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LIMIT THEOREM FOR MAXIMUM OF STANDARDIZED
U-STATISTICS WITH AN APPLICATION

By Lajos Horváth1 and Qi-Man Shao2

University of Utah and University of Oregon

We show that the maximally selected standardized U-statistic goes in
distribution to an infinite sum of weighted chi-square random variables
in the degenerate case. The result is applied to the detection of possible
changes in the distribution of a sequence observation.

1. Introduction and results. Let X1;X2; : : : ;Xn be independent ran-
dom variables. We want to test the null hypothesis H0x X1;X2; : : : ;Xn

are identically distributed against the alternative hypothesis that there is
a change-point in the sequence X1;X2; : : : ;Xn. Namely, HA: there is an
integer k∗, 1 ≤ k∗ < n, such that

P�X1 ≤ t� = P�X2 ≤ t� = · · · = P�Xk∗ ≤ t�;

P�Xk∗+1 ≤ t� = P�Xk∗+2 ≤ t� = · · · = P�Xn ≤ t� for all t

and

P�Xk∗ ≤ t0� 6= P�Xk∗+1 ≤ t0� for some t0:

The change-point problem has been studied extensively in the literature.
For a survey we refer to Brodsky and Darkhovsky (1993). Wolfe and Schecht-
man (1984) and Csörgő and Horváth (1987) suggested several tests based
on the linear rank statistics with quantile scores and U-statistics. Csörgő
and Horváth (1988) used U-statistics which are generalizations of Wilcoxon–
Mann–Whitney-type statistics to detect a possible change-point. For surveys
onU-statistics we refer to Serfling (1980), Lee (1990) and Koroljuk and Borovs-
kich (1994).

Let h�x;y� be a symmetric function and define

Uk;n =
∑

1≤i≤k

∑
k<j≤n

h�Xi;Xj� − k�n− k�θ(1.1)

and

Tn = max
1≤k<n

�Uk;n�/�Var Uk;n�1/2;
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where θ = EH0
h�X1;X2�: For each k; Uk;n compares the first k observations

to the last n − k using the kernel h, and Tn selects the maximum of the
standardized U-statistics. According to Csörgő and Horváth (1988), we should
reject H0 for large values of Tn. The limit distribution of Tn under H0 in case
of nondegenerate kernels was obtained by Csörgő and Horváth (1988).

Theorem A [Csörgő and Horváth (1988)]. Let h̃�t� = E�h�X1; t� − θ�.
Assume that H0 holds, E�h�X1;X2��ν < ∞ with some ν > 2 and τ2 =
Eh̃2�X1� > 0. Then

lim
n→∞

P

{
a�log n�1

τ
max
1≤k<n

�Uk;n�
�k�n− k��1/2 ≤ t+ b�log n�

}
= exp�−2e−t�(1.2)

for all t, where a�x� = �2 log x�1/2 and b�x� = 2 log x+ 1
2 log log x− 1

2 logπ.

Further results on the applications of U-statistics to change-point analysis
can be found in Ferger and Stute (1992) and Ferger (1994a–c).

The main aim of this note is to give the limit distribution for maximally
selected standardized U-statistics in the degenerate case, that is, τ = 0. Of
course, τ = 0 means that the projections h̃�Xi�; 1 ≤ i ≤ n, are zero with
probability 1. If τ = 0, then there are orthogonal eigenfunctions �ϕj�t�, 1 ≤
j <∞� and eigenvalues �λj;1 ≤ j <∞� such that [see, e.g., Serfling (1980)]

lim
K→∞

∫ ∞
−∞

∫ ∞
−∞

(
h�x;y� − θ−

∑
1≤j≤K

λjϕj�x�ϕj�y�
)2

dF�x�dF�y� = 0(1.3)

and

Eϕj�X1�ϕk�X1� =
{

1; if j = k;
0; if j 6= k;(1.4)

where F denotes the common distribution of Xi under H0. It follows from
�1:3� and �1:4� that

E�h�X1;X2� − θ�2 =
∑

1≤k<∞
λ2
k:(1.5)

Let �Ni; 1 ≤ i <∞� be a sequence of independent, standard normal random
variables and define

ξ =
( ∑

1≤i<∞
λ2
iN

2
i

)1/2

:(1.6)

Now we can state the main result.

Theorem 1.1. We assume that H0 holds,

Eh̃2�X1� = 0 and 0 < σ2 = E�h�X1;X2� − θ�2 <∞:(1.7)
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Then, as n→∞,

�2 log log n�−1/2 max
1≤k<n

�Uk;n�
�k�n− k��1/2 →D ξ:(1.8)

It follows from �1:5� and �1:7� that ξ is finite with probability 1. Also, �1:8�
can be rewritten as

�2 log log n�−1/2 max
1≤k<n

�Uk;n�
�Var Uk;n�1/2

→D
ξ

σ
:

It is interesting to note that we get completely different limit theorems in
�1:2� and �1:8�. The limit distribution in �1:2� is an extreme value distribution,
while ξ2 in �1:8� is a weighted sum of χ2 random variables. We also note that
ξ2 is related to the usual limit of degenerate U-statistics [cf. Serfling (1980),
Lee (1990) and Koroljuk and Borovskich (1994)].

The proof of Theorem 1.1 is presented in Section 3. An application of
Theorem 1.1 to the intervals between coal-mining disasters is discussed in
the next section.

2. An application. The time intervals between successive coal-mining
disasters involving 10 or more men killed in British coal mines between 1875
and 1950 were analyzed by Maguire, Pearson and Wynn (1952). Later, Jarrett
(1979) corrected several errors in the data given by Maguire, Pearson and
Wynn (1952) and extended the data set to cover 191 disasters between 1851
and 1962. Jarrett (1979) concluded that the data had an exponential distribu-
tion; at the beginning of the observations the mean was 106 and it might have
changed over time. Let X1;X2; : : : ;X190 denote the observations in Table 1 of
Jarrett (1979). Now we apply Theorem 1.1 to test the null hypothesis H0xX1,
X2; : : : ;X190 are exponentially distributed with mean 106 against the alter-
native hypothesis that there is a change-point in the sequence. We use two
different kernels for the test.

Kernel 1. Let h1�x;y� = �x− 106��y− 106�/�1062�. Under H0, by Theo-
rem 1.1 we have

Tn;1 x= �2 log log n�−1/2 max
1≤k<n

∣∣∣∣
∑

1≤i≤k

∑
k<j≤n

h1�Xi;Xj�
∣∣∣∣
/
�k�n− k��1/2

→D �N�;
(2.1)

where N is the standard normal random variable. A direct calculation shows
that the value of Tn;1 for the coal-mine disasters is 137:627, so we reject H0.

Kernel 2. Let

h2�x;y� =
∫ ∞
−∞
�I�x ≤ t� −F�t���I�y ≤ t� −F�t��dF�t�;
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where F�t� stands for the common distribution function under H0: It is easy
to show that for x ≥ y,

h2�x;y� = 1
3�F3�x� + �1−F�x��3� − 1

2�F2�x� −F2�y��:
The U-statistic generated by h�x;y� above is related to the Cramér–von Mises
statistic [cf. Lee (1990), page 190] and is distribution-free under the no-change
null hypothesis. Moreover, λi = �iπ�−2 for i = 1;2; : : : : Therefore, by Theo-
rem 1.1 we have

Tn;2 x= �2 log log n�−1/2 max
1≤k<n

∣∣∣∣
∑

1≤i≤k

∑
k<j≤n

h2�Xi;Xj�
∣∣∣∣
/
�k�n− k��1/2

→D ξ;

(2.2)

where

ξ =
( ∑

1≤i<∞
�iπ�−4N2

i

)1/2

:(2.3)

By applying Chebyshev’s inequality to the moment generating function, one
can easily verify that

P

{ ∞∑
i=1

aiN
2
i ≥

∞∑
i=1

ai
1− tai

}
≤ exp

(
−1

2

∞∑
i=1

{
tai

1− tai
− log�1− tai�

})
(2.4)

for all ai ≥ 0 and 0 < t < inf 1≤i<∞ 1/ai:
Applying �2:4� to ξ with ai = �iπ�−4 and t = 0:92π4, we get

P�ξ ≥ 0:3595� ≤ 0:001;

where ξ is given by �2:3�. In the case of this data set F�t� = 1− exp�−t/106�
for t ≥ 0 and the value of Tn;2 is 0:9075. Thus, we reject the null hypothesis
at the 0:001 level of significance.

For further analysis of the coal-mine disasters, we refer to Cox and Lewis
(1966), Worsley (1986) and Gombay and Horváth (1990).

3. Proof of Theorem 1.1. Throughout this section, we assume that with-
out loss of generality, θ = 0 and that the conditions of Theorem 1.1 are satis-
fied. The proof of Theorem 1.1 is based on the following lemmas.

Lemma 3.1. We have

E max
1≤k<n

U2
k;n ≤ 36n2σ2:

Proof. Observing that

Uk;n =
∑

1≤i<j≤n
h�Xi;Xj� −

∑
1≤i<j≤k

h�Xi;Xj� −
∑

k<i<j≤n
h�Xi;Xj�;
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we get

max
1≤k<n

U2
k;n ≤ 9

2 max
2≤k≤n

( ∑
1≤i<j≤k

h�Xi;Xj�
)2

+ 9
2 max

1≤k<n−1

( ∑
k<i<j≤n

h�Xi;Xj�
)2

:

It follows from �1:7� that �∑1≤i<j≤k h�Xi;Xj�, σ�X1; : : : ;Xk�;2 ≤ k ≤ n�
is a martingale. Hence, by Doob’s inequality [cf. Chow and Teicher (1988),
page 247],

E max
2≤k≤n

( ∑
1≤i<j≤k

h�Xi;Xj�
)2

≤ 4E
( ∑

1≤i<j≤n
h�Xi;Xj�

)2

:

Similar arguments give

E max
1≤k<n−1

( ∑
k<i<j≤n

h�Xi;Xj�
)2

≤ 4E
( ∑

1≤i<j≤n
h�Xi;Xj�

)2

:

Hence,

E max
1≤k<n

U2
k;n ≤ 36E

( ∑
1≤i<j≤n

h�Xi;Xj�
)2

≤ 36n2σ2;

as desired. 2

Lemma 3.2. For any x > 0 we have

P

{
max
1≤k<n

∑
1≤i<∞

λ2
i

( ∑
k<j≤n

ϕi�Xj�
)2

≥ nx
}
≤ 3σ2

x
:

Proof. The lemma is obviously true if x ≤ 3σ2. So, we assume x > 3σ2.
Let

Qk =
∑

1≤i<∞
λ2
i

( ∑
n−k<j≤n

ϕi�Xj�
)2

− kσ2:

It is easy to see that �Qk; σ�Xn; : : : ;Xn−k+1�; 1 ≤ k ≤ n� is a martingale.
Thus, by the martingale maximum inequality [cf. Chow and Teicher (1988),
page 247],

P

{
max
1≤k<n

∑
1≤i<∞

λ2
i

( ∑
k<j≤n

ϕi�Xj�
)2

≥ nx
}
≤ P

{
max1≤k≤nQk ≥ nx− nσ2

}

≤ P
{

max
1≤k≤n

Qk ≥
2nx

3

}

≤ 3E�Qn�
2nx

≤ 3σ2

x
: 2
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Lemma 3.3. For any x ≥ 1 we have

P

{
max
1≤k<n

�Uk;n�
�k�n− k��1/2 ≥ x

}
≤ 105σ + 32 exp

(
− x2

512σ1/2

)
log n:

Proof. We assume that 0 < σ ≤ 10−5, since otherwise Lemma 3.3 is
trivial. Let m1 = �log2�n/2��, where �·� denotes the integer part of the number.
Clearly,

P
{

max
1≤k≤n/2

�Uk;n�/�k�n− k��1/2 ≥ x
}

≤ P
{

max
1≤k≤n/2

�Uk;n�/k1/2 ≥ x�n/2�1/2
}

≤ P
{

max
1≤`≤m1

max
2`−1≤k<2`

�Uk;n�/2�`−1�/2 ≥ x�n/2�1/2
}

+P
{

max
2m1≤k≤n/2

�Uk;n� ≥ x2m1/2�n/2�1/2
}

≤ P
{

max
1≤`≤m1

max
2`−1≤k<2`

�Uk;n�/2`/2 ≥ xn1/2/2
}

+P
{

max
1≤k≤n/2

�Uk;n� ≥ nx/4
}
:

(3.1)

Using Lemma 3.1, we get

P

{
max

1≤k≤n/2
�Uk;n� ≥

nx

4

}
≤ 36n2σ2

�nx/4�2 =
3226σ2

x2
:(3.2)

For 2`−1 ≤ k < 2`, write

Uk;n = Uk;2` +Vk; `;

where Vk; ` =
∑

1≤i≤k
∑

2`<j≤n h�Xi;Xj�. Let

In = P
{

max
1≤`≤m1

max
1≤k<2`

�Vk; `�/2`/2 ≥ xn1/2/2
}
:

Applying Lemma 3.1 again, we obtain

P

{
max

1≤`≤m1

max
2`−1≤k<2`

�Uk;n�
2`/2

≥ xn
1/2

2

}

≤ In +
∑

1≤`≤m1

P

{
max

1≤k<2`
�Uk;2` � ≥

x�n2`�1/2
4

}

≤ In +
∑

1≤`≤m1

36 · 22`σ2

�x/4�2n2`

≤ In +
3226σ2

x2
:

(3.3)
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Next we estimate the upper bound of In. Let

F` = σ�X2`+1;X2`+2; : : : ;Xn�;

τ2
` = E�V2

2`; `�F`�
and

Jn = P
{ ⋃

1≤`≤m1

{
τ2
` ≥

σn2`

512

}}
:

We note that conditionally on F`; �Vk; `;1 ≤ k ≤ 2`� are partial sums of
independent and identically distributed random variables with zero means.
By Lévy’s inequality [cf. Loéve (1977), page 260], we have

In ≤ Jn +
∑

1≤`≤m1

P

{
max

1≤k<2`
�Vk; `� ≥

x

4
�n2`�1/2; τ2

` <
σn2`

512

}

= Jn +
∑

1≤`≤m1

EP

{
max

1≤k<2`
�Vk; `� ≥

x

4
�n2`�1/2; τ2

` <
σn2`

512

∣∣∣F`

}

≤ Jn + 2
∑

1≤`≤m1

EP

{
�V2`; `� ≥

x

4
�n2`�1/2 − 21/2τ`; τ

2
` <

σn2`

512

∣∣∣F`

}

≤ Jn + 2
∑

1≤`≤m1

EP

{
�V2`; `� ≥

3x
16
�n2`�1/2; τ2

` <
σn2`

512

∣∣∣F`

}
:

(3.4)

It is easy to see that

τ2
` = 2`E

{( ∑

2`<j≤n
h�X1;Xj�

)2∣∣∣F`

}

= 2`
∑

1≤i<∞
λ2
i

( ∑

2`<j≤n
ϕi�Xj�

)2

:

Lemma 3.2 yields

Jn = P
{

max
1≤`≤m1

∑
1≤i<∞

λ2
i

( ∑

2`<j≤n
ϕi�Xj�

)2

≥ σn

512

}

≤ P
{

max
1≤k≤n

∑
1≤i<∞

λ2
i

( ∑
k<j≤n

ϕi�Xj�
)2

≥ σn

512

}

≤ 1536σ:

(3.5)
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Let �X∗i ; 1 ≤ i < ∞� be an independent copy of �Xi; 1 ≤ i < ∞�. By the
symmetrization inequality [cf. Loéve (1977), pages 257–258], we get

EP

{
�V2`; `� ≥

3x
16
�n2`�1/2; τ2

` ≤
σn2`

512

∣∣∣F`

}

≤ 2EP
{∣∣∣∣

∑

1≤i≤2`

∑

2`<j≤n
�h�Xi;Xj� − h�X∗i ;Xj��

∣∣∣∣

≥ 3x
16
�n2`�1/2 − 2τ`; τ

2
` ≤

σn2`

512

∣∣∣F`

}

≤ 2EP
{∣∣∣∣

∑

1≤i≤2`

∑

2`<j≤n
�h�Xi;Xj� − h�X∗i ;Xj��

∣∣∣∣

≥ x
8
�n2`�1/2; τ2

` ≤
σn2`

512

∣∣∣F`

}

= 2P
{∣∣∣∣

∑

1≤i≤2`

∑

2`<j≤n
�h�Xi;Xj� − h�X∗i ;Xj��

∣∣∣∣ ≥
x

8
�n2`�1/2; τ2

` ≤
σn2`

512

}

≤ 2P
{ ∣∣∑

1≤i≤2`
∑

2`<j≤n�h�Xi;Xj� − h�X∗i ;Xj��
∣∣

(∑
1≤i≤2`

(∑
2`<j≤n�h�Xi;Xj� − h�X∗i ;Xj��

)2)1/2 ≥
x

16σ1/4

}

+ 2P
{ ∑

1≤i≤2`

( ∑

2`<j≤n
�h�Xi;Xj� − h�X∗i ;Xj��

)2

≥ 4σ1/2n2`; τ2
` ≤

σn2`

512

}
:

(3.6)

Since conditionally on F`; �Wi =
∑

2`<j≤n�h�Xi;Xj�−h�X∗i ;Xj��, 1 ≤ i ≤ 2`�
is a sequence of independent and identically distributed symmetric random
variables, we obtain [cf. Ledoux and Talagrand (1991), page 91]

P

{ �∑1≤i≤2`
∑

2`<j≤n�h�Xi;Xj� − h�X∗i ;Xj���
�∑1≤i≤2`�

∑
2`<j≤n�h�Xi;Xj� − h�X∗iXj���2�1/2

≥ x

16σ1/4

}

= EP
{ �∑1≤i≤2`

∑
2`<j≤n�h�Xi;Xj� − h�X∗i ;Xj���

�∑1≤i≤2`�
∑

2`<j≤n�h�Xi;Xj� − h�X∗i ;Xj���2�1/2
≥ x

16σ1/4

∣∣∣F`

}

≤ 2E
(

exp
(
−1

2

(
x

16σ1/4

)2)∣∣∣F`

)

= 2 exp
(
− x2

512σ1/2

)
:

(3.7)
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Introducing Wi;1 = min��Wi�; �n2`�1/2�, we can write

P

{ ∑

1≤i≤2`

( ∑

2`<j≤n
�h�Xi;Xj� − h�X∗i ;Xj��

)2

≥ 4σ1/2n2`; τ2
` ≤

σn2`

512

}

≤ P
{ ∑

1≤i≤2`
W2

i;1 ≥ 4σ1/2n2`; τ2
` ≤

σn2`

512

}

+P
{

max
1≤i≤2`

�Wi� ≥ �n2`�1/2
}
:

(3.8)

Using the Chebyshev inequality, we have

P

{ ∑

1≤i≤2`
W2

i;1 ≥ 4σ1/2n2`; τ2
` ≤

σn2`

512

}

= EP
{ ∑

1≤i≤2`
�W2

i;1 −E�W2
i;1�F`��

≥ 4σ1/2n2` − 2`E�W2
1;1�F`�; τ2

` ≤
σ n2`

512

∣∣∣F`

}

≤ EP
{ ∑

1≤i≤2`
�W2

i;1 −E�W2
i;1�F`�� ≥ 4σ1/2n2` − σn2`

512

∣∣∣F`

}

≤ EP
{ ∑

1≤i≤2`
�W2

i;1 −E�W2
i;1�F`�� ≥ σ1/2n2`

∣∣∣F`

}

≤ E
(2`E�W4

1;1�F`�
�nσ1/22`�2

)
=
EW4

1;1

σ2`n2

= Emin��∑2`<j≤n�h�X1;Xj� − h�X∗1;Xj���4; �n2`�2�
σ2`n2

≤ Emin�max1≤k<n�
∑
k<j≤n�h�X1;Xj� − h�X∗1;Xj���4; �n2`�2�

σ2`n2
:

(3.9)

It follows from �3:9� that

∑
1≤`≤m1

P

{ ∑

1≤i≤2`
W2

i;1 ≥ 4σ1/2n2`; τ2
` ≤

σ

512
n2`

}

≤ 1
σn2

∑
1≤`≤m1

1
2`
Emin�U∗4n ; �n2`�2�

≤ 1
σn2

∑
1≤`≤m1

1
2`
EU∗4n I��U∗n� ≤ n1/22`/2�

+ 1
σ

∑
1≤`≤m1

2`P��U∗n� ≥ �n2`�1/2�;

(3.10)
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where U∗n = max1≤k<n
∑
k<j≤n�h�X1;Xj� − h�X∗1;Xj��. It is easy to see that

∑
1≤`≤m1

2−`EU∗4n I��U∗n� ≤ n1/22`/2�

=
∑

1≤`≤m1

2−`EU∗4n I��U∗n� ≤ n1/2�

+
∑

1≤`≤m1

∑
1≤j≤`

2−`EU∗4n I�n1/22�j−1�/2 < �U∗n� ≤ n1/22j/2�

≤ nEU∗2n +
∑

1≤j≤m1

∑
j≤`≤m1

2−`EU∗4n I�n1/22�j−1�/2 < �U∗n� ≤ n1/22j/2�

≤ 3nEU∗2n = 3nE max
1≤k<n

( ∑
k<j≤n

�h�X1;Xj� − h�X∗1;Xj��
)2

= 3nE
{
E

(
max
1≤k<n

( ∑
k<j≤n

�h�X1;Xj� − h�X∗1;Xj��
)2∣∣∣X1;X

∗
1

)}

≤ 24n2σ2:

(3.11)

Similarly, we have
∑

1≤`≤m1

2`P��U∗n� ≥ n1/22`/2� ≤ 48σ2:(3.12)

Therefore
∑

1≤`≤m1

P
{

max
1≤i≤2`

�Wi� ≥ �n2`�1/2
}
≤

∑
1≤`≤m1

2`P��U∗n� ≥ �n2`�1/2�

≤ 48σ2:

(3.13)

Putting �3:8�–�3:13� together, we get

∑
1≤`≤m1

P

{ ∑

1≤i≤2`

( ∑

2`<j≤n
�h�Xi;Xj� − h�X∗i ;Xj��

)2

≥ 4σ1/2n2`; τ2
` ≤

σn2`

512

}

≤ 120σ;

which, together with �3:1�–�3:7�, implies

P

{
max

1≤k≤n/2

�Uk;n�
�k�n− k��1/2 ≥ x

}
≤ �104 + 103�σ + 16 exp

(
− x2

512σ1/2

)
log n:

By symmetry, we have

P

{
max

n/2≤k<n

�Uk;n�
�k�n− k��1/2 ≥ x

}
≤ �104 + 103�σ + 16 exp

(
− x2

512σ

)
log n:

This completes the proof of Lemma 3.3. 2
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Let 1 ≤M<∞ and define

hM�x;y� =
∑

1≤j≤M
λjϕj�x�ϕj�y�; ξM =

( ∑
1≤j≤M

λ2
jN

2
j

)1/2

:(3.14)

The corresponding U-statistics are

U
�M�
k;n =

∑
1≤i≤k

∑
k<j≤n

hM�Xi;Xj�; 1 ≤ k < n:

Our last lemma shows that Theorem 1.1 is true if the kernel is given by �3:14�.

Lemma 3.4. As n→∞, we have

�2 log log n�−1/2 max
1≤k<n

�U�M�k;n �
�k�n− k��1/2 →D ξM:

Proof. Let

Sm�k� =
∑

1≤i≤k
ϕm�Xi�; 1 ≤m ≤M:

Then, elementary calculations give

U
�M�
k;n =

∑
1≤m≤M

λmSm�k��Sm�n� −Sm�k��:

Let a = n/�log n�2 and write

max
1≤k<n

�U�M�k;n �
�k�n− k��1/2 = max�T1;T2;T3�;

where T1 = max1≤k<a �U
�M�
k;n �/�k�n − k��1/2; T2 = maxa≤k≤n−a �U

�M�
k;n �/�k�n −

k��1/2 and T3 = maxn−a<k<n �U
�M�
k;n �/�k�n− k��1/2: Since

max
a≤k≤n−a

�Sm�k��/k1/2 = OP��log log log n�1/2�

and

max
a≤k≤n−a

�Sm�n� −Sm�k��/�n− k�1/2 = OP��log log log n�1/2�;

we get immediately that

T2 = OP�log log log n�:(3.15)

By the weak convergence of partial sums and the continuity of Brownian
motion, we have

max
1≤k<a

∣∣∣∣
Sm�n� −Sm�k�
�n− k�1/2 − Sm�n− a� −Sm�a�

n1/2

∣∣∣∣ = oP�1�(3.16)
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and similarly

max
n−a<k<n

∣∣∣∣
Sm�k�
k1/2

− Sm�n− a� −Sm�a�
n1/2

∣∣∣∣ = oP�1�:(3.17)

Using the law of the iterated logarithm, we get

max
1≤k<a

�Sm�k��/k1/2 = OP��log log n�1/2�(3.18)

and

max
n−a<k<n

�Sm�n� −Sm�k��/�n− k�1/2 = OP��log log n�1/2�:(3.19)

Putting �3:15�–�3:19� together, we obtain that

∣∣∣∣max
1≤k<n

�U�M�k;n �
�k�n− k��1/2 −T

∗
n

∣∣∣∣ = OP��log log n�1/2�;(3.20)

where

T∗n = max
{

max
1≤k<a

∣∣∣∣
∑

1≤m≤M
λm
Sm�k�
k1/2

Sm�n− a� −Sm�a�
n1/2

∣∣∣∣;

max
n−a<k<n

∣∣∣∣
∑

1≤m≤M
λm
Sm�n� −Sm�k�
�n− k�1/2

Sm�n− a� −Sm�a�
n1/2

∣∣∣∣
}
:

Applying the multivariate Strassen’s invariance principle, for each n we can
define independent Brownian motions W1; n; : : : ;WM;n such that

T∗n = max
{

max
1≤k<a

∣∣∣∣
∑

1≤m≤M
λm
Wm;n�k�
k1/2

Wm;n�n− a� −Wm;n�a�
n1/2

∣∣∣∣;

max
n−a<k<n

∣∣∣∣
∑

1≤m≤M
λm
Wm;n�n� −Wm;n�k�

�n− k�1/2

× Wm;n�n− a� −Wm;n�a�
n1/2

∣∣∣∣
}

+ o��log log n�1/2�:

(3.21)

Noting that for any constants α1; α2; : : : ; αM
{ ∑

1≤i≤M
αiWi; n�t�; 0 ≤ t <∞

}
=D ��α2

1 + · · · + α2
M�1/2W�t�; 0 ≤ t <∞�;

where W�t� is a Brownian motion, we have

max
1≤k≤a

∣∣∣∣
∑

1≤i≤M
αi
Wi; n�k�
k1/2

∣∣∣∣
/
�2 log log n�1/2 →P �α2

1 + · · · + α2
M�1/2(3.22)
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and similarly,

max
n−a≤k<n

∣∣∣∣
∑

1≤i≤M
αi
Wi; n�n� −Wi; n�k�
�n− k�1/2

∣∣∣∣
/
�2 log log n�1/2

→P �α2
1 + · · · + α2

M�1/2:
(3.23)

It is easy to see that �Wi; n�k�, 1 ≤ k < a�, Wi; n�a� −Wi; n�n−a�, �Wi; n�n� −
Wi; n�k�, n− a < k < n�, 1 ≤ i ≤M, are independent and

�n−1/2�Wi; n�n− a� −Wi; n�a��; 1 ≤ i ≤M� →D �Ni; 1 ≤ i ≤M�:
Now Lemma 3.4 follows from �3:20�–�3:23�. 2

Proof of Theorem 1.1. Let

h̃M�x;y� = h�x;y� − hM�x;y�; Ũ
�M�
k;n =

∑
1≤i≤k

∑
k<j≤n

h̃M�x;y�

and

σ̃2
M =

∑
M<i<∞

λ2
i :

Using Lemma 3.3, we get

P

{
max
1≤k<n

�Ũ�M�k;n �
�k�n− k��1/2 ≥ �512σ̃1/2

M �1/2�2 log log n�1/2
}
≤ 105σ̃M +

32
log n

;

and therefore

lim
M→∞

lim sup
n→∞

P

{
1

�2 log log n�1/2 max
1≤k<n

�Ũ�M�k;n �
�k�n− k��1/2 > ε

}
= 0

for all ε > 0. Now the result follows from Lemma 3.4. 2
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