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SOME PROPERTIES OF THE EWMA CONTROL CHART
IN THE PRESENCE OF AUTOCORRELATION

By Wolfgang Schmid and Alexander Schöne

Europe-University, Frankfurt (Oder) and University of Ulm

Schmid extended the classical EWMA control chart to autocorrelated
processes. Here, we consider the tail probability of the run length in the in-
control state. The in-control process is assumed to be a stationary Gaussian
process. It is proved that the tails for the autocorrelated process are larger
than in the case of independent variables if all autocovariances are greater
than or equal to zero. The inequality is strict. Moreover, this result is
still valid for stationary processes having elliptically contoured marginal
distributions.

1. Introduction. For a long time it has been assumed in statistical pro-
cess control that the observations of the underlying process are independent.
Unfortunately, this assumption is frequently violated in practice [Box, Jenkins
and MacGregor (1974), Montgomery (1991), Chapter 8-8].

Several authors discussed how the classical Shewhart, EWMA and CUSUM
control charts behave for autocorrelated processes [e.g., Alwan and Roberts
(1988), Harris and Ross (1991), Woodall and Faltin (1994)]. It has turned out
that these schemes are not suitable if the same control limits are used as in
the case of independent variables. For this reason it is necessary to apply time
series models to construct control charts.

Harris and Ross (1991) and Montgomery and Mastrangelo (1991) analyzed
residual charts. A classical control scheme for independent variables is applied
to the residuals of the process. This procedure is permitted as long as the
residuals are independent.

An earlier attempt was made by Vasilopoulos and Stamboulis (1978). They
introduced a modified Shewhart chart for autoregressive processes. The dis-
tance between the mean of the sample and the target value is compared
with the standard deviation of the autocorrelated process. The run length
of this chart was studied in Schmid (1995). Here, we consider an extension of
the EWMA control chart to autocorrelated processes which was proposed by
Schmid (1996).

Let �Yt� be the in-control process. Let x1; x2; : : : denote realizations of the
observed process �Xt� and let µ0 x= E�Yt� be the target value. If, for example,
a shift occurs at time q, that is,

Xt = Yt + aI�q; q+1;:::��t�;(1)

only the mean of the process �Xt� is affected.
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The EWMA control scheme is based on the statistic

Zt x= �1− λ�Zt−1 + λXt for t ∈ N; λ ∈ �0;1�:(2)

The starting value Z0 x= z0 is frequently taken to be equal to the target value
µ0.

It is concluded that the process is out-of-control at time t if
∣∣Zt − µ0

∣∣ > c
√

Var0Zt:

The symbol Var0Zt denotes the variance of Zt with respect to the in-control
process. For a change point model [see (1)], Var0Zt is equal to the variance of
Zt with respect to the process �Xt�.

Schmid (1996) compared this control scheme with the classical EWMA chart
applied to the residuals. As a measure of performance the average run length
(ARL) was used. �Yt� was assumed to be an autoregressive process of order 1.
For a specified value of the shift the smoothing parameter λ was chosen such
that the out-of-control ARL is minimal. It has turned out that the minimum
out-of-control ARL of the modified EWMA chart is smaller than that of the
residual chart unless the coefficient of the autoregressive process is not too
small (roughly: α ≥ −0:6).

In this paper the run length in the in-control state, that is, for Xt = Yt

for all t, of the one-sided modified EWMA chart is considered. For reasons of
simplicity we write VarZt instead of Var0Zt. The run length is given by

Ne x= inf
{
t ∈ Nx Zt − µ0 > c

√
VarZt

}
;(3)

where c > 0 denotes a given constant. �Yt� is assumed to be a stationary
Gaussian process. Our main result (Theorem 1) states that the run length of
the autocorrelated process is larger than in the case of independent variables
provided that all autocovariances are greater than or equal to zero.

2. Main result. In the following we use the notation Piid, Eiid, Var iid and
Corr iid to refer to the case of independent variables �Yt� with E�Yt� = µ0
and VarYt = γ0 for all t. Corr stands for the correlation. Now, let Ck x=
�Cov �Ys;Yt��1≤s; t≤k.

Theorem 1. Assume that �Yt� is a stationary Gaussian process with auto-
covariance function �γν� satisfying γν ≥ 0 for all ν and γ0 > 0. If furthermore
z0 = µ0, then

P�Ne > k� ≥ Piid�Ne > k�(4)

for k ∈ N0. The inequality is strict for k ≥ 2 if γν > 0 for at least one ν ∈
�1; : : : ; k− 1�.

The proof is given in Section 3.
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Theorem 1 states that the tails of the stopping rule Ne are larger if the
process is autocorrelated. This implies that E�Nκ

e � ≥ Eiid �Nκ
e � for κ ∈ N0.

Consequently the ARL of the modified EWMA control chart for autocorrelated
variables is always greater than or equal to that in the case of independent
variables. Thus, if one falsely assumes that the underlying process is indepen-
dent, the true ARL is underestimated.

Example. Let �Yt� be the stationary solution of Yt = αYt−1 + εt, α ∈
�0;1�. Assume that the random variables �εt� are independent and identically
distributed with εt ∼ N �0; σ2� (normal distribution with mean 0 and variance
σ2). Thus �Yt� is a Gaussian process and γν = σ2α�ν�/

(
1− α2

)
≥ 0 for all ν.

Since Piid�Ne > k� is equal to P�Ne > k� if α is taken to be zero, Theorem 1
implies that Pα�Ne > k� ≥ P0�Ne > k�. Here the index expresses that the
probability is taken with respect to an AR(1)-process with coefficient α.

Remarks. (a) If λ = 1 and α ∈ �−1;0�, then P�Ne > 2� = P�Y1/
√
γ0 ≤

c; Y2/
√
γ0 ≤ c� < Piid�Ne > 2� [e.g., Tong (1980), Theorem 2.1.1]. This shows

that Theorem 1 is no longer valid if the autocovariances may be negative.
(b) Theorem 1 remains true if Ne is replaced by the stopping rule inf�t ∈

N �Zt − µ0 < c
√

VarZt�.
(c) Using a generalization of Slepian’s inequality for elliptically contoured

distributions [see Tong (1980), Theorem 4.3.6] it is possible to extend The-
orem 1 to stochastic processes whose marginal distributions are elliptically
contoured.

3. Proof of Theorem 1. The proof of Theorem 1 is based on the following
three lemmas.

Lemma 1. Let �Yt� be a (weakly) stationary process with mean µ0 and
autocovariance function �γh�. Furthermore, let λ ∈ �0;1�. Then we obtain for
i; t; t− i ∈ N0 that

2 Cov�Zt;Zt−i� = �1− λ�i VarZt−i +
1

�1− λ�i
(

VarZt − VarZi

)
:

Proof. The recursion (2) can be written as follows

Zt = �1− λ�iZt−i + λ
i−1∑
ν=0

�1− λ�νYt−ν:

It follows that

Zt −E�Zt� = �1− λ�i �Zt−i −E�Zt−i�� + λ
i−1∑
ν=0

�1− λ�ν �Yt−ν − µ0� :(5)
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Multiplying (5) on both sides by Zt−i −E�Zt−i� and taking the expectation
yields

Cov�Zt;Zt−i� = �1− λ�i VarZt−i + λ
i−1∑
ν=0

�1− λ�ν Cov�Yt−ν;Zt−i�:(6)

Also, multiplying (5) on both sides byZt−E�Zt� and taking the expectation,
we get

VarZt = �1− λ�i Cov�Zt;Zt−i� + λ
i−1∑
ν=0

�1− λ�ν Cov�Yt−ν;Zt�

= �1− λ�i Cov�Zt;Zt−i� + λ
i−1∑
ν=0

�1− λ�ν+i Cov�Yt−ν;Zt−i�

+ λ2
i−1∑
ν; µ=0

�1− λ�ν+µγν−µ:

Thus

λ
i−1∑
ν=0

�1− λ�ν Cov�Yt−ν;Zt−i�

= VarZt

�1− λ�i − Cov�Zt;Zt−i� − λ2
i−1∑
ν; µ=0

�1− λ�ν+µ−iγν−µ

= VarZt

�1− λ�i − Cov�Zt;Zt−i� −
VarZi

�1− λ�i ;(7)

since

VarZi = λ2
i−1∑
ν; µ=0

�1− λ�ν+µγν−µ:(8)

Inserting (7) in (6), the result follows. 2

Next we compare the behavior of two successive variances. Note that (8)
implies that VarZi ≥ λ2γ0 since γν ≥ 0 for ν ≥ 1. Assuming γ0 > 0 we obtain
VarZi ≥ λ2 Var iidZi > 0.

Lemma 2. Assume that �Yt� satisfies the assumptions of Lemma 1. More-
over, let γν ≥ 0 for all ν and γ0 > 0. Then, for t ≥ 1,

VarZt−1

VarZt

≤ Var iidZt−1

Var iidZt

:(9)

For t ≥ 2 the inequality is strict if γν > 0 for at least one ν ∈ �1; : : : ; t− 1�.
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Proof. Let x x= 1 − λ and ρν x= γν/γ0. Because of (8), inequality (9) is
equivalent to

(
x2�t−1� − x2t) t−1∑

ν; µ=0

xν+µρν−µ ≤
(
1− x2t)

( t−1∑
ν; µ=0

xν+µρν−µ −
t−2∑
ν; µ=0

xν+µρν−µ

)
:

Since

t−1∑
ν; µ=0

xν+µρν−µ −
t−2∑
ν; µ=0

xν+µρν−µ = 2xt−1
t−2∑
µ=0

xµρt−1−µ + x2�t−1�;

we get

t−1∑
ν; µ=0
ν 6=µ

xν+µρν−µ ≤ 2x1−t 1− x2t

1− x2

t−2∑
µ=0

xµρt−1−µ:(10)

Now, using induction, it can easily be proved that (10) is true. For t = 2 the
proof is obvious. Let us only consider the induction step �t;t+ 1�:

t∑
ν; µ=0
ν 6=µ

xν+µρν−µ ≤ 2xt
t−1∑
µ=0

xµρt−µ + 2x−t
1− x2t

1− x2
x
t−2∑
µ=0

xµρt−1−µ

≤ 2x−t
1− x2�t+1�

1− x2

t−1∑
µ=0

xµρt−µ:

The above inequality is strict if γν > 0 for at least one ν ∈ �1; : : : ; t�. 2

Lemma 2 implies that

VarZt−i
VarZt

=
i−1∏
ν=0

VarZt−ν−1

VarZt−ν
≤ Var iidZt−i

Var iidZt

:(11)

The next result plays a central role in the proof of Theorem 1. Its proof is
based on the preceding lemmas.

Lemma 3. Assume that the conditions of Lemma 2 are satisfied. Then, for
i; t; t− i ∈ N0

Corr�Zt;Zt−i� ≥ Corr iid�Zt;Zt−i�:

For i; t; t − i ∈ N, the inequality is strict if γν > 0 for at least one ν ∈
�1; : : : ; t− 1�.
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Proof. Because of Lemma 1 it follows that

2 Corr�Zt;Zt−i� = �1− λ�i
√

VarZt−i
VarZt

+ 1
�1− λ�i

√
VarZt

VarZt−i

(
1− VarZi

VarZt

)

≥ �1− λ�i
√

VarZt−i
VarZt

+ 1
�1− λ�i

√
VarZt

VarZt−i

(
1− Var iidZi

Var iidZt

)
(12)

= �1− λ�i
(√

VarZt−i
VarZt

+
√

VarZt

VarZt−i

Var iidZt−i
Var iidZt

)
;(13)

since by (8)

Var iidZt−i
Var iidZt

= 1
�1− λ�2i

(
1− Var iidZi

Var iidZt

)
:

The right-hand side of (13) is of the type g�z� x= a�z+ b/z� which is nonin-
creasing for z2 ≤ b. Thus, we get by (11),

g

(√
VarZt−i
VarZt

)
≥ g

(√
Var iidZt−i
Var iidZt

)
= 2 Corr iid

(
Zt;Zt−i

)

and the result follows.
According to Lemma 2 the inequality (12) is strict if γν > 0 for at least one

ν ∈ �1; : : : ; t− 1�. 2

Now we are able to give a proof of our main result.

Proof of Theorem 1. First note that

P�Ne > k� = P
(

max
1≤i≤k

Zi − µ0√
VarZi

≤ c
)
:

The random vector ��Z1−µ0�/
√

VarZ1 ; : : : ; �Zk−µ0�/
√

VarZk� has a mul-
tivariate normal distribution with mean 0. For λ = 1 the result follows directly
from Slepian’s inequality [see Theorem 2.1.1 of Tong (1980)]. If λ ∈ �0;1� we
make use of Lemma 3 and Slepian’s inequality to complete the proof. 2
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