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BAYESIAN MODELS FOR SPARSE PROBABILITY TABLES
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University of Warwick and University of Kent

We wish to make inferences about the conditional probabilities p(y|x),
many of which are zero, when the distribution of X is unknown and one
observes only a multinomial sample of the Y variates. To do this, fixed like-
lihood ratio models and quasi-incremental distributions are defined. It is
shown that quasi-incremental distributions are intimately linked to decom-
posable graphs and that these graphs can guide us to transformations of X
and Y which admit a conjugate Bayesian analysis on a reparametrization
of the conditional probabilities of interest.

1. Introduction. An n x m matrix of probabilities {p(i, j)} needs to be
estimated, where p(i, j) = P(X = x;, Y = y;). Many of these joint probabil-
ities are zero, but the margins of X and Y are nondegenerate, so that

P(X=x;)=0,>0, 1<i<n, 0=(6y,...,0,)7
and

PY=y)=¢,>0, 1l<j<m, $=y....9,)".

A random sample r = (71, 7y, ..., )" of the Y variables is taken, so that the
random vector R associated with r has a multinomial distribution Mn(N, ¥),
where N =" 1.

If the conditional distribution of Y given X is fully specified, then inter-
est centers on the margins 0 of X and this becomes an inverse problem [see
Grandy (1985) and Vardi and Lee (1993)]. This particular setting was dis-
cussed in some detail by Dickey, Jiang and Kadane (1987) and posterior dis-
tributions on 6 were found, which under appropriate prior distributions are
generalized Dirichlets [Carlson (1977); Dickey (1983)]. In this paper we con-
centrate on the dual problem comparable to the one above. When m > n it is
shown that, even if 0, the margin of X, is unknown it is possible to learn at
least something about the conditional probabilities of Y | X from the multi-
nomial observation r. Furthermore, we show that it is sometimes possible
to perform a conjugate analysis on parameters related to these conditional
probabilities.

Everything that is learned about p(y | x) and 0 comes from observing R,
which is informative about p(y | x) and 0 only through its margin ¥. Since R
is only m dimensional, a general model to learn about p(y | x) and 0 is clearly
overparametrized. To overcome this overparametrization, we shall choose to
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fix the n x m matrix Z = {z;;}1<;<,, 1< j<m Whose components are defined by
(1.1) z;=M'P(Y=y;,|X=x), 1l<i<n, 1<j<m,
where

(1.2) si<
1<j=<m.

Note that the strict inequality on X = (A1, ..., A,,)T is necessary to ensure the
strict positivity of the margin ¥. Here i*(j) = argmax;_;,_, P(Y = y; | X =
x;) indexes a most likely value of X given each observation y;, 1 < j < m.
It follows that for each 1 < j < m, A; is the maximum value, over different
choices of x;, of the conditional probability of ¥ on X. Clearly, from (1.1), z;; =
0 whenever p(i, j) = 0. So in problems where many of the joint probabilities
are known to be zero, many of the entries of the matrix Z are also known to
be zero.

Now, the likelihood of our random sample of N copies of Y takes the form

(1.3) L r)=Tv7,
j=1
where, by the formula for extension, each probability ¢ ; satisfies
(1.4) p;=2 P(Y=y;| X=ux,)P(X =x;)=1,£;(0),
i=1
where
(1.5) £;(0)=)z;0;, 1<j=<m.
i=1

Thus for a given Z, as Dickey, Jiang and Kadane (1987) point out, the likeli-
hood L separates in 6 and A, that is,

(1.6) L(Wlr) = L(8, Nr) = L;(8)Ls(N).

Here
(1.7) L1(8) = [](£;(0)), 0, =1, 9, >0, 1<i<n,
j=1

n
=1

1

where

(1.8) £0)=2"70,  £0)=(£(0),...,£,(0)"
and

(1.9) Ly(N) = [T A},

j=1
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where, for conditional probabilities to sum to unity, we require
(1.10) ZA=1, 0<A<l1,

where 0 and 1 denote n vectors of 0’s and 1’s, respectively.

Note that, ignoring awkward positivity constraints, the dimensions of the
constrained linear spaces 0, A and s are, respectively,n—1, m—n and m—1, so
the dimension of {s is the same as (0, N). In this paper we shall consider a class
of models called fixed likelihood ratio models. These models assume that the
matrix Z is given and that the vector N of largest conditional probabilities of
Y | X and the vector 0 of marginal probabilities on X, are unknowns. Then,
by using the likelihood of (1.6), inferences can be made about A and 6. An
important feature of fixed likelihood ratio models is that they utilize the sep-
aration (1.6); that is, if @ and N\ are a priori independent in a Bayesian model,
then they will remain independent after observing r. Here we shall concen-
trate on the inferences that can be made about A\, a vector of probabilities of
Y conditional on X.

The characteristics of fixed likelihood ratio models are determined largely
by the pattern of zeros in the joint probability table {p(i, j)} and hence in
the Z matrix. In Section 2 it is shown how this pattern can be usefully clas-
sified in terms of a graph. In Sections 3 and 4 a class of distributions over
(X,Y), called quasi-incremental, is introduced, which is shown to admit a
useful reparametrization of A that allows for a conjugate Bayesian analysis
in terms of mixtures of Dirichlet distributions. Despite the proliferation of
numerical methods in Bayesian statistics, conjugate analyses with plausible
priors are always interesting because they specify the class of transformations
from prior to posterior induced by a particular likelihood and hence give an un-
derstanding of why we obtain the results we do. In Sections 4 and 5 it is shown
how to use the graph of a distribution on (X, Y) to discover a transformation
of (X,Y) to (71(X), 79(Y)) which makes this conjugate Bayesian analysis as
simple as possible. Sometimes conditions exist when these transformations
lead to a particularly simple conjugate analysis in which the components of A
can be expressed as products of independent variates. In Section 6 we outline
the application of these models in two very different settings. Finally, Section
7 discusses why we believe that fixed likelihood ratio models are most valid
when (X, Y) is quasi-incremental.

2. Graphs and the depiction of a probability model. There are var-
ious graphs which can be usefully employed to depict a zero—nonzero config-
uration in Z. One that is particularly useful for analyzing the conditional
probability vector N is the primal-constraint graph or briefly graph, G(Z), of
Z [Dechter and Pearl (1987); Dechter, Dechter and Pearl (1990)]. The “con-
straints” here are those imposed by condition (1.10).

The m nodes of G(Z) are labelled by the m possible values of Y. Two nodes
J1 and j, are joined by an undirected edge iff there exists a value i(j;, jg)
such that both p(i, j;) > 0 and p(i, j;) > 0. Equivalently, j;, jo, are joined
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by an edge iff there is a row (the ith) such that z;; and z;;, are both strictly
positive.

Notice that all joint distributions with the same pattern of nonzero and zero
joint probabilities have the same graph. Let the matrix Z* = {z’fj} be defined
by

0, ifz;=0
* = > e
(1) %) { 1, ifz, >0,

where Z = {z,;}. The differential noninformedness hypothesis (dnh) used by
Rubin (1976) and Dawid and Dickey (1977) gives a model for which Z = Z*. In
a sense described in these papers, models satisfying the dnh are models which
are most conservative—or noninformative—about the relationship between X
and Y among all those which respect the zeros in the probability table. In
general, for any graph G there is a set of probability distributions satisfying
the dnh, and a set of Z*, called the G-set, whose graph is G.

There are several reasons why these graphs of probability models are im-
portant. The first is that, unlike the matrix Z itself, G(Z) is invariant under
1-1 transformations of the margins of X and Y. Thus, if X’ = 7(X) and
Y’ = 19(Y), 71, 79 are bijections and Z’ corresponds to the conditional prob-
ability ratios of X’ against Y’, then G(Z) = G(Z’). The second is that they
emphasize in an evocative way the fundamental structure of the problem via
the zeros of the joint mass function. The third is that they can be used to find
convenient reparametrizations of the vector A\ so that a conjugate analysis can
be performed.

A subgraph of a graph G is said to be complete iff there is an edge con-
necting each pair of its nodes. The cliques of a graph are those of its complete
subgraphs which are not properly contained in any other complete subgraph.
Let

2(i)=A{J: p(i,j)>0, 1 <j=m}
be called the range sets of Y given X. Note that in the notation of Section 1,
2(i)=1{Jj:2;>0, 1< j<m}

We shall call the joint distribution of (X, Y) graphical if (i), 1 < i < n,
form the cliques of G(Z*). It will be shown later that many interesting joint
probability models are in fact graphical.

A graph is called decomposable if its n’ cliques C(1),...,C(n’) can be in-
dexed in a compatible order so that

i—1
2.2) SGi) = C(i)N {U cm} cC(pl), 2<i=n,
=1

for some p(i), 1 < p(i) < i—1. Probability distributions on (X, Y') which have
decomposable graphs will be central to this paper.

Decomposable graphs have been studied for some time and many of their
properties are well known. One important result [see Lauritzen, Speed and
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Vijagan (1984)] is that a graph is decomposable iff it contains no chordless
cycle of length greater than or equal to 4. This enables condition (2.2) to be
checked by eye. There are also quick ways of finding a compatible ordering
of cliques from a given graph, for example, maximum cardinality search [see
Tarjan and Yannakakis (1984); Lauritzen and Spiegelhalter (1988)]. It will
be shown in Sections 4 and 5 that these results concerning graphical models
enable the identification of the useful reparametrization of A mentioned above.
Figure 1 gives a selection of graphs of graphical joint distributions. By the
result above it is easy to check that all but G; and G, are decomposable. G,
is not decomposable because it has the chordless four cycle {1, 2, 3, 4, 1} while
G, is not decomposable because of the chordless five cycle {1, 2, 3, 4, 6, 1}.

3. Quasi-incremental joint distributions. In this section a useful class
of joint distributions on (X, Y') is considered which contains models in which,
in the very weak sense defined below, X is increasing in Y. First some nota-
tion: let the residuals %/(i) of Y on X be defined by

7(1) = (1),

(3.1) ) i1
@) =2@\U#®), 2<i=<n,
=1

where for two sets A and B, A\B denotes the set of elements of A which
are not in B and where {#/(7)} are the range sets of Y given X defined in
Section 2. If = {y,..., y,,}, the set of possible values of Y, then clearly
{Z(1),...,%(n)} form a partition of .

DEFINITION 3.1. Say Y is recursive in X if for some p(i) < i the following
statements hold:

G) Z@()#¢, 1<i<n;
(i) Z(i)\Z () S %(p(i)), 2<i<n.

[Henceforth let p(i) denote the least index for i with the property above.]

(iii) Say Y is quasi-incremental in X if it is recursive in X and for each
Yy, e¥(i)N\%(i),1<j<m,2<i=<n,

PY=y;|X=x,3))2P(Y=y;| X =x;)

with strict inequality for some value of y; € 2/(p(i)).

The notion of Y being quasi-incremental in X is pertinent when the range
% of Y is larger than the range of X and the joint probability table of (X, Y)
is sparse in nonzero entries.

Condition (i) demands that as the value x;_; is increased to x;, 2 <1 < n,
at least one “higher” value of Y becomes a possibility. Condition (ii) requires
that the collection of values in %(i)\%(i) be contained in a single lower in-
dexed range set 2/(p(i)). Thus, informally as x;_; is increased to x; the range
2(p(1)), 1 < p(i) <i—1, is shifted up to Z(i).
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F1c. 1. Some graphical models.
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The final condition (iii) concerns the magnitude of probabilities of observing
y; € ¥(p(i)) N Z(i) given x,;, compared with x;. It states that were one
to believe that x; and x,;, were equally probable, then one would believe
(¥js X p(i))s the pair of values associated with the lower value of X, to be at
least as probable as (y;, x;). In this sense the relationship between (X, Y)
could be said to be positively skewed. Notice that by fixing the matrix Z, the
ratios of the two conditional probabilities on either side of the inequalities
in (iii) are fixed. It can also be seen that, under the dnh, by dividing (iii) by
the expression for A ; in (1.2), condition (iii) is automatically satisfied provided
that the containment condition in (ii) is always strict.

It is easy to check whether a matrix Z corresponds to a quasi-incremental
distribution on (X, Y). Explicitly, if Z = {z;;}, then z;; should have the fol-
lowing properties.

1. There exist values £(1), ..., t(n), with £(¢) > 0,1 < ¢ <nand Y j_; t({) = m,
such that z;; =1for 1 < j < #(1), 2;; =0 for t(1) < j < m.

2. In addition, for i, 2 <i < n,
(a) there exists a row p(i), 1 < p(i) < i, such that

i—1
0=<z;=<z,,;=1, 1<j<) )
=1
with strict inequality for some j, such that Zfﬁl)_l 1) < j< fﬁl) t(0);

(b) z;; = 1 for j such that Yithe(e) < j< i, t(e);
(¢) z;;=0for Y)_, ¢(¢) < j < m.

Here t(£), 1 < £ < n, is just the number of values in %/ (¢).
Of course, when X is a function of Y,

2(i)=2%(i), 1<i<n,

S0 Y is trivially quasi-incremental in X. Another way of interpreting this class
of models is that they allow some skewed noise into a functional relationship
between X and Y.

The following result shows that the more interesting recursive distributions
are graphical and furthermore that there is a very close link between these
joint distributions and decomposable graphs.

THEOREM 3.1. Suppose no range set of Y contains any other and Y is re-
cursive in X. Then the following statements hold:

(i) The joint distribution of X, Y is graphical.
(ii) The graph of Z(X,Y) is decomposable.

Furthermore, given 0 and \, every decomposable graph is the graph of a
unique dnh distribution on (X,Y).

PROOF. (i) Go by contradiction and suppose G is not graphical. Since, by
hypothesis, no range set is contained in any other, this supposes that G has
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a clique which is not itself a range set. So, in particular, there must exist a
value of the index i, 1 < i < n, and two possible values of Y, y(1) and y®, say,
such that

i—1
yV ez (@) and y? e JZ(O)\Z()
=1

with y( and y® connected by an edge in G. However, for y(!) and y® to be
connected by an edge, they must lie in some range set Z/(i’), i’ > i. Choose i’
to be the smallest index with this property. Then it is easily seen that property
(ii) of Definition 3.1 is violated for 2/(i’), so G must be graphical.

(i) Note that (0, \) and the range sets of Y on X define a unique dnh
distribution. The result is now immediate from comparing (2.2) and Defini-
tion 3.1(Gii). O

It will be shown in Section 5 that the link between recursive distributions
and decomposable graphs contained in Theorem 3.1 proves useful in defining
a straightforward conjugate Bayesian analysis for A.

4. Reparametrizing quasi-incremental distributions. In the Intro-
duction it was mentioned that N could often be reparametrized to allow a
simple conjugate Bayesian analysis. Here is a useful reparametrization of a
quasi-incremental distribution.

Notice that under conditions (i)—(iii) of Definition 3.1, if y ; € %(i), then

Write

(4.2) N=PY e#(i)| X =x,),

(4.3) Pk(i)=P(Y=yj|X=xisyj€@_(i))’
where

i—1
_ dt(e)+k, if2<i<n,
(4.4) J =3 ¢=1

k, ifi =1,

such that #(i) = ##/(i) is the number of elements in %(i). Note that A; > 0,
pu(i) >0, k=1,...,t(i), and ¥4 p,(i)=1,i=1,...,n. Write

p=(p(1),...,p(n))" where p(i) = (py(i),s -, pyiy(i)).
By the rules of probability we have that N\ and p are related by the equations
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where the indices k£ and j are related as in (4.4). Substituting (4.1) into the
probability constraint (1.10) gives A; as a function of p. Thus

A =1
and

Jr yeUiZi ()

s 2<i<n.

Equation (4.6) can be written as an explicit function of p by repeated sub-
stitution of A; by (4.5) and (4.6). In fact A,(p) is a polynomial function of
(p(l)a""p(i'_ 1))

It is easy but tedious to verify that condition (iii) of Definition 3.1 is neces-
sary and sufficient to ensure that the probability constraints are equivalent to
(4.6) and do not impose further constraints on the simplicies (p(1), ..., p(n))
[Queen (1991); Smith and Queen (1992)].

From (1.9), the likelihood of the reparametrization p of A can now be written
as

no @)

4.7) Ly(p) = [TA TT [on(D1™
i=1 k=1

such that
rp(i) = r;,

where k& and j are related as in (4.4) and

(i)
Fo= (i),

k=1

where A; are defined as functions of p from (4.6) and p(i) satisfy the simplex
constraints

£(i)
> opp(i)=1, pp(i1) >0, 1<k<t@i), 1<i<n.
k=1

The likelihood above is functionally more complicated than the original. How-
ever, it is familiar, being a discrete mixture of multinomial likelihoods. The
simple constraints on p allow common prior distributions like independent
Dirichlets to be used in a Bayesian analysis. Furthermore, p is just a vector
of conditional probabilities so that it is at least plausible to set a proper prior
distribution over these.

The obvious choice of prior density ps(p) on p would be of the form

no )

pa(p) o< [T A TTlpa()]*,

=1 k=1
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where a,(i) > 0,1 <k <t(i),1<i<n,and

i(i)
a; = ) ap(Q).

k=1
The posterior density after observing r = (4, ..., r,,) would then clearly take
the same form with &; and «,(i) replaced by &; + 7, and a(i) + r(i), re-
spectively, where 7, and r,(i) are defined above. We shall call this family
nested generalized Dirichlet densities. Their moments are straightforward to
calculate for moderate sizes of N = 3_""; r ;. For large N, since the posterior
density is log concave, the posterior mode and its associated matrix of second
derivatives of the log density are easy to calculate numerically.

Thus by specifying a matrix of probability ratios Z of the form above, it is
possible to perform a Bayesian analysis on a family of distributions on (X, Y)
consistent with this Z which is conjugate in the unknown probability vectors
(0, N). Two examples of how this conjugate analysis works out on the vector
A\ are given below.

EXAMPLE 4.1. Assume X takes three values (xq, x5, x3) and Y the five
values (y1, ¥9, ¥3, ¥4, ¥5) and that the matrix Z of probability ratios is
given by

1 1 000
Z=|10 051 0 0
0 0 111

Here p = (p(1), p(2), p(3))7, where p(1) = (py(1), pa(1)), p1(2) = 1, p(3) =
(p1(3), p2(3)) and from (4.2) and (4.6),

().\1’ ).\27 )\3) = (17 1- 0-5P2(1), 05P2(1))
and
(F1, 79, g) = (1 + T, I3, T4 +T5).
So by (4.7) we find that the likelihood Ls(p) separates into
1 2
Ly(p) = L (p(1)LS (p(3)),

where

LY (p(1)) = [p1 (1] (1 = pr (1)) +775(1 = 0.5p5(1))*, 0 < py(1) <1,

LY (p(3)) = p1(3)“(1— p1(3))%,  0<py(3) < 1.

The nested Dirichlet conjugate density sets p(1) and p(3) are a priori indepen-
dent with p(3) having a beta density and p(1) having a generalized Dirichlet
density [see Dickey, Jiang and Kadane (1987)]. A posteriori p(1) and p(3) re-
main independent, the beta and generalized Dirichlet density being updated
in the usual fashion. The Bayesian analysis of the conditional probabilities
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associated with y, and y; as governed by p(3) is particularly simple, since
the associated values of Y are only possible if X takes the single value x3.

EXAMPLE 4.2. This time we consider a family of joint probabilities on
(X, Y) with range dimensions 4 and 7, respectively, and Z given by

11 0 00 0 O
01 1 10 0 O
0 00511 1 0
00 0 OO0 O05 1

The conjugate Bayesian analysis on N proceeds as follows.
Here

P = (p1(1), p2(1), p1(2), p2(2), p1(3), p2(3), 1)T

and

(}\1, }\2, }\3, j\4) = (1, p1(1),1 = (1= 0.5p1(2))p1(1), 1 - 0-5P2(3)/\3)

Ly(p) = L (p(1) LY (p(2)p(1) LS (p(3)Ip(1)),

where
L (p(1)) = [py (1) [py(1)]"2, p1(1) + pa(1) = 1,
LY (p(2)Ip(1)) = p1(2)7 2 pa(2) A5, pr(2) +pa(2) =1,

LY (p(3)p(1), p(2)) = p1(3)2po(3)°[1 — 0.5A5p5(3)]7,  p1(3) + pa(3) = 1.

Now for simplicity assume that a priori p;(1), p;(2) and p,(3) have inde-
pendent beta distributions so that their joint density takes the product form
f1(p(1)), f2(p(2)), f3(p(3)). Then, the posterior joint density of p takes the
form

F3(p(3)lp(1), p(2),¥) = I3 LY (p(3)Ip(1), p(2))f35(p(3)),
Fa(p(2)lp(1), ¥) = I; ' I;LY (p(2)|p(1)) Fo(p(2)),

Filp(Dlr) = IT LY (p(1)) F(p(1)),

where I3, I, and I; are the proportionality constants that ensure f5(:|r),
fo(:|r) and f(-|r) integrate to unity, I, being a function of p(1) and r and I5
being a function of p(1), p(2) and r.

Note that f5(p(3)|p(1), p(2), r) is a generalized Dirichlet density. Further-
more, since A5 is a polynomial in p(1) of degree 2, I5 is a polynomial in p(1)
of degree 2r;, making f, a discrete mixture of generalized Dirichlet densities.

Similarly I, is a polynomial of degree 2(r5+rg+r;) so a posteriori f(p(1)|r)
is a mixture of generalized Dirichlets.
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Note that the posterior margins on the space p in such examples are often
algebraically complex. However, it is straightforward, if tedious, to calculate
the posterior moments of p (and hence \) explicitly [see Geng and Asano (1989)
for an explicit demonstration of such methods in an analogous problem]. Alter-
natively, since under this reparametrization the posterior density on p is log
concave, numerical methods for calculating various margins via Monte Carlo
techniques [e.g., see Tanner and Wong (1987)] can be modified so that they
converge very quickly [see, e.g., Gilks (1992)].

5. Choosing the simplest compatible ordering. In Section 2 we men-
tioned that the class of dnh models had been used by other authors to model
conservatively the relationship between X and Y. If the dnh property holds
and Y is quasi-incremental in X, then the graph G of (X, Y) can be used
to discover a transformation (X, Y) — (71(X), 79(Y)) which gives rise to the
most tractable reparametrization of the vector N of conditional probabilities.
We now show that these reparametrizations assign to A a family of distri-
butions which contains the class of hyper-Dirichlet distributions [Dawid and
Lauritzen (1993)] as a special case. Tarjan and Yannakakis’ (1984) algorithm
implies that if a graph is decomposable, there are at least n compatible or-
derings associated with it, where n is the number of its cliques. A compatible
ordering of nodes in G can therefore be chosen which defines a transformation
(71, 79) on (X, Y) which makes (71(X), 79(Y)) recursive through the equiva-
lence of (2.2) and Definition 3.1(i1). This ordering can be found quickly from
G by using a maximal cardinality search or in simple problems, by eye. The
reparametrization given in Section 4 may not only depend upon G(Z), but
also on Z as well.

For example, the matrix Z given below gives rise to a quasi-incremental
distribution on (X, Y); however, so does Z’, and both Z and Z’ define the
same class of models.

11100 11000
Z=|0 111 0], Z=101110
01001 01011

The graphs G,(Z) and G4(Z’) are given in Figure 1. The transformation

(X,Y) - (11(X), 79(Y)) is given by

(T1(x1), T1(%x2), T1(x3)) = (x3, X9, 1),

(To(¥1)s To(¥2)s To(¥3)s To(¥4)s T2(¥5)) = (V55 Y25 Yas ¥3> Y1)

Following Section 4, the transformations of A to p and p’ with respect to com-
patible orderings associated with Z and Z’, respectively, are different, namely,

Ly(p) = [p1 (D] " [pa (D] [pa(D]*(p1(1) + p3(1))",

p1(1) + p2(1) +p3(1) =1,
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and
Ly(p') = pi (1) 7774575 ol (1)2p) (2)75775 pp(2),

P1(1) + (1) = 1, ph(2) + py(2) = L.

Unless there is some good reason to the contrary, the second reparametrization
should be preferred to the first. The fact that it leads to a reparametrization
in terms of independent beta processes not only makes the interpretation of
the model easier, but also simplifies the math.

The next result gives sufficient conditions for when a conjugate analysis on
A can be performed in which each component of A is expressed as a product
of terms in p = (p(1), ..., p(n)) and where each p(i) are a priori independent
of each other. In this case p(i), 1 < i < n, have a Dirichlet distribution both a
priori and a posteriori.

First a definition. Suppose a decomposable graph G has cliques (C(1),
C(2),...,C(n)), S(i) and p(i) are defined in (2.2) and

R(i) = C())\S@).

DEFINITION 5.1. Call a compatible ordering of a decomposable graph G
simple if for each clique C(i), 2 < i < n, one of the following conditions holds:

@) #(S@)) =#C(p(i))-1,2=<i=<n;
(i) C(p())\S() = R(p(p(i))), 2 = p(p(i)) < p(i);
(i) C(p(i))\S(i) = R* or C(1)\R*, where the set R* does not depend on ¢,
2<i<n,and ¢ C R* C C(1).

The reparametrization of N we advocate below uses the compatible ordering
above on the graph of (X, Y), with (i) = C(i), #(i) = R(i) and Z (i)\% (i) =
S(i), 1 < i < n, following exactly the reparametrization given in Section 4,
except that we replace p(1) by writing

(1) = TOY, if k € R*
PRI =1 (1= 7)o, if ke C(1)\R,

where
Y op=1, 0,>0, ke R*, o0 ={0,: k€ R*},
keR*
> wp=1, w, >0, ke C(U\R*, o ={w;: ke R*}
keC(1)\R*

and 0 < 7 < 1. Clearly p(1) — (7, 0, ®) is invertible and hence so is A —

(7, 0,m,p(2),...,p(n)).
Furthermore, the new reparametrization has a simple interpretation in
terms of the conditional distribution of Y on X. Thus

7=P(y; € R" | x = x;)
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and, for each y; € R*,
g;=P(y;|x=xy, yje R")
and, for each y; € Y(1)\R",
w;=P(y;|x=1x, y; € Y(1)\R").

THEOREM 5.1. If the graph G of a joint distribution of (X, Y) is decompos-
able and admits a simple compatible ordering and (X, Y) satisfies the dnh,
then the conditional probability vector N can be reparametrized to (7,0, o,
p(2), ..., p(n)). If each of the (n+2) parameter vectors is given an independent
Dirichlet distribution, then posterior to observing r, (7,0, ®,p(2),...,p(n))
will remain independent and each will still have a Dirichlet distribution.
Each component of N will be expressed as a product of single components from
(1,0,0,p(2),...,p(n)).

Furthermore, two families of these prior distributions associated with dif-
ferent compatible parametrizations of G are equivalent in the sense that they
give an identical family of distributions over \.

ProoF. It is sufficient to show that under the conditions of the theo-
rem, A;, 1 < i < n, as defined in (4.2), is a product of terms in (7,1 —
7,0, m0,p(2),...,p(n)), since p(1) is clearly a product of terms in (7,1 —
7,0, ®). Go by induction on i. The theorem is clearly true for i = 1 since
)li =1, so suppose it is true forall ¢,1 < ¢ <i — 1.

From Definition 5.1: if (i), then A; = A ), where j(i) is the only element
in C(p(i))\S(i) and so A; = A,p,(s) for some s < i — 1 such that j(i) =

SZ1E(r) + B if (i), then A; = A0y, P(P(P)) < i if (iif), then A, =71or
(1 — 7). In all these cases under the inductive hypothesis, A; takes the right
product form and so the first part of the theorem is proved.

To prove uniqueness, suppose G admits a simple compatible ordering. In
this ordering, let 2/(i)\#% (i) have q(i) elements, (i) have #(i) elements and
write A(i) = (\D(i), N®(i)), where for 2 < i < n, A\)(i), 1 < k < q(i), is the
kth lowest indexed component of X lying in %/(i)\% (i) and )\EZ)(i), 1 <¢ <),
is the ¢th lowest indexed component of %/(i).

By the construction above we can set, a priori, A(Z)(i) to be dependent on
A(l)(i) only through the sum of the components of AV(7), that is,

q(7)
G AOND =A@ (A =1-4).  2=izn,
k=1

and we can also set A®(i)]A(V)(i) to have an arbitrary Dirichlet distribution a
priori. It is immediate from the properties of the Dirichlet distribution [John-
ston and Kolz (1972)] that under the construction above the vector A(1) of
components in %/(1) has been set to have an arbitrary Dirichlet distribution
as a prior. By induction on i, it follows that, since AV(i) is a subvector of
A(p(i)), 2 < i < n and so (1 — A;)"'AY(i) is Dirichlet [Johnson and Kotz
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(1972)] and (5.1) holds that A(i) has a Dirichlet distribution [Johnson and
Kotz (1972)] 2 <i < n.

It follows from Dawid and Lauritzen [(1993) page 1304] that our prior fam-
ily over (7, o, w, p(2), ..., p(n)) gives the (uniquely specified) hyper-Dirichlet
family of prior distributions over A. Since this is true for any simple compatible
ordering, the uniqueness is proven.

ExaMPLE 5.1. It is easy to check that G5 of Figure 1 admits a simple com-
patible ordering. Thus transform (X,Y) so that 2(1) = {y3, y4}, Z(2) =

{01, ¥2, 3}, Z(3) = {¥1, 2, ¥5, ¥6} and Z(4) = {ys, ¥6, y7}. Under this or-
dering C(2) and C(3) satisfy (i) and C(4) satisfies (ii) of Definition 5.1:

Ly(N) = [p1(2)]" [p2(2)][p1(3)]* [po(B3)] o7 27471 (1 — ) (Tst7stTo),

where

()‘17 )‘2’ /\3’ /\4’ /\5’ /\6’ /\7) = (pl(Z)T, p2(2)7’ 1_77 T, P1(3)(1—’T), P2(3)(1—’T), T)'

Here o and o are simply 1.

Sometimes it is rather difficult to check by eye for a compatible ordering of
a graph which has this property. The following construction is often useful.

DEFINITION 5.2. Call a graph H the contraction of a graph G if it has the
following properties.

(a) The nodes of H are maximal complete subsets of nodes of G which share
the same neighbors (other than themselves) in G.

(b) An edge between nodes J; and J, in H exists iff there is an edge
(J1, Jo) € G for every j, € J; and j, € 5.

In Figure 2, Hj is the contraction of the decomposable graph G5 of Figure 1.
A contraction H is useful because: (1) H is no more complicated than G and
(2) under the obvious mapping, the cliques of H correspond to the cliques of
@G, as do their intersections and complements.

FI1G. 2. A contraction graph of Gs.
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Because of the property (b) it is possible to use H to identify an independent
Dirichlet breakdown of probabilities of (X,Y) with an associated G, even
when G is quite complicated.

EXAMPLE 5.2. Once Hj is constructed from G5 of Figure 1 it is clear that
the clique {1, 2, 3,4, 5} of G5 [{{1,2,3},{4,5}} of Hs] breaks G5 into two
components. Thus in the construction of Theorem 5.1 set R* = {1, 2, 3},

C(1)=1{1,2,3,4,5}, C(2)={4,5,6,7}, C(3)=1{4,5,7,8},

C(4)=11,2,3,9}, C(5)=11,2,3,10}.
Then
L2()\) = 0.1’1 0.2’2 0_§3 w24 wg5[p1(2)]r6+r8 [p2(2)]r7Tr1+r2+r3+r6+r7+rg(1 . 7)’4‘”5'”9'”10,

vx;h;r‘e Z‘j’-:l og;=1, 2314 w;=1and 23:1 pj(2) =1,0 < 7 < 1. The transform
of \ is

A= (7-0-17 TOg, TOg, (1 - 7-)L“’47 (1 - T)wS’ ’Tpl(Z), TPZ(Z)’ Tpl(Z), (1 - T)’ (1 - T))

6. Two examples of the use of fixed likelihood ratio models. One of
the main features of fixed likelihood models is that all odds ratios OR(i, i/,
J,J)1=i,i'=n,1=<j,j =m,

P(Y = y,|X =x) P(Y = y,|X = x,)

6.1 OR(i, i, j, j) = )
(6:1) ( )= Y =y X =) P(Y = 31X = x,)

are functions of the Z matrix, so all fixed likelihood ratio models have fixed
odds ratios. Typically in the applications we have studied it is reasonable, at
least in the first instance, to assume that Z is fixed in time but that both the
margin 0 of X and the selected conditional probabilities of Y| X encoded in A
move as a time series. The separation of (1.6) allows these two time series to
be analyzed independently of one another.

The issue we address in this section is the scope of applicability of such mod-
els. We shall concentrate our attention on two areas. The first is derived from
the statistical analysis of certain marketing models. This was the motivating
example for this work and is now well studied [Queen (1994); Queen, Smith
and James (1994)]. The second relates to the area of probability estimation in
medical probabilistic expert systems.

EXAMPLE 6.1 (Statistics of marketing). In this application, Y labels a set
of competing brands and X labels categories of purchasers of these brands.
The distribution of X varies slowly from week to week reflecting the chang-
ing demography, aspirations, affluence and so on of the potential customers.
However, brand sales are typically volatile, being subject to many stochastic
covariates, which include promotions directed to retail outlets, who are re-
warded financially for displaying a brand more prominently, and promotions
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directed at the general customer such as TV advertising, money-off offers or
larger pack offers.

Within this setting, notice first that there is some flexibility not only in
the choice of Y—through which brands are included in the study—but also
considerable modelling choice in how X, the category list of customers, is de-
fined. So, in practice, X can be chosen so that many of the Z entries are
zeros; indeed, this is recommended by various market researchers [see, e.g.,
Grover and Srinivasan (1987)]. For example, X could be defined in terms of
the needs of the customer, where a brand will either satisfy the list of needs
of the purchaser or not [see, e.g., Queen (1994)]. For the fixed likelihood ratio
model to be valid it is necessary that, within the period of study, promotions
which affect brand sales act in an even-handed way across types of purchaser
in the sense that the odds ratio of (6.1) remains unchanged. In the types of
markets we have studied, the empirical evidence available suggests that this
invariance holds, at least approximately, and is plausible unless the promo-
tions employed by a brand target a specific type of customer [Queen, Smith and
James (1994)]. Again in a large number of markets it appears empirically that
a good working hypothesis is that the joint distribution is quasi-incremental.
The index i seems to be related to the sophistication of the brand required by
that category of customer.

Despite these arguments, we are still left with the practical problem of how
to specify the nonzero elements of Z. There are essentially two ways to do this:
the first is empirical; the second is to introduce new modelling assumptions.
For some products, at infrequent periods, large sample surveys are performed
which allow for the direct measurement of the nonzero elements z;; of Z so
that

s #(x;5 ;) #(x;)
! #(xi()

#(xi () Vi)
where x;.( ;) is the type of purchaser most likely to buy brand y; and #(x;, y ;)
is the number of purchases made by customer type x; of brand y; and so on.
The vectors (N, 0) can then be allowed to develop as a time series while Z is
held fixed to allow prediction of future brand sales.

When such sampling data are not available it is possible to derive Z from a
behavioral model like the one outlined below. A customer walks into a shop and
with probability 6; she is of type i. She first picks one of the brands (Y = y ;)
with probability ; which does not depend on i, where Z;’Ll W j = 1. After
looking at the selected brand, if she decides it is appropriate [i.e., y; € Z(i)],
she buys it; if it is inappropriate, she replaces it on the shelf and picks another
brand y; with probability ¢ ;(1 — ¢ ;)~'. She repeats this process until she
has bought a brand.

Under this model, X and Y are independent. If y S EZ(1),

-1
} , 1<i<n,1<j<m,

P(Y=yj|X=xi)

Zi': :0
TOP(Y =y, X =xp5)
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On the other hand, if y; € #/(7),
o P(Yzyj|X=xi)
Y P(Y =y, X = x5)
_ PY =y,X =x) P(Y e#(i*(D)X = xi(;)
PY ez X =x;) P =y;IX =x3)

9

which, since X and Y are independent,

_PY 2@ ()
P(Y € %(i))
e
=L(.J)), JjeZ(@),l1<i=<n,
(i)
where (1 — 7(7)) is the probability a customer of type i replaces her first
chosen brand on the shelf. This probability can be estimated, at least in prin-
ciple, directly from an experiment. If we are completely ignorant about these
replacement probabilities, it seems reasonable to set them all equal and this
then gives the dnh model discussed in detail in Section 5. It can be shown that
when these replacement probabilities are not equal, for quasi-incremental dis-
tributions at least, it is sometimes possible to redefine the categories i so that
they are (at least approximately) equal. This trick is not always available for
other fixed likelihood ratio models, however. Finally, if w = (7 (1), ..., w(n)) is
deemed uncertain, then its distribution can be updated in the light of r in the
usual way using the conjugate predictive probabilities of r|w = r|Z. However,
it should be noted that there are technical reasons why the distribution of
r|w depends only weakly on # and in practice the posterior distribution of =|r
often tends to be very close to the prior.

ExXAMPLE 6.2 (Environmental medicine). Here we let Y label the (set of)
symptom(s) first reported to a doctor and X the patient’s disease category.
One reason why our class of models is suitable in this case is that there
often exists a partial logical relationship between symptoms and diseases;
that is, by definition a disease cannot be observed unless certain symptoms
appear. Another reason is that, for elicitation purposes, the conditioning in
our parametrization of symptom, given disease, is the right way round.

Consider the following hypothetical study on the effects of air pollution on
health. Assume that various disease conditions make the individual more sus-
ceptible to certain subsets of pollutants. Suppose the first reported data are
symptoms such as ulcers, headaches, dizziness, dyspnea, diarrhea and eczema,
and that exposure to particular pollutants causes one or more of the symptoms
in susceptible individuals but not in the insusceptible. As in the last exam-
ple, A will be treated as an unknown and stochastic; that is, the probability
that a most susceptible individual exhibits certain symptoms will change in
time (due to differing effects of pollution, in combination with other factors,
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over time), in location and in category of patient. Furthermore, the probabil-
ities 0 of different diseases being observed is also modelled as depending on
time, location and category of individual. However, we do assume that Z is
fixed. In particular, this will imply that the relative toxicity of two pollutants
measured over different categories of disease, as measured by the odds ratio,
will be invariant—in this context a reasonable assumption at least in the first
instance.

As in the last example, the fixed likelihood ratio model can be seen as
the product of censoring—in this case the censoring occurs when individuals
exposed to a potentially toxic substance are immune and so are not counted.
Thus let Y = y ; correspond to an individual’s first exposure to a pollutant

which can cause symptoms y;, 1 < j < m. Assuming Y is independent of
X and that each individual will be exposed at random to a succession of
values of y ;, the arguments in the last example give us a fixed likelihood ratio
model provided that 7(i)—the probability that an individual with disease i
is exposed first to a pollutant to which she is susceptible—is known. Again,
but perhaps less plausibly, if diseases are classified in a way which makes
7(i) = w(1), 2 < i < n, then we have a dnh model.

7. Graphical dnh joint distributions without a simple ordering.
When a graphical distribution on (X, Y) is not quasi-incremental, the con-
straints (1.10) can become more active. Strange implications can then arise
which suggest that fixed likelihood ratio models might be dubious. Consider
the graphical dnh models defined by graphs G, and G, of Figure 1.

Using the reparametrization of A to p as defined in Sections 4 and 5, a
reparametrization of G, gives p = (7,1 — 7,1, 1). This is one dimensional
rather than the expected m — n = 0 dimensional solution space and has \ of
the form

A=(r,1—-1,1—7,7).

It is easily checked that the additional dimension in A arises because the
probability vector 8 on the margins of X is unidentifiable. Notice, however,
that a conjugate beta analysis can be performed on A if this dnh model is
considered appropriate.

Even stranger, it can easily be shown that no dnh model on (X,Y) can
exist which has range sets defined by G,. By using the reparametrization
of Section 4, where C(1) = {6, 7}, C(2) = {1,5,6}, C(3) = {1,2,5}, C(4) =
{2,3,5},C(5)=13,4,5},C(6)=1{4,5,6},C(7) =1{7,8,12},C(8) = {8, 9, 12},
C(9) =49, 10, 12}, C(10) = {10, 11, 12} and C(11) = {7, 11, 12}, set

p= {p1(1)> p2(1)’ P1(2), Pz(z)a 1,1,1, P1(7), P2(7), 1,1, 1}’

where py(1), p1(2), p1(7) < Land ¥5_, p;(2) = X2, p;(7) = 1.
Unfortunately though, since (X, Y) is not quasi-incremental there are two
extra constraints from (1.10), namely,

p2(1)p1(1) = p1(1)
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and
p1(1)p1(7) = p2(1).
Estimating p(1) from these equations gives
I+, @)+ QA +p(T) =1,

which has no solution if p;(2) and p;(7) are strictly positive. Other examples
can be constructed when the dnh is not assumed where under fixed likelihood
ratio models such non-existence problems arise.

These examples illustrate that fixed likelihood ratio models may have un-
desirable modelling implications. Such models seem best suited to be used in
conjunction with quasi-incremental distributions.
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