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STRUCTURE FUNCTION FOR ALIASING PATTERNS IN
2l−n DESIGN WITH MULTIPLE GROUPS OF FACTORS1

BY YU ZHU

Purdue University

A general approach to studying fractional factorial designs with multiple
groups of factors is proposed. A structure function is generated by the
defining contrasts among different groups of factors and the remaining
columns. The structure function satisfies a first-order partial differential
equation. By solving this equation, general results about the structures and
properties of the designs are obtained. As an important application, practical
rules for the selection of “optimal” single arrays for robust parameter design
experiments are derived.

1. Introduction. Two-level fractional factorial designs are arguably the most
popular experimental plans in practice. Their practical and theoretical importance
has long been established [Box, Hunter and Hunter (1978)], and has been further
addressed and developed lately [Wu and Hamada (2000)]. Let 2l−n denote a
fractional factorial design that involves l factors and has 2l−n runs. Much effort has
been dedicated to understanding the structures and properties of fractional factorial
designs [Bose (1947)]. Several general criteria, such as maximum resolution
[Box and Hunter (1961)] and minimum aberration [Fries and Hunter (1980)],
have been proposed to select optimal plans. A 2l−n design is determined by its
defining contrast subgroup, denoted by G, which is generated by any n independent
defining words. Defining words are factorial effects that are aliased with a
constant. A simple yet important characteristic of G is its wordlength pattern,
W = (W1,W2, . . . ,Wl), where Wi is the number of defining words of length i

in G (1 ≤ i ≤ l). Wordlength pattern W contains information about aliasing among
factorial effects. Both maximum resolution criterion and minimum aberration
criterion are based on wordlength pattern. For fixed run size 2m (m = l − n),
W becomes more complex when the number of factors increases. Tang and Wu
(1996) suggested using complementary designs to characterize fractional factorial
designs with a large number of factors. This technique has led to many interesting
results [Chen and Hedayat (1996)].

Recently, fractional factorial designs involving different types of factors have
received much attention. Suppose a 2l−n design is employed to investigate
l factors. If the l factors do not need to be distinguished further, they are said to be
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symmetric, and the columns of the design matrix are randomly assigned to them.
However, this symmetry property does not hold in several interesting designs.
For example, blocked fractional factorial designs involve nonblocking factors and
blocking factors [Sun, Wu and Chen (1997) and Sitter, Chen and Feder (1997)],
and split-plot designs involve whole-plot factors and subplot factors [Bingham
and Sitter (1999)]. Another important case is robust parameter design. Two types
of factors, control factors and noise factors, are present in a parameter design
experiment. The basic idea of parameter design is to explore the effects of control
factors, noise factors and their interactions on a certain response of a system, then
choose optimal settings of control factors to adjust the mean response on target and
“dampen” the variation caused by noise factors. Control factors and noise factors
play very different roles in response optimization and variation reduction. They
need to be treated separately in any proper experiment planning. Taguchi (1986)
proposed the use of cross array (or inner-outer array in his terminology) to run
parameter design experiments, which is generated by “crossing” an orthogonal
array of control factors with another orthogonal array of noise factors. In order to
improve efficiency and run size economy, Welch, Yu, Kang and Sacks (1990) and
Shoemaker, Tsui and Wu (1991) suggested the use of single arrays. A single array
is a fractional factorial design with some of its columns assigned to control factors
and the rest of the columns to noise factors. So single arrays are fractional factorial
designs with two distinct types of factors. A comprehensive review on parameter
design can be found in Wu and Hamada (2000). The selection of optimal single
arrays is considered in Wu and Zhu (2001). In general, one can have more than
two different groups of factors. We will focus in this paper on the case with only
two distinct groups of factors, which are denoted as group I and group II. All the
results in this paper can be extended to cover more general cases, and we will only
use single arrays for illustration and application.

A fractional factorial design with two different groups of factors is also
determined by its defining contrast subgroup G. However, W becomes a poor
summary of G, because defining words of the same length may consist of different
numbers of group I factors and group II factors, so that they may have different
implications for effect aliasing. For instance, let D1 and D2 be two single
arrays with G1 = {I,ABa,Cbc,ABCabc} and G2 = {I,ABC,abc,ABCabc},
respectively, where A, B and C are control factors and a, b and c are noise
factors. D1 and D2 share the same wordlength pattern W = (0,0,2,0,0,1). But
they actually are quite different in the sense of effect aliasing. Assume that effects
with order greater than 2 are negligible. All the control-by-noise interactions in D2

are estimable, while in D1, only five control-by-noise interactions, Ab, Ac, Bb,
Bc and Ca, are estimable. This example shows that it is necessary to distinguish
defining words with the same length to reflect complex aliasing patterns. Hence a
finer summary of G with consideration of the difference between the two types of
factors is in order.
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The purpose of this paper is to develop some theoretical results for fractional
factorial designs with distinct types of factors. In Section 2 notation and basic
definitions are given. Several new concepts such as wordtype pattern, structure
index array N and structure function f are defined. Based on Tang and Wu
(1996), a recursive equation for N is derived. In Section 3, a first-order partial
differential equation of f will be generated. Main theorems about N and a
closed form solution to the partial differential equation are obtained. In Section 4,
the theoretical results from the previous sections are applied to the selection of
“optimal” single arrays. In Section 5, the finite Abelian group approach to factorial
design is briefly discussed.

2. Notation and definitions. Some concepts and techniques from finite
geometry will be used in this section. A brief introduction of them can be found in
Bose (1947) and Mukerjee and Wu (1999). Let F2 be the Galois field {0,1}, and let
PG(m− 1,2) denote the (m− 1)-dimensional projective geometry over F2. In this
paper, we do not distinguish a matrix from the collection of its row vectors. Two
matrices with the same collection of row vectors are considered to be identical.
Let P be a m × (2m − 1) matrix whose columns consist of all the distinct points
of PG(m − 1,2). The Sylvester-type Hadamard matrix Hm(2) is defined to be
a 2m × (2m − 1) matrix whose row vectors form the m-dimensional subspace
generated by the row vectors of P . Thus there exists a one-to-one correspondence
between the columns of Hm(2) and the points in PG(m − 1,2). It is well known
that the design matrix of a 2l−n design is a collection of l different columns from
Hm(2) with rank m (= l − n). Let 2(l1+l2)−n denote a fractional factorial design
with l1 group I factors, l2 group II factors and 2m runs (m = l1 + l2 − n). Let
G and D be the associated defining contrast subgroup and the 2m × (l1 + l2) design
matrix. As discussed in Section 1, wordlength pattern W is not a proper summary
of G. Define Ai,j to be the number of defining words in G that consist of i group I
factors and j group II factors. Let A = (Ai,j ), that is, the (l1 + 1) × (l2 + 1)

matrix with entries Ai,j . A is called the wordtype pattern of the design. The
design matrix D has l1 + l2 columns from Hm(2), among which l1 columns
are assigned to group I factors and the other l2 columns to group II factors. Let
l3 = 2m − l1 − l2 − 1. Marking off the columns used in D from Hm(2), there are
l3 columns left in Hm(2) which can be used to form a design for another l3 factors.
We call these columns the remaining columns, the design the remaining design,
and the possible factors the remaining factors. Hence a 2(l1+l2)−n design induces
a three-way partition of the columns of Hm(2), and it further induces a three-
way partition of PG(m − 1,2) because of the correspondence between Hm(2) and
PG(m−1,2). It is clear that D = {uG :u ∈ Fm

2 }, where G is an m×(l1 + l2) matrix
whose column vectors are different points in PG(m−1,2) with the first l1 vectors,
denoted by α1, α2, . . . , αl1 , corresponding to the columns assigned to group I
factors, and the other l2 vectors, denoted by β1, β2, . . . , βl2 , corresponding to the
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columns assigned to group II factors. Denote the remaining points in PG(m−1,2)

by γ1, γ2, . . . , γl3 . Let

L1 = {
α1, α2, . . . , αl1

}
, L2 = {

β1, β2, . . . , βl2

}
, L3 = {

γ1, γ2, . . . , γl3

}
.

Then PG(m− 1,2) = L1 ∪L2 ∪L3. Similar partitions were derived by Chen and
Cheng (1999) for studying a general theory of blocked designs and Mukerjee and
Wu (2001) for studying mixed-level designs. For any fixed triplet (i, j, k) such that
0 ≤ i ≤ l1, 0 ≤ j ≤ l2 and 0 ≤ k ≤ l3, a collection of i points from L1, j points
from L2 and k points from L3 is said to have a [i, j, k]-relation, if they sum to be
the 0-vector in Fm

2 . Let Ni,j,k denote the total number of different [i, j, k]-relations
and N the (l1 + 1) × (l2 + 1) × (l3 + 1) array with entries Ni,j,k . N is called
the structure index array. Regarding Hm(2) as a design for group I, group II and
remaining factors, Ni,j,k represent the number of defining words in the associated
defining contrast subgroup which involve i group I factors, j group II factors and
k remaining factors. When l2 equals 0, D becomes a regular fractional factorial
design involving only one group of factors, and (Ni,j,k) reduces to be (Ni,0,k) that
is exactly the same as (Ni+k(i)) defined in Tang and Wu (1996). Clearly wordtype
pattern A of D is equivalent to (Ni,j,0) with 0 ≤ i ≤ l1 and 0 ≤ j ≤ l2. Since
L1 ∩ L2 = L1 ∩ L3 = L2 ∩ L3 = ∅, Ni,j,k = 0 when 1 ≤ i + j + k ≤ 2. For
some technical purposes, we define N0,0,0 = 1.

LEMMA 1. For i + j + k ≥ 2, Ni,j,k satisfy the following iterative equation:

(i + 1)Ni+1,j,k + (j + 1)Ni,j+1,k + (k + 1)Ni,j,k+1 + Ni,j,k

=
(

l1
i

)(
l2
j

)(
l3
k

)
− [

(l1 − i + 1)Ni−1,j,k(1)

+ (l2 − j + 1)Ni,j−1,k + (l3 − k + 1)Ni,j,k−1
]
.

PROOF. We know that PG(m − 1,2) = L1 ∪ L2 ∪ L3 with |L1| = l1,
|L2| = l2, |L3| = l3 and l1 + l2 + l3 = 2m − 1. There are (

l1
i
)(

l2
j
)(

l3
k
) different

ways to select i points, j points and k points from L1, L2 and L3, respectively.
Suppose one of them is given by {α1, . . . , αi} ⊂ L1, {β1, . . . , βj } ⊂ L2 and
{γ1, . . . , γk} ⊂ L3. This combination induces a further partition of PG(m − 1,2).
Let A = {α1, . . . , αi}, B = L1 − A, C = {β1, . . . , βj }, D = L2 − C, E =
{γ1, . . . , γk}, F = L3 − E and G = {0}. Now consider the following vector in Fm

2 :
φ = α1 +· · ·+αi +β1 +· · ·+βj +γ1 +· · ·+γk. A combination with φ ∈ A is said
to be of type A, and a combination with φ ∈ B is said to be of type B , and so on. We
note that a combination cannot be of two different types simultaneously, and any
combination must be of one of the types. We now count the type A combinations.
Since φ ∈ A, there exists an i0 (1 ≤ i0 ≤ i) such that

α1 + · · · + αi + β1 + · · · + βj + γ1 + · · · + γk = αi0 .
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This implies that

α1 + · · · + αi0−1 + αi0+1 + · · · + αi + β1 + · · · + βj + γ1 + · · · + γk = 0,

that is, {α1, . . . , αi0−1, αi0+1, . . . , αi, β1, . . . , βj , γ1, . . . , γk} has a [i − 1,

j, k]-relation. So a type A combination corresponds to a [i − 1, j, k]-relation. In
the converse, every [i − 1, j, k]-relation can generate (l1 − i + 1) combinations
which are of type A. Since different [i − 1, j, k]-relations must generate different
combinations, the number of type A combinations is equal to (l1 − i + 1)Ni−1,j,k.
Following similar arguments, we have

|B| = (i + 1)Ni+1,j,k, |C| = (l2 − j + 1)Ni,j−1,k,

|D| = (j + 1)Ni,j+1,k, |E| = (l3 − k + 1)Ni,j,k−1,

|F | = (k + 1)Ni,j,k+1.

Clearly |G| = Ni,j,k . Since(
l1
i

)(
l2
j

)(
l3
k

)
= |A| + |B| + |C| + |D| + |E| + |F | + |G|,

(1) follows. �

The structure index array N of a fractional factorial design with two distinct
groups of factors can be used as a good description of its structure and properties.
We define the structure function of the associated design by

f (x, y, z) =
l1∑

i=0

l2∑
j=0

l3∑
k=0

Ni,j,kx
iyj zk = 1 + ∑

i+j+k≥3,
i≥0,j≥0,k≥0

Ni,j,kx
iyj zk,(2)

where the second equality follows from Ni,j,k = 0 for 1 ≤ i + j + k ≤ 2.

3. Main results. In this section, we will derive a first-order partial differential
equation satisfied by f based on (1). The differential equation unveils the intricate
relations among the Ni,j,k . Then an explicit solution of the equation will be
obtained. Denote the run size by r = 2m. We have the following theorem.

THEOREM 1. The structure function f of a 2(l1+l2)−n design satisfies the
following first-order partial differential equation:

(x2 − 1)
∂f

∂x
+ (y2 − 1)

∂f

∂y
+ (z2 − 1)

∂f

∂z

− (1 + l1x + l2y + l3z)f + (1 + x)l1(1 + y)l2(1 + z)l3

= 0,

(3)

where l3 = 2l1+l2−n − l1 − l2 − 1.
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PROOF. Multiplying both sides of (1) by xiyj zk, and rearranging the terms,
we have(

l1
i

)(
l2
j

)(
l3
k

)
xiyj zk

= Ni,j,kx
iyj zk + (l1 − i + 1)Ni−1,j,kx

iyj zk + (i + 1)Ni+1,j,kx
iyj zk

+ (l2 − j + 1)Ni,j−1,kx
iyjzk + (j + 1)Ni,j+1,kx

iyj zk

+ (l3 − k + 1)Ni,j,k−1x
iyjzk + (k + 1)Ni,j,k+1x

iyj zk.

(4)

Summing both sides of (4) over i, j, k with i + j + k ≥ 3, i ≥ 0, j ≥ 0 and k ≥ 0,
we have

r−1∑
c=3

∑
i+j+k=c

Ni,j,kx
iyj zk = f − 1,(5)

r−1∑
c=3

∑
i+j+k=c

(l1 − i + 1)Ni−1,j,kx
iyj zk

= l1x

r−1∑
c=3

∑
i′+j+k=c,i′≥0,j≥0,k≥0

Ni′,j,kx
i′yj zk

−
r−1∑
c=3

∑
i′+j+k=c

i′Ni′,j,kx
i′+1yj zk

= l1x(f − 1) − x2 ∂f

∂x
,

(6)

r−1∑
c=3

∑
i+j+k=c

(i + 1)Ni+1,j,kx
iyj zk

=
+∞∑
c=3

∑
i′+j+k=c+1,i′≥1

i′Ni′,j,kx
i′−1yj zk

= ∂f

∂x
− ∑

i+j+k=3

iNi,j,kx
i−1yj zk.

(7)

Similarly, we have

r−1∑
c=3

∑
i+j+k=c

[
(l2 − j + 1)Ni,j−1,kx

iyj zk + (j + 1)Ni,j+1,kx
iyjzk

]

= l2y(f − 1) − y2 ∂f

∂y
+ ∂f

∂y
− ∑

i+j+k=3

jNi,j,kx
iyj−1zk

(8)
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and
r−1∑
c=3

∑
i+j+k=c

[
(l3 − k + 1)Ni,j,k−1x

iyj zk + (k + 1)Ni,j,k+1x
iyjzk

]

= l3z(f − 1) − z2 ∂f

∂z
+ ∂f

∂z
− ∑

i+j+k=3

kNi,j,kx
iyj zk−1.

(9)

Note that
r−1∑
c=3

∑
i+j+k=c

(
l1
i

)(
l2
j

)(
l3
k

)
xiyj zk

= (1 + x)l1(1 + y)l2(1 + z)l3

−
[
1 + l1x + l2y + l3z + l1(l1 − 1)

2
x2 + l2(l2 − 1)

2
y2

+ l3(l3 − 1)

2
z2 + l1l2xy + l1l3xz + l2l3yz

]

and ∑
i+j+k=3

Ni,j,k(ix
i−1yj zk + jxiyj−1zk + kxiyj zk−1)

= (3N3,0,0 + N2,1,0 + N2,0,1)x
2 + (3N0,3,0 + N1,2,0 + N0,2,1)y

2

+ (3N0,0,3 + N1,0,2 + N0,1,2)z
2 + (2N2,1,0 + 2N1,2,0 + N1,1,1)xy

+ (2N2,0,1 + 2N1,0,2 + N1,1,1)xz + (2N0,2,1 + 2N0,1,2 + N1,1,1)yz.

Applying (1) again with i + j + k = 2, we have 2N2,1,0 + 2N1,2,0 + N1,1,1 = l1l2,
2N2,0,1 + 2N1,0,2 + N1,1,1 = l1l3, 2N0,2,1 + 2N0,1,2 + N1,1,1 = l2l3, 3N3,0,0 +
N2,1,0 +N2,0,1 = l1(l1 − 1)/2, 3N0,3,0 +N1,2,0 +N0,2,1 = l2(l2 − 1)/2, 3N0,0,3 +
N1,0,2 + N0,1,2 = l3(l3 − 1)/2. Collecting all the terms, we have (3) and the
theorem is proved. �

Let D1,2, D1,3 and D2,3 be the designs generated by L1 and L2, L1 and L3,
and L2 and L3, respectively. Then {Ni,j,0}, {Ni,0,k} and {N0,j,k} are the wordtype
patterns of the corresponding designs. Since any of the designs induces the same
partition of PG(m− 1,2), it determines the other two designs. Intuitively, it is also
true that any of the wordtype patterns determines the other two wordtype patterns
and further determines all the structure indices Ni,j,k . For instance, if {N0,j,k}
are given, all the other Ni,j,k can be uniquely determined. Because the structure
function f is generated by Ni,j,k , f is also uniquely determined by {N0,j,k}. This
fact leads to the following theorem.

THEOREM 2. Given {N0,j,k} there exists a unique structure function f which
is a solution to the first-order partial differential equation in (3).
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To derive the explicit expression of f in terms of {N0,j,k}, some results
from partial differential equation theory need to be employed. An introduction
to partial differential equation theory can be found in John (1971). Let w =
f (x, y, z), which defines a smooth surface in the four-dimensional Euclidean
space. Since {N0,j,k} are given, f (0, y, z) = 1 +∑l2

j=0
∑l3

k=0 N0,j,ky
j zk is known.

Solving (3) given f (0, y, z) is equivalent to solving the following system of
ordinary differential equations:

dx

dt
= x2 − 1,(10)

dy

dt
= y2 − 1,(11)

dz

dt
= z2 − 1,(12)

dw

dt
= (1 + l1x + l2y + l3z)w − (1 + x)l1(1 + y)l2(1 + z)l3,(13)

with the initial conditions

x(u, v,0) = 0,(14)

y(u, v,0) = u,(15)

z(u, v,0) = v,(16)

w(u, v,0) =
l2∑

j=0

l3∑
k=0

N0,j,ku
jvk,(17)

where w, x, y and z are regarded as functions of the auxiliary variables u, v and t .
Our strategy for solving (3) with f (0, y, z) given is as follows. First, we

solve the initial problem for the above ordinary differential equations, and x,
y, z and w as functions of u, v, and t can be obtained. Second, we solve
the system of functional equations involving x = x(u, v, t), y = y(u, v, t) and
z = z(u, v, t) to represent u, v and t in terms of x, y and z. Third, replace the
variables of w with u = u(x, y, z), v = v(x, y, z) and t = t (x, y, z), and we get
f = w(u(x, y, z), v(x, y, z), t (x, y, z)). From (10),

dx

x2 − 1
= dt implies

1

2

(
1

1 + x
− 1

1 − x

)
dx = −dt.

So a general solution for (10) is

1

2

(
log

1 + x

1 − x

)
= −t + c.

Because x(u, v,0) = 0, we have

x = −1 + e−2t

1 + e−2t
.(18)



2l−n DESIGN WITH MULTIPLE GROUPS OF FACTORS 1003

Similarly, based on (11), (15), (12) and (16), we have

y(u, v, t) = −1 + ce−2t

1 + ce−2t
where c = 1 + u

1 − u
,(19)

z(u, v, t) = −1 + de−2t

1 + ce−2t
where d = 1 + v

1 − v
.(20)

For (13) and (17), the solution given x, y and z is

w =
(
−

∫ t

0
(1 + x)l1(1 + y)l2(1 + z)l3

× exp
(
−

∫ t

0
(1 + l1x + l2y + l3z) dt

)
dt + h(u, v)

)

× exp
(∫ t

0
(1 + l1x + l2y + l3z) dt

)
.

(21)

Replacing x, y and z with (18), (19) and (20), we have

w(u, v, t) = 2l1(1 + c)l2(1 + d)l3(1 + e2t )−l1(c + e2t )−l2(d + e2t )−l3

× exp(rt)h(u, v) − 2l1+l2+l3cl2dl3(1 + e2t )−l1(c + e2t )−l2(22)

× (d + e2t )−l3
exp(rt) − 1

r
.

Because

e2t = 1 − x

1 + x
,(23)

c = 1 + y

1 − y

1 − x

1 + x
,(24)

d = 1 + z

1 − z

1 − x

1 + x
,(25)

u = y − x

1 − yx
, v = z − x

1 − zx
,(26)

w(u, v, t) can be re-expressed in terms of x, y and z. After some routine but
cumbersome calculations, we have

f (x, y, z) = w
(
u(x, y, z), v(x, y, z), t (x, y, z)

)
= (1 + x)l1−r/2(1 − x)r/2−l2−l3

× ∑
j,k

N0,j,k(y − x)j (1 − yx)l2−j (z − x)k(1 − zx)l3−k

− 1

r
(1 + x)l1−r/2(1 − x)r/2(1 + y)l2(1 + z)l3

+ 1

r
(1 + x)l1(1 + y)l2(1 + z)l3 .

(27)
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Similarly, by following the same argument, f can also be expressed in terms of
Ni,0,k or in terms of Ni,j,0.

In the following, we will obtain an exact relation between general Ni,j,k and
{N0,j,k} by expanding f . First we define

(
n

k

)
=




0, if k < 0 or k is not an integer,
1, if k = 0,
n(n − 1) · · · (n − k + 1)

k(k − 1) · · ·2 · 1
, otherwise.

(28)

Now consider the following identity:

(x − y)k(1 − xy)n−k =
k∑

i=0

n−k∑
j=0

(−1)i+j

(
k

i

)(
n − k

j

)
xk−i+j yi+j .(29)

Applying the transformation T : (i, j) → (s, t) :k − i + j = s, i + j = t , (29) be-
comes

(x − y)k(1 − xy)n−k

(30)

= ∑
(s,t)∈T ([0,k]×[0,n−k])

(−1)t
(

k

(t − s + k)/2

)(
n − k

(t + s − k)/2

)
xsyt .

Because of the definition in (28), for (s, t) ∈ [0,+∞) × [0,+∞) − T ([0, k] ×
[0, n − k]), (

k

(t − s + k)/2

)(
n − k

(s + t − k)/2

)
= 0.

We have

(x − y)k(1 − xy)n−k

= ∑
(s,t)∈[0,+∞]×[0,+∞]

(−1)t
(

k

(t − s + k)/2

)(
n − k

(t + s − k)/2

)
xsyt .

Let

Qn,k(s, t) = (−1)t
(

k

(t − s + k)/2

)(
n − k

(s + t − k)/2

)
.(31)

It is clear that Qn,k(s, t) = 0 for max(s, t) > n. Hence (29) can be rewritten as

(x − y)k(1 − xy)n−k =
n∑

s=0

n∑
t=0

Qn,k(s, t)x
syt .(32)
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Now consider another expression, (1+x)l1−r/2(1−x)l1−r/2+1 = (1−x2)l1−r/2×
(1 − x). Because

(1 − x)(1 − x2)l1−r/2

= (1 − x)

[
1 +

+∞∑
k=1

(−1)k
(

l1 − r/2
k

)
x2k

]

= 1 − x +
+∞∑
k=1

(−1)k
(

l1 − k/2
k

)
x2k +

+∞∑
k=1

(−1)k+1
(

l1 − r/2
k

)
x2k+1,

we have

(1 + x)l1−r/2(1 − x)l1−r/2+1 =
+∞∑
n=0

(−1)[n/2]+I (n)

(
l1 − r/2
[n/2]

)
xn,(33)

where I (n) = 0 for even n and I (n) = 1 for odd n. With the help of (32) and (33),
the first term of (27) can be expanded as follows:

(1 +x)l1−r/2(1 −x)r/2−l2−l3
∑
j,k

N0,j,k(y −x)j (1 − yx)l2−j (z − x)k(1 − zx)l3−k

= (1 + x)l1−r/2(1 − x)l1−r/2+1

× ∑
j,k

N0,j,k(−1)j (−1)k
l2∑

s2,t2=0

Ql2,j (s2, t2)y
s2xt2

l3∑
s3,t3=0

Ql3,k(s3, t3)x
s3zt3

=
l1∑

i=0

l2∑
j=0

l3∑
k=0

ci,j,kx
iyj zk,

where

ci,j,k = ∑
t1+t2=i

∑
s2+s3=t1

∑
u,v

(−1)[t2/2]+I (t2)

(
l1 − r/2
[t2/2]

)
(−1)u+v

× N0,u,vQl2,u(s2, j)Ql3,v(s3, k).

It is easy to expand the other two terms. Collecting all the terms from the expansion
of equation (27) and comparing coefficients with the definition of f , we have

Ni,j,k = 1

r

(
l1
i

)(
l2
j

)(
l3
k

)
− 1

r

∑
i1+i2=i

(−1)i2
(

l1 − r/2
i1

)(
r/2
i2

)(
l2
j

)(
l3
k

)

+ ∑
t1+t2=i

∑
s2+s3=t1

∑
u,v

(−1)[t2/2]+I (t2)

(
l1 − r/2
[t2/2]

)
(−1)u+v

× N0,u,vQl2,u(s2, j)Ql3,v(s3, k).

(34)
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In particular, we have

Ni,j,0 = 1

r

(
l1
i

)(
l2
j

)
− 1

r

∑
i1+i2=i

(−1)i2
(

l1 − r/2
i1

)(
r/2
i2

)(
l2
j

)

+ ∑
t1+t2=i

∑
s2+s3=t1

∑
u

(−1)[t2/2]+I (t2)

(
l1 − r/2
[t2/2]

)
(−1)u+s3

× N0,u,s3Ql2,u(s2, j)

(35)

and

Ni,0,k = 1

r

(
l1
i

)(
l3
k

)
− 1

r

∑
i1+i2=i

(−1)i2
(

l1 − r/2
i1

)(
r/2
i2

)(
l3
k

)

+ ∑
t1+t2=i

∑
s2+s3=t1

∑
v

(−1)[t2/2]+I (t2)

(
l1 − r/2
[t2/2]

)
(−1)s2+v

× N0,s2,vQl3,v(s3, k).

(36)

4. Application and example. In this section, the theoretical results derived
in the previous sections will be applied to the selection of “optimal” single arrays
for parameter design experiments. As defined in Section 1, single arrays are
typical examples of fractional factorial designs with two groups of factors: control
factors and noise factors. A single array of l1 control factors, l2 noise factors
and 2l1+l2−n runs induces a partition of PG(m − 1,2) (m = l1 + l2 − n), that
is, PG(m − 1,2) = L1 ∪ L2 ∪ L3, where L1 includes the points corresponding
to the control factors, L2 includes the points corresponding to the noise factors
and L3 the points to the remaining columns. Wu and Zhu (2001) proposed an
index vector J = (J1, J2, J3, J4, J5, J6) to measure the aliasing severity of a single
array, where J1 = 4(N2,1,0 + N1,2,0 + N2,2,0), J2 = 3N3,0,0 + 3N3,1,0 + N2,1,0,
J3 = N1,2,0 + 3N1,3,0 + 3N0,3,0, J4 = 3N3,0,0 + 3N3,1,0 + N2,1,0, J5 = 6N4,0,0
and J6 = N2,2,0. They use the following minimum J -aberration criterion to select
optimal single arrays.

DEFINITION. For any two single arrays D1 and D2, if there exists i0 such
that J 1

i = J 2
i for i ≤ i0 − 1 and J 1

i0
< J 2

i0
, D1 is said to have less J -aberration

than D2. If there is no other design with less J -aberration than D1, D1 is said to
have minimum J -aberration.

Note that if there exist i0 and j0 such that i0j0 
= 0, i0 + j0 = 3 or 4, and
Ni0,j0,0 
= 0, then not all control-by-noise interactions are estimable under the
assumption that factorial effects with order higher than 2 are negligible. To ensure
that all control-by-noise interactions are estimable, significantly large run size is
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needed. The index vector J intends to count the number of pairs of aliased effects.
A minimum J -aberration single array has the least aliasing severity among all
possible arrays for fixed numbers of control factors, noise factors and fixed run
size. Detailed discussion about J -minimum aberration can be found in Wu and
Zhu (2001). When l1 and l2 are large, {Ni,j,0} becomes very complicated. Since
all Ni,j,k are intricately related as indicated by the results in Section 3, it is easier
to consider D1,3 and D2,3 generated by L1 and L3 and by L2 and L3, whichever
is simpler. Applying (35), we have the following corollary.

COROLLARY 1.

N3,0,0 = Constant − ∑
j+k=3

N0,j,k,(37)

N2,1,0 = Constant + ∑
j+k=3

jN0,j,k,(38)

N1,2,0 = Constant − (N0,2,1 + 3N0,3,0),(39)

N1,3,0 = Constant − N0,3,0 − (N0,3,1 + 4N0,4,0),(40)

N2,2,0 = Constant + (N0,2,1 + 3N0,3,0) + (N0,2,2 + 3N0,3,1 + 6N0,4,0),(41)

N3,1,0 = Constant − ∑
j+k=3

jN0,j,k − ∑
j+k=4

jN0,j,k,(42)

N4,0,0 = Constant + ∑
j+k=3

N0,j,k + ∑
j+k=4

N0,j,k.(43)

Based on Corollary 1, the expression of J in terms of {N0,j,k} can be derived
as follows: J1 = Constant + ∑

j+k=3 4jN0,j,k + (4N0,2,2 + 12N0,3,1 + 24N0,4,0),
J2 = Constant − ∑

j+k=3(3 + 2j)N0,j,k − ∑
j+k=4 3jN0,j,k, J3 = Constant −

(N0,2,1 + 3N0,3,0) − (3N0,3,1 + 12N0,4,0), J4 = Constant + 6
∑

j+k=3 N0,j,k +
6

∑
j+k=4 N0,j,k, J5 = Constant + (N0,2,1 + 3N0,3,0) + (N0,2,2 + 3N0,3,1 +

6N0,4,0), J6 = Constant + 6N0,4,0. Similar to the approaches in Tang and Wu
(1996) and Chen and Cheng (1999), based on the equations above, we can establish
some general rules to identify minimum J -aberration single arrays.

RULE 1. A single array D�
1,2 has minimum J -aberration if:

(i)
∑

j+k=3 4jN0,j,k +(4N0,2,2+12N0,3,1+24N0,4,0) of D�
2,3 is the minimum

among all possible D2,3.
(ii) D�

1,2 is the unique single array satisfying (i).

RULE 2. A single array D�
1,2 has minimum J -aberration if:

(i)
∑

j+k=3 4jN0,j,k + (4N0,2,2 + 12N0,3,1 + 24N0,4,0) of D�
2,3 is the mini-

mum among all possible D2,3.
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(ii)
∑

j+k=3(3+2j)N0,j,k +∑
j+k=4 3jN0,j,k of D�

2,3 is the maximum among
all possible D2,3 with J1 the same as of D�

2,3.
(iii) D�

1,2 is the unique single array satisfying (i) and (ii).

Rule 1 only involves J1 and Rule 2 only involves J1 and J2. Similarly we can
develop Rule i (3 ≤ i ≤ 6) that involves the first i J indices based on the idea of
sequentially minimizing J1, J2, J3, J4, J5 and J6.

EXAMPLE 1. Suppose we want to obtain 16-run single arrays with minimum
J -aberration for ten control factors and three noise factors. So l1 = 10, l2 = 3 and
l3 = 2. It is clear that N0,1,3 = N0,4,0 = N0,0,4 = 0. Sequentially minimizing J1,
J2, J3, J4, J5 and J6 is equivalent to sequentially minimizing

∑
j+k=3 jN0,j,k +

N0,2,2, maximizing
∑

j+k=3(3 + 2j)N0,j,k + 6N0,2,2 + 9N0,3,1, maximizing
N0,2,1 + 3N0,3,0 + 3N0,3,1, minimizing

∑
j+k=3 N0,j,k +N0,2,2 +N0,3,1 and J5 =

(N0,2,1 + 3N0,3,0) + (N0,2,2 + 3N0,3,1). Notice that J6 = 0. Now, we only need
to consider the wordtype patterns of the complementary designs D2,3 with three
noise factors, two remaining factors and 16 runs. Note that the complementary
designs could either be two folds of a 25−2 design or a 25−1 design.

Denote the three noise factors by a, b and c, and the two remaining
factors by r1 and r2. There are 9 nonequivalent designs as shown in Table 1.∑

j+k=3 jN0,j,k + N0,2,2 is minimized to be zero by D7
2,3 and D9

2,3. Since D7
2,3

has a bigger value of
∑

j+k=3(3 + 2i)N0,j,k + 6N0,2,2 + 9N0,3,1, applying Rule 2,
we conclude that the corresponding design D7

1,2 is the only single array with
minimum J -aberration. Based on D7

2,3, D7
1,2 can be constructed in the following

way: Let H4(2) be the Hadamard matrix consisting of 15 columns with the
first four columns independent and the remaining columns being all possible
linear combinations (modulus 2) of the first four columns. Select any other four

TABLE 1
All possible D2,3’s with l1 = 10, l2 = 3 and r = 16

Design Defining relation Nonzero Ni,j,k

D1
2,3 I = abr1 = acr2 = bcr1r2 N0,0,0 = N0,2,2 = 1, N0,2,1 = 2

D2
2,3 I = abc = ar1r2 = bcr1r2 N0,0,0 = N0,1,2 = N0,2,2 = N0,3,0 = 1

D3
2,3 I = abr1 = cr1r2 = abcr2 N0,0,0 = N0,1,2 = N0,2,1 = N0,3,1 = 1

D4
2,3 I = abc N0,0,0 = N0,3,0 = 1

D5
2,3 I = abr1 N0,0,0 = N0,2,1 = 1

D6
2,3 I = ar1r2 N0,0,0 = N0,1,2 = 1

D7
2,3 I = abcr1 N0,0,0 = N0,3,1 = 1

D8
2,3 I = abr1r2 N0,0,0 = N0,2,2 = 1

D9
2,3 I = abcr1r2 N0,0,0 = N0,3,2 = 1
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independent columns, such as 12, 23, 34 and 234, assign 12, 23 and 34 to a, b

and c, respectively, delete 234 and 14 and assign the left columns to the 10 control
factors randomly. Thus we have derived the design matrix of D7

1,2. It is easy to
write down the corresponding defining contrast subgroup.

Generally, any properties of a design that are related to {Ni,j,0}i≥0, j≥0 can be
studied by its complementary designs. The indices Ni,j,k with i > 0, j > 0 and
k > 0, which can be accommodated easily in our approach, can provide further
insights about the design and its structure. In some applications such as split-
plot design and blocked design, the induced partitions of the Hadamard matrix
or PG(m−1,2) are not arbitrary. {Ni,j,0} needs to satisfy certain constraints. How
to consider these constraints in the complementary design approach and how they
can be used to develop efficient search algorithms for selecting optimal designs are
two interesting questions that need further investigation.

5. Concluding remarks. Another important approach to studying factorial
designs is to use finite Abelian group theory. A general framework developed by
Bailey and her associates can accommodate symmetric and asymmetric factorial
designs with flexible factor levels [Bailey (1982, 1985, 1989)]. The case of
multiple groups of factors can be easily treated in this framework. A full factorial
design for l factors is identified with an Abelian group D of order 2l , where
each element of D represents a factorial run. D can be represented as D =
〈g1〉 ⊗ 〈g2〉 ⊗ · · · ⊗ 〈gl〉, where g1, g2, . . . , gl are the generators with order 2.
Naturally the generators correspond to the factors. Suppose the factors, or the
generators correspondingly, are divided into two groups, for example, l1 group I
factors and l2 group II factors. D becomes

D = 〈g′
1〉 ⊗ · · · ⊗ 〈

g′
l1

〉 ⊗ 〈g′′
1 〉 ⊗ · · · ⊗ 〈

g′′
l2

〉
,

where g′
i belongs to group I for 1 ≤ i ≤ l1, and g′′

j belongs to group II for
1 ≤ j ≤ l2. The dual group D∗ of D is composed of the irreducible characters
of D, that is, the homomorphisms χ :D → {1,−1}. D and D∗ are in fact
isomorphic. For 1 ≤ i ≤ l1 and 1 ≤ j ≤ l2, define χi and ηj as follows: For any
g ∈ {g′

1, . . . , g
′
l1
, g′′

1 , . . . , g′′
l2
}, χi(g) = −1 if g = g′

i , = 1 otherwise; ηj (g) = −1, if
g = g′′

j , = 1 otherwise. Then {χ1, . . . , χl1, η1, . . . , ηl2} becomes a set of generators
for D∗. For any given θ ∈ D∗, it can be uniquely represented as a product of some
of the generators. The split weight of θ is defined by w(θ) = (w1(θ),w2(θ)),
where w1(θ) is the number of χi in θ and w2(θ) is the number of ηj in θ . The
generators are identified with the main effects of the group I factors and of the
group II factors. In general, θ ∈ D∗ with w(θ) = (i, j) represents a factorial effect
involving i group I factors and j group II factors. Now any 2l−n fractional factorial
design with two groups of factors, denoted by D1,2 as before, is a subgroup of D

with order 2l−n. Let D◦
1,2 = {τ ∈ D∗ : τ (α) = 1, for any α ∈ D1,2}. It is clear that
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D◦
1,2 is a subgroup of D∗, and it is the defining contrast subgroup G of D1,2. Define

Ai,j to be the number of τ ∈ D◦
l,p such that w(τ) = (i, j), where 0 ≤ i ≤ l1 and

0 ≤ j ≤ l2. Then (Ai,j ) is the wordtype pattern of the 2(l1+l2)−n design defined
previously. Therefore, all the results regarding wordlength pattern or wordtype
pattern can be developed and applied in the framework based on the finite Abelian
group approach. Though a complete development of the results is interesting, it is
not straightforward and it is beyond the scope of the current paper.
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