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MAXIMUM LIKELIHOOD ESTIMATION UNDER
A SPATIAL SAMPLING SCHEME

BY AAD VAN DER VAART

Vrije Universiteit

It is shown that the maximum likelihood estimator in a model used in
the statistical analysis of computer experiments is asymptotically efficient.

1. Results. Motivated by the modelling of computer experiments, Ying
Ž . Ž 2 .1993 considers estimation of the parameter l, m, s based on a matrix-

Ž . Ž .valued observation X s X where i s 1, . . . , m and k s 1, . . . , n from ai, k
multivariate normal distribution with mean zero and covariances given by

2 < < < <cov X , X s s exp yl u y u y m v y v .Ž . Ž .i , k j , l i j k l

The grids 0 F u - u - ??? - u F 1 and 0 F v - v - ??? - v F 1 are1 2 m 1 2 n
known to the experimenter and the parameters l and m are positive.

w xSuppose that the grids become dense in 0, 1 in such a way that

< < y1r2 < < y1r21.1 max u y u s o m ; max v y v s o n .Ž . Ž . Ž .iq1 i kq1 k

Ž .Under this condition, Ying 1993 establishes asymptotic normality of the
ˆ 2Ž .maximum likelihood estimator l, m, s as m, n ª ` in such a way thatˆ ˆ

Ž .nrm ª r g 0, ` . Precisely,

¡ 2 2 ¦¡ ¦2l y2s l
0

1 q l 1 q l
ˆ 2 2l y l 2m y2s m' 0 r r1.2 n ª 0, .m y mŽ . ˆ d 1 q m 1 q m� 02 2s y sˆ 2 2 4 4y2s l y2s m 2s 2s

r q r¢ §¢ §1 q l 1 q m 1 q l 1 q m

Somewhat surprisingly the ‘‘usual’’ theory concerning asymptotic efficiency of
Ž .the maximum likelihood estimator does not apply. However, Ying 1993

conjectures that the maximum likelihood estimator is nevertheless asymptot-
ically efficient. In this note we show this to be true.

Since the data in the model are dependent, the ‘‘usual’’ theory should refer
to the general concept of local asymptotic normality due to Le Cam and

w Ž . xHajek. See Ibragimov and Hasminskii 1981 for a discussion. It turns out´
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that the model is not locally asymptotically normal in its natural
parametrization, but can be reparametrized so as to make the ‘‘usual’’

Ž 2 .techniques apply. Precisely, let L l, m, s be the log likelihood for them , n
model. Local asymptotic normality of the model in its natural parametriza-

2' Ž .tion would entail that for d s 1r n and every fixed l, m, s the ‘‘local logn
likelihood’’

1.3 L l q ad , m q bd , s 2 q cdŽ . Ž .m , n n n n

has a linear expansion of the form
t2L l, m , s q a, b , c D q a, b , c J a, b , c q o 1Ž . Ž . Ž . Ž .Ž .m , n n P

Ž .for a sequence of random vectors D that converges to a normal N 0, Jn 3
wdistribution. By ‘‘linear’’ it is understood that the stochastic part of the

Ž . xexpansion is linear in a, b, c . However, in Section 3 it is shown that this
Ž .expansion is valid for d s 1rn with J nondegenerate , rather than d sn n'1r n . The expansion with d s 1rn would suggest that the rate of then

maximum likelihood estimator is suboptimal. That the maximum likelihood
estimator is in fact asymptotically efficient can be seen by using a nonlinear
‘‘localization.’’ The localized log likelihood

2 'a b lms q cr mn
1.4 L l q , m q ,Ž . m , n ' ' ' 'ž /n m l q ar n m q br mŽ . Ž .

does permit the required expansion. Moreover, this localization leads to
convergence to a Gaussian shift experiment, and standard efficiency theory

Ž .can be applied in a nonstandard manner. The third local parameter in 1.4 is
Ž .up to order O 1rn equivalent to

s 2a s 2 b c s 2ab s 2a2 s 2 b2
21.5 s y y q q q q .Ž . 2 2' ' ' ' nl mml n m m lm mn lm mn

Thus the perturbation of s 2 due to the free parameter c is of lower order
than the perturbation due to the local parameters a and b connected to l

2 Ž .and m. The explanation is that s is confounded with l, m . As shown by
Ž . 2Ying 1993 , the parameter lms is estimable at rate n. Thus knowledge of

two out of three of the parameters would make it possible to estimate the
unknown third parameter at rate n also. If all three parameters are un-

'known, the rate drops to n . This fact should be incorporated in the localiza-
tion. Section 3 contains more remarks on this point.

Actually, the given nonlinear localization corresponds to a linear one for
Ž . Ž 2 .the parameter l, m, t s l, m, s lm . In terms of this new parameter, the

sequence of models is locally asymptotically normal in a standard manner.

Ž . Ž 2 .THEOREM 1.1. Let 1.1 hold. Then for every fixed l, m, s the localized
Ž .log likelihood 1.4 behaves as

t12L l, m , s q a, b , c D y a, b , c J a, b , c q o 1 ,Ž . Ž . Ž . Ž .Ž .m , n n P2
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Ž y1 y2 y1 y2 y2 .where J is the diagonal matrix J s diag l q l , m q m , t r2 and
Ž .D is the sequence of random vectors given by 2.5 . Furthermore, the sequencen

Ž .D converges in distribution to N 0, J .n 3

Given this theorem, standard results such as the convolution and minimax
ˆ' 'Ž Ž . Žtheorem designate estimator sequences such that n l y l , m m yˆ

y1'. Ž .. Ž .m , mn t y t tends in distribution to a normal N 0, J distribution asˆ
Ž .asymptotically optimal. In view of Ying’s 1993 results,the maximum likeli-
Žhood estimator is asymptotically optimal. Marginal limit distributions of the

estimator are given in his Theorem 2; the joint limit distribution follows from
.the expansions in his proof on pages 1582 and 1584]1585.

Ž 2 .Since the original parameter l, m, s is a smooth function of the new
ˆ ˆ 2Ž . Ž .parameter, the optimality of l, m, t must somehow carry over onto l, m, s ,ˆ ˆ ˆ ˆ

2 ˆŽ .where s s tr lm . This is not entirely trivial. The following two resultsˆ ˆ ˆ
make this concrete.

Ž .COROLLARY 1.2. Under the conditions of the theorem, let T s T , T , Tn n1 n2 n3
2' ' 'Ž Ž . Ž . Ž ..be estimators such that the sequence n T y l , n T y m , n T y sn1 n2 n3

Ž 2 . Ž 2 .possesses a limit distribution under l, m, s for almost every l, m, s in
an open set. Then this limit distribution is the convolution of the normal

Ž .distribution in 1.2 and some other probability distribution for Lebesgue
Ž 2 .almost all l, m, s .

COROLLARY 1.3. Under the conditions of the theorem, for every estimator
3 w . Ž 2 .sequence T and subconvex loss function l: R ª 0, ` and every l, m, s ,n

the local minimax risk

'T y l y ar nn1

' '2sup lim inf sup E l n T y m y br mŽ .lqar n , mqbr m , s a , b n2' ' m , nnª`I Ž .a , b gI � 0� 02T y s a, bŽ .n3 m , n

Ž . Ž .is bounded below by H l dN 0, S where N 0, S is the normal distribution in
2 y1 y1' 'Ž . Ž . Ž . Ž .1.2 . Here s a, b s t l q ar n m q br m and the first supre-m , n

mum is taken over all finite subsets I ; R2.

PROOFS. According to the theorem the sequence of models is locally
Ž . Ž .asymptotically normal for the parameter l, m, t . For fixed l, m, t let

Ž . Ž . 3EE l, m, t be the experiment with parameter a, b, c g R correspondingm , n
to observing an m = n matrix X distributed according to the normal distri-

' ' 'Ž .bution with parameters l q ar n , m q br m , t q cr mn . Then the se-
Ž .quence EE l, m, t converges to the experiment of observing one observa-m , n

ŽŽ . y1 .tion D from the N a, b, c , J distribution. Convergence of experiments3
Ž . Ž .was introduced by Le Cam 1972 . van der Vaart 1991 gives a review that is

appropriate in the present context.
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Ž . Ž .Define functionals k l, m, t s l, m, trlm . These functionals are dif-m , n
Ž .ferentiable with respect to the localization at every l, m, t in the sense that

a b c'n k l q , m q , t q y k l, m , tŽ .m , n m , nž /ž /' ' 'n m mn
2 2s s' 'ª a, r b , y a y r b s k 9 a, b , c .Ž .ž /l m

Le Cam’s theory of convergence of experiments now implies that estimating
2' ' 'Ž . Ž .the functionals k l q ar n , m q br m , t q cr mn in EE l, m, s ism , n m , n

Ž .asymptotically not easier than estimating k 9 a, b, c in the limit experiment.
The two corollaries make this concrete.

' Ž Ž ..By assumption, the sequence n T y k l, m, t possesses a limit dis-n m , n
Ž .tribution L under almost every l, m, t . This implies that the sequencel, m , t

a b c'n T y k l q , m q , t qn m , n ž /ž /' ' 'n m mn
'possesses the same limit distribution under the parameter l q ar n , m q

3' ' Ž . Ž .br m , t q cr mn for almost every a, b, c g R , for almost every l, m, t
3 Ž .g R . The argument is similar to the argument given by Jeganathan 1981 .

w Ž . Ž . x Ž .Also see Le Cam 1986 and van der Vaart 1996 . At l, m, t such that this
Ž .is true, the sequence T is ‘‘almost regular’’ in the sense of Hajek 1970 at´n

Ž .almost all l, m, t . By Hajek’s convolution theorem, L is the distribution´ l, m , t

Ž . w Ž . xof the sum of k 9 D under a, b, c s 0 and an independent variable. Since
Ž . Ž .k 9 D is distributed as the right side of 1.2 , this gives the first corollary.
The display in the second corollary gives the limiting local minimax risk

Ž .for estimating the functionals k in the experiments EE l, m, t . This ism , n m , n
bounded below by the minimax risk in the limit experiment for estimating

Ž . Ž .k 9 a, b, c . The minimax estimator in the limit experiment is k 9 D and this
Ž .has constant risk H l dN 0, S . I

Although Corollary 1.3 defines the local minimax risk in an unusual
Žmanner it is based on a two-dimensional local submodel in a three-dimen-

.sional parameter space , its interpretation is as usual. For instance, the
expression displayed in Corollary 1.3 is a lower bound for

2˜'2lim inf sup E l n T y l, m , s˜ ˜˜ ž /l, m , s nž /˜ ˜ ž /
nª` 2 2˜< < < < < <lyl q mym q s ys -«˜ ˜

for every « ) 0. The preceding two results are only two examples of how
efficiency of the maximum likelihood estimator might be expressed.

2. Proof of Theorem 1.1. The proof of Theorem 1.1 consists of some-
what tedious Taylor expansions. Below we describe the general structure.

Form a vector from the matrix X by putting the second column under the
first, next the third under the first two, etcetera. Let Y be zero and let Y1, 1 i, k
be the ‘‘innovation’’ defined as X minus the conditional expectation of Xi, k i, k

Ž .given the preceding X the ones above X for the other indices. Letj, l i, k



MLE UNDER SPATIAL SAMPLING 2053

v s EY 2 . Since the innovations are orthogonal and form a multivariatei, k i, k
normal vector, they are independent. Furthermore, the original X can bei, k

Ž .regained from the innovations as X s LY, where L is an mn = mn matrix
Ž . Ž . twith zeros above and ones on the diagonal. Thus cov X s L diag v L andi, k

y2 log likelihood equals

y2 L l, m , s 2Ž .m , n

y1ts mn log 2p q log det cov X q X cov X XŽ . Ž . Ž .
2.1Ž .

Y 2
i , ks mn log 2p q q log v .Ž . ÝÝ i , kž /vi , k

This is well known. In the present case the innovations are surprisingly
simple. Let j s u y u , z s v y v andi i iy1 k k ky1

U s X y eym z k X ,i , k i , k i , ky1

V s X y eyl j i X ,i , k i , k iy1, k

Y s X y eyl j i X y eym z k X q eyl j iym z k X ,i , k i , k iy1, k i , ky1 iy1, ky1

where X is defined as zero if i s 0 or k s 0. It can be checked that the Yi, k i, k
are indeed the innovations. Thus the projection of X on all the precedingi, k
ones is actually the same as the projection of X on just three precedingi, k
ones. It turns out that Y is also orthogonal to all X with j - i. Similarlyi, k j, l
U is orthogonal to all X with l - k and V is orthogonal to all X withi, k j, l i, k j, l
j - i. Figure 1 illustrates these facts, which imply many useful indepen-
dences and zero correlations. It is clear that the Y in the first column ori, k
row are special. Even though there are relatively few of them, they give

Ž . Ž y2 x .nonzero contributions in the Taylor expansion. Setting c x s 1 y e rx,
we calculate

v s EY 2 s s 2 1 y ey2 lj i 1 y ey2 mz kŽ . Ž .i , k i , k

s tj z c lj c mz , i , k G 2,Ž . Ž .i k i k

EU 2 s s 2 1 y ey2 mz k s tz c mz rl, k G 2,Ž . Ž .i , k k k

EV 2 s s 2 1 y ey2 lj i s tj c lj rm , i G 2.Ž . Ž .i , k i i

Note also that Y s U and Y s V .1, k 1, k i, 1 i, 1

FIG. 1. The X at the ‘‘o’’ is projected on the X in the shaded area. The projection happens toi, k j, l
sit at the crosses.
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˜ ' ' 'Ž . Ž .Write l, m, t for l q ar n , m q br m , t q cr mn and also use tildes˜ ˜
for corresponding functions of the parameters, such as v for the value ofĩ, k

˜ ˜Ž .v at l, m, t and Y for Y with the parameters replaced by their˜ ˜i, k i, k i, k
versions with tildes. We need to expand the difference of the expression in
Ž .2.1 evaluated with and without tildes. We first show the effect of replacing

Ž . Ž 2 Ž 3..v by v . Since c x s 2 1 y x q 2 x r3 q O x as x ª 0, we have forĩ, k i, k
i, k G 2,

v ci , k y1s 1 y q o n ,Ž .'v t mnĩ , k

Ž . Ž . Ž .uniformly in i, k , in view of 1.1 . Using the expansion log 1 q v s v y
2 Ž 3.v r2 q O v , we obtain, with the double sums understood to be over the

indices i, k G 2,

˜ 2 ˜ 2Y Yi , k i , kq log v y q log v˜ÝÝ ÝÝi , k i , kž / ž /v vĩ , k i , k

22Ỹ v 1 vi , k i , k i , ks y 1 y 1 q y 1 q o 1Ž .ÝÝ ÝÝž / ž /ž /v v 2 v˜ ˜i , k i , k i , k

2.2Ž .

˜ 2 2yc Y ci , ks y 1 q q o 1 ,Ž .ÝÝ P2' ž /v 2tt mn i , k

Ž .under the assumption that the random element in the last line is O 1 . TheP
˜latter is shown below and also that the Y can be replaced by Y at thei, k i, k

Ž .cost of a further o 1 term.P
The analogous sums over the first column and row are not negligible. By

the same method as before we obtain, for the first row,

˜ 2 ˜ 2Y Y1, k 1, kq log v y q log v˜Ý Ý1, k 1, kž / ž /v v˜1, k 1, k
2.3Ž .

˜ 2 2a Y 1 a1, ks y 1 q q o 1 ,Ž .Ý P2' ž /v 2 ll n 1, k

Ž .under the assumption that the random element in the last line is O 1 . TheP
first column gives a similar contribution.

˜ 2 2Next consider expansion of Y around Y . Some algebra yieldsi, k i, k

˜yl j ylj ymz ymz˜i i k kỸ y Y s e y e U q e y e VŽ . Ž .i , k i , k iy1, k i , ky1

˜yl j ylj ymz ymz˜i i k kq e y e e y e XŽ . Ž . iy1, ky1

s A q B q C say .Ž .i , k i , k i , k
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Thus with R s 2YC q 2 AB q 2 BC q 2 AC q C 2, we obtain

˜ 2 2 2 2Y s Y q 2Y A q B q A q B q R say .Ž . Ž .i , k i , k i , k i , k i , k i , k i , k i , k

With the double sums again understood to be over i, k G 2, we have

A2 a2 B2 b2 Ri , k i , k i , k
2.4 ª ; ª ; ª 0.Ž . ÝÝ ÝÝ ÝÝP P Pv 2l v 2m vi , k i , k i , k

The first two statements can be proved by calculating means and variances of
the sums, where we use the projection properties illustrated in Figure 1. For
instance, since U and U are independent for k / l,i, k j, l

A2 1 j 2j 2
i , k i j 2 2var s O cov U , UŽ .ÝÝ ÝÝÝ iy1, k jy1, k2ž /ž /v v vni , k i , k j , ki j k

1 j j 1i j 2 2F O var U var U s O .Ž . Ž .ÝÝÝ iy1, k jy1, k2 2 ž /ž / nn zki j k

Ž .The R in the third statement of 2.4 can be broken into two parts. Thei, k
part of R corresponding to YC q AB can be handled by computing second
moments, where we can use that A B and A B are uncorrelated andi, k i, k j, l j, l

Ž . Ž .have mean zero for i, k / j, l . Thus

2 2 2A B 1 z z 1i , k i , k i k 2 2E s O EU EV s O ,ÝÝ ÝÝ iy1, k i , ky12 2 2ž / ž /ž /v n v ni , k i , k

where we use that A and B are also uncorrelated, hence independent.i, k i, k
The part of R corresponding to 2 BC q 2 AC q C 2 can be handled with the

˜< < < < < < < <inequality C F l y l j m y m z X followed by computing means.˜i, k i k iy1, ky1
For instance,

A C 1 1i , k i , k
< < < <E s O j E U X s O .ÝÝ ÝÝ i iy1, k iy1, ky1 ž /ž /'v nn ni , k

Ž .Considering 2.4 proved, we obtain with the double sums being over
i, k G 2,

˜ 2 2 2 2Y Y Y a bi , k i , k i , ks q 2 A q B q q q o 1 .Ž . Ž .ÝÝ ÝÝ ÝÝ i , k i , k Pv v v 2l 2mi , k i , k i , k

˜Ž .Here the A and B can be replaced by their expansions 3 l y l j Ui, k i, k i iy1, k
Ž .and m y m z V , respectively. In the corresponding sums over the first˜ k i, ky1

˜ Ž .row and column the Y can be replaced by the Y at the cost of only a o 1i, k i, k P
term.



A. VAN DER VAART2056

Ž . Ž . Ž .Combination of the last display with 2.1 , 2.2 and 2.3 yields the
expansion of the theorem with

¡ 2 ¦1 Y 1 1 Yi , k 1, ky Ý Ý j U y Ý y 1iG 2 k G 2 i iy1, k k G 2 ž /' 'v 2l vn ni , k 1, k

21 Y 1 1 Yi , k i , 1y Ý Ý z V y Ý y 12.5 D s .Ž . iG 2 k G 2 k i , ky1 iG 2n ž /' 'v 2m vm mi , k i , 1

21 1 Yi , kÝ Ý y 1iG 2 k G 2¢ §ž /' 2t vmn i , k

The sequence D can be seen to be asymptotically normal by a martingalen
Ž .central limit theorem. See page 1585 of Ying 1993 for more details. I

3. Invalidity of standard local asymptotic normality. This section
contains a number of additional results meant to illustrate that the local
parametrization chosen in Theorem 1.1 is the right one.

Inspection of the proof of Theorem 1.1 shows that the expansion for the
Ž . Ž .local likelihood 1.4 is valid uniformly in a, b, c ranging over compacta.

This allows us to obtain expansions for several other localizations. First the
Ž . Ž .third parameter in 1.4 can be replaced by its expansion 1.5 at the cost of a

Ž .o 1 term. Thus the quadratic localizationP

a b
L l q , m q ,m , n ž ' 'n m

s 2a s 2 b c s 2ab s 2a2 s 2 b2
2s y y q q q q2 2 /' ' ' ' nl mml n m m lm mn lm mn

possesses the linear expansion given by Theorem 1.1. Next the terms involv-
ing a2, b2 and ab could be absorbed into c. This would yield a quadratic
expansion for the linear localization

a b s 2a s 2 b c
2L l q , m q , s y y q .m , n ž /' ' ' ' 'n m l n m m lm mn

This expansion contains the same information as the expansion of Theorem
1.1. It leads to convergence of the sequence of local experiments to a Gaussian
experiment, but not a Gaussian location experiment. Since it is easier to work
with a location experiment, the parametrization of Theorem 1.1 seems prefer-
able.

Ž .It is also possible to replace the pair a, b in the first display of this
' 'Ž .section by ar n , br m and next absorb in c the terms involving a and b
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that arise in the third parameter. This gives the expansion
a b c

2L l q , m q , s qm , n ž /'n m mn
2s am

2 2 's L l, m , s q q s bl r q clm DŽ .m , n n3ž /'r

221 s am
2 'y q s bl r q clm J q o 1 .Ž .33 Pž /2 'r

This expansion is less informative than the expansion of Theorem 1.1.
However, it is of interest, because it shows that the original model is locally
asymptotically normal in its standard parametrization with rate 1rn. It
seems intuitively clear that it cannot be locally asymptotically normal with

'rate 1r n at the same time. For instance, taking b s c s 0 in the preceding
Ž 2 .display, we can see that the models of the observations under l q arn, m, s

Ž 2 .and l, m, s are contiguous with Hellinger distance bounded away from
2'Ž .zero. It is reasonable to expect that the models under l q ar n , m, s and

Ž 2 .l, m, s will be asymptotically further apart, indeed, will be asymptotically
'orthogonal, contradicting local asymptotic normality with rate 1r n . We

shall not prove this orthogonality, but note that it can be seen without
'calculations that local asymptotic normality with rate 1r n is not valid. If it

were valid, then the parameter l would not be estimable at rate faster than
2 2'1r n , not even when m and s are known. However, the parameter t s lms

w Ž .xis always estimable at rate 1rn as shown by Ying 1993 , so that, given
knowledge of m and s 2, l is estimable at rate n as well.
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