right)$ is the separable product of two window functions defined in (39).

We also define

$$
\left(\widehat{a_{l, m}}(u, S)\right)_{1 \leq l, m \leq d}=\left(\widehat{\partial_{s_{i, j}} A_{X}}(u, S)\right)_{1 \leq i, j \leq d} S^{t}
$$

The k th component of the deformation gradient, $\left(\gamma_{l, m}^{k}(u)\right)$, can then be estimated by

$$
\left(\begin{array}{c}
\widehat{\gamma_{1,1}^{k}}(u) \tag{52}\\
\vdots \\
\widehat{\gamma_{d, d}^{k}}(u)
\end{array}\right)=\left(\begin{array}{ccc}
\widehat{a_{1,1}}\left(u, S_{1}\right) & \cdots & \widehat{a_{d, d}}\left(u, S_{1}\right) \\
\vdots & \vdots & \vdots \\
\widehat{a_{1,1}}\left(u, S_{d^{2}}\right) & \cdots & \widehat{a_{d, d}}\left(u, S_{d^{2}}\right)
\end{array}\right)^{-1}\left(\begin{array}{c}
\widehat{\partial_{u_{k}} A_{X}}\left(u, S_{1}\right) \\
\vdots \\
\widehat{\partial_{u_{k}} A_{X}}\left(u, S_{d^{2}}\right)
\end{array}\right) .
$$

Extending the consistency theorem (Theorem 4.1) to more than one dimension is possible, but requires technical hypotheses that are not yet well understood.

In Section 2.1, we mentioned that the warping of textures in images specifies the three-dimensional shapes of the textured objects appearing in the scene. The estimator defined in (52) is used in [5] and [6] to compute shape from texture and provides a good estimation of three-dimensional surfaces from two-dimensional images.

APPENDIX A

Proofs of Section 2.

Proof of Proposition 2.1. Let Y be a stationary process and suppose that there exists an $\varepsilon>0$ such that $c_{Y}(x)>0$ for $|x| \leq \varepsilon$. Let \tilde{Y} be another stationary process. We want to show that if the autocovariance kernels $Y(x) \exp [i \theta(x)]$ and of $\tilde{Y}(x) \exp [i \tilde{\theta}(x)]$ are equal, that is, if

$$
\begin{equation*}
c_{Y}(x-y) \exp (i[\theta(x)-\theta(y)])=c_{\tilde{Y}}(x-y) \exp (i[\tilde{\theta}(x)-\tilde{\theta}(y)]) \tag{53}
\end{equation*}
$$

then $\theta^{\prime \prime}(x)=\tilde{\theta}^{\prime \prime}(x)$. The functions θ and $\tilde{\theta}$ are assumed \mathbf{C}^{4}; therefore, $\mu=\theta-\tilde{\theta}$ is also \mathbf{C}^{4}. Let us fix $x \in \mathbb{R}$; our goal is to prove that $\mu^{\prime \prime}(x)=0$. We choose $y \in \mathbb{R}$ such that $|x-y|<\varepsilon$. After dividing both sides of (53) by $c_{Y}(x-y)>0$, it appears that $e^{i[\mu(x)-\mu(y)]}$ is a function of $x-y$. Therefore, $\mu(x)-\mu(y)$ is also a function of $x-y$, and, in particular, for all z,

$$
\mu(x)-\mu(y)=\mu(x+z)-\mu(y+z)
$$

Differentiating this expression with respect to x shows that $\mu(x)=\mu^{\prime}(x+z)$ and thus $\mu^{\prime \prime}(x)=0$.

Proof of Proposition 2.2. Let Y be a stationary process and let $\varepsilon>0$ such that $c_{Y}(x)$ is \mathbf{C}^{1} for $0<|x| \leq \varepsilon$, with $c_{Y}^{\prime}(x)<0$. Let \tilde{Y} denote another stationary process and let us suppose that the autocovariance kernels of $Y(\theta(x))$ and $\tilde{Y}(\tilde{\theta}(x))$ are equal. The functions θ and $\tilde{\theta}$ are assumed \mathbf{C}^{3}; therefore, $\mu=$ $\theta \circ \tilde{\theta}^{-1}$ is also \mathbf{C}^{3}. Proving the proposition amounts to proving that μ is linear or, equivalently, that $\mu^{\prime \prime}$ vanishes everywhere. By the definition of μ,

$$
\begin{equation*}
c_{\tilde{Y}}(x-y)=c_{Y}(\mu(x)-\mu(y)) . \tag{54}
\end{equation*}
$$

Let us fix $x \in \mathbb{R}$ and choose $y \neq x$, but sufficiently close to x so that $\mid \mu(x)-$ $\mu(y) \mid<\varepsilon$. Differentiating (54) with respect to x and y shows that

$$
c_{Y}^{\prime}(\mu(x)-\mu(y)) \mu^{\prime}(y)=c_{Y}^{\prime}(\mu(x)-\mu(y)) \mu^{\prime}(x)
$$

Since $c_{Y}^{\prime}(\mu(x)-\mu(y))<0$, we obtain $\mu^{\prime}(x)=\mu^{\prime}(y)$ and therefore $\mu^{\prime \prime}(x)=0$.

Proof of Proposition 2.3. Let Y be a stationary process such that c_{Y} satisfies (11). Let \tilde{Y} denote another stationary process and suppose that the autocovariance kernels of $Y(\theta(x))$ and $\tilde{Y}(\tilde{\theta}(x))$ are equal. Let $\mu=\theta \circ \tilde{\theta}^{-1}$. By the definition of μ,

$$
c_{Y}(\mu(x)-\mu(y))=c_{\tilde{Y}}(x-y) .
$$

Differentiating this expression with respect to x and y, for $x \neq y$, shows that

$$
\begin{equation*}
\vec{\nabla} c_{Y}(\mu(x)-\mu(y)) J_{\mu}(y)=\vec{\nabla} c_{Y}(\mu(x)-\mu(y)) J_{\mu}(x) \tag{55}
\end{equation*}
$$

Let us fix $x \in \mathbb{R}^{d}$ and prove that $\vec{\nabla} J_{\mu}(x)=0$. Let $\varepsilon>0$ such that $\eta(z)$ is \mathbf{C}^{2} for $|z|<\varepsilon$. Let us choose $y \in \mathbb{R}^{d}$ such that $0<|\mu(x)-\mu(y)|<\varepsilon$ and let $z=\mu(x)-\mu(y)$:

$$
\vec{\nabla} c_{Y}(z)=-|z|^{h-2}\left(h \eta(z) z+|z|^{2} \vec{\nabla} \eta(z)\right) .
$$

Replacing this expression in (55) and dividing both sides by $-h|z|^{h-2} \eta(z)$ proves that

$$
\left(z+h^{-1}|z|^{2} \vec{\nabla} \log \eta(z)\right) J_{\mu}(y)=\left(z+h^{-1}|z|^{2} \vec{\nabla} \log \eta(z)\right) J_{\mu}\left(\mu^{-1}(z+\mu(y))\right)
$$

so

$$
\left(z+h^{-1}|z|^{2} \vec{\nabla} \log \eta(z)\right) J_{\mu}(y) J_{\mu}^{-1}\left(\mu^{-1}(z+\mu(y))\right)=z+h^{-1}|z|^{2} \vec{\nabla} \log \eta(z)
$$

Introducing a function $\tilde{\mu}$ such that

$$
\begin{equation*}
\tilde{\mu}(z)=J_{\mu}(y) \mu^{-1}(z+\mu(y)), \tag{56}
\end{equation*}
$$

this can be rewritten as

$$
\left(z+h^{-1}|z|^{2} \vec{\nabla} \log \eta(z)\right) J_{\tilde{\mu}}(z)=\left(z+h^{-1}|z|^{2} \vec{\nabla} \log \eta(z)\right)
$$

Noticing that $z J_{\tilde{\mu}}(\lambda z)=(d / d \lambda) \tilde{\mu}(\lambda z)$, we have, for $\lambda \geq 0$,

$$
\frac{d}{d \lambda} \tilde{\mu}(\lambda z)=z+h^{-1}|z|^{2} \lambda \vec{\nabla} \log \eta(\lambda z)\left(I d-J_{\tilde{\mu}}(\lambda z)\right)
$$

which, when integrated between $\lambda=0$ and $\lambda=1$, gives

$$
\tilde{\mu}(z)-\tilde{\mu}(0)=z+h^{-1}|z|^{2} \int_{0}^{1} \lambda \vec{\nabla} \log \eta(\lambda z)\left(I d-J_{\tilde{\mu}}(\lambda z)\right) d \lambda
$$

After replacing $\tilde{\mu}$ with (56) and noticing that $\tilde{\mu}(0)=J_{\mu}(y) y$, we obtain

$$
\mu^{-1}(z+\mu(y))
$$

$$
\begin{equation*}
=J_{\mu}^{-1}(y) z+y+J_{\mu}^{-1}(y) h^{-1}|z|^{2} \int_{0}^{1} \lambda \vec{\nabla} \log \eta(\lambda z)\left(I d-J_{\tilde{\mu}}(\lambda z)\right) d \lambda \tag{57}
\end{equation*}
$$

Since c_{Y} is even, $\vec{\nabla} \eta(0)=0$ and so $\vec{\nabla} \log \eta(0)=0$. Let us denote $\vec{\nabla} \log \eta(z)=$ $|z| \vec{a}(z)$. Recalling that η is twice continuously differentiable in a neighborhood
of z for $0 \leq|z|<\varepsilon$, the function $\vec{a}(z)$ is differentiable for $0<|z|<\varepsilon$, and its gradient [the matrix $\left(\partial_{j} a_{i}\right)_{i j}$] is uniformly bounded for $0<|z|<\varepsilon$. Differentiating (57) with respect to z shows that

$$
\begin{equation*}
J_{\mu}^{-1}\left(\mu^{-1}(z+\mu(y))\right)=J_{\mu}^{-1}(y)\left(I d+|z|^{2} A(z)\right) \tag{58}
\end{equation*}
$$

where $A(z)$ is a matrix defined by

$$
\begin{equation*}
A(z)=|z|^{-2} \frac{\partial}{\partial z}\left(h^{-1}|z|^{2} \int_{0}^{1} \lambda|\lambda z| \vec{a}(\lambda z)\left(I d-J_{\tilde{\mu}}(\lambda z)\right) d \lambda\right) \tag{59}
\end{equation*}
$$

Let us calculate $A(z)$ explicitly: $|z|^{2} A(z)$ is the sum of three terms:

$$
\frac{\partial}{\partial z}\left(h^{-1}|z|^{2} \int_{0}^{1} \lambda|\lambda z| \vec{a}(\lambda z)\left(I d-J_{\tilde{\mu}}(\lambda z)\right) d \lambda\right)=(\mathrm{I})+(\mathrm{II})+(\mathrm{III}) .
$$

If a and b are two vectors, we denote by $a \otimes b$ the matrix whose elements are $\left(a_{i} b_{j}\right)_{i j}$. Then

$$
\begin{align*}
\text { (I) } & =2 h^{-1}\left(\int_{0}^{1} \lambda|\lambda z| \vec{a}(\lambda z)\left(I d-J_{\tilde{\mu}}(\lambda z)\right) d \lambda\right) \otimes z \\
\text { (II) } & =h^{-1}|z|^{2} \int_{0}^{1}|\lambda|^{2}\left(\vec{a}(\lambda z) \otimes \frac{z}{|z|}+\lambda|z| \vec{\nabla} \vec{a}(\lambda z)\right)\left(I d-J_{\tilde{\mu}}(\lambda z)\right) d \lambda \tag{60}\\
\text { (III) } & =-h^{-1}|z|^{3} \int_{0}^{1}|\lambda|^{3} \vec{a}(\lambda z) \vec{\nabla}_{z} J_{\tilde{\mu}}(\lambda z) d \lambda .
\end{align*}
$$

More precisely for (III), the i, j element of $\vec{a}(\lambda z) \vec{\nabla}_{z} J_{\tilde{\mu}}(\lambda z)$ is $\sum_{k} a_{k}(\lambda z) \times$ $\frac{\partial}{\partial z_{j}}\left(J_{\tilde{\mu}}\right)_{k i}(\lambda z)$. Because $\tilde{\mu}$ is in \mathbf{C}^{2} and because $\vec{a}(\lambda z)$ as well as $\vec{\nabla} \vec{a}(\lambda z)$ is uniformly bounded for $0<|\lambda z|<\varepsilon$, the matrix $A(z)$ resulting from the division of (I) + (II) + (III) by $|z|^{2}$ is uniformly bounded for $0<|z|<\varepsilon$. Replacing z by $\mu(x)-\mu(y)$ in (58) gives

$$
J_{\mu}^{-1}(x)=J_{\mu}^{-1}(y)\left(I d+|\mu(x)-\mu(y)|^{2} A(\mu(x)-\mu(y))\right)
$$

Therefore, for any unit-length vector $x_{k} \in \mathbb{R}^{d}$,

$$
\begin{aligned}
\frac{\partial}{\partial x_{k}} J_{\mu}^{-1}(x) & =\lim _{\lambda \rightarrow 0} \frac{J_{\mu}^{-1}\left(x+\lambda x_{k}\right)-J_{\mu}^{-1}(x)}{\lambda} \\
& =\lim _{\lambda \rightarrow 0} \frac{J_{\mu}^{-1}\left(x+\lambda x_{k}\right)\left|\mu(x)-\mu\left(x+\lambda x_{k}\right)\right|^{2}}{\lambda} A\left(\mu(x)-\mu\left(x+\lambda x_{k}\right)\right) \\
& =0 .
\end{aligned}
$$

This proves that $\vec{\nabla} J_{\mu}^{-1}(x)=0$ and therefore $\vec{\nabla} J_{\mu}(x)=0$. As a consequence, for each direction $x_{k},\left(\partial / \partial x_{k}\right) J_{\mu}(\tilde{\theta}(x))=0$. Since $J_{\mu}(x)=J_{\theta}\left(\tilde{\theta}^{-1}(x)\right) J_{\tilde{\theta}}^{-1}\left(\tilde{\theta}^{-1}(x)\right)$, we obtain

$$
\frac{\partial}{\partial x_{k}}\left(J_{\theta}(x) J_{\tilde{\theta}}^{-1}(x)\right)=0
$$

and expanding the above differential expression then gives

$$
\frac{\partial J_{\theta}(x)}{\partial x_{k}} J_{\tilde{\theta}}^{-1}(x)-J_{\theta}(x) J_{\tilde{\theta}}^{-1}(x) \frac{\partial J_{\tilde{\theta}}(x)}{\partial x_{k}} J_{\tilde{\theta}}^{-1}(x)=0
$$

which is equivalent to (9).
Let us prove the equivalence between (8) and (9). If θ and $\tilde{\theta}$ satisfy (8), then $J_{\theta}(x)=S J_{\tilde{\theta}}(x)$, which implies that $J_{\theta}(x) J_{\tilde{\theta}}^{-1}(x)$ is independent of x. The preceding calculations then prove (9). Conversely, assuming that θ and $\tilde{\theta}$ satisfy (9), then, for each direction $x_{k}, \frac{\partial}{\partial x_{k}}\left(J_{\theta}(x) J_{\tilde{\theta}}^{-1}(x)\right)=0$, which proves that $J_{\theta}(x) J_{\tilde{\theta}}^{-1}(x)$ is a constant matrix, belonging to $G L^{+}\left(\mathbb{R}^{d}\right)$ as the product of two elements of $G L^{+}\left(\mathbb{R}^{d}\right)$. The partial differential system $J_{\theta}(x)=S J_{\tilde{\theta}}(x)$ can be integrated to prove that $\theta(x)=u+S \tilde{\theta}(x)$.

Proof of Theorem 2.1. Let us consider a specific family of zero-mean wide-sense stationary processes defined by

$$
Y_{\omega}(x)=Y e^{i \omega \cdot x}
$$

where Y is a zero-mean random variable with variance σ^{2}. Then

$$
\mathbb{E}\left\{Y_{\omega}(x) Y_{\omega}^{*}(y)\right\}=\sigma^{2} \exp (i \omega \cdot(x-y))=c_{Y_{\omega}}(x-y)
$$

Let G be a stationarity-invariant operator. If $X_{\omega}(x)=G Y_{\omega}(x)$, then

$$
\mathbb{E}\left\{X_{\omega}(x) X_{\omega}^{*}(y)\right\}=\sigma^{2} f_{\omega}(x) f_{\omega}^{*}(y)
$$

where $f_{\omega}(x)=G e^{i \omega \cdot x}$. However, since G is stationarity invariant, X_{ω} is stationary; therefore, $\mathbb{E}\left\{X_{\omega}(x) X_{\omega}^{*}(y)\right\}$ is a function of $x-y$. This implies that, for any (x, y), the product $f_{\omega}(x) f_{\omega}(y)^{*}$ is a function of $x-y$. Therefore, there exist $\hat{\rho}(\omega) \in \mathbb{C}$ and $\lambda(\omega) \in \mathbb{R}^{d}$ such that

$$
\begin{equation*}
f_{\omega}(x)=G e^{i \omega \cdot x}=\hat{\rho}(\omega) e^{i \lambda(\omega) \cdot x} \tag{61}
\end{equation*}
$$

Let us now prove that an operator that satisfies (61) is indeed stationarity invariant if and only if ess $\sup _{\omega \in \mathbb{R}^{d}}|\hat{\rho}(\omega)|<\infty$. Let Y be a zero-mean, stochastically continuous wide-sense stationary process. It therefore admits a spectral representation

$$
Y(x)=\int_{\mathbb{R}^{d}} e^{i \omega \cdot x} d Z(\omega)
$$

where $Z(\omega)$ is an orthogonal process [14]. Let $d H(\omega)=\mathbb{E}\left\{|d Z(\omega)|^{2}\right\}$. We have

$$
c_{Y}(0)=\int_{\mathbb{R}^{d}} d H(\omega)<+\infty
$$

Since ess $\sup _{\omega \in \mathbb{R}^{d}}|\hat{\rho}(\omega)|<\infty$,

$$
\int_{\mathbb{R}^{d}} e^{i \lambda(\omega) \cdot x} \hat{\rho}(\omega) d Z(\omega)
$$

is convergent in the mean-squared sense. Therefore, $G Y(x)=G \int_{\mathbb{R}^{d}} e^{i \omega \cdot x} d Z(\omega)$ is equal to $\int_{\mathbb{R}^{d}} e^{i \lambda(\omega) \cdot x} \hat{\rho}(\omega) d Z(\omega)$. This shows that $G Y$ is wide-sense stationary, since

$$
\mathbb{E}\left\{G Y(x) G Y^{*}(y)\right\}=\int_{\mathbb{R}^{d}} e^{i \lambda(\omega) \cdot(x-y)}|\hat{\rho}(\omega)|^{2} d H(\omega)
$$

is a function of $x-y$ and $\mathbb{E}\left\{|G Y(x)|^{2}\right\}<\infty$. For any wide-sense stationary process Y, one can write

$$
G Y(x)=G \mathbb{E}\{Y(0)\}+G(Y(x)-\mathbb{E}\{Y(0)\})
$$

Since $Y(x)-\mathbb{E}\{Y(0)\}$ is zero-mean and wide-sense stationary, $G(Y(x)-\mathbb{E}\{Y(0)\})$ is wide-sense stationary, therefore so is $G Y(x)$.

In order for G to be stationarity invariant, for any positive integrable measure $d H(\omega)$ one must have $\int_{\mathbb{R}^{d}}|\hat{\rho}(\omega)|^{2} d H(\omega)<+\infty$. One can verify that a necessary and sufficient condition is that ess $\sup _{\omega \in \mathbb{R}^{d}}|\hat{\rho}(\omega)|<\infty$.

Proof of Proposition 2.4. The autocovariance operator of a process Z is defined by

$$
K_{Z} f(x)=\int \mathbb{E}\left\{Z(x) Z^{*}(y)\right\} f(y) d y
$$

Let Y be a stationary process, let G be a bounded linear operator satisfying (15) and let $X=G Y$. The autocovariance operators of X and Y satisfy

$$
K_{X}=G K_{Y} \bar{G}
$$

Since Y is stationary, K_{Y} commutes with the translation operator T_{v} for any $v \in \mathbb{R}^{d}$. We derive from (15) that K_{X} also commutes with T_{v} and hence X is widesense stationary. The operator G is therefore stationarity invariant and Theorem 2.1 proves that

$$
\begin{equation*}
G e^{i \omega \cdot x}=\hat{\rho}(\omega) e^{i \lambda(\omega) \cdot x} \tag{62}
\end{equation*}
$$

Inserting this expression in the equality $G T_{S v} f(x)=e^{i \xi \cdot v} T_{v} G f(x)$ for $f(x)=$ $e^{i \omega \cdot x}$ implies that

$$
\hat{\rho}(\omega) e^{i \lambda(\omega) \cdot x} e^{-i S v \cdot \omega}=\hat{\rho}(\omega) e^{i \lambda(\omega) \cdot(x-v)} e^{i \xi \cdot v}
$$

from which we derive that $\lambda(\omega)=\bar{S} \omega+\xi$ for all ω, where $\hat{\rho}(\omega) \neq 0$. For ω such that $\hat{\rho}(\omega)=0$, (62) clearly holds with $\lambda(\omega)=\bar{S} \omega+\xi$. So G can indeed be written as in (14).

Conversely, if G satisfies (14) then a direct calculation shows that (15) holds.

APPENDIX B

Proofs of Section 3.

Proof of Proposition 3.1 (Transport). The autocovariance operator of $X=D Y$ satisfies $K_{X}=D K_{Y} \bar{D}$. Therefore,

$$
\left\langle K_{X} \psi_{v, \alpha, \sigma}, \psi_{v, \alpha, \sigma}\right\rangle=\left\langle K_{Y} \bar{D} \psi_{v, \alpha, \sigma}, \bar{D} \psi_{v, \alpha, \sigma}\right\rangle
$$

Let us compute

$$
\begin{aligned}
\vec{\nabla}_{v}\left\langle K_{X} \psi_{v, \alpha, \sigma}, \psi_{v, \alpha, \sigma}\right\rangle= & 2 \operatorname{Re}\left\langle K_{Y} \bar{D} \psi_{v, \alpha, \sigma}, \vec{\nabla}_{v} \bar{D} \psi_{v, \alpha, \sigma}\right\rangle \\
= & 2 \operatorname{Re}\left\langle K_{Y} \bar{D} \psi_{v, \alpha, \sigma},\left(\vec{\nabla}_{v}+\vec{\nabla}_{x}\right) \bar{D} \psi_{v, \alpha, \sigma}\right\rangle \\
& -2 \operatorname{Re}\left\langle K_{Y} \bar{D} \psi_{v, \alpha, \sigma}, \vec{\nabla}_{x} \bar{D} \psi_{v, \alpha, \sigma}\right\rangle
\end{aligned}
$$

Since Y is stationary, for any g we have $\left\langle K_{Y} g, \vec{\nabla}_{x} g\right\rangle=0$, so

$$
\vec{\nabla}_{v}\left\langle K_{X} \psi_{v, \alpha, \sigma}, \psi_{v, \alpha, \sigma}\right\rangle=2 \operatorname{Re}\left\langle K_{X} \psi_{v, \alpha, \sigma}, \overline{D^{-1}}\left(\vec{\nabla}_{v}+\vec{\nabla}_{x}\right) \bar{D} \psi_{v, \alpha, \sigma}\right\rangle
$$

Hypothesis (16) thus implies that

$$
\begin{equation*}
\left|\vec{\nabla}_{v}\left\langle K_{X} \psi_{v, \alpha, \sigma}, \psi_{v, \alpha, \sigma}\right\rangle\right|=O(\sigma)\left|\operatorname{Re}\left\langle K_{X} \psi_{v, \alpha, \sigma}, \vec{\nabla}_{x} \psi_{v, \alpha, \sigma}\right\rangle\right| . \tag{63}
\end{equation*}
$$

Since $\psi_{v, \alpha, \sigma}=\bar{G}_{\beta(v)} T_{v} \bar{F}_{\alpha} \psi_{\sigma}$, the transport property (17) shows that

$$
\psi_{v, \alpha, \sigma}=e^{i \phi(u(v))} T_{u(v)} \bar{F}_{\gamma(u(v))} \bar{F}_{\alpha} \psi_{\sigma}=e^{i \phi(u(v))} T_{u(v)} \bar{F}_{\alpha * \gamma(u(v))} \psi_{\sigma}
$$

The phase $e^{i \phi(u(v))}$ disappears from $\left\langle K_{X} \psi_{v, \alpha, \sigma}, \psi_{v, \alpha, \sigma}\right\rangle$. Indeed,

$$
\begin{aligned}
\left\langle K_{X} \psi_{v, \alpha, \sigma}, \psi_{v, \alpha, \sigma}\right\rangle & =\left\langle K_{X} T_{u(v)} \bar{F}_{\alpha * \gamma(u(v))}, T_{u(v)} \bar{F}_{\alpha * \gamma(u(v))}\right\rangle \\
& =A_{X}^{\sigma}(u(v), \alpha * \gamma(u(v)))
\end{aligned}
$$

by the definition of A_{X}^{σ}. Since $\vec{\nabla}_{v} f=\vec{\nabla}_{u} f J_{v}^{-1}(u)$,

$$
\begin{aligned}
\vec{\nabla}_{v}\left\langle K_{X} \psi_{v, \alpha, \sigma}, \psi_{v, \alpha, \sigma}\right\rangle & =\vec{\nabla}_{v} A_{X}^{\sigma}(u(v), \alpha * \gamma(u(v))) \\
& =\vec{\nabla}_{u} A_{X}^{\sigma}(u(v), \alpha * \gamma(u(v))) J_{v}^{-1}(u) .
\end{aligned}
$$

This implies that

$$
\left|\vec{\nabla}_{u} A_{X}^{\sigma}(u(v), \alpha * \gamma(u(v)))\right| \leq\left\|J_{v}(u)\right\|\left|\vec{\nabla}_{v}\left\langle K_{X} \psi_{v, \alpha, \sigma}, \psi_{v, \alpha, \sigma}\right\rangle\right|
$$

where $\left\|J_{v}(u)\right\|$ is the operator sup norm of $J_{v}(u)$. Using (63) shows that, for u fixed,

$$
\begin{equation*}
\left|\vec{\nabla}_{u} A_{X}^{\sigma}(u, \alpha * \gamma(u))\right|=O(\sigma)\left|\operatorname{Re}\left\langle K_{X} \psi_{v, \alpha, \sigma}, \vec{\nabla}_{x} \psi_{v, \alpha, \sigma}\right\rangle\right| . \tag{64}
\end{equation*}
$$

Note that the gradient with respect to u on the left-hand side of the above expression involves partial derivatives of A_{X}^{σ} with respect to u and α since the variable u appears in $\alpha * \gamma(u)$.

Since $\vec{\nabla}_{u} T_{u} f(x)=-\vec{\nabla}_{x} T_{u} f(x)$, using the symmetry of K_{X}, we get

$$
\begin{equation*}
2 \operatorname{Re}\left\langle K_{X} \psi_{v, \alpha, \sigma}, \vec{\nabla}_{x} \psi_{v, \alpha, \sigma}\right\rangle=-\vec{\nabla}_{u} A_{X}^{\sigma}(u, \alpha * \gamma(t)) \quad \text { at } t=u \tag{65}
\end{equation*}
$$

Inserting (65) in (64) finally proves that

$$
\left|\vec{\nabla}_{u} A_{X}^{\sigma}(u, \alpha * \gamma(u))\right|=O(\sigma)\left|\vec{\nabla}_{u} A_{X}^{\sigma}(u, \alpha * \gamma(t))\right| \quad \text { at } t=u,
$$

which implies (18).
Proof of Theorem 3.1 (Scale transport). This theorem is proved as a consequence of Proposition 3.1. The operator $G_{\beta(v)}$ is given by (21),

$$
\bar{G}_{\beta(v)} f(x)=\theta^{\prime}(u) f\left(v+\theta^{\prime}(u)(x-u)\right),
$$

where $u=\theta^{-1}(v)$ is a differentiable invertible map. Notice that

$$
\bar{G}_{\beta(v)} T_{v}=T_{u(v)} \bar{F}_{\alpha(u(v))},
$$

with $\alpha(u)=1 / \theta^{\prime}(u)$; therefore, transport property (17) holds.
Let us now verify hypothesis (16) concerning

$$
\psi_{v, s, \sigma}=\bar{G}_{\beta(v)} T_{v} \bar{F}_{s} \psi_{\sigma}
$$

with $\bar{F}_{s} f(x)=1 / s f(x / s)$. The scalogram renormalization (20) is equivalent to dividing $\psi_{\sigma}(x)$ by σ, which yields $\psi_{\sigma}(x)=1 / \sigma \psi(x / \sigma)$, and replacing σs by s, which gives

$$
\psi_{v, s, \sigma}(x)=\varphi_{v, s}(x)=\frac{\theta^{\prime}(u)}{s} \psi\left(\frac{\theta^{\prime}(u)}{s}(x-u)\right) .
$$

If we can prove that

$$
\begin{equation*}
\left|\operatorname{Re}\left\langle K_{X} \varphi_{v, s}, \overline{D^{-1}}\left(\partial_{v}+\partial_{x}\right) \bar{D} \varphi_{v, s}\right\rangle\right|=O(s)\left|\operatorname{Re}\left\langle K_{X} \varphi_{v, s}, \partial_{x} \varphi_{v, s}\right\rangle\right|, \tag{66}
\end{equation*}
$$

then Proposition 3.1 can be applied: we obtain a transport equation (19) with $\alpha=s$, $\gamma(u)=1 / \theta^{\prime}(u)$ and $\alpha * \gamma(t)=s / \theta^{\prime}(t)$:

$$
\left|\partial_{u} A_{X}(u, s)-s \theta^{\prime}(u) \frac{\theta^{\prime \prime}(t)}{\left(\theta^{\prime}(t)\right)^{2}} \partial_{s} A_{X}(u, s)\right|=O(s)\left|\partial_{u} A_{X}(u, s)\right| \quad \text { at } t=u
$$

which proves (24). It now only remains to prove (66).
Let us compute

$$
\phi_{v, s}=\overline{D^{-1}}\left(\partial_{v}+\partial_{x}\right) \bar{D} \varphi_{v, s}
$$

Since $\bar{D} f(x)=\left(\theta^{\prime}\left(\theta^{-1}(x)\right)\right)^{-1} f\left(\theta^{-1}(x)\right)$ and $\overline{D^{-1}} f(x)=\theta^{\prime}(x) f(\theta(x))$, a direct calculation gives

$$
\begin{aligned}
& \overline{D^{-1}} \partial_{x} \bar{D} \varphi_{v, s}(x) \\
& \quad=-\frac{\theta^{\prime}(u) \theta^{\prime \prime}(x)}{s \theta^{\prime}(x)^{2}} \psi\left(\frac{\theta^{\prime}(u)}{s}(x-u)\right)+\frac{\theta^{\prime}(u)^{2}}{s^{2} \theta^{\prime}(x)} \psi^{\prime}\left(\frac{\theta^{\prime}(u)}{s}(x-u)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \overline{D^{-1}} \partial_{v} \bar{D} \varphi_{v, s}(x) \\
& \quad=\frac{\theta^{\prime \prime}(u)}{s \theta^{\prime}(u)} \psi\left(\frac{\theta^{\prime}(u)}{s}(x-u)\right)+\frac{1}{s^{2}}\left((x-u) \theta^{\prime \prime}(u)-\theta^{\prime}(u)\right) \psi^{\prime}\left(\frac{\theta^{\prime}(u)}{s}(x-u)\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\phi_{v, s}(x)= & \frac{1}{s \theta^{\prime}(u)}\left(\theta^{\prime \prime}(u)-\left(\frac{\theta^{\prime}(u)}{\theta^{\prime}(x)}\right)^{2} \theta^{\prime \prime}(x)\right) \psi\left(\frac{\theta^{\prime}(u)}{s}(x-u)\right) \\
& +\frac{1}{s^{2}}\left(\frac{\theta^{\prime}(u)}{\theta^{\prime}(x)}\left(\theta^{\prime}(u)-\theta^{\prime}(x)\right)-(u-x) \theta^{\prime \prime}(u)\right) \psi^{\prime}\left(\frac{\theta^{\prime}(u)}{s}(x-u)\right)
\end{aligned}
$$

Since ψ is supported in $[-1,1], \phi_{v, s}$ is supported in $\left[u-s / \theta^{\prime}(u), u+s / \theta^{\prime}(u)\right]$. Since $\theta \in \mathbf{C}^{3}$, Taylor series expansions of $\theta^{\prime}(x)$ and of $\theta^{\prime \prime}(x)$ around position u prove that, for x close to position u,

$$
\begin{aligned}
\left\lvert\, \phi_{v, s}(x)-\left(2 \frac{\theta^{\prime \prime}(u)^{2}}{\theta^{\prime}(u)^{3}}-\frac{\theta^{\prime \prime \prime}(u)}{\theta^{\prime}(u)^{2}}\right)\right. & {\left[\frac{\theta^{\prime}(u)(x-u)}{s} \psi\left(\frac{\theta^{\prime}(u)}{s}(x-u)\right)\right.} \\
& \left.+\frac{1}{2}\left(\frac{\theta^{\prime}(u)(x-u)}{s}\right)^{2} \psi^{\prime}\left(\frac{\theta^{\prime}(u)}{s}(x-u)\right)\right] \mid
\end{aligned}
$$

$$
=O(x-u)
$$

The autocovariance kernel of $X(x)$ is $c_{X}(x, y)=c_{Y}(\theta(x)-\theta(y))$. Hence,

$$
\left\langle K_{X} \varphi_{v, s}, \phi_{v, s}\right\rangle=\iint c_{Y}(\theta(x)-\theta(y)) \varphi_{v, s}^{*}(x) \phi_{v, s}(y) d x d y
$$

Since $\int \varphi_{v, s}(x) d x=\int \psi(x) d x=0$,

$$
\left\langle K_{X} \varphi_{v, s}, \phi_{v, s}\right\rangle=-\iint\left(c_{Y}(0)-c_{Y}(\theta(x)-\theta(y))\right) \varphi_{v, s}^{*}(x) \phi_{v, s}(y) d x d y
$$

The supports of $\varphi_{v, s}$ and $\phi_{v, s}$ are in $\left[u-s / \theta^{\prime}(u), u+s / \theta^{\prime}(u)\right]$ and for z in a neighborhood of 0 , the continuity of η implies that $c_{Y}(0)-c_{Y}(z)=\eta(0)|z|^{h}+$ $o\left(|z|^{h}\right)$. Since θ^{\prime} is continuous at u, a Taylor series expansion of θ around u combined with a change of variables $x^{\prime}=(x-u) \theta^{\prime}(u) / s$ and $y^{\prime}=(y-u) \theta^{\prime}(u) / s$ yield, for s sufficiently small,

$$
\begin{align*}
\left\langle K_{X} \varphi_{v, s}, \phi_{v, s}\right\rangle+\iint & \eta(0)\left|s\left(x^{\prime}-y^{\prime}\right)\right|^{h} \psi^{*}\left(x^{\prime}\right)\left(2 \frac{\theta^{\prime \prime}(u)^{2}}{\theta^{\prime}(u)^{3}}-\frac{\theta^{\prime \prime \prime}(u)}{\theta^{\prime}(u)^{2}}\right) \\
\times & \left.\times y^{\prime} \psi\left(y^{\prime}\right)+\frac{y^{\prime 2}}{2} \psi^{\prime}\left(y^{\prime}\right)\right] \frac{s}{\theta^{\prime}(u)} d x^{\prime} d y^{\prime}=o\left(s^{h+1}\right) \tag{67}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\left|\operatorname{Re}\left\langle K_{X} \varphi_{v, s} \phi_{v, s}\right\rangle\right|=O\left(s^{h+1}\right) \tag{68}
\end{equation*}
$$

Let us now compute

$$
\left\langle K_{X} \varphi_{v, s}, \partial_{x} \varphi_{v, s}\right\rangle=\iint c_{Y}(\theta(x)-\theta(y)) \varphi_{v, s}^{*}(x) \frac{d}{d y} \varphi_{v, s}(y) d x d y
$$

With an integration by parts,

$$
\left\langle K_{X} \varphi_{v, s}, \partial_{x} \varphi_{v, s}\right\rangle=\iint \theta^{\prime}(y) c_{Y}^{\prime}(\theta(x)-\theta(y)) \varphi_{v, s}^{*}(x) \varphi_{v, s}(y) d x d y
$$

and since $c_{Y}^{\prime}(z)$ is antisymmetric,

$$
\begin{aligned}
& \operatorname{Re}\left\langle K_{X} \varphi_{v, s}, \partial_{x} \varphi_{v, s}\right\rangle \\
& \quad=-\frac{1}{2} \iint\left(\theta^{\prime}(x)-\theta^{\prime}(y)\right) c_{Y}^{\prime}(\theta(x)-\theta(y)) \operatorname{Re}\left(\varphi_{v, s}^{*}(x) \varphi_{v, s}(y)\right) d x d y
\end{aligned}
$$

A change of variables $x^{\prime}=(x-u) \theta^{\prime}(u) / s$ and $y^{\prime}=(y-u) \theta^{\prime}(u) / s$ gives

$$
\begin{aligned}
\operatorname{Re}\left\langle K_{X} \varphi_{v, s}, \partial_{x} \varphi_{v, s}\right\rangle=-\frac{1}{2} \iint & \left(\theta^{\prime}\left(u+s x^{\prime} / \theta^{\prime}(u)\right)-\theta^{\prime}\left(u+s y^{\prime} / \theta^{\prime}(u)\right)\right) \\
& \times c_{Y}^{\prime}\left(\theta\left(u+s x^{\prime} / \theta^{\prime}(u)\right)-\theta\left(u+s y^{\prime} / \theta^{\prime}(u)\right)\right) \\
& \times \operatorname{Re}\left(\psi^{*}\left(x^{\prime}\right) \psi\left(y^{\prime}\right)\right) d x^{\prime} d y^{\prime}
\end{aligned}
$$

Because of assumption (22), since η is \mathbf{C}^{1} in a neighborhood of $0, c_{Y}^{\prime}(z)=$ $h \eta(0) \operatorname{sign}(z)|z|^{h-1}+o\left(|z|^{h-1}\right)$. With a Taylor expansion for θ, we get, for s small enough,

$$
\begin{align*}
& \operatorname{Re}\left\langle K_{X} \varphi_{v, s}, \partial_{x} \varphi_{v, s}\right\rangle \\
& \quad+\frac{1}{2} \frac{\theta^{\prime \prime}(u)}{\theta^{\prime}(u)} \iint h \eta(0) s^{h}|x-y|^{h} \operatorname{Re}\left(\psi^{*}(x) \psi(y)\right) d x d y=o\left(s^{h}\right) . \tag{69}
\end{align*}
$$

Since $\operatorname{Re} \iint|x-y|^{h} \psi^{*}(x) \psi(y) d x d y \neq 0$ and $\theta^{\prime \prime}(u) \neq 0$, there exists $a(u)>0$ such that

$$
\left|\operatorname{Re}\left\langle K_{X} \varphi_{v, s}, \partial_{x} \varphi_{v, s}\right\rangle\right| \geq a(u) s^{h}+o\left(s^{h}\right)
$$

and (68) implies that

$$
\left|\operatorname{Re}\left\langle K_{X} \varphi_{v, s} \phi_{v, s}\right\rangle\right|=O(s)\left|\operatorname{Re}\left\langle K_{X} \varphi_{v, s}, \partial_{x} \varphi_{v, s}\right\rangle\right| .
$$

We have therefore proved (66).
Proof of Theorem 3.2 (Frequency transport). This theorem is proved as a consequence of Proposition 3.1. The operator $G_{\beta(v)}$ is defined in (25) by

$$
\begin{equation*}
\bar{G}_{\beta(v)} f(x)=e^{i\left(\theta(v)+\theta^{\prime}(v)(x-v)\right)} f(x) . \tag{70}
\end{equation*}
$$

Let $u(v)=v$, which is clearly a differentiable and invertible map. We have

$$
\bar{G}_{\beta(v)} T_{v}=e^{i \theta(u(v))} T_{u(v)} \bar{F}_{\alpha(u(v))},
$$

with $\bar{F}_{\alpha} f(x)=e^{-i \alpha x} f(x)$ and $\alpha(u)=-\theta^{\prime}(u)$. Therefore, transport property (17) holds.

Let us now verify hypothesis (16):

$$
\begin{align*}
& \left|\operatorname{Re}\left\langle K_{X} \psi_{v, \xi, \sigma}, \overline{D^{-1}}\left(\partial_{v}+\partial_{x}\right) \bar{D} \psi_{v, \xi, \sigma}\right\rangle\right| \\
& \quad=O(\sigma)\left|\operatorname{Re}\left\langle K_{X} \psi_{v, \xi, \sigma}, \frac{\partial}{\partial x} \psi_{v, \xi, \sigma}\right\rangle\right|, \tag{71}
\end{align*}
$$

with

$$
\begin{align*}
\psi_{v, \xi, \sigma}(x) & =\bar{G}_{\beta(v)} T_{v} \bar{F}_{\xi} \psi_{\sigma}(x) \\
& =\exp \left[i\left(\theta(v)+\theta^{\prime}(v)(x-v)\right)\right] \exp [-i \xi(x-v)] \psi\left(\frac{x-v}{\sigma}\right) \tag{72}
\end{align*}
$$

A direct calculation shows that

$$
\begin{aligned}
& \left\langle K_{X} \psi_{v, \xi, \sigma}, \overline{D^{-1}}\left(\partial_{v}+\partial_{x}\right) \bar{D} \psi_{v, \xi, \sigma}\right\rangle \\
& \quad=\iint c_{Y}(x-y) \exp \left[i\left(\theta(x)-\theta(y)-\theta^{\prime}(v)(x-y)\right)\right] \exp [i \xi(x-y)] \\
& \quad \times i\left(-\theta^{\prime \prime}(v)(y-v)+\theta^{\prime}(y)-\theta^{\prime}(v)\right) \psi\left(\frac{x-v}{\sigma}\right) \psi\left(\frac{y-v}{\sigma}\right) d x d y
\end{aligned}
$$

and with a change of variables $x^{\prime}=(x-v) / \sigma$ and $y^{\prime}=(y-v) / \sigma$, introducing $\xi_{0}=\sigma \xi$,

$$
\begin{gathered}
\left\langle K_{X} \psi_{v, \xi, \sigma}, \overline{D^{-1}}\left(\partial_{v}+\partial_{x}\right) \bar{D} \psi_{v, \xi, \sigma}\right\rangle \\
=\sigma^{2} \iint c_{Y}\left(\sigma\left(x^{\prime}-y^{\prime}\right)\right)
\end{gathered}
$$

$$
\begin{align*}
& \times \exp \left[i\left(\theta\left(v+\sigma x^{\prime}\right)-\theta\left(v+\sigma y^{\prime}\right)-\sigma \theta^{\prime}(v)\left(x^{\prime}-y^{\prime}\right)\right)\right] \tag{73}\\
& \times i\left(\theta^{\prime}\left(v+\sigma y^{\prime}\right)-\theta^{\prime}(v)-\theta^{\prime \prime}(v) \sigma y^{\prime}\right) \\
& \times e^{i \xi_{0}\left(x^{\prime}-y^{\prime}\right)} \psi\left(x^{\prime}\right) \psi\left(y^{\prime}\right) d x^{\prime} d y^{\prime}
\end{align*}
$$

The function ψ is real; therefore $\hat{\psi}$ is even, and since it vanishes at ξ_{0}, it also vanishes at $-\xi_{0}$. Therefore

$$
\begin{gather*}
\sigma^{2} \iint c_{Y}(0) i\left(\theta^{\prime}(v+\sigma y)-\theta^{\prime}(v)-\theta^{\prime \prime}(v) \sigma y\right) \tag{74}\\
\times e^{i \xi_{0}(x-y)} \psi(x) \psi(y) d x d y=0
\end{gather*}
$$

After subtracting (74) from (73),

$$
\begin{aligned}
\left\langle K_{X} \psi_{v, \xi, \sigma}, \overline{D^{-1}}\right. & \left.\left(\partial_{v}+\partial_{x}\right) \bar{D} \psi_{v, \xi, \sigma}\right\rangle \\
=\sigma^{2} \iint & c_{Y}(\sigma(x-y)) \\
75) & \times\left(\exp \left[i\left(\theta(v+\sigma x)-\theta(v+\sigma y)-\sigma \theta^{\prime}(v)(x-y)\right)\right]-1\right) \\
& \times i\left(\theta^{\prime}(v+\sigma y)-\theta^{\prime}(v)-\theta^{\prime \prime}(v) \sigma y\right) e^{i \xi_{0}(x-y)} \psi(x) \psi(y) d x d y \\
+\sigma^{2} \iint & \left(c_{Y}(\sigma(x-y))-c_{Y}(0)\right) \\
& \times i\left(\theta^{\prime}(v+\sigma y)-\theta^{\prime}(v)-\theta^{\prime \prime}(v) \sigma y\right) e^{i \xi_{0}(x-y)} \psi(x) \psi(y) d x d y
\end{aligned}
$$

Since $\theta \in \mathbf{C}^{4+\lceil h\rceil}$, we can perform the following Taylor expansions, where a_{k}, b_{k} and c_{k} are real parameters that depend on the derivatives $\theta^{(k)}(v)$, for $(x, y) \in$ $[0,1]^{2}$:

$$
\begin{align*}
& \exp \left[i\left(\theta(v+\sigma x)-\theta(v+\sigma y)-\sigma \theta^{\prime}(v)(x-y)\right)\right] \\
&=1+i \sum_{k=2}^{2+\lceil h\rceil} a_{k} \sigma^{k}(x-y)^{k}+\sum_{k=4}^{2+\lceil h\rceil} b_{k-2} \sigma^{k}(x-y)^{k}+O\left(\sigma^{3+\lceil h\rceil}\right), \tag{76}
\end{align*}
$$

$$
\begin{equation*}
\theta^{\prime}(v+\sigma y)-\theta^{\prime}(v)=\sum_{k=1}^{2+\lceil h\rceil} c_{k+1} \sigma^{k} y^{k}+O\left(\sigma^{3+\lceil h\rceil}\right) \tag{77}
\end{equation*}
$$

In particular, $a_{2}=\theta^{\prime \prime}(v) / 2$ and $c_{k}=\theta^{(k)}(v) /(k-1)$!.
Replacing these Taylor expansions in (75), we obtain

$$
\begin{aligned}
& \left\langle K_{X} \psi_{v, \xi, \sigma}, \overline{D^{-1}}\left(\partial_{v}+\partial_{x}\right) \bar{D} \psi_{v, \xi, \sigma}\right\rangle \\
& =-\sigma^{2} \iint c_{Y}(\sigma(x-y))\left[i \sum_{k=2}^{2+\lceil h\rceil} a_{k} \sigma^{k}(x-y)^{k}+\sum_{k=4}^{2+\lceil h\rceil} b_{k-2} \sigma^{k}(x-y)^{k}\right] \\
& \quad \times \sum_{k=2}^{2+\lceil h\rceil} c_{k+1} \sigma^{k} y^{k} e^{i \xi_{0}(x-y)} \psi(x) \psi(y) d x d y \\
& -i \sigma^{2} \iint \sigma^{h}|x-y|^{h} \eta(\sigma(x-y)) \\
& \quad \times\left[\sum_{k=2}^{2+\lceil h\rceil} c_{k+1} \sigma^{k} y^{k}\right] e^{i \xi_{0}(x-y)} \psi(x) \psi(y) d x d y \\
& +o\left(\sigma^{5+\lceil h\rceil}\right)
\end{aligned}
$$

In the first of these two integrals, one can replace $c_{Y}(\sigma(x-y))$ by $c_{Y}(0)-$ $\sigma^{h}|x-y|^{h} \eta(\sigma(x-y))$. Since $\hat{\psi}$ and its first $\lceil h\rceil+2$ derivatives vanish at ξ_{0}, we derive that $e^{i \xi_{0} t} \psi(t)$ is a function with $\lceil h\rceil+3$ vanishing moments [11], so the first integral is on the order of $O\left(\sigma^{6+h}\right)$.

Consider the real part of the second integral: because η is even, exchanging x and y shows that

$$
\iint|x-y|^{h} \eta(\sigma(x-y)) y^{2} \sin \left(\xi_{0}(y-x)\right) \psi(x) \psi(y) d x d y=0
$$

Since $2+\lceil h\rceil \geq 3$, the real part of the second integral is equal to

$$
\sigma^{5+h} \eta(0) \frac{\theta^{(4)}(v)}{6} \iint \sin \left(\xi_{0}(x-y)\right)|x-y|^{h} y^{3} \psi(x) \psi(y) d x d y+o\left(\sigma^{5+h}\right)
$$

As a consequence,

$$
\begin{align*}
& \operatorname{Re}\left\langle K_{X} \psi_{v, \xi, \sigma}, \overline{D^{-1}}\left(\partial_{v}+\partial_{x}\right) \bar{D} \psi_{v, \xi, \sigma}\right\rangle \\
& =\sigma^{5+h} \eta(0) \frac{\theta^{(4)}(v)}{6} \iint \sin \left(\xi_{0}(x-y)\right)|x-y|^{h} y^{3} \psi(x) \psi(y) d x d y \tag{78}\\
& \quad+o\left(\sigma^{5+h}\right)
\end{align*}
$$

Let us now compute the leading term of $\left|\operatorname{Re}\left\langle K_{X} \psi_{v, \xi, \sigma}, \partial_{x} \psi_{v, \xi, \sigma}\right\rangle\right|$. After a change of variables,

$$
\begin{aligned}
& \left\langle K_{X} \psi_{v, \xi, \sigma}, \partial_{x} \psi_{v, \xi, \sigma}\right\rangle \\
& =\sigma^{2} \iint c_{Y}(\sigma(x-y)) \exp \left[i\left(\theta(v+\sigma x)-\theta(v+\sigma y)-\sigma \theta^{\prime}(v)(x-y)\right)\right] \\
& \quad \times \exp \left[i \xi_{0}(x-y)\right] i\left(\theta^{\prime}(v)+\xi_{0} / \sigma\right) \psi(x) \psi(y) d x d y \\
& +\sigma^{2} \iint c_{Y}(\sigma(x-y)) \exp \left[i\left(\theta(v+\sigma x)-\theta(v+\sigma y)-\sigma \theta^{\prime}(v)(x-y)\right)\right] \\
& \quad \times \exp \left[i \xi_{0}(x-y)\right] \psi(x) \frac{1}{\sigma} \psi^{\prime}(y) d x d y
\end{aligned}
$$

Using Taylor expansions (76) and (77), we obtain

$$
\begin{aligned}
&\left\langle K_{X} \psi_{v, \xi, \sigma}, \partial_{x} \psi_{v, \xi, \sigma}\right\rangle \\
&=\sigma^{2} \iint c_{Y}(\sigma(x-y)) \\
& \times\left[1+i \sum_{k=2}^{2+\lceil h\rceil} a_{k} \sigma^{k}(x-y)^{k}+\sum_{k=4}^{2+\lceil h\rceil} b_{k-2} \sigma^{k}(x-y)^{k}\right] \\
& \times \exp \left[i \xi_{0}(x-y)\right] i\left(\theta^{\prime}(v)+\xi_{0} / \sigma\right) \psi(x) \psi(y) d x d y
\end{aligned}
$$

$$
\begin{aligned}
+\sigma^{2} \iint & c_{Y}(\sigma(x-y)) \\
& \times\left[1+i \sum_{k=2}^{2+\lceil h\rceil} a_{k} \sigma^{k}(x-y)^{k}+\sum_{k=4}^{2+\lceil h\rceil} b_{k-2} \sigma^{k}(x-y)^{k}\right] \\
& \times \exp \left[i \xi_{0}(x-y)\right] \psi(x) \frac{1}{\sigma} \psi^{\prime}(y) d x d y+O\left(\sigma^{4+\lceil h\rceil}\right)
\end{aligned}
$$

Exchanging x and y shows that

$$
\iint c_{Y}(\sigma(x-y)) \sin \left[\xi_{0}(y-x)\right] \psi(x) \psi(y) d x d y=0
$$

and since ψ is even and ψ^{\prime} is odd, changing x to $-x$ and y to $-y$ shows that

$$
\iint c_{Y}(\sigma(x-y)) \cos \left[\xi_{0}(y-x)\right] \psi(x) \psi^{\prime}(y) d x d y=0
$$

Writing $c_{Y}(\sigma(x-y))=c_{Y}(0)-\sigma^{h}|x-y|^{h} \eta(\sigma(x-y))$ and noticing that $e^{i \xi_{0} t} \psi(t)$ is a function with $\lceil h\rceil+3$ vanishing moments, the first integral in (79) has a real part equal to

$$
\sigma^{3+h} \frac{\theta^{\prime \prime}(v)}{2} \eta(0) \iint|x-y|^{2+h} \xi_{0} \cos \left[\xi_{0}(y-x)\right] \psi(x) \psi(y) d x d y+o\left(\sigma^{3+h}\right)
$$

Because ψ is even, the second integral in (79) has a real part equal to

$$
-\sigma^{3+h} \frac{\theta^{\prime \prime}(v)}{2} \eta(0) \iint|x-y|^{2+h} \sin \left[\xi_{0}(y-x)\right] \psi(x) \psi^{\prime}(y) d x d y+o\left(\sigma^{1+h}\right)
$$

An integration by parts with respect to y shows that

$$
\begin{aligned}
& \iint|x-y|^{2+h} \sin \left[\xi_{0}(y-x)\right] \psi(x) \psi^{\prime}(y) d x d y \\
&=-\xi_{0} \iint|x-y|^{2+h} \cos \left[\xi_{0}(y-x)\right] \psi(x) \psi(y) d x d y \\
&+(2+h) \iint|x-y|^{1+h} \operatorname{sign}(x-y) \sin \left[\xi_{0}(y-x)\right] \psi(x) \psi(y) d x d y
\end{aligned}
$$

Summing the two contributions, we see that

$$
\begin{align*}
& \operatorname{Re}\left\langle K_{X} \psi_{v, \xi, \sigma}, \partial_{x} \psi_{v, \xi, \sigma}\right\rangle \\
& =\sigma^{3+h} \eta(0)(1+h / 2) \theta^{\prime \prime}(v) \\
& \quad \times \iint|x-y|^{h}(x-y) \sin \left[\xi_{0}(x-y)\right] \psi(x) \psi(y) d x d y \tag{80}\\
& \quad+o\left(\sigma^{3+h}\right)
\end{align*}
$$

Because of the hypothesis that

$$
\iint|x-y|^{h}(x-y) \sin \left[\xi_{0}(x-y)\right] \psi(x) \psi(y) d x d y \neq 0
$$

comparing (80) and (78) proves a result that is stronger than (71), because the right-hand side has order $O\left(\sigma^{2}\right)$ instead of $O(\sigma)$:

$$
\left|\operatorname{Re}\left\langle K_{X} \psi_{v, \xi, \sigma}, \overline{D^{-1}}\left(\partial_{v}+\partial_{x}\right) \bar{D} \psi_{v, \xi, \sigma}\right\rangle\right|=O\left(\sigma^{2}\right)\left|\operatorname{Re}\left\langle K_{X} \psi_{v, \xi, \sigma}, \partial_{x} \psi_{v, \xi, \sigma}\right\rangle\right| .
$$

Adapting Proposition 3.1 to account for the $O\left(\sigma^{2}\right)$ term, we obtain a transport equation (19) with $\alpha=\xi, \gamma(u)=-\theta^{\prime}(u)$ and $\alpha_{1} * \alpha_{2}=\alpha_{1}+\alpha_{2}$: for u such that $\theta^{\prime \prime}(u) \neq 0$,

$$
\left|\partial_{u} A_{X}^{\sigma}(u, \xi)-\theta^{\prime \prime}(u) \partial_{\xi} A_{X}^{\sigma}(u, \xi)\right|=O\left(\sigma^{2}\right)\left|\partial_{u} A_{X}^{\sigma}(u, \xi)\right|,
$$

which proves (27).

Proof of Theorem 3.3 (Multidimensional scale transport). The proof of this theorem follows the same lines as the proof of Theorem 3.1. The hypotheses of Proposition 3.1 are verified in order to apply (19) in d dimensions.

Let us verify hypothesis (16) concerning

$$
\psi_{v, S, \sigma}=\bar{G}_{\beta(v)} T_{v} \bar{F}_{S} \psi_{\sigma},
$$

with $\bar{F}_{S} f(x)=\operatorname{det} S^{-1} f\left(S^{-1} x\right)$ and where $\bar{G}_{\beta(v)}$ has been defined in (29). Note that the transport property (17) clearly holds. The warpogram renormalization (30) is equivalent to dividing $\psi_{\sigma}(x)$ by σ^{d} and replacing σS by S. We replace $\psi_{v, S, \sigma}(x)$ by

$$
\begin{equation*}
\varphi_{v, S}(x)=\operatorname{det}\left(S^{-1} J_{\theta}(u)\right) \psi\left(S^{-1} J_{\theta}(u)(x-u)\right) \tag{81}
\end{equation*}
$$

Let us define the vector of functions

$$
\vec{\phi}_{v, S}=\overline{D^{-1}}\left(\vec{\nabla}_{v}+\vec{\nabla}_{x}\right) \bar{D} \varphi_{v, S}
$$

We now prove that, for any fixed u and \tilde{S} such that $\operatorname{det} \tilde{S}=1$, if $S=\sigma \tilde{S}$, then

$$
\begin{equation*}
\left|\operatorname{Re}\left\langle K_{X} \varphi_{v, S}, \vec{\phi}_{v, S}\right\rangle\right|=O(\sigma)\left|\operatorname{Re}\left\langle K_{X} \varphi_{v, S}, \vec{\nabla}_{x} \varphi_{v, S}\right\rangle\right| . \tag{82}
\end{equation*}
$$

Let us first compute an upper bound for $\left|\operatorname{Re}\left\langle K_{X} \varphi_{v, S}, \vec{\phi}_{v, S}\right\rangle\right|$. Since

$$
\overline{D^{-1}} f(x)=\operatorname{det}\left(J_{\theta}(x)\right) f(\theta(x))
$$

and

$$
\bar{D} f(x)=\operatorname{det}\left(J_{\theta}^{-1}\left(\theta^{-1}(x)\right)\right) f\left(\theta^{-1}(x)\right)
$$

we have

$$
\begin{aligned}
& \overline{D^{-1}} \vec{\nabla}_{x} \bar{D} \varphi_{v, S}(x) \\
& =\sigma^{-d}\left[-\frac{\operatorname{det} J_{\theta}(u)}{\operatorname{det} J_{\theta}(x)} \vec{\nabla} \operatorname{det} J_{\theta}(x) J_{\theta}^{-1}(x) \psi\left(S^{-1} J_{\theta}(u)(x-u)\right)\right. \\
& \\
& \left.\quad+\operatorname{det} J_{\theta}(u) \vec{\nabla} \psi\left(S^{-1} J_{\theta}(u)(x-u)\right) S^{-1} J_{\theta}(u) J_{\theta}^{-1}(x)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \overline{D^{-1}} \vec{\nabla}_{v} \bar{D} \varphi_{v, S}(x) \\
& =\sigma^{-d}\left[\vec{\nabla} \operatorname{det} J_{\theta}(u) \psi\left(S^{-1} J_{\theta}(u)(x-u)\right) J_{\theta}^{-1}(u)\right. \\
& \quad+\operatorname{det} J_{\theta}(u) \vec{\nabla} \psi\left(S^{-1} J_{\theta}(u)(x-u)\right) \\
& \left.\quad \times S^{-1}\left(\vec{\nabla} J_{\theta}(u)(x-u)-J_{\theta}(u)\right) J_{\theta}^{-1}(u)\right] .
\end{aligned}
$$

After summing these two expressions, a Taylor expansion of $\operatorname{det} J_{\theta}, J_{\theta}^{-1}$ and $\vec{\nabla} \operatorname{det} J_{\theta}$ in the vicinity of position u shows that, for $S=\sigma \tilde{S}$ and σ small, there exists $C(u, \tilde{S})$ such that

$$
\begin{equation*}
\left|\vec{\phi}_{v, S}\right| \leq C(u, \tilde{S}) \sigma^{1-d} \tag{83}
\end{equation*}
$$

By the definition of K_{X},

$$
\left\langle K_{X} \varphi_{v, S}, \vec{\phi}_{v, S}\right\rangle=\iint c_{Y}(\theta(x)-\theta(y)) \varphi_{v, S}^{*}(x) \vec{\phi}_{v, S}(y) d x d y
$$

The wavelet ψ has one vanishing moment, so $\int \varphi_{v, S}(x) d x=0$, and therefore

$$
\left\langle K_{X} \varphi_{v, S}, \vec{\phi}_{v, S}\right\rangle=\iint\left[c_{Y}(\theta(x)-\theta(y))-c_{Y}(0)\right] \varphi_{v, S}^{*}(x) \vec{\phi}_{v, S}(y) d x d y
$$

which implies that

$$
\left|\left\langle K_{X} \varphi_{v, S}, \vec{\phi}_{v, S}\right\rangle\right| \leq \iint\left|c_{Y}(\theta(x)-\theta(y))-c_{Y}(0)\right|\left|\varphi_{v, S}(x)\right|\left|\vec{\phi}_{v, S}(y)\right| d x d y
$$

Substituting (83) and (81) in the above inequality and using condition (33) on c_{Y}, after a change of variables and a Taylor expansion of θ around u, we obtain

$$
\left|\left\langle K_{X} \varphi_{v, S}, \vec{\phi}_{v, S}\right\rangle\right|=O\left(\sigma^{h+1}\right)
$$

To prove (82), we now show that there exists $C^{\prime}(u, \tilde{S})>0$ such that

$$
\begin{equation*}
\left|\operatorname{Re}\left\langle K_{X} \varphi_{v, S}, \vec{\nabla}_{x} \varphi_{v, S}\right\rangle\right| \geq C^{\prime}(u, \tilde{S}) \sigma^{h} \tag{84}
\end{equation*}
$$

With an integration by parts,

$$
\left\langle K_{X} \varphi_{v, S}, \vec{\nabla}_{x} \varphi_{v, S}\right\rangle=\iint \vec{\nabla} c_{Y}(\theta(x)-\theta(y)) J_{\theta}(y) \varphi_{v, S}^{*}(x) \varphi_{v, S}(y) d x d y
$$

and using the fact that $\vec{\nabla} c_{Y}(x)$ is antisymmetric,

$$
\begin{aligned}
& \left\langle K_{X} \varphi_{v, S}, \vec{\nabla}_{x} \varphi_{v, S}\right\rangle \\
& \quad=-\frac{1}{2} \iint \vec{\nabla}_{Y}(\theta(x)-\theta(y))\left(J_{\theta}(x)-J_{\theta}(y)\right) \operatorname{Re}\left(\varphi_{v, S}^{*}(x) \varphi_{v, S}(y)\right) d x d y
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \operatorname{Re}\left\langle K_{X} \varphi_{v, S}, \vec{\nabla}_{x} \varphi_{v, S}\right\rangle \\
& +\frac{1}{2} \iint \vec{\nabla} c_{Y}(S(x-y)) \vec{\nabla} J_{\theta}(u) J_{\theta}^{-1}(u) S(x-y) \operatorname{Re}\left(\psi^{*}(x) \psi(y)\right) d x d y \\
& =-\frac{1}{2} \iint\left(\vec{\nabla} c_{Y}\left(\theta\left(u+J_{\theta}^{-1}(u) S x\right)-\theta\left(u+J_{\theta}^{-1}(u) S y\right)\right)-\vec{\nabla} c_{Y}(S(x-y))\right) \\
& \quad \times\left(J_{\theta}\left(u+J_{\theta}^{-1}(u) S x\right)-J_{\theta}\left(u+J_{\theta}^{-1}(u) S y\right)\right) \\
& \quad \times \\
& \operatorname{Re}\left(\psi^{*}(x) \psi(y)\right) d x d y \quad \\
& -\frac{1}{2} \iint \vec{\nabla} c_{Y}(S(x-y))\left(J_{\theta}\left(u+J_{\theta}^{-1}(u) S x\right)-J_{\theta}\left(u+J_{\theta}^{-1}(u) S y\right)\right. \\
& \quad
\end{aligned}
$$

Because $\vec{\nabla} c_{Y}$ is \mathbf{C}^{1} in a neighborhood of 0 excluding 0 , for small σ, second-order Taylor series expansions for θ and J_{θ} around position u prove that

$$
\begin{aligned}
& \operatorname{Re}\left\langle K_{X} \varphi_{v, S}, \vec{\nabla}_{x} \varphi_{v, S}\right\rangle \\
& \quad+\frac{1}{2} \iint \vec{\nabla} c_{Y}(S(x-y)) \vec{\nabla} J_{\theta}(u) J_{\theta}^{-1}(u) S(x-y) \operatorname{Re}\left(\psi^{*}(x) \psi(y)\right) d x d y \\
& \quad=o\left(\sigma^{h}\right)
\end{aligned}
$$

Hypothesis (34) guarantees that (84) holds, and therefore (82) is satisfied. Now that conditions (16) and (17) of Proposition 3.1 have been verified, the resulting transport equation (19) can be applied, with $\alpha=S, \gamma(u)=J_{\theta}^{-1}(u)$ and $S_{1} * S_{2}=$ $S_{2} S_{1}$. This yields

$$
\left|\vec{\nabla}_{u} A_{X}(u, S)+\left[J_{\theta}(u)^{-1} \vec{\nabla}_{u} J_{\theta}(u) S\right] \cdot \vec{\nabla}_{S} A_{X}(u, S)\right|=O(\sigma)\left|\vec{\nabla}_{u} A_{X}(u, S)\right|
$$

The final result (35) is derived from this equation by noting that

$$
\left[J_{\theta}^{-1}(u) \vec{\nabla}_{u} J_{\theta}(u) S\right] \cdot \vec{\nabla}_{S} A_{X}(u, S)=\left[J_{\theta}^{-1}(u) \vec{\nabla}_{u} J_{\theta}(u)\right] \cdot\left[\vec{\nabla}_{S} A_{X}(u, S) S^{t}\right]
$$

PROOF THAT (36) IMPLIES (34) FOR A SEPARABLE WARPING FUNCTION. Using the fact that θ is assumed separable, we obtain that $\vec{\nabla}_{u} J_{\theta}(u) J_{\theta}(u)^{-1} S(x-y)$ is a diagonal matrix whose i th element along the diagonal is

$$
\sigma \frac{\theta_{i}^{\prime \prime}\left(u_{i}\right)}{\theta_{i}^{\prime}\left(u_{i}\right)}(\tilde{S}(x-y))_{i}
$$

Using (33), the leading term of $\vec{\nabla} c_{Y}(S(x-y))$, when $\sigma \rightarrow 0$, is

$$
\eta(0) h \sigma^{h-1} \tilde{S}(x-y)|\tilde{S}(x-y)|^{h-2}
$$

Therefore, when $\sigma \rightarrow 0$, the i th component of

$$
\operatorname{Re} \iint \vec{\nabla} c_{Y}(S(x-y)) \vec{\nabla} J_{\theta}(u) J_{\theta}^{-1}(u) S(x-y) \psi^{*}(x) \psi(y) d x d y
$$

is equivalent to

$$
\eta(0) h \sigma^{h} \frac{\theta_{i}^{\prime \prime}\left(u_{i}\right)}{\theta_{i}^{\prime}\left(u_{i}\right)} \operatorname{Re} \iint|\tilde{S}(x-y)|^{h-2}(\tilde{S}(x-y))_{i}^{2} \psi^{*}(x) \psi(y) d x d y
$$

Using the fact that $\left(\sum_{i=1}^{d}\left|k_{i}\right|^{2}\right)^{1 / 2} \geq(1 / \sqrt{d}) \sum_{i=1}^{d}\left|k_{i}\right|$, we obtain

$$
\begin{aligned}
& \left|\operatorname{Re} \iint \vec{\nabla} c_{Y}(S(x-y)) \vec{\nabla} J_{\theta}(u) J_{\theta}^{-1}(u) S(x-y) \psi^{*}(x) \psi(y) d x d y\right| \\
& \left.\quad \geq\left.\frac{\eta(0) h}{\sqrt{d}} \sigma^{h} \min _{i}\left|\frac{\theta_{i}^{\prime \prime}\left(u_{i}\right)}{\theta_{i}^{\prime}\left(u_{i}\right)}\right|\left|\operatorname{Re} \iint\right| \tilde{S}(x-y)\right|^{h} \psi^{*}(x) \psi(y) d x d y \right\rvert\,
\end{aligned}
$$

This shows that if

$$
\operatorname{Re} \iint|\tilde{S}(x-y)|^{h} \psi^{*}(x) \psi(y) d x d y \neq 0
$$

and if none of the $\theta_{i}^{\prime \prime}$ vanish, then (34) is satisfied with $C(u, \tilde{S})>0$.

APPENDIX C

Proofs of Section 4.

Proof of Theorem 4.1. With a slight modification of the proof of Theorem 3.1, one can prove a stronger result than (24), which is stated in the following lemma.

LEmma C.1. Under the hypotheses of Theorem 3.1,

$$
\begin{equation*}
\partial_{u} A_{X}(u, s)-\left(\log \theta^{\prime}\right)^{\prime}(u) \partial_{\log s} A_{X}(u, s)=s(C(u)+o(1)) \partial_{u} A_{X}(u, s), \tag{85}
\end{equation*}
$$

where C is continuous.
Let a be a generic variable denoting either u or $\log s$ and let us introduce

$$
\begin{equation*}
\overline{\partial_{a} A_{X}}(u, s)=\int g(u-v) \partial_{a} A_{X}(v, s) d v . \tag{86}
\end{equation*}
$$

If u is such that $\theta^{\prime \prime}(u) \neq 0$ and Δ is small enough, then $\partial_{u} A_{X}(v, s)$ keeps a constant sign over $[u-\Delta, u+\Delta]$. Therefore, by the continuity of C, convolving the right-hand side of (85) with g gives

$$
O(s) \overline{\partial_{u} A_{X}}(u, s)
$$

Convolving the left-hand side of (85) with g gives

$$
\overline{\partial_{u} A_{X}}(u, s)-\int g(u-v)\left(\log \theta^{\prime}\right)^{\prime}(v) \partial_{\log s} A_{X}(v, s) d v
$$

The hypotheses of Theorem 3.1 imply that $\partial_{\log s} A_{X}(u, s)$ does not vanish. By continuity, $\partial_{\log s} A_{X}(v, s)$ therefore keeps a constant sign for v in $[u-\Delta, u+\Delta]$. Because $\left(\log \theta^{\prime}\right)^{\prime \prime}$ is bounded over $[u-\Delta, u+\Delta]$,

$$
\begin{aligned}
& \int g(u-v)\left(\log \theta^{\prime}\right)^{\prime}(v) \partial_{\log s} A_{X}(v, s) d v \\
& \quad=\left(\log \theta^{\prime}\right)^{\prime}(u) \overline{\partial_{\log s} A_{X}}(u, s)+O(\Delta) \overline{\partial_{\log s} A_{X}}(u, s)
\end{aligned}
$$

Regrouping the left- and right-hand sides, we obtain

$$
\begin{align*}
& \overline{\partial_{u} A_{X}}(u, s)-\left(\log \theta^{\prime}\right)^{\prime}(u) \overline{\partial_{\log s} A_{X}}(u, s) \tag{87}\\
& \quad=O(s) \overline{\partial_{u} A_{X}}(u, s)+O(\Delta) \overline{\partial_{\log s} A_{X}}(u, s)
\end{align*}
$$

which can be viewed as an averaged transport equation.
The following lemma, whose proof is given later, shows that the two estimators $\widehat{\partial_{u} A_{X}}(u, s)$ and $\widehat{\partial_{\log s} A_{X}}(u, s)$ are consistent.

Lemma C.2. Let X, Y and ψ satisfy the hypotheses of Theorem 4.1. For each u, for s small enough,

$$
\begin{array}{r}
\operatorname{Prob}\left\{\left|\widehat{\partial_{\log s} A_{X}}(u, s)-\overline{\partial_{\log s} A_{X}}(u, s)\right| \geq C\left|\overline{\partial_{\log s} A_{X}}(u, s)\right|\right\} \leq \varepsilon_{1}, \\
\operatorname{Prob}\left\{\left|\widehat{\partial_{u} A_{X}}(u, s)-\overline{\partial_{u} A_{X}}(u, s)\right| \geq C\left|\overline{\partial_{u} A_{X}}(u, s)\right|\right\} \leq \varepsilon_{2}, \tag{89}
\end{array}
$$

where

$$
C=\frac{\log (N \Delta)}{\Delta \sqrt{N \Delta}}, \quad \varepsilon_{1}=\frac{C_{1}(u) \Delta^{2}}{(\log (N \Delta))^{2}}, \quad \varepsilon_{2}=6(N \Delta)^{-1 /\left(2 C_{2}(u)\right)}
$$

The parameters $C_{1}(u)$ and $C_{2}(u)$, which are defined in the proof of the lemma, are both positive. The weak consistency of

$$
\frac{\widehat{\partial_{u} A_{X}}\left(u, N^{-1}\right)}{\widehat{\partial_{\log S} A_{X}}\left(u, N^{-1}\right)}
$$

as an estimator of $\left(\log \theta^{\prime}\right)^{\prime}(u)$ then results from the following lemma, whose proof is straightforward.

Lemma C.3. If X_{1} and X_{2} are two random variables and $C<1$ is a constant such that

$$
\begin{aligned}
& \operatorname{Prob}\left\{\left|X_{1}-\mathbb{E}\left\{X_{1}\right\}\right| \leq C\left|\mathbb{E}\left\{X_{1}\right\}\right|\right\} \geq 1-\varepsilon_{1}, \\
& \operatorname{Prob}\left\{\left|X_{2}-\mathbb{E}\left\{X_{2}\right\}\right| \leq C\left|\mathbb{E}\left\{X_{2}\right\}\right|\right\} \geq 1-\varepsilon_{2},
\end{aligned}
$$

then

$$
\operatorname{Prob}\left(\left|\frac{X_{2}}{X_{1}}-\frac{\mathbb{E}\left\{X_{2}\right\}}{\mathbb{E}\left\{X_{1}\right\}}\right| \leq \frac{2 C}{1-C}\left|\frac{\mathbb{E}\left\{X_{2}\right\}}{\mathbb{E}\left\{X_{1}\right\}}\right|\right) \geq 1-\varepsilon_{1}-\varepsilon_{2} .
$$

In view of Lemma C.2, one can apply Lemma C. 3 to $X_{1}=\widehat{\partial_{\log s} A_{X}}\left(u, N^{-1}\right)$ and $X_{2}=\widehat{\partial_{u} A_{X}}\left(u, N^{-1}\right)$ with $C=\log (N \Delta) / \Delta \sqrt{N \Delta}$, yielding

$$
\begin{aligned}
& \operatorname{Prob}\left\{\left|\frac{\widehat{\partial_{u} A_{X}}\left(u, N^{-1}\right)}{\widehat{\partial_{\log S} A_{X}}\left(u, N^{-1}\right)}-\frac{\overline{\partial_{u} A_{X}}\left(u, N^{-1}\right)}{\widehat{\partial_{\log s} A_{X}}\left(u, N^{-1}\right)}\right|\right. \\
& \left.\leq \frac{2 \log (N \Delta)}{\Delta \sqrt{N \Delta}-\log (N \Delta)}\left|\frac{\overline{\partial_{u} A_{X}}\left(u, N^{-1}\right)}{\overline{\partial_{\log s} A_{X}}\left(u, N^{-1}\right)}\right|\right\} \geq 1-\varepsilon_{1}-\varepsilon_{2} .
\end{aligned}
$$

Because of the averaged transport equation (87),

$$
\left(\log \theta^{\prime}\right)^{\prime}(u)=O(\Delta)+\frac{\overline{\partial_{u} A_{X}}\left(u, N^{-1}\right)}{\overline{\partial_{\log s} A_{X}}\left(u, N^{-1}\right)}\left(1+O\left(N^{-1}\right)\right) .
$$

Since $\Delta>N^{-1}$ and $\left(\log \theta^{\prime}\right)^{\prime}(u)$ is bounded, we derive

$$
\left(\log \theta^{\prime}\right)^{\prime}(u)=O(\Delta)+\frac{\overline{\partial_{u} A_{X}}\left(u, N^{-1}\right)}{\overline{\partial_{\log s} A_{X}}\left(u, N^{-1}\right)}
$$

Therefore,

$$
\begin{aligned}
& \operatorname{Prob}\left(\left|\frac{\widehat{\partial_{u} A_{X}}\left(u, N^{-1}\right)}{\widehat{\partial_{\log s} A_{X}}\left(u, N^{-1}\right)}-\left(\log \theta^{\prime}\right)^{\prime}(u)\right|\right. \\
& \left.\quad \leq \frac{2 \log (N \Delta)}{\Delta \sqrt{N \Delta}-\log (N \Delta)}\left|\left(\log \theta^{\prime}\right)^{\prime}(u)\right|+O(\Delta)\right) \geq 1-\varepsilon_{1}-\varepsilon_{2} .
\end{aligned}
$$

We choose Δ such that $\Delta^{-1}(N \Delta)^{-1 / 2}=\Delta$, that is, $\Delta=N^{-1 / 5}$. When $N \rightarrow \infty$, ε_{1} and ε_{2}, whose expressions are given in Lemma C.2, both tend to 0 . Moreover, for N large enough,

$$
\left|\left(\log \theta^{\prime}\right)^{\prime}(u)\right| \frac{2 \log (N \Delta)}{\Delta \sqrt{N \Delta}-\log (N \Delta)}+O(\Delta) \leq 2(\log N) N^{-1 / 5}
$$

Therefore,

$$
\lim _{N \rightarrow \infty} \operatorname{Prob}\left(\left|\frac{\widehat{\partial_{u} A_{X}}\left(u, N^{-1}\right)}{\widehat{\partial_{\log s} A_{X}}\left(u, N^{-1}\right)}-\left(\log \theta^{\prime}\right)^{\prime}(u)\right| \leq 2(\log N) N^{-1 / 5}\right)=1
$$

Proof of Theorem 4.2.

Lemma C.4. Under the hypotheses of Theorem 3.2,

$$
\begin{align*}
& \partial_{u} A_{X}^{\sigma}\left(u, \xi_{0} / \sigma\right)-\theta^{\prime \prime}(u) \partial_{\xi} A_{X}^{\sigma}\left(u, \xi_{0} / \sigma\right) \\
& \quad=\sigma^{2}(C(u)+o(1)) \partial_{u} A_{X}^{\sigma}\left(u, \xi_{0} / \sigma\right) \tag{90}
\end{align*}
$$

where C is continuous.
Proof. The proof mimicks the proof of Lemma C.1. In the proof of Theorem 3.2, we showed in (78) that

$$
\begin{equation*}
\operatorname{Re}\left\langle K_{X} \psi_{v, \xi, \sigma} \overline{D^{-1}}\left(\partial_{v}+\partial_{x}\right) \bar{D} \psi_{v, \xi, \sigma}\right\rangle=\sigma^{3+h}(A(v)+o(1)) \tag{91}
\end{equation*}
$$

and in (80) that

$$
\begin{equation*}
\operatorname{Re}\left\langle K_{X} \psi_{v, \xi, \sigma}, \partial_{x} \psi_{v, \xi, \sigma}\right\rangle=\sigma^{1+h}(B(v)+o(1)) \tag{92}
\end{equation*}
$$

with $B(v)$ continuous. Comparing (91) and (92) shows that

$$
\begin{aligned}
& \operatorname{Re}\left\langle K_{X} \psi_{v, \xi, \sigma}, \overline{D^{-1}}\left(\partial_{v}+\partial_{x}\right) \bar{D} \psi_{v, \xi, \sigma}\right\rangle \\
& \quad=\sigma^{2}(C(v)+o(1)) \operatorname{Re}\left\langle K_{X} \psi_{v, \xi, \sigma}, \partial_{x} \psi_{v, \xi, \sigma}\right\rangle
\end{aligned}
$$

with $C(v)$ continuous. This implies, by repeating the argument of Lemma C.1, that (90) is satisfied.

Using Lemma C.4, it is easy to see that

$$
\begin{align*}
& \overline{\partial_{u} A_{X}^{\sigma}}\left(u, \xi_{0} / \sigma\right)-\overline{\partial_{\xi} A_{X}^{\sigma}}\left(u, \xi_{0} / \sigma\right) \tag{93}\\
& \quad=O\left(\sigma^{2}\right) \overline{\partial_{u} A_{X}^{\sigma}}\left(u, \xi_{0} / \sigma\right)+O(\Delta) \overline{\partial_{\xi} A_{X}^{\sigma}}\left(u, \xi_{0} / \sigma\right)
\end{align*}
$$

As in the proof of Theorem 4.1, one can combine the following lemma with Lemma C. 3 to prove the weak consistency result (50).

Lemma C.5. Let X, Y and ψ satisfy the hypotheses of Theorem 4.2. Then, for each u, for N large enough,

$$
\begin{aligned}
& \operatorname{Prob}\left\{\left|\widehat{\partial_{\xi} A_{X}^{\sigma}}\left(u, N \xi_{0}\right)-\overline{\partial_{\xi} A_{X}^{\sigma}}\left(u, N \xi_{0}\right)\right| \geq C\left|\overline{\partial_{\xi} A_{X}^{\sigma}}\left(u, N \xi_{0}\right)\right|\right\} \leq \varepsilon_{1} \\
& \operatorname{Prob}\left\{\left|\widehat{\partial_{u} A_{X}^{\sigma}}\left(u, N \xi_{0}\right)-\overline{\partial_{u} A_{X}^{\sigma}}\left(u, N \xi_{0}\right)\right| \geq C\left|\overline{\partial_{u} A_{X}^{\sigma}}\left(u, N \xi_{0}\right)\right|\right\} \leq \varepsilon_{2}
\end{aligned}
$$

where ε_{1} and ε_{2} are defined in Lemma C.2.
The proof of Lemma C. 5 is almost identical to that of Lemma C.2; the only difference is that ψ^{2} has $p-1$ vanishing moments instead of p, so that Lemma C. 7 must be replaced with the following lemma, which is proved by using the same method.

Lemma C.6. Let $Y(x)=X(x) e^{i \theta(x)}$, let $W_{k}=\left\langle X, \psi_{k / N, \sigma}^{1}\right\rangle$ and let $Z_{k}=$ $\left\langle X, \psi_{k / N, \sigma}^{2}\right\rangle^{*}$. Under the hypotheses of Lemma C.5, for σ small enough, there exist two continuous functions M_{1} and M_{2} such that, for $|k-l| \leq 2$,

$$
\begin{aligned}
\left|\mathbb{E}\left\{W_{k} W_{l}^{*}\right\}\right| & \leq M_{1}(\sigma k) \sigma^{h}, \\
\left|\mathbb{E}\left\{W_{k} Z_{l}^{*}\right\}\right| & \leq M_{1}(\sigma k) \sigma^{h}, \\
\left|\mathbb{E}\left\{Z_{k} Z_{l}^{*}\right\}\right| & \leq M_{1}(\sigma k) \sigma^{h},
\end{aligned}
$$

and, for $|k-l|>2$,

$$
\begin{aligned}
\left|\mathbb{E}\left\{W_{k} W_{l}^{*}\right\}\right| & \leq M_{2}(\sigma k) \frac{\sigma^{2 p}}{(\sigma(|k-l|-2))^{2 p-h}}, \\
\left|\mathbb{E}\left\{W_{k} Z_{l}^{*}\right\}\right| & \leq M_{2}(\sigma k) \frac{\sigma^{2 p-1}}{(\sigma(|k-l|-2))^{2 p-1-h}}, \\
\left|\mathbb{E}\left\{Z_{k} Z_{l}^{*}\right\}\right| & \leq M_{2}(\sigma k) \frac{\sigma^{2 p-2}}{(\sigma(|k-l|-2))^{2 p-2-h}} .
\end{aligned}
$$

Since $p \geq\lceil h\rceil+3$, we have $2(2 p-2-h)>1$. Therefore, the variance term

$$
\mathbb{E}\left\{\left|\widehat{\partial_{\xi} A_{X}^{\sigma}}(u, \xi)-\overline{\partial_{\xi} A_{X}^{\sigma}}(u, \xi)\right|^{2}\right\}
$$

can be controlled as in the proof of Lemma C.2.

Proof of Lemma C.1. In one dimension, the proof of Proposition 3.1 can be adapted to show that, if (16) is replaced by

$$
\begin{equation*}
\operatorname{Re}\left\langle K_{X} \psi_{v, \tilde{\beta}, \sigma}, \overline{D^{-1}}\left(\partial_{v}+\partial_{x}\right) \bar{D} \psi_{v, \tilde{\beta}, \sigma}\right\rangle=c(u, \sigma) \operatorname{Re}\left\langle K_{X} \psi_{v, \tilde{\beta}, \sigma}, \partial_{x} \psi_{v, \tilde{\beta}, \sigma}\right\rangle \tag{94}
\end{equation*}
$$

and if (17) holds, then the resulting transport equation (19) is replaced by

$$
\partial_{u} A_{X}^{\sigma}(u, \alpha)+\partial_{t}\left(\alpha * \gamma^{-1}(u) * \gamma(t)\right) \partial_{\alpha} A_{X}^{\sigma}(u, \alpha)=c(u, \sigma) \partial_{u} A_{X}^{\sigma}(u, \alpha) .
$$

Recall that, in the proof of Theorem 3.1, (67) proves that

$$
\begin{equation*}
\operatorname{Re}\left\langle K_{X} \varphi_{v, s}, \phi_{v, s}\right\rangle=s^{h+1}(B(u)+o(1)), \tag{95}
\end{equation*}
$$

where B is continuous. On the other hand, (69) proves that

$$
\begin{align*}
& \operatorname{Re}\left\langle K_{X} \varphi_{v, s}, \partial_{x} \varphi_{v, s}\right\rangle \\
& \quad=\frac{1}{2} \frac{\theta^{\prime \prime}(u)}{\theta^{\prime}(u)} s^{h}(1+o(1)) h \eta(0) \iint|x-y|^{h} \psi^{*}(x) \psi(y) d x d y \tag{96}
\end{align*}
$$

where $\theta^{\prime \prime}(u) / \theta^{\prime}(u)$ is continuous in u.

Comparing (95) and (96) and recalling that

$$
\begin{aligned}
\varphi_{v, s} & =\psi_{v, \tilde{\beta}, \sigma} \\
\phi_{v, s} & =\overline{D^{-1}}\left(\partial_{v}+\partial_{x}\right) \bar{D} \psi_{v, \tilde{\beta}, \sigma}
\end{aligned}
$$

we see that (94) holds, with

$$
c(u, \sigma)=s(C(u)+o(1))
$$

and C continuous. This proves that (85) is indeed satisfied.
Proof of Lemma C.2. We start by proving (88). Let $n=N \Delta$ and let us choose $u=0$ without loss of generality. We seek an upper bound for the variance of $\widehat{\partial_{\log s} A_{X}}(0, s)$,

$$
V_{\log s}=\mathbb{E}\left\{\left|\widehat{\partial_{\log s} A_{X}}(0, s)-\overline{\partial_{\log s} A_{X}}(0, s)\right|^{2}\right\}
$$

One can see that

$$
\left|\frac{\partial^{2}}{\partial u \partial \log s} A_{X}(u, s)\right|=O\left(s^{h}\right)
$$

and a Riemann series approximation shows that

$$
\int g(v) \partial_{\log s} A_{X}(v, s) d v-N^{-1} \sum_{k=-n}^{n} g\left(\frac{k}{N}\right) \partial_{\log s} A_{X}\left(\frac{k}{N, s}\right)=O\left(\frac{s^{h}}{N}\right)
$$

Replacing $\widehat{\partial_{\log s} A_{X}}(0, s)$ by its expression (41) and noticing that the real part is smaller than the modulus, we obtain

$$
V_{\log s} \leq \frac{4}{N^{2}} \mathbb{E}\left\{\left|\sum_{|k| \leq n} g_{k} W_{k} Z_{k}-g_{k} \mathbb{E}\left\{W_{k} Z_{k}\right\}\right|^{2}\right\}+O\left(\frac{s^{2 h}}{N^{2}}\right),
$$

where g_{k}, W_{k} and Z_{k}, respectively, denote $g(k / n),\left\langle X, \psi_{k / N, s}\right\rangle$ and $\langle X$, $\left.\partial_{\log s} \psi_{k / N, s}\right\rangle^{*}$. Expanding $\left|\sum_{|k| \leq n}\right|^{2}$ into $\left(\sum_{|k| \leq n}\right) \cdot\left(\sum_{|l| \leq n}\right)^{*}$,

$$
\begin{aligned}
V_{\log s} \leq & \frac{4}{N^{2}} \mathbb{E}\left\{\sum_{|k| \leq n}\left[g_{k} W_{k} Z_{k}-g_{k} \mathbb{E}\left\{W_{k} Z_{k}\right\}\right] \sum_{|l| \leq n}\left[g_{l} W_{l} Z_{l}-g_{l} \mathbb{E}\left\{W_{l} Z_{l}\right\}\right]^{*}\right\} \\
& +O\left(\frac{s^{2 h}}{N^{2}}\right) \\
\leq & \frac{4}{N^{2}} \sum_{|k| \leq n,|l| \leq n}\left[g_{k} g_{l} \mathbb{E}\left\{W_{k} Z_{k} W_{l}^{*} Z_{l}^{*}\right\}-g_{k} g_{l} \mathbb{E}\left\{W_{k} Z_{k}\right\} \mathbb{E}\left\{W_{l}^{*} Z_{l}^{*}\right\}\right] \\
& +O\left(\frac{s^{2 h}}{N^{2}}\right) .
\end{aligned}
$$

Since Y is Gaussian, so is X, as well as the random variables W_{k} and Z_{k}. Hence,

$$
\begin{aligned}
& \mathbb{E}\left\{W_{k} Z_{k} W_{l}^{*} Z_{l}^{*}\right\} \\
& \quad=\mathbb{E}\left\{W_{k} Z_{k}\right\} \mathbb{E}\left\{W_{l}^{*} Z_{l}^{*}\right\}+\mathbb{E}\left\{W_{k} W_{l}^{*}\right\} \mathbb{E}\left\{Z_{k} Z_{l}^{*}\right\}+\mathbb{E}\left\{W_{k} Z_{l}^{*}\right\} \mathbb{E}\left\{Z_{k} W_{l}^{*}\right\}
\end{aligned}
$$

Therefore,

$$
\begin{align*}
V_{\log s} \leq & \frac{4}{N^{2}} \sum_{|k| \leq n,|l| \leq n} g_{k} g_{l}\left[\mathbb{E}\left\{W_{k} W_{l}^{*}\right\} \mathbb{E}\left\{Z_{k} Z_{l}^{*}\right\}+\mathbb{E}\left\{W_{k} Z_{l}^{*}\right\} \mathbb{E}\left\{Z_{k} W_{l}^{*}\right\}\right] \\
& +O\left(\frac{s^{2 h}}{N^{2}}\right) \tag{97}\\
\leq & \frac{4}{n^{2}} \sum_{|k| \leq n,|l| \leq n}\left[\left|\mathbb{E}\left\{W_{k} W_{l}^{*}\right\}\right|\left|\mathbb{E}\left\{Z_{k} Z_{l}^{*}\right\}\right|+\left|\mathbb{E}\left\{W_{k} Z_{l}^{*}\right\}\right|\left|\mathbb{E}\left\{Z_{k} W_{l}^{*}\right\}\right|\right] \\
& +O\left(\frac{s^{2 h}}{N^{2}}\right) .
\end{align*}
$$

Each of the terms appearing in the sum above is now bounded due to the following decorrelation lemma.

Lemma C.7. Let $X(x)=Y(\theta(x))$, let $W_{k}=\left\langle X, \psi_{k / N, s}\right\rangle$ and let $Z_{k}=\langle X$, $\left.\partial_{\log s} \psi_{k / N, s}\right\rangle^{*}$. Under the hypotheses of Theorem 4.1, for s small enough, there exist continuous functions M_{1} and M_{2} such that, for $|k-l| \leq 2$,

$$
\begin{equation*}
\left|\mathbb{E}\left\{W_{k} W_{l}^{*}\right\}\right| \leq M_{1}(s k) s^{h}, \tag{98a}
\end{equation*}
$$

$$
\begin{equation*}
\left|\mathbb{E}\left\{W_{k} Z_{l}^{*}\right\}\right| \leq M_{1}(s k) s^{h} \tag{98b}
\end{equation*}
$$

and, for $|k-l|>2$,

$$
\begin{equation*}
\left|\mathbb{E}\left\{W_{k} W_{l}^{*}\right\}\right| \leq M_{2}(s k) \frac{s^{2 p}}{(s(|k-l|-2))^{2 p-h}}, \tag{99a}
\end{equation*}
$$

$$
\begin{equation*}
\left|\mathbb{E}\left\{W_{k} Z_{l}^{*}\right\}\right| \leq M_{2}(s k) \frac{s^{2 p}}{(s(|k-l|-2))^{2 p-h}}, \tag{99b}
\end{equation*}
$$

$$
\begin{equation*}
\left|\mathbb{E}\left\{Z_{k} Z_{l}^{*}\right\}\right| \leq M_{2}(s k) \frac{s^{2 p}}{(s(|k-l|-2))^{2 p-h}} \tag{99c}
\end{equation*}
$$

The proof of the above lemma is given later.

Replacing (98) and (99) in (97), we see that, since M_{1} and M_{2} are continuous and since $k / N=\Delta \rightarrow 0$ when $N \rightarrow \infty$,

$$
\begin{align*}
V_{\log s} \leq & \frac{4}{n^{2}} \sum_{|k-l| \leq 2,|k|,|l| \leq n} 2\left(M_{1}(0)^{2}+o(1)\right) s^{2 h} \\
& +\frac{4}{n^{2}} \sum_{|k-l|>2,|k|,|l| \leq n} \frac{2\left(M_{2}(0)^{2}+o(1)\right) s^{4 p}}{(s(|k-l|-2))^{4 p-2 h}}+O\left(\frac{s^{2 h}}{N^{2}}\right) . \tag{100}
\end{align*}
$$

Since $4 p-2 h>1$,

$$
\begin{equation*}
\sum_{|k-l|>2,|k|,|l| \leq n}(|k-l|-2)^{2 h-4 p}=K_{p} n . \tag{101}
\end{equation*}
$$

Replacing (101) in (100), we obtain

$$
\begin{equation*}
V_{\log s} \leq 8 C^{2} \frac{s^{2 h}}{n}\left(3 M_{1}(0)^{2}+K_{p} M_{2}(0)^{2}\right)+o\left(\frac{s^{2 h}}{n}\right) . \tag{102}
\end{equation*}
$$

In the proof of Theorem 3.1, (69) proves that there exists $a(u)>0$ such that

$$
\left|\partial_{u} A_{X}(u, s)\right| \geq a(u) s^{h}+o\left(s^{h}\right)
$$

For Δ small enough, $\partial_{u} A_{X}(v, s)$ does not change sign for $|v| \leq \Delta$. Thus, after convolution with g,

$$
\left|\overline{\partial_{u} A_{X}}(0, s)\right| \geq A s^{h}+o\left(s^{h}\right) .
$$

Because of (87), the same applies to $\overline{\partial_{\log s} A_{X}}(0, s)$. Therefore, there exists a constant C_{1} such that

$$
V_{\log s} \leq C_{1}\left[\frac{\left|\overline{\partial_{\log s} A_{X}}(0, s)\right|}{\sqrt{n}}\right]^{2}
$$

Applying Chebyshev's lemma [4] then proves that, for all $\varepsilon>0$,

$$
\operatorname{Prob}\left\{\left|\widehat{\partial_{\log s} A_{X}}(0, s)-\overline{\partial_{\log s} A_{X}}(0, s)\right| \geq \frac{\sqrt{C_{1}}\left|\overline{\partial_{\log s} A_{X}}(0, s)\right|}{\varepsilon \sqrt{n}}\right\} \leq \varepsilon^{2}
$$

and (88) follows by choosing

$$
\varepsilon=\frac{\sqrt{C_{1}} \Delta}{\log n} \quad \text { and } \quad \varepsilon_{1}=\frac{C_{1} \Delta^{2}}{(\log n)^{2}} .
$$

Let us now prove (89). We denote $D_{u}=\left|\widehat{\partial_{u} A_{X}}(0, s)-\overline{\partial_{u} A_{X}}(0, s)\right|$. Recall that

$$
\overline{\partial_{u} A_{X}}(0, s)=\int_{-\Delta}^{\Delta} g(-v) \partial_{u} A_{X}(v, s) d s
$$

An integration by parts shows that

$$
\overline{\partial_{u} A_{X}}(0, s)=\frac{1}{\Delta^{2}}\left[\int_{0}^{\Delta} A_{X}(v, s) d v-\int_{-\Delta}^{0} A_{X}(v, s) d v\right]
$$

and since $\left|\partial_{u} A_{X}(u, s)\right|=O\left(s^{h}\right)$, with a Riemann series approximation,

$$
\Delta^{-2} \int_{0}^{\Delta} A_{X}(v, s) d v-\Delta^{-1} n^{-1} \sum_{k=1}^{n} A_{X}\left(\frac{k}{N, s}\right)=O\left(\frac{s^{h}}{n}\right)
$$

On the other hand, an integration by parts also shows that $\widehat{\partial_{u} A_{X}}(0, s)$, defined in (40), satisfies

$$
\begin{aligned}
\widehat{\partial_{u} A_{X}}(0, s)= & \frac{1}{N \Delta^{2}} \sum_{0<k / N-u \leq \Delta}\left|\left\langle X, \psi_{k / N, s}\right\rangle\right|^{2} \\
& -\frac{1}{N \Delta^{2}} \sum_{-\Delta \leq k / N-u \leq 0}\left|\left\langle X, \psi_{k / N, s}\right\rangle\right|^{2}+O\left(\frac{s^{h}}{N}\right) .
\end{aligned}
$$

Therefore, using once again the notation $W_{k}=\left\langle X, \psi_{k / N, s}\right\rangle$,

$$
D_{u}=\frac{1}{n \Delta}\left|\sum_{k=1}^{n}\left(\left|W_{k}\right|^{2}-\mathbb{E}\left\{\left|W_{k}\right|^{2}\right\}\right)-\sum_{k=-n+1}^{0}\left(\left|W_{k}\right|^{2}-\mathbb{E}\left\{\left|W_{k}\right|^{2}\right\}\right)\right|+O\left(\frac{s^{h}}{n}\right)
$$

Denoting $\widetilde{W}^{-}=\sum_{k=-n+1}^{0}\left|W_{k}\right|^{2}$ and $\widetilde{W}^{+}=\sum_{k=1}^{n}\left|W_{k}\right|^{2}$, we have

$$
\begin{equation*}
D_{u} \leq \frac{1}{n \Delta}\left(\left|\widetilde{W}^{+}-\mathbb{E}\left\{\widetilde{W}^{+}\right\}\right|+\left|\widetilde{W}^{-} \mathbb{E}\left\{\widetilde{W}^{-}\right\}\right|\right)+O\left(\frac{s^{h}}{n}\right) \tag{103}
\end{equation*}
$$

We are now going to prove that there exists a strictly positive constant C_{2} such that

$$
\begin{equation*}
\forall y, \quad \operatorname{Prob}\left\{D_{u}>y C_{2} \frac{s^{h}}{\Delta \sqrt{n}}\right\} \leq 6 e^{-y / 2} \tag{104}
\end{equation*}
$$

and since $\left|\overline{\partial_{u} A_{X}}(0, s)\right| \geq A s^{h}+o\left(s^{h}\right)$ with $A>0$, choosing $y=\log n / C_{2}$ will then imply (89).

Let us consider the random vector $W=\left(W_{1}, W_{2}, \ldots, W_{n}\right)$, let K_{W} denote the covariance operator of W and let $\left(e_{j}\right)_{j=1, \ldots, n}$ be its Karhunen-Loève basis. If $\left(\alpha_{j}\right)_{j=1, \ldots, n}$ are the eigenvalues of K_{W} corresponding to the eigenvectors $\left(e_{j}\right)_{j=1, \ldots, n}$, then

$$
W=\sum_{j=1}^{n} \sqrt{\alpha_{j}} \bar{W}_{j} e_{j}
$$

where \bar{W}_{j} are independent random variables with variance 1 . As a consequence,

$$
\widetilde{W}^{+}=\|W\|^{2}=\sum_{j=1}^{n} \alpha_{j} \bar{W}_{j}^{2}
$$

The following lemma, which is proved in [8], relies on a theorem by Bakirov [3].

LEMmA C.8. If $\widehat{W}=\sum_{j} \beta_{j} \bar{W}_{j}^{2}$, where \bar{W}_{j} are independent Gaussian random variables with variance 1 , and $\sum_{j} \beta_{j}^{2}=1$, then

$$
\forall y, \quad \operatorname{Prob}\{|\widehat{W}-\mathbb{E}\{\widehat{W}\}|>y\} \leq 6 e^{-y / 2}
$$

The random variable $\widehat{W}^{+}=\left(\sum_{j} \alpha_{j}^{2}\right)^{-1 / 2} \widetilde{W}^{+}$satisfies the requirements of Lemma C.8. Therefore,

$$
\forall y, \quad \operatorname{Prob}\left\{\left|\widetilde{W}^{+}-\mathbb{E}\left\{\widetilde{W}^{+}\right\}\right|>y\left(\sum_{j} \alpha_{j}^{2}\right)^{1 / 2}\right\} \leq 6 e^{-y / 2}
$$

but $\sum_{j} \alpha_{j}^{2}$ is equal to the Hilbert-Schmidt norm of K_{W},

$$
\sum_{j} \alpha_{j}^{2}=\sum_{j, k} \mathbb{E}\left\{W_{j} W_{k}^{*}\right\}
$$

which is bounded by $B s^{2 h} n$ because of (98a) and (99a). Hence,

$$
\forall y, \quad \operatorname{Prob}\left\{\left|\widetilde{W}^{+}-\mathbb{E}\left\{\widetilde{W}^{+}\right\}\right|>y \sqrt{B} s^{h} \sqrt{n}\right\} \leq 6 e^{-y / 2}
$$

The same applies to \widetilde{W}^{-}, and by combining the two and using (103), we obtain (104).

Proof of Lemma C.7. The three terms $\mathbb{E}\left\{W_{k} W_{l}^{*}\right\}, \mathbb{E}\left\{W_{k} Z_{l}^{*}\right\}$ and $\mathbb{E}\left\{Z_{k} Z_{l}^{*}\right\}$ can be written as

$$
I=\iint c_{Y}(\theta(u+s x)-\theta(v+s y)) \psi(x) \tilde{\psi}(y) d x d y
$$

where $(u, v)=(s k, s l)$ and ψ and $\tilde{\psi}$ are two wavelets with p vanishing moments. Clearly,

$$
\begin{equation*}
I=\iint\left[c_{Y}(\theta(u+s x)-\theta(v+s y))-c_{Y}(0)\right] \psi(x) \tilde{\psi}(y) d x d y \tag{105}
\end{equation*}
$$

For $|u-v| \leq \Delta,|x| \leq 1$ and $|y| \leq 1$, we have

$$
|\theta(u+s x)-\theta(v+s y)| \leq(\Delta+2 s) \sup _{|x-u| \leq \Delta+2 s}\left[\theta^{\prime}(x)\right] \leq(\Delta+2 s) C_{u},
$$

because θ is continuously differentiable. For Δ small enough, $\mid \theta(u+s x)-\theta(v+$ $s y) \mid$ is therefore in a neighborhood of 0 . Since η is assumed continuous in a neighborhood of 0 ,

$$
|\eta(\theta(u+s x)-\theta(v+s y))| \leq B
$$

for $|u-v| \leq \Delta,|x| \leq 1$ and $|y| \leq 1$.

Hence,

$$
\begin{aligned}
|I| & \leq \iint|\theta(u+s x)-\theta(v+s y)|^{h} B|\psi(x)||\tilde{\psi}(y)| d x d y \\
& \leq C(u) s^{h},
\end{aligned}
$$

where $C(u)$ is continuous. This proves (98a), (98b) and (98c).
Let us now prove (99). Since ψ and $\tilde{\psi}$ in (105) are compactly supported and have p vanishing moments, there exist two compactly supported functions β and $\tilde{\beta}$ such that $\psi(x)=\beta^{(p)}(x)$ and $\tilde{\psi}(y)=\tilde{\beta}^{(p)}(y)$. Integrating (105) by parts p times with respect to x and to y gives

$$
\begin{aligned}
I=\iint & \frac{\partial^{p}}{\partial x^{p}} \frac{\partial^{p}}{\partial y^{p}}\left\{|\theta(u+s x)-\theta(v+s y)|^{h} \eta(\theta(u+s x)-\theta(v+s y))\right\} \\
& \times \beta(x) \tilde{\beta}(y) d x d y .
\end{aligned}
$$

For $|u-v|>2 s$, however, one can show that

$$
\begin{aligned}
& \left|\frac{\partial^{p}}{\partial x^{p}} \frac{\partial^{p}}{\partial y^{p}}\left\{|\theta(u+s x)-\theta(v+s y)|^{h} \eta(\theta(u+s x)-\theta(v+s y))\right\}\right| \\
& \quad \leq \frac{M(u) s^{2 p}}{(|u-v|-2 s)^{2 p-h}}
\end{aligned}
$$

where $M(u)$ depends on h, on derivatives of θ up to order $2 p$ in a neighborhood of u and on derivatives of η up to order $2 p$ in a neighborhood of 0 . Therefore, there exists a continuous $M_{2}(u)$ such that

$$
|I| \leq M_{2}(u) \frac{s^{2 p}}{(s(|k-l|-2))^{2 p-h}}
$$

which proves (99a), (99b) and (99c).

REFERENCES

[1] Abry, P., Gonçalves, P. and Flandrin, P. (1995). Wavelets, spectrum analysis and $1 / f$ processes. Wavelets and Statistics. Lecture Notes in Statist. 103 15-29. Springer, New York.
[2] Adler, R. J. (1981). The Geometry of Random Fields. Wiley, New York.
[3] BAKIROV, N. K. (1989). Extrema of the distributions of quadratic forms of Gaussian variables. Theory Probab. Appl. 34 207-215.
[4] Billingsley, P. (1995). Probability and Measure, 3rd ed. Wiley, New York.
[5] Clerc, M. and Mallat, S. (1999). Shape from texture through deformations. In Proc. Seventh International Conference on Computer Vision 1405-410.
[6] Clerc, M. and Mallat, S. (2002). The texture gradient equation for recovering shape from texture. IEEE Trans. Pattern Anal. Machine Intelligence 24 536-549.
[7] Flandrin, P. (1989). On the spectrum of fractional Brownian motions. IEEE Trans. Inform. Theory 35 197-199.
[8] Gao, H.-Y. (1993). Wavelet estimation of spectral densities in times series analysis. Ph.D. dissertation, Dept. Statistics, Univ. California, Berkeley.
[9] GÅRDING, J. (1992). Shape from texture for smooth curved surfaces in perspective projection. J. Math. Imaging Vision 2 327-350.
[10] Malik, J. and Rosenholtz, R. (1997). Computing local surface orientation and shape from texture for curved surfaces. Internat. J. Comput. Vision 23 149-168.
[11] Mallat, S. (1999). A Wavelet Tour of Signal Processing, 2nd ed. Academic Press, New York.
[12] Patil, G. P. and Rao, C. R. (1994). Handbook of Statistics 12. Environmental Statistics. 661-689. North-Holland, Amsterdam.
[13] Perrin, O. and Senoussi, R. (1999). Reducing non-stationary stochastic processes to stationarity by a time deformation. Statist. Probab. Lett. 43 393-397.
[14] Priestley, M. B. (1965). Evolutionary spectra and non-stationary processes (with discussion). J. Roy. Statist. Soc. Ser. B 27 204-237.
[15] Sampson, P. D. and Guttorp, P. (1992). Nonparametric estimation of nonstationary spatial covariance structure. J. Amer. Statist. Assoc. 87 108-119.
[16] Yaglom, A. M. (1987). Correlation Theory of Stationary and Related Random Functions 1. Springer, Berlin.

CERMICS

Ecole Nationale des Ponts et Chaussées
INRIA
06902 Sophia-Antipolis
France
E-MAIL: Maureen.Clerc@cermics.enpc.fr

CMAP
Ecole Polytechnique
Palaiseau
France
AND
Courant Institute of
Mathematical Sciences
New York University
New York, New York 10012
E-mail: Stephane.Mallat@polytechnique.fr

[^0]: Received June 2000; revised December 2002.
 ${ }^{1}$ Part of this work was completed while the author was visiting the Statistics Department at Stanford University.
 ${ }^{2}$ Supported in part by MURI Grant F49620-96-1-0028 and NSF Grant IIS-0114391.
 AMS 2000 subject classifications. Primary 62M10, 60G12; secondary 60G35.
 Key words and phrases. Nonstationary processes, inverse problem, wavelets, warping, frequency modulation, scalogram, spectrogram.

