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WITH AN APPLICATION TO CENSORED REGRESSION1
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Texas Tech University

The product-limit estimator (PLE) and weighted empirical processes
are two important ingredients of almost any censored regression analy-
sis. A link between them is provided by the generalized PLEs introduced
in this paper. These generalized PLEs are the product-limit integrals of
the empirical cumulative hazard function estimators in which weighted
empirical processes are used to replace the standard empirical processes.
The weak convergence and some large sample approximations of the gen-
eralized PLEs are established. As an application these generalized PLEs
are used to define some minimum distance estimators which are shown
to be asymptotically normal. These estimators are qualitatively robust. In
some submodels an optimal choice of the weight matrix is the covariate
matrix and some of these estimators are quite efficient at a few common
survival distributions. To implement these estimators some computational
aspects are discussed and an algorithm is given. From a real data exam-
ple and some preliminary simulation results, these estimators seem to be
very competitive to and more robust than some more traditional estimators
such as the Buckley–James estimator.

1. Introduction. The censored regression model is an important model
in survival analysis and has received much attention in the past as well as
in the recent literature. In almost all the works in censored regression, a
fundamental ingredient is the product-limit estimator (PLE). The PLE was
developed by Kaplan and Meier (1958) and is in fact the nonparametric max-
imum likelihood estimator of the underlying survival function. By now the
PLE is almost a standard part of any regression analysis.

In this paper we propose a generalization of the PLE. This generalized PLE
is defined via empirical cumulative hazard function estimators using weighted
empirical processes. By varying the weights we actually have a class of gener-
alized PLEs. Weighted empirical processes arise naturally in regression anal-
ysis and have been exploited successfully in the complete data case [cf. Koul
(1992)]. The connection between the PLE and the weighted empirical processes
so far has not been demonstrated, despite their being two seemingly natural
parts of censored regression analysis. The generalized PLEs proposed in this
paper link the two important tools. Potentially the generalized PLEs could be
as useful to the censored regression as the weighted empirical processes to the
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ordinary regression. As an application of these generalized PLEs, we will use
them to define and study some Koul (1985) type minimum L2 distance esti-
mators of the regression parameter. These estimators are qualitatively robust.
Under certain submodels, to be specified later, using the covariates matrix as
the weights minimizes the asymptotic variance within the class of all suit-
able weights and some of the estimators are quite efficient at a few common
survival distributions. Some goodness-of-fit tests of the model also naturally
arise from these estimators. For implementing these estimators, some compu-
tational aspects are discussed and an algorithm given. From an application
to the Stanford heart transplant data and preliminary simulation results, the
minimum distance estimators seem very competitive to and more robust than
some more traditional estimators such as the Buckley–James estimator.

We will organize the material as follows. In Section 2 we first discuss the
model and related literature. Then the generalized PLEs are introduced. The
convergence of these estimators is obtained via the martingale and counting
process theory [cf. Gill (1980), Shorack and Wellner (1986)]. Some large sample
approximations are also established. In Section 3 the generalized PLEs are
used to define the regression estimators. These estimators are shown to be
asymptotically normal. Various properties such as the asymptotic efficiency
and the choice of the weight matrix are discussed. In Section 4 robustness is
briefly discussed. Finally Section 5 discusses some computational issues and
an algorithm is applied to the Stanford heart transplant data.

2. The model and the generalized PLEs. Let

Yi = z∗iβ+ εi; i = 1;2; : : : ; n;(1)

where the covariates z1; : : : ; zn are k-dimensional nonrandom vectors, ∗ de-
notes the transpose, and ε1; : : : ; εn are i.i.d. with an unknown cumulative
distribution function (c.d.f.) F. In the censored regression model, one only ob-
serves Xi = min�Yi;Ci� and δi = �Yi ≤ Ci�, i = 1; : : : ; n, where C1; : : : ; Cn
are independent and �A� denotes the indicator function of an event A. The
c.d.f. Gi of Ci is unknown and Yi; Ci are independent. For some discussion
on related models, see Tsiatis (1990) and Kalbfleisch and Prentice (1980).

In the censored regression model, earlier works include some extensions of
the well-known least squares method. See Buckley and James (1979), Koul,
Susarla and Van Ryzin (1981) and Miller (1976). Except for the Koul–Susarla–
Van Ryzin estimator, these extensions of the least squares method require
iteration. Applying these three estimators to the Stanford heart transplant
data, Miller and Halpern (1982) concluded that the Buckley–James estimator
was the most reliable of the three and thus was preferred together with the
partial likelihood estimator of Cox (1972) for the proportional hazard model.
Later Leurgans (1987) proposed an estimator that is similar in spirit to the
Koul–Susarla–Van Ryzin estimator and appears to be competitive with the
Buckley–James estimator. Notice that the Buckley and James estimator inher-
its the nonrobustness of the least squares method and loses the edge of com-
putational simplicity of the original least squares estimator. Recently there
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also have been some extensions of other familiar procedures to the censored
regression model. These include the M-estimation [Ritov (1990), Zhou (1992)]
and the rank method [Tsiatis (1990), Lai and Ying (1991), Ying (1993)]. We
will introduce some minimum distance estimators in Section 4. The minimum
distance method often has certain robustness advantages in the complete data
case. See Section 4 for some more discussion.

Let D = �dij�n×k be a matrix whose elements are, for technical reasons,
nonnegative. For −∞ < t < ∞ and any fixed b ∈ Rk, define the weighted
empirical processes

H1
nj�ty b� =

n∑
i=1

dijδi�Xi − z∗ib ≤ t�; Knj�ty b� =
n∑
i=1

dij�Xi − z∗ib ≥ t�:

Note that for notational convenience we have suppressed the dependence of
H1
nj�ty b�, Knj�ty b� on D. These weighted empirical processes are the building

blocks in our analysis here.
Define the empirical cumulative hazard estimator

3̂nj�ty b� =
∫ t
−∞

dH1
nj�uy b�

Knj�uy b�
; −∞ < t <∞;(2)

where and throughout this paper,
∫ t
−∞ =

∫
�−∞;t� for t < ∞. Note that (2) is

scale invariant with respect to D.
Now we can define, for each fixed b, the generalized product-limit estimator

F̂nj�ty b� = 1−
n∏
s≤t

(
1− 13̂nj�sy b�

)
; −∞ < t <∞;(3)

where 1h�s� = h�s� − h−�s� for any function h and the subscript − denotes
the left limit. Also 13̂nj�sy b� is taken to be zero if 3nj�sy b� is not defined.
Note that when d1j = · · · = dnj = 1, (2) and (3) reduce to the usual Aalen–
Nelson estimator (of the cumulative hazard function) and the Kaplan and
Meier estimator (of the lifetime distribution), respectively. For convenience
we will write F̂nj�t� ≡ F̂nj�tyβ�.

Let H1
nj = EH1

nj and Knj = EKnj. For any c.d.f. H, denote 1−H by H̄. Then

H1
nj�ty b� =

n∑
i=1

dij

∫ t
−∞

Ḡi�u+ z∗ib�dF
(
u+ z∗i�b− β�

)
;

Knj�ty b� =
n∑
i=1

dijḠi�t+ z∗ib�F̄
(
t+ z∗i�b− β�

)
:

(4)

Again for convenience we will use H1
nj�tyβ� ≡ H1

nj�t�, and so on. Let 3�t� ≡∫ t
−∞F̄

−1
− dF be the cumulative hazard function corresponding to F. A crucial

observation is that, for t < sup�ux Knj�u� > 0�;
∫ t
−∞

dH1
nj�u�

Knj�u�
=
∫ t
−∞

�∑n
i=1 dijḠi−�u+ z∗iβ��dF�u�∑n
i=1 dijḠi−�u+ z∗iβ�F̄−�u�

= 3�t�;

regardless of what the weights dij’s may be.
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By what has now become a standard result in censored data analysis,

Mnj�t� = H1
nj�tyβ� −

∫ t
−∞

Knj�uyβ�d3�u�; −∞ < t <∞; j = 1; : : : ; k

are mean zero square integrable martingales with respect to σ-algebras,

Ft = σ�δi�Xi − z∗iβ ≤ t�; �Xi − z∗iβ ≤ t�x i = 1; : : : ; n�; −∞ < t <∞:
Their predictable covariance processes are

�Mnj;Mnl��t� =
∫ t
−∞

( n∑
i=1

dijdil�Xi − z∗iβ ≥ u�
)
�1− 13�u��d3�u�;

for −∞ < t < ∞ and j; l = 1; : : : ; k. See Corollary 3.1.1 of Gill (1980) or
(7.8.10) of Shorack and Wellner (1986) for related assertions.

For j = 1; : : : ; k let

Unj =
F̂nj −F
1−F ; Rnj =

1− F̂nj

1−F :

Define Tnj = sup�ux Knj�u� > 0�, Jnj�·� = �· ≤ Tnj� and the stopped process
U
Tnj
nj �·� = U

Tnj
nj �Tnj ∧ ·�, where ∧ denotes the minimum. Since Knj is left con-

tinuous, Jnj is predictable. Thus similarly to (3.2.12) of Gill (1980) or (7.8.17)
of Shorack and Wellner (1986), for j = 1; : : : ; k,

U
Tnj
nj =

∫ t
−∞

Rnj−Jnjd�3̂nj − 3� =
∫ t
−∞

Rnj−

Jnj

Knj

dMnj;

which are mean zero locally square integrable martingales with predictable
covariation processes:

�UTnj
nj ;U

Tnl
nl ��t� =

∫ t
−∞

JnjJnlRnj−�u�Rnl−�u�
Knj�u�Knl�u�

( n∑
i=1

dijdil�Xi − z∗iβ ≥ u�
)

× �1− 13�u��d3�u�; t <∞:
(5)

Let

τj =
√

n∑
i=1

d2
ij; sj =

n∑
i=1

dij; Wnj =
sj

τj
Unj; j = 1; : : : ; k:(6)

The asymptotic behavior of our regression estimators depends on the asymp-
totic behavior of the Wnj’s, which is given by Theorem 1. Let

0nj�ty b� =
1
sj

n∑
i=1

dijḠi−�t+ z∗ib�;

0ndjl�ty b� =
1
τjτl

n∑
i=1

dijdilḠi−�t+ z∗ib�:
(7)

We will abbreviate 0nj�tyβ� ≡ 0nj�t�; and so on. For later use we will also
consider F̂n0, Wn0 and 0n0, and so on, which are defined using the weights
di0 ≡ 1.
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Theorem 1. Suppose for some T < ∞, F̄�T� > 0 and 0nj; 0ndjl converge
pointwise to some continuous limits 0j; 0djl on �−∞;T� with inf j 0j�T� > 0.
Then

�Wn0; : : : ;Wnk� → �W0; : : : ;Wk� in Dk+1�−∞;T�;
whereW0; : : : ;Wk are jointly Gaussian with mean zero and predictable covari-
ance processes:

�Wj;Wl��t� =
∫ t
−∞

0djlF̄

0j0lF̄
3
−
dF; t < T:(8)

Proof. By the continuity and monotonicity, the convergences of 1 − 0nj,
1−0ndjl to 0j; 0djl are uniform. Thus by the law of large numbers, with prob-
ability 1,

sup
t∈�−∞;T�

∣∣∣∣
1
sj

Knj�t� − 0jF̄�t�
∣∣∣∣→ 0

and

sup
t∈�−∞;T�

∣∣∣∣
1
τjτl

n∑
i=1

dijdil�Xi − z∗iβ ≥ u� − 0djlF̄�t�
∣∣∣∣→ 0:

From these and similarly to Theorem 7.3.1 in Shorack and Wellner (1986),

sup
t∈�−∞;T�

�F̂nj�t� −F�t�� → 0:

Now Theorem 1 follows from combining these results and (5) in an argument
similar to Theorem 4.2.1 of Gill (1980) or Theorem 7.8.1 of Shorack and Well-
ner (1986). 2

To apply the generalized PLEs to censored regression, we establish some
large sample approximations next. For that purpose we make the following
assumptions. Let Z = �z1; : : : ; zn�∗. We will use � · � to denote the Euclidean
norm in Rk.

A1. maxi �zi� ≤ K and na = O�τj� for some a > 0, K < ∞ and j =
1; : : : ; k.

A2. F and Gi have Lebesgue densities f, gi, respectively. In addition,
supt �f′�t�� ≤ C, supt �gi�t�� ≤ C, i = 1; : : : ; n, for some C > 0 and supiE�Yi ∧
Ci�r <∞ for some r > 0; f′ is uniformly continuous and integrable. As an→ 0,∫∞
−∞w�t; an�dt = o�1� where

w�t; an� = sup
�s�<an
��f′�t+ s� − f′�t�� + �f�t+ s� − f�t���:

A3. For some T;B<∞, �β�≤B, F̄�T+2KB�>0 and lim infn 0nj�Ty b� >
0, j = 0; : : : ; k for 0nj�ty b� in (7) and �b� ≤ B.
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The assumption A2 and the rate assumption in A1 are needed in the ap-
proximations in Theorem 2 and Theorem 3. The quantity T in A3, like the T
in Theorem 1, corresponds to a usual practice in survival analysis. The pur-
pose is to avoid possible upper tail instability. Also under A3 we do not have
to stop Unj at Tnj in the asymptotic analysis.

Theorem 2 gives uniform approximations of empirical processes by their
expectations. Lai and Ying (1988) used Alexander’s (1984) inequality to obtain
these results for the case of equal weights. Under the rate assumption in A1,
the first part of Theorem 2 can be adapted from their Theorem 1 and the
second from their Theorem 3. Thus the proofs will be omitted. Note that we
use sj; τj in scaling, rather than n as in Lai and Ying (1988). To avoid technical
complications we consider the range �−∞;T�; thus the modification in Lai and
Ying (1988) on F̂nj is not needed. Let

3nj�ty b� =
∫ t
−∞

hnj�uy b�du
Knj�uy b�

; Fnj�ty b� = 1− exp�−3nj�ty b��;

where hnj�uy b� = ∂H1
nj�uy b�/∂u: We will abbreviate “with probability 1” to

w.p.1.

Theorem 2. Suppose A1 and A2 hold. Then for any c, ε > 0, 0 < r < 1,
w.p.1,

sup
�b�<B; t≤T

�Qnj�ty b� −EQnj�ty b�� = o�τ1+ε
j �;

sup
t≤T; �b−b′�≤cn−r

�Qnj�ty b� −EQnj�ty b� −Qnj�ty b′� +EQnj�ty b′��

= o�τ1−r/2+ε
j �;

where Qnj is either H1
nj or Knj. Thus when A3 also holds,

sup
t≤T; �b�<B

�F̂nj�ty b� −Fnj�ty b�� = o
(
τ1+ε
j

sj

)
;(9)

sup
t≤T; �b−b′�≤τ−rj

�F̂nj�ty b� −Fnj�ty b� − F̂nj�ty b′� +Fnj�ty b′��

= o
(
τ

1−r/2+ε
j

sj

)
:

(10)

In Theorem 3 we approximate Fnj�tyβ + 1� by a linear function of 1. For
j = 0; : : : ; k and l = 1; : : : ; k let

0nzjl�ty b� =
1
sj

n∑
i=1

dijzilḠi−�t+ z∗ib�;

0nzj•�ty b� = �0nzj1�ty b�; : : : ; 0nzjk�ty b��∗:
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Let λ�t� = f�t�/F̄�t� be the hazard rate function of F. Then dλ�t� = �f′F̄ +
f2�/F̄2 dt. Define the k-dimensional vector functions

ξj�t� = F̄�t�
∫ t
−∞

0nzj•�uyβ�
0nj�uyβ�

dλ�u�; t ≤ T; j = 0; : : : ; k:

Also note that Fnj�·yβ� = F�·�.

Theorem 3. Under A1 to A3, for bn→ 0,

Fnj�tyβ+ bn� = F�t� + ξ∗j�t�bn + o��bn��;
uniformly for t ≤ T.

Proof. Since f′ is uniformly continuous and maxi �zi� ≤K, by the Taylor
expansion we have

f�u+ z∗ibn� = f�u� + f′�u�z∗ibn +O�w�u;K�bn���z∗ibn
= f�u� + f′�u�z∗ibn + o��bn��;

uniformly in u and i. Similarly, F̄�u + z∗ibn� = F̄�u� − f�u�z∗ibn + o��bn��;
uniformly in u and i. Let

R =
f�u�0nj�uyβ+ bn� + f′�u�0∗nzj•�uyβ+ bn�bn
F̄�u�0nj�uyβ+ bn� − f�u�0∗nzj•�uyβ+ bn�bn

:

Using the expansions of f and F̄ in R, we have

hnj�uyβ+ bn�
Knj�uyβ+ bn�

−R

=
�F̄�u� − f�u��0nj�uyβ+ bn� − �f�u� + f′�u��0∗nzj•�uyβ+ bn�bn

F̄�u�0nj�uyβ+ bn� − f�u�0∗nzj•�uyβ+ bn�bn + 0nj�uyβ+ bn�o��bn��

× 0nj�uyβ+ bn�o��bn��
F̄�u�0nj�uyβ+ bn� − f�u�0∗nzj•�uyβ+ bn�bn

= rn�u�;
say. Under A3, 0nj�uyβ + bn� > 0. Dividing both the numerator and the de-
nominator of rn by 0nj�uyβ + bn� and using 0nzjl ≤ K0nj, and F̄�T� > 0,
we see that, for bn → 0, rn�u� = o��bn��; uniformly in i and u < T. Look-
ing back at the beginning of the proof, we see that the o��bn�� is actually
O�w�u;K�bn��� ·O��bn��. Thus

∫ t
−∞ rn�u�du = o��bn��.

Now some algebra gives

R− f�u�
F̄�u�

=
�f′�u�F̄�u� + f2�u��0∗nzj•�uyβ+ bn�bn

F̄20nj�uyβ+ bn�
+ �f′�u�F̄�u� + f2�u��o��bn��;
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uniformly in i and u < T. Note that to get the last equality we have again
used 0nzjl ≤K0j and F̄�T� > 0. Combining these results, we have

3nj�tyβ+ bn� =
∫ t
−∞

f�u�du
F̄�u�

+ f
′�u�F̄�u� + f2�u�

F̄2�u�
0∗nzj•�uyβ+ bn�bn
0nj�uyβ+ bn�

du

+ o��bn��

= 3�t� +
∫ t
−∞

0∗nzj•�uyβ�
0j�uyβ�

dλ�u�bn + o��bn��;

uniformly for t ≤ T. Note that in obtaining the last equality we have used
∫ T
−∞

λ′�u��0nj�uyβ+ bn� − 0nj�uyβ��du = o�1�;
∫ T
−∞

λ′�u��0njl�uyβ+ bn� − 0njl�uyβ��du = o�1�;

j = 0; : : : ; k, l = 1; : : : ; k; which follow from A1 to A3. Since Fnj is obtained
from 3nj through a simple exponential function, the assertion of Theorem 3
follows. 2

3. Estimating the regression parameter. In the complete data case,
the minimum L2 distance estimation has been an important and interesting
alternative in parametric estimation, especially in the context of robust infer-
ences. When the underlying distribution has some known parametric form, the
minimum L2 distance estimators are usually asymptotically minimax robust
[Beran (1977), (1982), Millar (1983)], have some optimal properties of quanti-
tative robustness [Donoho and Liu (1988a)] and are void of certain pathologies
of non-L2 distance estimators [Donoho and Liu (1988b)]. Also, many minimum
L2 distance estimators are highly efficient at some familiar parametric models
for proper choices of the integrating measure [Koul and DeWet (1983), Parr
and Schucany (1980)]. Using the generalized PLEs, we now introduce some
minimum L2 distance estimators in the censored regression.

For easier applications, let us modify the generalized PLEs F̂nj�ty b�, j =
0;1; : : : ; k; to be 1 on and after their largest jump points, respectively. Let H
be a σ-finite measure that assigns finite measure to any bounded interval.
Define the estimation function

Mnd�b� =
k∑
j=1

s2
j

τ2
j

∫ ∞
−∞

(
F̂nj�ty b� − F̂n0�ty b�

)2
dH�t�:(11)

We define the estimator β̂nd of β as any minimizer in b, or within o�1� of
achieving the minimum, of Mnd�b�:

Mnd�β̂nd� ≤ inf
b
Mnd�b� + o�1�:(12)

A large class of estimators are obtained by varying the weights D and the
integrating measure H. The choices of D and H will be discussed in the
remarks after the proof of Theorem 4.
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Note that, when there is no censoring, F̂nj�ty b�’s reduce to some weighted
empirical processes and Mnd�b� reduces to

k∑
j=1

∫ ∞
−∞

( n∑
i=1

1
τj
�dij − d̄·j��Yi − z∗ib ≤ t�

)2

dH�t�:

Thus when there is no censoring and for b = β, each sum
∑n
i=1 in Mnd�b� has

expectation zero. The estimators β̂nd are extensions to the multiple censored
regression of the minimum L2 distance estimators of Koul (1985) for regres-
sion with complete data. Let Z = �z1; : : : ; zn�∗ and Z̄ be the n × k matrix
whose row vectors are identically z̄ = ∑n

i=1 zi. Koul (1985) used the weights
��Z− Z̄�∗�Z− Z̄��−1/2zi’s, which may be negative even if zi’s are nonnegative.
Thus these weights cannot be used here in the censored regression.

To study the asymptotic properties of β̂nd we first give some uniform ap-
proximations of Mnd�b� in local neighborhoods of β. We make the following
additional assumption.

A4. �Z − Z̄�∗�Z − Z̄� is invertible. For An = ��Z − Z̄�∗�Z − Z̄��−1/2 and
j = 1; : : : ; k, �τj/sj�A−1

n converges to a positive definite matrix. H is a finite
measure with support in �−∞;T�.

The assumption on An gives some control over the norm of �τj/sj�A−1
n .

If �z1; : : : ; zn� is a realization of i.i.d. copies of a random vector z, then this
convergence assumption is satisfied with probability 1 if Cov�z; z∗� is positive
definite. The assumption on H makes the integral small when the integrand
is small.

Now recall Wnj in (6) and ξj in Theorem 3. For j = 1; : : : ; k let

ηj�t� =
sj

τj
�ξj�t� − ξ0�t��; Vnj�t� =

sj

τj
�F̂nj�t� − F̂n0�t��

and

M̃�b� =
k∑
j=1

∫ ∞
−∞
�Vnj�t� + η∗jAnb�2 dH�t�:

Then M̃�b� is quadratic in b and has the minimizer
( k∑
j=1

∫ ∞
−∞

Anηjη
∗
jAn dH�t�

)−1 k∑
j=1

∫ ∞
−∞

Anηj�t�Vnj�t�dH�t�:

Some approximations of Mnd are given in the following result.

Lemma 1. Suppose A1 to A3 hold. Then for any bn→ 0, w.p.1,

Mnd�β+ bn� =
k∑
j=1

∫ ∞
−∞

{
Vnj�t� + η∗jbn + o

(
1+ sj

τj
�bn�

)}2

dH�t�;(13)
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where o�·� is uniform in t. Hence if A4 also holds, then for any L > 0, w.p.1,

sup
�1�<L

�Mnd�β+An1� − M̃�1�� = o�1�:(14)

Proof. First we will derive a more convenient form of approximation from
Theorem 2. Note that τ2

j ≤Ksj. For a fixed 0 < r < 1, if �bn� > τrj, then

τ
1+�1−r�
j

sj
=

τ2
j

sjτ
r
j

≤ Bτ−rj < B�bn�:

If �bn� ≤ τ−rj , then for ε < r/2, −r/2+ ε < 0 and so τ−r/2+εj = o�1� under A1.
Thus from (9) and (10) in Theorem 2 we always have, for bn→ 0, w.p.1,

sup
t≤T

∣∣F̂nj�tyβ+ bn� −Fnj�tyβ+ bn� − F̂nj�tyβ� +Fnj�tyβ�
∣∣

= o
(
τj

sj
+ �bn�

)
:

(15)

Now from (15) and Theorem 3 we have, w.p.1,

Mnd�β+ bn�

=
k∑
j=1

∫ ∞
−∞

{
sj

τj

(
F̂nj�tyβ� −F�t� + F̂nj�−tyβ� −F�−t�

)

+ o
(

1+ sj
τj
�bn�

)
+ sj
τj
�ξj�t� − ξ0�t��∗bn + o

(
sj

τj
�bn�

)}2

dH�t�

=
k∑
j=1

∫ ∞
−∞

{
Vnj�t� + o

(
1+ sj

τj
�bn�

)
+ η∗jbn

}2

dH�t�;

where o�·� is uniform in t. This proves the first assertion of Lemma 1.
By A4, the smallest and largest eigenvalues of �τj/sj�A−1

n converge to two
positive numbers, respectively. Thus for some c1; c2 > 0 and large n,

c1�1� ≤
τj

sj
�A−1

n 1� ≤ c2�1� or c1�An1� ≤
τj

sj
�1� ≤ c2�An1�;(16)

for any 1. Note that since τj ≤ Ksj, we have �τj/sj� ≤ �K/τj� = o�1� under
A1. Thus for fixed �1� < L, �An1� → 0. Now the second assertion of Lemma
1 follows from taking bn = An1 in (13). 2

Using the convergence in Theorem 1 and the approximations in Theorems 2
and 3 and Lemma 1, we can obtain the asymptotic normality of the estimator
β̂nd.
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Theorem 4. (a) Suppose A1 to A3 hold and, for some ε > 0, α > 0;

lim inf
n

inf
�b�>α

k∑
j=1

∫ ∞
−∞

{
sj

τ1+ε
j

�Fnj�tyβ+ b� −Fn0�tyβ+ b��
}2

dH�t� > 0:(17)

Then for any β̂nd in (12), �β̂nd − β� = op�1�.
(b) Suppose A1 to A4 hold. In addition, suppose �β̂nd − β� = op�1�,

k∑
j=1

∫ ∞
−∞

τ2
j

s2
j

ηjη
∗
j�t�dH�t� converges to a positive definite matrix(18)

and

6d = lim
n
6−1
d16d26

−1
d1 exists,(19)

where

6d1 =
k∑
j=1

∫
Anηjη

∗
jAn dH�t�;

6d2 = 2
k∑

j; l=1

∫ ∞
−∞

∫ t
−∞

Anηj�s�η∗l �t�An ·C�s�F̄�s�F̄�t�dH�s�dH�t�;

C�t� =
〈
Wj −

sj

τj
√
n
W0;Wl −

sj

τj
√
n
W0

〉
�t�

=
∫ T
−∞

(
0jl

0j0l
− sj

τj
√
n

00l

000l
− sl
τl
√
n

00j

000j
+ sjsl

nτjτl

000

0000

)
dF

F̄2
:

Then

A−1
n �β̂nd − β� →D N�0; 6d�:

Proof. (a) By Theorem 2, w.p.1,

1

minj τ
2ε
j

Mnd�β+ b�

≥
k∑
j=1

∫ ∞
−∞

{
sj

τ1+ε
j

(
F̂nj�tyβ+ b� − F̂n0�tyβ+ b�

)}2

dH�t�

= o�1� +
k∑
j=1

∫ ∞
−∞

{
sj

τ1+ε
j

�Fnj�tyβ+ b� −Fn0�tyβ+ b��
}2

dH�t�;

uniformly in b. But Mnd�β� =
∑k
j=1

∫∞
−∞V

2
nj�t�dH�t� = Op�1� by Theorem 1.

Thus

1

minj τ
2ε
j

Mnd�β� =
1

minj τ
2ε
j

Op�1� = op�1�:
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Therefore the assertion follows.
(b) From (a) and (13) we have

Mnd�β̂nd� =
k∑
j=1

∫ ∞
−∞

(
Vnj�t� + η∗j�β̂nd − β� + op

(
1+ sj

τj
�β̂nd − β�

))2

dH�t�

=
k∑
j=1

∫ ∞
−∞

(
Vnj�t� + op�1+ �A−1

n �β̂nd − β��� + η∗j�β̂nd − β�
)2
dH�t�;

where op�1� and op��A−1
n �β̂nd − β��� are uniform in t. Now using �a + b�2 ≥

1
2a

2 − b2, we have, for large n,

Mnd�β̂nd�

≥
k∑
j=1

1
2
�β̂nd − β�∗

∫ ∞
−∞

ηjη
∗
j�t�dH�t��β̂nd − β�

−
k∑
j=1

∫ ∞
−∞

(
Vnj�t� + op�1� + op��A−1

n �β̂nd − β���
)2
dH�t�

≥ c�sj
τj
�β̂nd − β��2 −

k∑
j=1

∫ ∞
−∞
�Vnj�t� + op�1+ �A−1

n �β̂nd − β����2 dH�t�

≥ c

c2
2

�A−1
n �β̂nd − β��2 −

k∑
j=1

∫ ∞
−∞
�Vnj�t� + op�1+ �A−1

n �β̂nd − β����2 dH�t�;

where to obtain the second last and the last inequalities we have used (18)
and (16), respectively. From this and the Cauchy–Schwarz inequality,

c

c2
2

�A−1
n �β̂nd − β��2

≤Mnd�β̂nd� + 2
k∑
j=1

∫ ∞
−∞

V2
dj�t�dH�t� + op�1+ �A−1

n �β̂nd − β��2�:

Since Mnd�β̂� ≤ Mnd�β� + o�1� = Op�1�, it follows that �A−1
n �β̂nd − β�� =

Op�1�. Thus by (14) we get

A−1
n �β̂nd − β� =

( k∑
j=1

∫ ∞
−∞

Anηjη
∗
jAn dH�t�

)−1

×
k∑
j=1

∫ ∞
−∞

Anηj�t�Vnj�t�dH�t� + op�1�:

Note that

Vnj�t� = F̄�t��Wnj�t� −
sj

τj
√
n
Wn0�t��:
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Thus by Theorem 1 we have

A−1
n �β̂nd − β� →D N�0; 6d�;

for 6d in (19).

Remarks. (i) Random covariates. Sometimes the covariates z1; : : : ; zn are
assumed to be i.i.d. random vectors. In this case the theory for the gener-
alized PL estimators and the Koul type estimators is still valid with proper
modification.

(ii) The weights D. To better understand the choice of D, let us look at the
special case when

Ḡi�t+ z∗iβ� ≡ F̄α�t�; i = 1; : : : ; n;(20)

for some α ≥ 0. These conditions can arise from certain reliability models
and are often used to simplify the conditions in censored regression analysis
[Chen, Hollander and Langberg (1982)]. The uncensored complete data case
corresponds to α = 0. Under (20), ηj reduces to the jth column of f�Z−Z̄�∗D1,
where D1 = Ddiag�1/τ1; : : : ;1/τk� and C�t� reduces to the �j; l� element of∫ T
−∞ F̄

−�2+α� dF�D1 − D̄1�∗�D1 − D̄1�: Thus

k∑
j=1

Anηjη
∗
jAn = f2An�Z− Z̄�∗D1D

∗
1�Z− Z̄�An

and
∑k
j=1Anηj�s�η∗j�t�AnC�s; t� reduces to

1
1+ αf�s�f�t�F̄�s�F̄�t��F̄

−�1+α� − 1�An�Z− Z̄�∗

× �D1 − D̄1�∗�D1 − D̄1�D∗1�Z− Z̄�An:

If �D∗�Z− Z̄��−1 exists, then

6d = lim
n
σ2A−1

n �D∗1�Z− Z̄��−1�D∗1D1��Z∗D1�−1A−1
n ;

where

σ2 =
(∫ ∞
−∞

f2 dH

)−2

×
∫ ∞
−∞

∫ t
−∞

1
1+ αf�s�f�t�F̄�s�F̄�t��F̄

−�1+α� − 1�dH�s�dH�t�:
(21)

For nonnegative definite matrices A; B, write A ≥ B if A−B is nonnegative
definite. As in Koul (1985), from the multivariate Cauchy–Schwarz inequality
we get [note that D̄∗�Z− Z̄� = �0�k×k],

�D1 − D̄1�∗�D1 − D̄1� ≥ D∗1�Z− Z̄�A2
n�Z− Z̄�∗D1 or 6d ≥ σ2Ik×k;

with equality if D1 = ZM for some invertible M. Hence if the covariates zi’s
are nonnegative, the choice D = Z will minimize the variance of b∗A−1

n �β̂nd−
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β�, for any b ∈ Rk. In survival analysis, often the covariates, such as the age,
blood pressure of the patients, gender or treatment indicator, are nonnegative.
In general, the nonnegativity can be achieved by transforming the parameter
space.

(iii) Asymptotic efficiency. To better understand the asymptotic efficiency
of β̂nd, again suppose (20) holds. Then the proper version of the asymptotic
normality of the rank or M-estimator β̂ [cf. Ritov (1990), Tsiatis (1990), Lai
and Ying (1991)] with efficient score and integration range �−∞;T� is

A−1
n �β̂− β� →D N�0; σ2

e Ik×k�;
where

σ2
e =

(∫ T
−∞

(
λ′2

λ
F̄1+α

)
�t�dt

)−1

:

With the use of some “tampering” functions, Lai and Ying (1991) allow T =
∞. To adaptively estimate the efficient score function, the density f and its
derivative f′ often have to be estimated by splitting the sample into two parts.

Let σ2 be as in (21), with H the Lebesgue measure restricted to �−∞;T�.
For the purpose of comparison we take T = ∞ in σ2 and σ2

e . For some of the
common error distributions in survival analysis, Table 1 gives the numerical
values of σ2

e and σ2 for α = 0, 1/3, 1/2 and 1, corresponding to 0%;25%; 33%
and 50% censoring, respectively. Where available, the exact theoretical val-
ues are given in the parentheses. The densities of Weibull(c) and gamma(c)
are cxc−1 exp�−xc� and 0−1�c�xc−1 exp�−x�, respectively, and log(Weibull(c))
denotes the natural logarithm transform of the Weibull(c) distribution, and
so on.

Table 1 shows that, under (20), the asymptotic efficiency of the minimum
distance estimators with dH�t� = dt is quite high at normal and logistic sur-
vival distributions. For the other distributions, the efficiency often increases
as the censoring is increased. In some preliminary simulation studies the min-
imum distance estimators also appeared highly efficient. Note that these esti-
mators require neither estimating the densities nor splitting the sample. Thus
they are easier to compute and may have more stable finite sample behavior.
The small sacrifice in the asymptotic efficiency may well be compensated for.

(iv) Inference and goodness-of-fit tests. For inference on β, a Wald-type
statistic requires a consistent estimator of the asymptotic covariance matrix
6d: The matrix 6d contains the density function f and is difficult to esti-
mate reliably in the presence of censoring. There are some possible resam-
pling alternatives to avoid this difficulty. One is the one sample bootstrap,
with the individual data points being �Xi; zi�: Another is to use the limiting
behavior of Mnd�β�; which involves integrals of squared transformed Brown-
ian bridges. Orthogonal decomposition of the covariance processes [cf. Loéve
(1963), page 478] shows that Mnd�β� is asymptotically an infinite quadratic
form of standard normal random variables. Numerically simulating the esti-
mated quadratic form provides a basis for inference on β. A third possibility
is to directly simulate the involved transformed Brownian bridges.
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Table 1

Comparison of the factors σ2 and σ2
e at various error distributions and under the submodel (20)

s2 s2
e s2 s2

e

Normal log(Weibull(1))
α=0 1.0953 1.0007(1) α = 0 1.3140 1.0051(1)
α=1/3 1.2259 1.1281 α = 1/3 1.5006 1.3423
α=1/2 1.3016 1.1873 α = 1/2 1.6111 1.5113
α=1 1.5851 1.3521 α = 1 2.0391 2.0201
Logistic log(Weibull(2))
α=0 3.0548 3.0000(3) α = 0 0.3285 0.2500(1/4)
α=1/3 3.4201 3.3333 α = 1/3 0.3752 0.3333
α=1/2 3.6315 3.5000 α = 1/2 0.4028 0.3750
α=1 4.4180 4.0000 α = 1 0.5098 0.5000
Weibull(1) log(Gamma(2))
α = 0 0.2061 ∞ α = 0 0.6013 0.5002(1/2)
Weibull(2) α = 1/3 0.6823 0.6311
α = 0 0.2194 ∞ α = 1/2 0.7300 0.6944
Weibull(3) α = 1 0.9128 0.8782
α = 0 0.1214 0.0955
α = 1/3 0.1355 0.1053
α = 1/2 0.1438 0.1096
α = 1 0.1745 0.1210

To test the goodness-of-fit of the model, we can use Mnd�β̂nd�, whose
limiting behavior again involves integrals of squared transformed Brownian
bridges. Based on their asymptotic distributions, some goodness-of-fit tests
can be obtained. In these tests, β̂nd can also be replaced by the Buckley–
James estimator, rank estimator or M-estimator, and so on, though certain
simplifications due to using β̂nd will be lost. The asymptotic properties of the
resampling inference procedures and the goodness-of-fit tests are worthy of
further investigation.

(v) About the conditions (17) and (18). Let us verify (17) and (18) in some
special cases. Suppose the range of zi’s does not depend on n and contains k
independent vectors: zi = em, i = nm−1+1; : : : ; nm, 0 = n0 < n1 < · · · < nl = n,
where l ≥ k and e1; : : : ; ek are independent. This covers the k-sample case. For
the sake of clarity, we illustrate the two sample cases in detail. Let zi = em,
i = nm−1 + 1; : : : ; nm, m = 1;2, 0 = n0 < n1 < n2 = n, Suppose dij = 0,
i 6∈ �nj−1 + 1; : : : ; nj�. Then we have, for any t; b,

Fn1�ty b� = 1− exp
{
−
∫ T
−∞

f�u+ e∗2b�
F̄�u+ e∗2b�

du

}
;

Fn1�ty b� −Fn0�ty b� = F̄n1�ty b� exp
{∫ T
−∞

�λ1 − λ0�S0F̄0

S0F̄0 +S1F̄1
du

}
;

where

f0 = f�u+ e∗1�b− β��; S0 =
1
n

n1∑
i=1

Ḡi�u+ e∗1b�;
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and so on. Thus, if limnS0, and so on, exist, uniformly in u and b so that the
limits can be taken inside the inf and the integral in (17), and the hazard rate
λ is not periodic, then (17) is satisfied.

For (18), using 0nzj•�uyβ�/0nj�uyβ� = ej; u < T; we have

ξj�t� = f�t�ej; ηj�t� = 2f�t�ej:

Hence (18) is satisfied if
∫∞
−∞ f

2 dH > 0. Also, under (20) the matrix in (18)
reduces to

(∫ ∞
−∞

f2 dH

)
�Z− Z̄�∗D2D

∗
2�Z− Z̄�;(22)

where D2 = Ddiag�1/s1; : : : ;1/sk�. Thus (18) is satisfied if the matrix (22)
converges to a positive definite matrix.

(vi) A data dependent H. There are many other choices of H in addition to
that in part (iii) above. For many parametric models, the choice H = F has
high asymptotic efficiency [cf. Remark 3.4 of Koul and DeWet (1983)]. Thus
we are motivated to look at the estimation function

M̃nd�b� =
k∑
j=1

s2
j

τ2
j

∫ T
−∞

(
F̂nj�ty b� − F̂n0�ty b�

)2
dF̂n0�ty b�(23)

and define β̃nd analogously to (12). The asymptotic analysis is similar. Under
conditions similar to those in Theorem 4, we have

A−1
nd�β̃nd − β� →D N�0; 6̃d�;

where 6̃d is 6d with H being the restriction of F on �−∞;T�.

4. Robustness. As mentioned in the introduction, minimum L2 distance
estimation has various robustness properties in the i.i.d. complete data case.
It is expected that some of those properties are still present in the cen-
sored regression. Intuitively, small contamination in the model or data does
not severely change the estimation function (11). However, quantitative or
even qualitative robustness analysis is difficult. We have the following limited
result.

Theorem 5. Suppose the following statements hold:

(i) zi’s are as in Theorem 5(a) and the c.d.f. of Yi is Fmn, i = nm−1 +
1; : : : ; nm, m = 1; : : : ; l;

(ii) with F replaced by Fmn’s, A1 to A3 are satisfied uniformly in n.
(iii) supt;m �Fmn�t� −F�t− e∗mβ�� = o�1�.

If dij = 0, i 6∈ �nj−1 + 1; : : : ; nj�, then �β̂nd − β� = op�1�.
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Proof. First note that Theorem 2 is still valid. As in (v) after the proof of
Theorem 4, we also have

Fnj�tyβ+ b� = Fjn�t+ e∗j�β+ b��:

Thus the discussion in (v) and assumption (ii) of Theorem 5 give the result. 2

5. Computational aspects and an application to the Stanford data.
As discussed in Section 3, when the covariates are nonnegative, the weight
matrix D = Z is desirable in certain situations. Using a linear transform
if necessary, we may assume the covariates to be nonnegative for numerical
computations.

From the definitions of β̂nd and β̃nd, it seems that the search range is the
entire Rk space. Practically we can reduce this to a compact neighborhood
of β. However, it may not be easy to determine the size and shape of this
neighborhood, two of the factors that affect the computational efficiency. We
first discuss a proper transform that helps resolve this issue.

Note that, in the random design case of model (1), if Y is standardized and
z standardized and orthogonalized, then β is inside the unit sphere. This is
because

1 = Var�Y� > Var�z∗β� = β∗β:

Thus for practical purposes we can restrict the search range to the unit sphere
if Yi’s and zi’s are standardized and orthogonalized using the sample covari-
ances. This standardization and orthogonalization is equivalent to using a
proper transform Z̃ of the covariates: Z = Z̃M; where M is a k × k matrix.
Such Z̃ will no longer be nonnegative; thus we still use Z. But now we know
that we can reduce the search range to β =Mγ, where γ is in the unit sphere.
If we have an initial guess or estimator β0 =Mγ0 from a grid search or other
methods, then it seems reasonable to further reduce the range to within S�γ0�,
the sphere centered at γ0 and inscribed to the unit sphere.

The estimating function Mnd in (12) may be nondifferentiable or even dis-
continuous. The estimating function M̃nd in (23) also has many local min-
imums. Thus algorithms such as Newton’s method, the steepest descent or
the conjugate gradient method [cf. Press, Flannery, Teukolsky and Vetterling
(1986)] are not very reliable for finding β̂nd and β̃nd: For general optimization
problems, Monte Carlo methods have often been used, such as the random
search, multistart random search, adaptive random search and simulated an-
nealing algorithms. See Rubinstein (1986), among others, for more discussions.
These algorithms are for general minimization purposes and do not use partic-
ular features of the function to be minimized. Exploiting the limiting quadratic
nature of Mnd and M̃nd and flexible definitions of β̂nd and β̃nd, we describe an
algorithm that works reasonably well and then briefly report its application to
the Stanford heart transplant data. The basic idea of the following algorithm
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is the multistage random search with the added twist of quadratic fitting, as
follows:

1. Choose a starting point γ0. This could be (0,0) or an initial estimator in the
unit sphere.

2. Sample γi; i = 1; : : : ; p from N�γ0; s
2Ik×k�. Evaluate Mnd at γ0 and those

γi’s within the unit sphere. Then use the least squares method and the
p1 ≤ p+ 1 points with smallest function values to fit

Q�γ� = γ∗Uγ + v∗γ +w;
where U is a k × k symmetric matrix, v ∈ Rk and w ∈ R1. Obtain the
estimated minimizer γ′ = −U−1v/2 of Q�γ�.

3. Let

γ0 = arg min
γ0; γ

′; γi

Mnd

and go to 2 with smaller s and p. Repeat q times after adequate precision
in γ0 and/or the relative stable value of Mnd is achieved.

As discussed at the beginning of this section, if there is a reasonable initial
estimator, in Step 2 we can reduce the random search to those γi’s in S�γ0�.
The normal sampling variance s2 should be such that many sample points
will be within the unit sphere but not too clustered around γ0 (unless γ0 is
a very good initial estimator).The choice s = 1/6 seemed to work well. Other
distributions may also be used. The first time the sample size p should be large
so as to obtain enough points around β̂, since the approximate quadraticity is
only true near it. Similarly, p1 should be small so as not to include points too
far away from β̂. For successive iterations, snew = s/3 worked well. The number
q of iterations does not have to be very large, for often γ0 and the function
value are much stabilized in about five iterations. Often the quadratic fit did
improve the search.

Now we report the result of the above algorithm applied to the Stanford
heart transplant data. For the data set and the background, see Miller and
Halpern (1982). As in that paper, we will use the model β1�age� + β2�age�2
for log10 of the survival time (in days). There were 157 patients with complete
records. Among these, 55 were alive, that is, were censored, as of February
1980. The other 102 survival times were uncensored. In various analyses, the
five patients with survival times less than ten days were usually deleted [cf.
Miller and Halpern (1982)].

Let ā be the mean age of the 152 patients, s2
x the variance of Xi’s and

6 = �sij�2×2 the covariance matrix of age− ā and �age− ā�2. Let d = det�6�.
Then a proper transform matrix is

M = sx√
s11d

( √
d −�s12 + 2ās11�

0 s11

)
:

Consider β̂ that corresponds to H = Lebesgue, the weight matrix D = Z
and T = ∞ (the results for finite T were similar). The above algorithm was
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run in Matlab. In running the program it turned out that the computing time,
measured in number of floating point operations, was dominated by that of
evaluating the function. Thus we tried not to evaluate the function too many
times. In each run we started from �0;0�. The successive p’s in step 2 above
were 100; 40; 20; 20; 20 (five iterations) and p1 = 8 each time. In various
runs, within three to five iterations, γ had the first three significant digits
stable and Mnd the first four. Thus, in view of the size n = 152 of the data
set, satisfactory answers were obtained after five iterations, which evaluate
the function about 200 times. Evaluating the function 200 ∼ 250 times con-
sumes about the same computing time as that of using the fmins procedure
in Matlab once, in either computing β̂ or the partial likelihood estimator in
the proportional hazard model. Figure 1 gives the contours of Mnd based on
grids −1x 0:1x 1 with range 0:13x 0:01x 0:3. The small circle inscribed is cen-
tered at the naive least squares estimator, pretending all observations were
uncensored. The figure shows that there are no other minimizers in the unit
circle and also that the search could be restricted to the smaller circle.

For comparison, the Buckley–James estimator and Cox’s partial likelihood
estimator (for the proportional hazard model) were computed. Also computed
were the estimator β̃ in (23), with T = ∞ and D = Z. Moreover, to investigate
robustness, these estimators were computed for the 152 and 157 patients, that
is, excluding or including the five short survival times. The results from one

Fig. 1. Contours of Mnd.
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Table 2

Regression estimates for the Stanford heart transplant data, with and without the
five extreme survival times

Method b̂1 b̂2 D b̂1 D b̂2

BJ152 0.1070 −0.0017
BJ157 0.0794 −0.0012 −25.8% +29.4%
β̂152 0.1434 −0.0022
β̂157 0.1325 −0.0020 −7.6% 8.6%
β̃152 0.1426 −0.0022
β̃157 0.1391 −0.0021 −6.7% 3.5%
Cox152 0.1462 −0.0024
Cox157 0.1399 −0.0022 −4.3% 8.3%

run are summarized in Table 2 for the original parameter β. Changes with
the inclusion, denoted by 1, are also given.

From Table 2 the minimum distance estimators and the partial likelihood
estimator seem to be more robust than the Buckley–James estimator. In some
preliminary simulation results, the minimum distance estimators also seemed
very competitive and more robust than the Buckley–James estimator.

Acknowledgments. I thank Professors Hira Koul, Benjamin Duran and
the referees for valuable comments and James Dunyak and Carroll Nunn
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