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HOW DO BOOTSTRAP AND PERMUTATION TESTS WORK?

BY ARNOLD JANSSEN AND THORSTEN PAULS1

Universität Düsseldorf

Resampling methods are frequently used in practice to adjust critical
values of nonparametric tests. In the present paper a comprehensive and
unified approach for the conditional and unconditional analysis of linear
resampling statistics is presented. Under fairly mild assumptions we prove
tightness and an asymptotic series representation for their weak accumulation
points. From this series it becomes clear which part of the resampling statistic
is responsible for asymptotic normality. The results leads to a discussion
of the asymptotic correctness of resampling methods as well as their
applications in testing hypotheses. They are conditionally correct iff a central
limit theorem holds for the original test statistic. We prove unconditional
correctness iff the central limit theorem holds or when symmetric random
variables are resampled by a scheme of asymptotically random signs. Special
cases are the m(n) out of k(n) bootstrap, the weighted bootstrap, the wild
bootstrap and all kinds of permutation statistics. The program is carried out
for convergent partial sums of rowwise independent infinitesimal triangular
arrays in detail. These results are used to compare power functions of
conditional resampling tests and their unconditional counterparts. The proof
uses the method of random scores for permutation type statistics.

1. Introduction. Over the last 20 years nonparametric resampling procedures
have become a powerful tool for setting confidence intervals and critical values of
tests for composite hypotheses. In practice nonparametric two-step testing proce-
dures benefit from the strong computational efforts of the new computer gener-
ation. Special resampling methods are Efron’s bootstrap or Fisher’s permutation
tests. A justification is largely given by asymptotic considerations in order to com-
pare the quality of resampling procedures with other tests. Throughout, we offer
a unified asymptotic approach for the treatment of conditional resampling tests
mainly given by partial sums of arbitrary arrays. It is based on a new setup for lin-
ear resampling statistics which is of independent interest. We will have a careful
look at all kinds of permutation statistics, the m(n) out of k(n)-bootstrap and the
weighted bootstrap (including the wild bootstrap); see Section 5.

Conditional limit theorems can be motivated by the following nonparametric
testing problem. Let H0 denote a composite null hypothesis of distributions (or the
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boundary of an even larger null hypothesis). As special example consider as null
hypothesis H0 a subset of the set of product measures

H0 ⊂ Hprod = {P n :P ∈ M1(�,A)}(1.1)

where M1(�,A) denotes the set of probability measures on some measurable
space.

Suppose that Tn(X1, . . . ,Xn) is a given test statistic Tn :�n → R based on
�-valued random variables. In practice often a central limit theorem holds for Tn

under H0 and a consistent variance estimator Vn for its unknown asymptotic
variance is available. Then the one-sided upper Tn-test ϕn for H0 can be carried
out as asymptotic level α test

ϕn = 1(cn,∞)(Tn)(1.2)

with asymptotically correct critical values cn = u1−αV
1/2
n , �(u1−α) = 1 − α.

Here � stands for the standard normal distribution function. Similarly, quadratic
forms of asymptotically multivariate normal distributed vectors can be treated.
This approach has the disadvantage that the statistician has in general no control
over the real nominal level of ϕn on H0 for fixed sample size n. Also available
rates of convergence may depend on unknown parameters.

At this stage typically resampling methods are applied in order to establish
more accurate data dependent critical values c∗

n = c∗
n(x1, . . . , xn) of (1.2) where

xi denotes the outcomes of Xi . The most popular resampling methods are per-
mutation and bootstrap procedures where the critical values c∗

n(x1, . . . , xn) are
determined by the quantiles of the permutation or bootstrap distribution of Tn;
see Beran (1988) for more refined bootstrap tests. To fix ideas draw a resampling
sample X∗

1 , . . . ,X∗
n given X1, . . . ,Xn and consider a resampling variable

T ∗
n = Tn(X

∗
1 , . . . ,X∗

n).(1.3)

Here X∗
1, . . . ,X∗

n may be the bootstrap sample of X1, . . . ,Xn or in the case
of permutation tests they are defined by random permutations Xσ(1), . . . ,Xσ(n).
The (conditional) distribution functions of the resampling variable T ∗

n and their
(1 − α)-quantiles c∗

n(X1, . . . ,Xn) are (in principle) known or easy to simulate.
This procedure defines a resampling test version ϕ∗

n of ϕn = 1(cn,∞)(Tn) by

ϕ∗
n =




1, >

γ, Tn = c∗
n(X1, . . . ,Xn),

0, <

(1.4)

where γ = γ (X1, . . . ,Xn) may be a suitable random variable.
In the case of Hprod the permutation test is of exact level α for each sample

size n. This idea is rather old and goes back to Fisher. Our main question is now:

• How does resampling work in testing hypotheses?
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The answer relies heavily on the asymptotic behaviour of the conditional
distributions of Tn which is studied in detail in the next sections. It is closely
related to the work of Mammen (1992a) who showed that the bootstrap works
iff the central limit theorem holds for Tn. However, our question is a little bit
different since permutation tests always work on Hprod. Relevant is now how
the resampling tests work in comparison to traditional tests ϕn (1.2) under H0
and under local alternatives. It is shown that under various conditions, when the
central limit theorem holds for Tn the permutation and bootstrap tests share the
optimality conditions with the asymptotic tests ϕn and their resampling version
can be recommended.

The structure of our paper is as follows. Lemma 1 discusses the asymptotic
equivalence of conditional and unconditional tests in general. Section 3 introduces
tightness and convergence results for conditional (and unconditional) resampling
statistics under fairly general assumptions. Their weak accumulation points can
be represented by the sum of an infinite series of extremes and an additional
infinitely divisible random variable. Special attention is devoted to the so-called
L2-convergent resampling schemes where now the infinitely divisible part is
normal; see Theorem 3. The extremes explain which part of the resampling
statistics is responsible for the normal part. This reveals the well-known fact that
the bootstrap does not work for extremes. A special case is the classification of
all limit laws of two-sample partial sums of exchangeable random variables. In
Section 4 partial sums of infinitesimal triangular arrays of independent random
variables are resampled. The scheme is not restricted to rowwise i.i.d. random
variables since we like to apply the results to two-sample alternatives; see
Section 6. Here the question is answered when resampling conditionally works,
that is, when the asymptotic conditional resampling distribution and the present
limit variable ξ coincide. Resampling conditionally works iff the limit variable
is normal. The same question is treated for unconditional limit variables. Then
resampling works iff either ξ is normal or ξ is symmetric with (asymptotically)
random signs as the resampling scheme. This result has a very natural statistical
explanation; see Example 4.

In Section 5 it is shown that the bootstrap resampling scheme is L2-convergent
if limn→∞ m(n)

k(n)
> 0 holds. Thus all results mentioned above hold for the bootstrap,

too. This leads to a discussion about the asymptotic correctness of the bootstrap for
partial sums; see Remark 5. Section 6 introduces power functions of resampling
tests when outcomes under alternatives are resampled. Again the procedures work
well in the asymptotically normal case. Otherwise different things may happen.
Example 5 explains what conditional tests are really doing in case of two-sample
tests. Here the two-sample permutation tests are typically superior. The results of
Section 7 about permutation statistics are of independent interest. It turns out that
most of our proofs can be reduced to this important case. All other proofs are
presented in Section 8.
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There exists a huge amount of literature about the bootstrap of the sample mean
which is cited briefly. Various kinds of bootstrap central limit theorems (in the
almost sure or convergence in probability setup) were obtained by Giné and Zinn
(1989), Csörgő and Mason (1989), Hall (1990), Arcones and Giné (1989, 1991),
Mason and Newton (1992) and Mammen (1992a, b), among other authors.

A comprehensive treatment of the bootstrap including Edgeworth expansion
and a review of related references can be found in the monograph of Hall (1992).
A central limit theorem and Edgeworth expansions concerning the weighted
bootstrap of differentiable functionals is due to Barbe and Bertail (1995). van
der Vaart and Wellner (1996) applied advanced empirical process techniques to
the bootstrap. Converse bootstrap central limit theorems are discussed by Wellner
(2001). The performance of different kinds of bootstrap procedures is reviewed by
Bickel, Götze and van Zwet (1997) in terms of expansions. Roughly speaking, it is
known that the bootstrap works in the i.i.d. case iff the central limit theorem holds
for the random variable under consideration.

Beyond these regular cases conditional limit theorems exist for the bootstrapped
partial sums for random variables in the domain of attraction of stable laws;
see Athreya (1987), Knight (1989), Kinateder (1992) and del Barrio and Matrán
(2000). The approach of Knight and Kinateder uses the series representation
of LePage, Woodroofe and Zinn (1981) for stable laws which is similar to our
series construction below. The recent paper of Cuesta-Albertos and Matrán (1998)
about the mean of infinitesimal rowwise i.i.d. arrays of random variables leads to
conditional infinitely divisible limit laws for the bootstrap. Their results are related
to the applications of our resampling results given in Section 5 where general non-
i.i.d. triangular arrays are bootstrapped. Necessary conditions for the unconditional
convergence of the bootstrap for triangular arrays can be found in del Barrio,
Matrán and Cuesta-Albertos (1999).

Our method of proof treats resampling statistics as rank statistics with random
scores. The present method extends the L2-convergence analysis of Hájek for score
functions. In connection with permutation statistics this idea is rather old. Chernoff
and Teicher (1958) and Witting and Nölle [(1970), Section 4.1] derived central
limit theorems. It also served as a technical tool in Janssen and Mason (1990).
Conditional central limit theorems for (permutation) survival statistics based on
censored data were established by Neuhaus (1988, 1993) and Janssen (1989, 1991)
along these lines. The present approach is closely related to Mason and Newton
(1992) who used this principle for the weighted bootstrap. Among other authors
Shorack (1996, 2000) studied the central limit theorem for permutation and
bootstrap statistics. Strasser and Weber (1999) discussed multivariate central limit
theorems for permutation statistics. Romano (1989) applied central limit theorems
to randomization tests. Recent results about Studentized permutation statistics
can be found in Janssen (1997) and in Mason and Shao (2001) for Studentized
bootstrap statistics. The present technique is closely related to the treatment of
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exchangeable random variables; see Billingsley (1971) and Einmahl and Mason
(1992).

In the following let X1:k(n) ≤ X2:k(n) ≤ · · · ≤ Xk(n):k(n) denote the order
statistics of real random variables Xn,1, . . . ,Xn,k(n) where Xi:k(n) := 0 for i /∈
{1, . . . , k(n)}. Basic work about ranks and antiranks can be found in Hájek, Šidák
and Sen (1999). In connection with infinitely divisible laws (including Lévy
measures) we refer to Araujo and Giné (1980) and Petrov (1995). We use the
notion of tightness as defined in Billingsley (1971).

2. Asymptotic equivalence of conditional and unconditional tests. To
motivate the analysis let us first consider the following situation. Let Xn,i : (�,

A,P ) → R be an arbitrary triangular array of random variables for 1 ≤ i ≤
k(n) (not necessarily independent) with Xn := 1

k(n)

∑k(n)
i=1 Xn,i . Let {k(n)}n∈N

be a sequence of integers, k(n) ≥ 2, with k(n) → ∞ as n → ∞. Additional
assumptions are discussed later.

EXAMPLE 1. Linear test statistics

Tn = k(n)1/2
k(n)∑
i=1

cniXn,i(2.1)

given by a scheme of real regression coefficients (cni)i≤k(n) are of significant
importance. Notice that if all Xn,i are different (only assumed for a moment)
Tn can be expressed via the antiranks (Dni)i≤k(n) of the Xn,i (given by Xn,Dni

=
Xi:k(n)) via

Tn = k(n)1/2
k(n)∑
i=1

cnDni
Xi:k(n).(2.2)

This form is closely related to resampling statistics. Two cases are of special
interest.

(a) Two-sample regression coefficients. Consider sample sizes n1, n2 of two
groups with n1 + n2 = k(n). Define

cni =
(

n1n2

k(n)

)1/2




− 1

n1
, i ≤ n1 (Sample 1),

1

n2
, n1 < i ≤ k(n) (Sample 2).

(2.3)

A typical null hypothesis is given by

H0 :Xn,1, . . . ,Xn,k(n) are exchangeable.(2.4)

(b) One-sample case. The choice cni = k(n)−1/2 defines linear statistics

Tn =
k(n)∑
i=1

Xn,i .(2.5)
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Typically, we will assume that (2.1) converges in distribution. The additional
factor k(n)1/2 is used to compensate the coefficients (2.3). The choice of the test
statistics depends of course on the underlying alternatives. Statistics given by (2.1)
are for instance appropriate for two-sample alternatives; see Hájek, Šidák and Sen
(1999). However, modified resampling methods (permutation tests) sometimes
also work when H0 is larger than (2.4); see Janssen (1997) for treatment of
Behrens–Fisher type two-sample testing problems.

The comparison of unconditional tests of type (1.2) and resampling tests (1.4)
is based on the following lemma. It applies under fairly general circumstances
and it is not only restricted to resampling tests. Let d denote any metric on the
set of probability measures M1(R) on R such that convergence in (M1(R), d) is
equivalent to weak convergence. We will consider the following setup.

(I) (Unconditional convergence). Let P stand for a member of the null
hypothesis (or its boundary). The real test statistics Tn are convergent in
distribution L(Tn | P ) → L(T | P ) where T has a continuous distribution
function FT which is strictly increasing on its support.

(II) (Asymptotically unconditional upper Tn level α tests). Let ϕn,α be a test given
by unconditional critical values cn(α) with

ϕn,α = 1 if Tn > cn(α), ϕn,α = 0 if Tn < cn(α)(2.6)

such that EP (ϕn,α) → α holds as n → ∞.
(III) (Upper Tn conditional tests). Let T ∗

n by any statistic (in our case a re-
sampling statistic) with conditional distribution function F ∗

n of L(T ∗
n |

Xn,1, . . . ,Xn,k(n)) given the data. Let F ∗−1
n (1−α) = c∗

n(α) = c∗
n(α,Xn,1, . . . ,

Xn,k(n)) denote the conditional (1 − α)-quantile of that distribution given
Xn,1, . . . ,Xn,k(n). A conditional (resampling) upper Tn-test is then any test
with

ϕ∗
n,α = 1 if Tn > c∗

n(α), ϕ∗
n,α = 0 if Tn < c∗

n(α).(2.7)

LEMMA 1. Under conditions (I)–(III) the following statements (a) and (b) are
equivalent:

(a) EP (|ϕn,α − ϕ∗
n,α|) → 0 for all α ∈ (0,1) as n → ∞,

(b) d(L(Tn),L(T ∗
n | Xn,1, . . . ,Xn,k(n))) → 0 in P -probability as n → ∞.

For the proof see Section 8.
The equivalence of unconditional and conditional test sequences holds iff the

resampling asymptotically reproduces (in the conditional sense) the limit law.
Applications of this fact are discussed in Section 6. This observation motivates
the treatment of conditional distributions given in the next sections.
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REMARK 1. The limit distribution of (2.1) is typically infinitely divisible;
see Sections 4 and 6. Tucker (1975) showed that the supports of infinitely
divisible laws are unbounded intervals if they are not shifts of compound Poisson
distributions. In this case condition (I) holds since the distribution function of T

is then continuous; see Hartman and Wintner (1942) or Zolotarev and Kruglov
(1975).

3. Resampling linear statistics. Consider again as above an arbitrary trian-
gular array of real random variables. Specify the set

Hn :=
{

k(n)∑
i=1

(Xn,i − Xn)
2 = 0

}
(3.1)

which is typically a set of small probability. Throughout, let us consider statistics

T ∗
n = k(n)1/2

k(n)∑
i=1

Wn,i (Xn,i − Xn),(3.2)

denoted as weighted resampling statistics, where Wn,i : (�̃, Ã, P̃ ) → R is a
triangular array of weight functions for 1 ≤ i ≤ k(n) on another probability space.
With respect to P ⊗ P̃ the X’s and the W ’s become independent on the joint space
� × �̃. Consider the following conditions for the weights:

(Wn,1, . . . ,Wn,k(n)) is exchangeable,(3.3)

max
1≤i≤k(n)

|Wn,i − Wn| → 0 in P̃ -probability,(3.4)

k(n)∑
i=1

(Wn,i − Wn)
2 → 1 in P̃ -probability.(3.5)

Notice that if in addition the condition Wn = 1
k(n)

∑k(n)
i=1 Wn,i = 0 holds P̃ a.e. then

T ∗
n = k(n)1/2 ∑k(n)

i=1 Wn,iXn,i follows a.e.
The random weight functions Wn,i stand for different resampling procedures.

Various kinds of permutation and bootstrap statistics are discussed below. The
central limit theorem concerning T ∗

n was for instance discussed—among other
authors—by Mason and Newton (1992), Barbe and Bertail (1995) and van der
Vaart and Wellner (1996). Regularity conditions which ensure (3.3)–(3.5) are
discussed in the next sections; see also Lemma 4.

EXAMPLES 2. (a) [Permutation statistics, resampling Tn given in (2.1)]. In
this case the choice

Wn,i = cnσ(i)(3.6)
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based on uniformly distributed permutations σ(·) of the indices 1, . . . , k(n) is
appropriate. The regularity conditions (3.4), (3.5) are then equivalent to the same
conditions for the cni instead of Wn,i . The two-sample coefficients (2.3) fulfill (3.4)
and (3.5) iff min(n1, n2) → ∞. For centered cni the statistics (3.2) and (2.2)
coincide in distribution whenever the antiranks are uniformly distributed and
independent of the order statistics, for instance for Hprod (1.1).

(b) [m(n)-bootstrap of partial sums]. Let (Mn,1, . . . ,Mn,k(n)) be a multinomial

distributed random variable with sample size m(n) = ∑k(n)
i=1 Mn,i and equal success

probability 1/k(n) for each cell. The m(n)-bootstrap weights are given by

Wn,i = m(n)1/2
(

1

m(n)
Mn,i − 1

k(n)

)
.(3.7)

In case m(n) = k(n) we arrive at Efron’s ordinary bootstrap statistic.
(c) (Wild bootstrap). Consider a triangular array of rowwise i.i.d. normalized

random variables Zn,1, . . . ,Zn,k(n) with E(Zn,1) = 0 and Var(Zn,1) = 1. Let

Wn,i = k(n)−1/2Zn,i .(3.8)

A special case is given by the bootstrap with Poisson sample size; see Mammen
[(1992a), page 15] for details.

In the next step the conditional limit distributions of T ∗
n given the data

Xn,1, . . . ,Xn,k(n) will be studied in detail. We will see that the sequence of
functions from � in (M1(R), d)

L

(
T ∗

n

(
∑k(n)

i=1 (Xn,i − Xn)
2)1/2

∣∣∣Xn,1, . . . ,Xn,k(n)

)
(3.9)

is tight under (3.3) and (3.5) (with the convention 0/0 := 0 on Hn). To prove this
check that (7.8) below can be used to control its conditional variance. The class of
accumulation points of (3.9) will be studied via limit theorems for rank statistics
with random scores; see Section 7. For convenience define normalized random
variables

Yn,i := Xn,i − Xn

(
∑k(n)

i=1 (Xn,i − Xn)
2)1/2

.(3.10)

Below let (�′,A′,P ′) be a further probability space and let Zi, Z̃j ,Z
(ω) :

�′ → R be random variables for fixed ω ∈ � whereas ζi, ζ̃j , Yn,i,
 are random
variables on � with 
(ω) := ω. All random variables can be defined in an
obvious manner via projections on the joint probability space (� × �′,A ⊗ A′,
P ⊗ P ′) where now random variables based on different projections only become
independent. As in Lemma 1 above let the metric d describe weak convergence.
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THEOREM 1. For each subsequence there exists a further subsequence
{m} ⊂ N such that the following distributions and conditional distributions are
convergent.

(a) The sequences of order statistics

(Yi:k(m))i∈N → (ζi)i∈N, (Yk(m)+1−j :k(m))j∈N → (ζ̃j )j∈N(3.11)

are convergent in distribution on [−1,1]N, where (ζi)i∈N and (ζ̃j )j∈N denote
certain limit variables. Moreover

∞∑
i=1

ζ 2
i +

∞∑
j=1

ζ̃ 2
j ≤ 1(3.12)

holds a.e. and limm→∞ P (Hm) exists.
(b) There exists another subsequence m → ∞ of that given in (a) such that we

have convergence of the conditional distributions

d

(
L

(
T ∗

m

(
∑k(m)

i=1 (Xm,i − Xm)2)1/2

∣∣∣Xm,1, . . . ,Xm,k(m)

)
,L(T0 | 
)

)
→ 0(3.13)

with respect to the distance d in P -probability. The appertaining random variable
T0 :� × �′ → R is given by the series

T0 =
∞∑
i=1

Ziζi +
∞∑

j=1

Z̃j ζ̃j + Z(
)(3.14)

and certain i.i.d. random variables Zi , Z̃j , i, j ∈ N, with E(Z1) = 0, Var(Z1) ≤ 1.
Moreover Z(
) is given by a family of infinitely divisible random variables Z(ω)

with E((Z(ω))2) ≤ 1, for each ω ∈ �.

For the proof see Section 8.

REMARK 2. (a) According to (3.12) the series (3.14) is P ′ a.e. convergent for
fixed ω [via L2(P

′)-convergence and the three series theorem].
(b) Under extra assumptions discussed below the subsequences {m} of part (a)

and part (b) coincide.

Before applications are discussed the construction principle of the Zi, Z̃j will
be established. For these reasons consider the new subspace

S := {ϕ ∈ L2(0,1) :ϕ nondecreasing, ‖ϕ‖2 ≤ 1}(3.15)

of square integrable functions L2(0,1) of the uniform distribution. For p = 1,2
the set S becomes by restriction a metric space as a subset of the normed spaces
(Lp(0,1),‖ · ‖p). For convenience let (S,‖ · ‖1) and (S,‖ · ‖2) denote the different
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metric spaces. According to Lemma 6 of Section 8 below (S,‖ · ‖1) is a compact
metric space whereas (S,‖ · ‖2) is not compact.

The weights define a random variable ω̃ �→ ϕn = ϕn(ω̃, ·) from �̃ into S by the
step functions

ϕn(·, u) := (k(n) − 1)1/2

(
∑k(n)

i=1 (Wn,i − Wn)2)1/2
(W1+[k(n)u]:k(n) − Wn)(3.16)

for 0 < u < 1 where [·] denotes the entire function. Thus Lemma 6 implies:

LEMMA 2. For each subsequence there exist a further subsequence {m} ⊂ N

and a random variable ϕ : �̃ → S with ϕm → ϕ in distribution on (S,‖ · ‖1) as
m → ∞.

The limit variable of (3.16) now defines the distribution of Z1 as follows. Let
ϕ : (�1,A1,P1) → S be an arbitrary random variable and let U : (�2,A2,P2) →
(0,1) be a uniformly distributed random variable. Obviously then

(ω1,ω2) �→ ϕ
(
ω1,U(ω2)

)
(3.17)

is a real random variable w.r.t. the completion of (�1 × �2,A1 ⊗ A2,P1 ⊗ P2),
briefly ϕ(U), with conditional distribution L(ϕ(ω1,U) | ω1) given ω1 and second
moment ∫

ϕ
(
ω1,U(ω2)

)2
dP1 ⊗ P2(ω1,ω2) ≤ 1.(3.18)

This simple observation is used to establish new random variables Zi, Z̃j which
are part of T0. For this purpose let (Vi)i∈N, (Ṽj )j∈N be two independent sequences
of jointly uniformly distributed random variables with values in (0,1) jointly
independent of all other variables. They may be defined on (�2,A2,P2).

REMARK 3. The variables Zi, Z̃j are given by

Zi = ϕ(Vi), Z̃j = ϕ(Ṽj ), i, j ∈ N(3.19)

where ϕ : �̃ → S is a limit variable of (3.16) for a suitable subsequence.

In general we only have (S,‖ · ‖1) cluster points of (3.16). The important
stronger (S,‖ · ‖2) convergence can be characterized as follows.

LEMMA 3. Suppose that a subsequence (ϕm)m given by (3.16) converges in
distribution on (S,‖ · ‖1) to a random variable ϕ : �̃ → S. Let ϕ(U) denote the
associated random variable. Then E(ϕ(U)) = 0 holds and

ϕm → ϕ in distribution on (S,‖ · ‖2) iff Var(ϕ(U)) = 1.(3.20)
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For the proof see Section 8.
The structure of the infinitely divisible random variable Z(ω) heavily relies

on the form of the W ’s. Fortunately, they are normally distributed for most of
all practical situations. Recall that each infinitely divisible random variable X

can uniquely be decomposed into the sum of two independent infinitely divisible
random variables X1 and X2, X

D= X1 + X2, such that X2 is a centered normal
random variable (or zero) and X1 is the Poisson part of X without normal factors
of its distribution.

THEOREM 2. (a) For each ω let σ̄ 2(ω) denote the variance of the normal part
of Z(ω) given by (3.14). For each ω ∈ � we have

σ̄ 2(ω) ≥ Var(Z1)

(
1 −

∞∑
i=1

ζ 2
i (ω) −

∞∑
j=1

ζ̃ 2
j (ω)

)
.(3.21)

(b) Suppose that ϕm is convergent in (S,‖ · ‖2). Then Var(Z1) = 1 holds and
Z(ω) is a centered normal random variable for each ω with variance

σ̄ 2(ω) = Var(Z(ω)) = 1 −
∞∑
i=1

ζ 2
i (ω) −

∞∑
j=1

ζ̃ 2
j (ω).(3.22)

In this case the distributional convergence of the order statistics (3.11) and of
P (Hm) along {m} implies the conditional convergence (3.13) along the same
sequence.

Under various conditions the results also hold for T ∗
n and not only for

Studentized versions (3.9).

THEOREM 3. Let ϕn → ϕ be convergent in (S,‖ · ‖2) and let Xn → 0 hold in
probability. Suppose that we have distributional convergence(

(Xi:k(n))i∈N, (Xk(n)+1−j :k(n))j∈N,

(
k(n)∑
i=1

(Xn,i − Xn)
2

)1/2)

D−→ (
(ξi)i∈N, (ξ̃j )j∈N, ξ0

)(3.23)

of the joint distributions on RN × RN × R. Then

d
(
L(T ∗

n | Xn,1, . . . ,Xn,k(n)),L(T̃0 | 
)
) → 0(3.24)

holds in P -probability, where T̃0 is given similar to (3.14) by

T̃0 =
∞∑
i=1

Ziξi +
∞∑

j=1

Z̃j ξ̃j + Z̃(
).
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The infinitely divisible part Z̃(ω) of T̃0 is a centered normal distribution with
variance

σ̃ 2(ω) = ξ2
0 (ω) −

∞∑
i=1

ξ2
i (ω) −

∞∑
j=1

ξ̃2
j (ω).

For the proof see Section 8.
Next let us state that conditional convergence in the sense of (3.13) or (3.24)

implies distributional convergence of the (Studentized) resampling statistics T ∗
n in

an unconditional sense.

COROLLARY 1. Suppose that under the conditions of Theorem 1 or 3 we have
conditional convergence (3.13) or (3.24), respectively. For the same (sub)sequence
we have unconditional convergence

T ∗
m

(
∑k(m)

i=1 (Xm,i − Xm)2)1/2
→ T0(3.25)

for (3.13) and

T ∗
m → T̃0(3.26)

for (3.24), respectively, in distribution as m → ∞.

For the proof apply Lemma 8.
The results can now be used to classify all cluster points of Studentized

(nontrivial) partial sums (2.1) of two-sample type for rowwise exchangeable
random variables.

COROLLARY 2. Consider Tn (2.1) given by rowwise exchangeable random
variables Xn,1, . . . ,Xn,k(n). Let T ∗

n be the permutation statistic induced by the
weights Wn,i = cnσ(i) (3.6). Then Tn

D= T ∗
n holds and (3.25) and (3.26) hold with

T ∗
m replaced by Tm.

The unconditional convergence case is related to recent results of Mason and
Shao (2001) for Studentized statistics when the denominator is also subject to the
bootstrap. They showed that the unconditional bootstrap central limit theorem is
valid iff the same holds for the original Studentized statistic. Their paper is based
on a discussion similar to (3.22) for the variance given by the denominator.

EXAMPLE 3 (Two-sample permutation statistics; see also Example 6). Con-
sider the permutation resampling scheme (3.6) given by the two-sample coeffi-
cients (2.3) with n1/k(n) → κ ∈ (0,1). Then the sequence (ϕn)n (3.16) converges
in (S,‖ · ‖2) and

L(Z1) = κε−((1−κ)/κ)1/2 + (1 − κ)ε(κ/(1−κ))1/2(3.27)
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is a two-point distribution and the results above apply as follows. Similar results
remain true for non-Studentized versions.

(a) For arbitrary triangular arrays (Xn,i)i our Theorems 1 and 3 classify
all (conditional or unconditional) cluster points of the Studentized permutation
statistics

k(n)1/2 ∑k(n)
i=1 cnσ(i)Xn,i

(
∑k(n)

i=1 (Xn,i − Xn)2)1/2
.(3.28)

(b) If we start with a rowwise exchangeable array (Xn,i)1≤i≤k(n) there is no
difference between (3.28) and the Studentized version of Tn (2.1) and we end up
with all cluster points of Studentized two-sample statistics.

4. Resampling sums of independent variables. For the preceding results
independence of the scheme is not needed. In this section let now (Xn,i)1≤i≤k(n)

denote a triangular array of rowwise independent real random variables with
distributional convergent partial sums

Tn =
k(n)∑
i=1

Xn,i → ξ.(4.1)

The array is assumed to be infinitesimal, that is

max
1≤i≤k(n)

P (|Xn,i | > ε) → 0 for each ε > 0.(4.2)

Then the law of ξ is infinitely divisible and ξ can be represented by mutually
independent “Poisson series” 
+, 
−, a centered normal random variable N with
Var(N) =: σ 2, and a constant K , namely

ξ
D= 
− + N + 
+ + K;(4.3)

see Csörgő, Häusler and Mason (1988) and Janssen (1994) for details. The series

+, 
− are defined via partial sums Sn = ∑n

i=1 Yi, S̃n = ∑n
j=1 Ỹj of mutually

independent standard exponential random variables (Yi)i , (Ỹj )j with mean one.
For some τ > 0 they are given by


− :=
∞∑
i=1

(
ψ1(Si) − E

(
ψ1(Si)1(−τ,0](ψ1(Si))

))
,(4.4)


+ :=
∞∑
i=1

(
ψ2(S̃i) − E

(
ψ2(S̃i)1[0,τ )(ψ2(S̃i))

))
.(4.5)

The representation (4.3) is called the quantile representation since the functions
ψ1,ψ2 : (0,∞) → R are just the quantile functions of the Lévy measure η of ξ .
They are defined by

ψ1(y) := inf{t :η(−∞, t] ≥ y} ∧ 0,(4.6)

ψ2(y) := sup{t :η[t,∞) ≥ y} ∨ 0;(4.7)
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for details compare with Janssen [(1994), Sections 2 and 4 and Remark 8 below].
Notice first that Xn → 0 holds. According to Lemma 7 we need the following
centering condition for an,i := E(Xn,i1(−τ,τ)(Xn,i)):

k(n)∑
i=1

a2
n,i → 0 as n → ∞.(4.8)

We will assume (4.8) throughout. Notice that a change of centering in (4.1)
is irrelevant for the underlying tests. On the other hand recall from Gnedenko
and Kolmogorov [(1954), page 118] that (4.1) can always centered by X′

n,i :=
Xn,i − an,i . The corresponding truncated means a′

n,i of X′
n,i then converge∑k(n)

i=1 a′
n,i → 0 and (4.8) holds for X′

n,i .
Now we are well prepared to apply Theorem 3 to the original statistic T ∗

n (3.2).
As in Theorem 1 the Si, S̃j and 
 variables are defined on � whereas the Z’s are
defined on �′.

THEOREM 4. Consider convergent partial sums (4.1)–(4.8) and (S,‖ · ‖2)

convergent step functions (ϕn)n, (3.16). Then we have

d
(
L(T ∗

n | Xn,1, . . . ,Xn,k(n)),L(X0 | 
)
) → 0(4.9)

in P -probability. The random variable X0 is defined via the random variables
Zi , Z̃j , given in Remark 3, a standard normal random variable Z, jointly
independent, and (4.6), (4.7) by

X0 =
∞∑
i=1

ψ1(Si)Zi +
∞∑

j=1

ψ2(S̃j )Z̃j + σZ.(4.10)

The proof follows from Theorem 3 and Lemma 7.

REMARK 4. (a) For constant ξ we have X0 = 0.
(b) If ξ is not constant we obtain three equivalent statements (4.11)–(4.13)

concerning the conditional limit distribution L(X0 | 
) in comparison with (4.1).

L(X0 | 
 = ω) is independent of ω P a.e.(4.11)

E(ξ) exists and L(X0 | 
 = ω)
D= ξ − E(ξ) P a.e.(4.12)

ξ is a normal random variable.(4.13)

Next we will compare the unconditional distributions of ξ and X0, see (4.1)
and (4.10). The characteristic function of ξ is given by the Lévy–Hinčin formula

E(exp(itξ)) = exp
(

−σ 2t2/2 + iat +
∫

ρ(t, x) dη(x)

)
(4.14)

with some a ∈ R, σ 2 ≥ 0 and Lévy measure η. Let ρ(t, x) := exp(itx)−1− itx
1+x2 .
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THEOREM 5. Consider X0, (4.10), with the Zi’s having common distribu-
tion ν. Suppose that

∫
x dν(x) = 0 and

∫
x2 dν(x) ≤ 1 holds which may be more

general as in Theorem 4. Then:

(a) The law of X0 is infinitely divisible with Lévy measure

η0(A) =
∫

R\{0}
ν(s−1A)dη(s), A ∈ B(R \ {0}).(4.15)

Its characteristic function is given by

E(exp(itX0)) = exp
(

−σ 2t2/2 + itb +
∫

ρ(t, x) dη0(x)

)
(4.16)

with

b =
∫ ∫ (

xz

1 + (xz)2 − xz

1 + x2

)
dν(z) dη(x).

(b) The random variables ξ
D= X0 coincide in law iff (i) or (ii) holds.

(i) ξ is a centered normal random variable or ξ = 0.
(ii) ξ is a symmetric random variable and ν = 1

2 (ε−1 + ε1).

For the proof see Section 8.
Compared with the conditional characterization (4.11)–(4.13) the additional

case (ii), occurs which has the following natural interpretation in terms of
symmetric random variables.

EXAMPLE 4. Consider symmetric random variables Xn,i with convergent
partial sums (4.1). Let Wn,i = k(n)−1/2Zn,i be as in (3.8) a resampling scheme
given by independent uniformly distributed signs Zn,i ∈ {+1,−1} (Rademacher
random variables); see Theorem 5(b)(ii). Then we have equality in distribution of

k(n)∑
i=1

Xn,i
D=

k(n)∑
i=1

Zn,iXn,i = T ∗
n(4.17)

and ξ
D= X0 trivially holds. The Rademacher resampling scheme is of practical

importance for the following cases:

(a) When symmetric random variables are conditioned under their absolute
values and conditional tests are considered for the null hypothesis of symmetry;
see Janssen (1999).

(b) For two-sample testing problems with balanced sample sizes n1/n2 → 1,
see Examples 1 and 6.

(c) For the wild bootstrap (3.8) with distribution ν, see Theorem 5(b)(ii).
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5. Bootstrapping the mean. This section establishes conditional limit theo-
rems for bootstrap statistics (see Example 1) as application of Sections 3 and 4.

We again refer to related work cited in Section 1 which is mostly concerned
with special limit laws.

LEMMA 4. Let k(n) → ∞. Then the conditions (3.3)–(3.5) hold for the
bootstrap weights Wn,i under the following circumstances:

(a) For the m(n)-bootstrap whenever m(n) → ∞ holds.
(b) For the wild bootstrap, see Example 2(c), if k(n)−1/2 ∑k(n)

i=1 Zn,i is distri-
butional convergent to a standard normal random variable. This condition holds
when

Zn,1 → Z1 as n → ∞(5.1)

in distribution where Z1 is a random variable with E(Z1) = 0 and Var(Z1) = 1.

For the proof see Section 8.
The key is again the consideration of the bootstrap step functions.

THEOREM 6. Let m(n) → ∞. For the following cases the step functions
ϕn :� → S, given by (3.16) and their bootstrap weights, are convergent, ϕn → ϕ.

The corresponding random variables Z1
D= ϕ(U) can be specified as follows.

(I) We have (S,‖ · ‖2)-convergence for the following examples:

(a) For the m(n)-bootstrap, whenever

m(n)

k(n)
→ c, 0 < c ≤ ∞(5.2)

holds. Then the crucial random variables (3.19) are given for c < ∞ by

Z1
D= c−1/2(X − c),(5.3)

where X denotes a Poisson random variable with mean 1, and

Z1 is standard normal for c = ∞.(5.4)

(b) For the wild bootstrap, Example 2(c), when condition (5.1) holds.

(II) In the case of the m(n)-bootstrap with limit c = 0 of (5.2) we have ϕn → 0 in
(S,‖ · ‖1) and (ϕn)n is not ‖ · ‖2-convergent. Then Z1 = 0 holds.

For the proof see Section 8.

REMARK 5. To explain how the bootstrap works let us again consider
convergent partial sums Tn of independent random variables (4.1) and (4.8). Let
T ∗

n = k(n)1/2 ∑k(n)
i=1 Wn,i(Xn,i − Xn) denote the bootstrap statistic.
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(I) In comparison with the unconditional series (4.3) of ξ and the series
representation of the limit variable X0 of T ∗

n given by (4.10) we find extra
multiplier factors Zi, Z̃j . According to Theorem 6 the Zi ’s are:

• of Poisson type (m(n)-bootstrap c > 0),
• standard normal (m(n)-bootstrap c = ∞),
• or given by the wild bootstrap limit variable.

(a) In the sense of Remark 4(b) the bootstrap is then asymptotically
conditionally correct iff ξ is a centered normal random variable.

(b) The m(n)-bootstrap with c = ∞ always produces centered normal
conditional limit distributions L(X0 | 
) of T ∗

n with random conditional
variance

σ 2(ω) =
∞∑
i=1

ψ1(Si(ω))2 +
∞∑

j=1

ψ2(S̃j (ω))2 + σ 2.(5.5)

(II) The results of Section 4 cannot be applied to the m(n)-bootstrap with c = 0.
What only can be said is that T̃0 = Z(
) is conditionally infinitely divisible
given 
, see Theorem 3. For further results we refer to del Barrio and Matrán
(2000) who proved correctness of the bootstrap with low resampling intensity
for i.i.d. schemes attracted to stable laws.

(III) The unconditional correctness of the bootstrap, specified by X0
D= ξ , is now

a special case of Theorem 5 of Section 4.
(IV) The present results based on arbitrary triangular arrays generalize earlier

work of Cuesta-Albertos and Matrán (1998) for rowwise i.i.d. schemes. In
particular, they obtained conditional normal laws for c = ∞ and in the case of
0 < c < ∞ conditional infinitely divisible limit laws in terms of conditional
characteristic functions.

6. Resampling tests under alternatives. The present results have a lot
of applications for conditional resampling tests. Some of them—mostly to
permutation and bootstrap tests—are discussed in this section. Further results
will be considered forthcoming. Throughout, we will restrict ourselves to linear
statistics Tn (2.1) and resampling statistics T ∗

n (3.2) given by (S,‖ · ‖2) convergent
step functions. We suppose that Wn = 0 holds in this whole section. The null
hypothesis may consist of certain product measures (1.1). Assume for a moment
in (6.1) and (6.2) that Tn → Z is asymptotically normal under H0. Then we have
asymptotic normality of T ∗

n → Z, and L(T ∗
n | Xn,1, . . . ,Xn,k(n)), respectively, and

the equivalence of unconditional and conditional tests ϕn − ϕ∗
n →

H0
0 follows. The

(asymptotic) level α of ϕn and ϕ∗
n is always assumed to be fixed, 0 < α < 1.

Consider now a sequence of relevant contiguous alternatives Qn

Qn = L(Xn,1, . . . ,Xn,k(n)) � P k(n)(6.1)
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for some P k(n) ∈ H0; see Hájek, Šidák and Sen (1999). Then by Lemma 1,

lim
n→∞

(
EQn(ϕ

∗
n) − EQn(ϕn)

) = 0(6.2)

follows and ϕ∗
n is asymptotically efficient for {P k(n)} against {Qn} whenever ϕn is

asymptotically efficient. Under mild regularity assumptions the consistency of ϕ∗
n

can be derived under noncontiguous alternatives in the general case.

THEOREM 7. Consider again P k(n) and Qn similar to (6.1) where Qn may
be a sequence of noncontiguous alternatives. Let (L(Tn | P k(n)))n be tight and
assume that Tn → ∞ holds in Qn distribution. Suppose also tightness of the
distributions given by the random variable from � into (M1(R), d)

ω �→ L
(
T ∗

n | Xn,1(ω), . . . ,Xn,k(n)(ω)
)

(6.3)

as well as under P k(n) and Qn. Under these conditions we have consistency,

lim
n→∞EQn(ϕn) = lim

n→∞EQn(ϕ
∗
n) = 1.(6.4)

For the proof see Section 8.
The meaning of the results will now be explained for two-sample tests.

EXAMPLE 5 (Example 1 continued).
Consider a two sample test statistic Tn = k(n)1/2 ∑k(n)

i=1 cniXn,i given by
regression coefficients (2.3) with n1/k(n) → κ ∈ (0,1); see also Examples 1
and 6.

(a) (Null hypothesis). Under the null hypothesis let (Xn,i)i≤k(n) be rowwise i.i.d.

with convergent partial sums
∑k(n)

i=1 Xn,i → ξ ; see (4.1), where ξ is a nontrivial
infinitely divisible random variable being not of compound Poisson type; see
Remark 1. According to Corollary 2 we have

Tn → X0 =
∞∑
i=1

ψ1(Si)Zi +
∞∑

j=1

ψ2(S̃j )Z̃j + σZ(6.5)

where Zi,Zj are i.i.d. with joint distribution L(Z1) given in (3.27).
(b) (Permutation tests). For each n the upper Tn-permutation tests ϕ∗

n (1.4) are
exact level α tests and their conditional quantiles c∗

n(α,Xn,1(ω), . . . ,Xn,k(n)(ω))

converge to the quantiles of L(X0 | 
 = ω) given ω for all α [except for
a countable number of values α ∈ (0,1)]. The power of ϕn and ϕ∗

n can be
compared under the following local alternatives. Let X′

n,i (i.i.d.) stand for the null
hypothesis (a) and consider two-sample alternatives

Xn,i := X′
n,i + θ

cnik(n)3/2
, θ ∈ R,(6.6)
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where now Tn((Xn,i)i) = Tn((X
′
n,i)i) + θ holds. However, the permutation

statistics (3.2) with coefficients (3.6) of Tn are asymptotically the same under the
null hypothesis and the alternatives, namely

T ∗
n

(
(Xn,i)i

) − T ∗
n

(
(X′

n,i)i
) =

k(n)∑
i=1

cnσ(i)

θ

cni k(n)
→ 0(6.7)

in probability (apply Hájek’s variance formula, Section 7). Thus

d
(
L(T ∗

n | Xn,1, . . . ,Xn,k(n)),L(X0 | 
)
) → 0(6.8)

also follows under alternatives (6.6). We see that ϕn is asymptotically testing

L(X0) against L(X0 + θ)(6.9)

and the permutation tests ϕ∗
n are asymptotic tests for the conditional distributions

L(X0 | 
 = ω) against L(X0 + θ | 
 = ω).(6.10)

In the normal case X0 = σZ (Remark 4) the testing problems (6.9) and (6.10) are
equivalent and Lemma 1 can be applied to local alternatives. In the nonnormal case
ϕn and ϕ∗

n will not have the same asymptotic power in general. Examples of this
type show up for nonstandard rank tests; see Janssen and Mason (1990), which is
discussed in Example 6 below.

(c) (Bootstrap two-sample tests). From the previous comments it is clear that
permutation tests should always be preferred for two-sample problems. From the
mathematical point of view we may ask what happens when the critical values
c∗
n are evaluated by other resampling statistics T ∗

n , for instance by bootstrap
procedures. We will indicate the steps which are different. Actually, there are
two ways to organize the two-sample bootstrap. First, if m(n) = k(n) holds,
one may bootstrap the Xn,i themselves and replace them by bootstrap quantities
and sum them up in the two-sample manner k(n)

∑k(n)
i=1 cni(Wn,iXn,i). Second,

the bootstrap sample can be taken from new variables X′
n,i = cniXn,i which

establishes a bootstrap partial sum. In both cases, our bootstrap statistic is T ∗
n =

k(n)
∑k(n)

i=1 Wn,i(cniXn,i), where now an additional factor k(n)1/2 is needed for
reasons of normalization. It should be mentioned that the second procedure is not
restricted to the ordinary bootstrap.

According to Theorem 4 we have again convergence (6.8) where now
L(X0 | 
) above has to be substituted by some L(T̃0 | 
). In the normal case

we typically have X0
D= T̃0 under our regularity conditions; see Remarks 4 and 5

for the bootstrap. Thus we have again equivalence of the unconditional and condi-
tional tests. However, it is easy to see that X0 �= T̃0 holds in general. In comparison
with (6.5), the Z’s of T̃0 may be of Poisson type and also ψ1,ψ2 may be different
(given by the limit law X0 of Tn). The bootstrap tests ϕ∗

n are asymptotically testing

L(T̃0 | 
 = ω) against L(T̃0 + θ | 
 = ω)(6.11)
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and it is even not clear what the asymptotic level of ϕ∗
n is! Also the relation of

the testing problems (6.9) and (6.11) is unclear. As explained in part (b) above
permutation tests are much more pleasant.

7. Simple linear permutation statistics. This section is devoted to rank type
statistics which play a central role for the subsequent proofs.

In the first step our main theorem is treated for deterministic X’s and a sort
of permutation weights. This essential step is of separate interest since T ∗

n is a
simple linear rank statistic in special cases. It is also the key to all other proofs.
Given k(n) let (R1, . . . ,Rk(n)) be uniformly distributed ranks, that is, a random
variable with uniform distribution on the set of permutations Sk(n) of {1, . . . , k(n)}.
An additional index n concerning the ranks is suppressed throughout. Consider a
sequence of simple linear permutation statistics

Sn =
k(n)∑
i=1

(cni − c̄n)dn(Ri)(7.1)

where cni are regression coefficients, 1 ≤ i ≤ k(n), with

k(n)∑
i=1

(cni − c̄n)
2 = 1, c̄n := 1

k(n)

k(n)∑
i=1

cni(7.2)

and random scores dn(i) : �̃ → R, 1 ≤ i ≤ k(n) with

1

k(n) − 1

k(n)∑
i=1

(
dn(i) − d̄n

)2 = 1 on An :=
{

k(n)∑
i=1

(
dn(i) − d̄n

)2
> 0

}
.(7.3)

The c’s are here considered to be fixed and the d’s are allowed to be random
variables independent of the ranks Rj . Without restrictions we may assume
ordered regression coefficients

cn1 ≤ cn2 ≤ · · · ≤ cnk(n).(7.4)

For a moment let di:k(n) denote the order statistics of (7.3). Then we have equality

in distribution for (dn(Ri))i≤k(n)
D= (dRi :k(n))i≤k(n) which is a consequence of the

exchangeability of these variables. In these cases ranks and order statistics are
independent. Without restriction we may thus assume that the score functions are
also ordered

dn(1) ≤ dn(2) ≤ · · · ≤ dn(k(n)).(7.5)

In our context the d’s are typically given by

dn(i) = (
k(n) − 1

)1/2 Wi:k(n)

(
∑k(n)

i=1 (Wn,i − Wn)2)1/2
.(7.6)
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Conversely, if (7.3) holds then Wn,i := dn(Ri)/(k(n) − 1)1/2 defines an ex-
changeable scheme. Obviously, the conditions (3.4) and (3.5) are equivalent to
P̃ (An) → 1 and(

k(n) − 1
)−1/2 max

1≤i≤k(n)
|dn(i) − d̄n| → 0 in P̃ -probability.(7.7)

In our case with Yn,i = cni − c̄n we have equality in distribution of (3.2) and
(7.1) via (7.6), namely

Sn
D=

(
k(n) − 1

k(n)

)1/2 T ∗
n

(
∑k(n)

i=1 (Wn,i − Wn)
2)1/2(

∑k(n)
i=1 (Xn,i − Xn)

2)1/2
.(7.8)

As an abbreviation let us always denote conditional expectations and conditional
variances with respect to (Wi:k(n))i≤k(n) [including dn(i)] by E(·|W) and Var(·|W).

According to Hájek, Šidák and Sen (1999) we have Var(Sn|W) = 1An . Since
E(Sn|W) = 0 holds always convergent subsequences of Sn exist and under
some regularity conditions we can classify all possible limit distributions of
subsequences with respect to the distributional convergence. It is well known from
Hájek’s work that the corresponding step functions ϕn introduced in (3.16) play a
central role; see also Janssen (1997), Lemma 3.4, for a discussion of the central
limit theorem for rank statistics. They are given by

ϕn(u) = dn

(
1 + [k(n)u]) − d̄n, u ∈ (0,1),(7.9)

which agrees with (3.16) in the case of (7.6).

REMARK 6. In the special case (7.1)–(7.9) the cluster points of Sn given
by (7.1) are now

T0 =
∞∑
i=1

ciZi +
∞∑

j=1

c̃j Z̃j + Z(7.10)

where Z is infinitely divisible and ci (c̃j ) are cluster points of (cni − c̄n)n,
(cn(n+1−j) − c̄n)n, respectively.

As a technical tool we will frequently use the following well-known lemma of
Skorohod; see Dudley [(1989), page 325] for a general version.

LEMMA 5. Let ξn be a distributionally convergent sequence of random
variables with values in a complete separable metric space. Then there exist almost
surely convergent versions of ξn on a suitable probability space.

PROOF OF THEOREM 1 FOR DETERMINISTIC Xn,i WITH cni = Yn,i , c̄n = 0.
For each n consider the following triangular array of rowwise i.i.d. uniformly
distributed random variables on (0,1). Let the V ’s be as in Remark 3 and let

(Un,1, . . . ,Un,k(n))(7.11)
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be given by Un,i = Vi for i ≤ k(n)/2 and Un,k(n) = Ṽ1, . . . ,Un,k(n)−j = Ṽj+1

otherwise. Without restriction we may assume that (R1, . . . ,Rk(n)) are the ranks
of (7.11). At this stage a variance inequality of Hájek [(1961), Lemma 2.1] can be
applied to the conditional variance given W . Statement (3.11) of his Theorem 3.1
applied to fixed scores (Wi:k(n)(ω̃))i yields

Var

(
Sn −

k(n)∑
i=1

cniϕn(Un,i)
∣∣∣W

)

(7.12)

≤ 2
√

2 max
1≤i≤k(n)

|Wn,i − Wn|
(
∑k(n)

j=1(Wn,j − Wn)
2)1/2

→ 0 in P̃ -probability.

Notice that condition (3.4) corresponds to Hájek’s assumption (3.3). This state-
ment immediately implies according to Lemma 8 of the Appendix,

Sn −
k(n)∑
i=1

cniϕn(Un,i) → 0(7.13)

in probability. Thus the problem is reduced to weighted partial sums of the inde-
pendent random variables. Consider now the three sequences (ϕn) in (S,‖ · ‖1),
(cn1, cn2, . . . , cnk(n),0, . . .) and (cnk(n), cnk(n)−1, . . . , cn1,0, . . .) in [−1,1]N.

According to Lemma 2 we can choose a subsequence {m} ⊂ N so that each of
them converges along the subsequence in (S,‖ · ‖1), [−1,1]N, respectively. Hence
there exist ci, c̃j ∈ [−1,1] with

cmi → ci, cmk(m)+1−j → c̃j for each i, j(7.14)

as m → ∞ and our norming condition (7.2) implies (3.12). There exists a random
variable ϕ : �̃ → S such that ϕm → ϕ holds in distribution. By Skorohod’s
lemma we can find another probability space such that ϕm → ϕ converges almost
everywhere in S. This fact implies that for these versions

‖ϕm − ϕ‖ :=
∫ ∫

|ϕm(ω̃, x) − ϕ(ω̃, x)|dx dP̃ (ω̃) → 0

holds as m → ∞. This norm obviously coincides with the L1-norm for the random
variables (3.17) denoted by ϕ(U) throughout. By the convergence of the three
subsequences above we can find a sequence rm ↑ ∞, rm < k(m)/2, with

am :=
rm∑
i=1

|cmi − ci| + rm‖ϕm − ϕ‖ → 0.(7.15)
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Since ‖ϕm‖ ≤ 1, ‖ϕ‖ ≤ 1 hold we have∥∥∥∥∥
rm∑
i=1

cmiϕm(Um,i) −
rm∑
i=1

ciϕ(Vi)

∥∥∥∥∥
≤

rm∑
i=1

‖ϕm(Um,i)‖ |cmi − ci|

+
rm∑
i=1

|ci | ‖ϕm(Um,i) − ϕ(Vi)‖ ≤ am → 0.

(7.16)

For these reasons the lower part
∑rm

i=1 cmiϕm(Um,i) converges to the first series
of (3.14) in distribution; see also (7.10). The conditional L2-convergence of that
series T0 is obvious; cf. Remark 3. Similarly, we find a sequence sm ↑ ∞, sm <

k(m)/2 with

k(m)∑
i=k(m)−sm+1

cmiϕm(Um,i) →
∞∑

j=1

c̃jϕ(Ṽj )(7.17)

in distribution. The remaining middle part

k(m)−sm∑
i=rm+1

cmiϕm(Um,i)(7.18)

is tight since (7.18) is centered and its variance is bounded by one. The
corresponding array is infinitesimal since

‖cmiϕm(Um,i)‖ ≤ max{|cmi| : rm + 1 ≤ i ≤ k(m) − sm} → 0.(7.19)

This follows as in the proof of Lemma 6 from condition (7.4). Thus (7.18) has a
cluster point Z which is infinitely divisible. Since the second moment of (7.18) is
bounded by 1 then Fatou’s lemma implies E(Z2) ≤ 1. �

PROOF OF THEOREM 2 FOR DETERMINISTIC Yn,i = cni . (b) Again the
choice of rm and sm given in the proof above by (7.15) and (7.17) is appropriate.
Notice that these conditions together with∣∣∣∣∣

rm∑
i=1

(c2
mi − c2

i )

∣∣∣∣∣ ≤
rm∑
i=1

|cmi − ci||cmi + ci | ≤ 2
rm∑
i=1

|cmi − ci | → 0

imply

k(m)−sm∑
i=rm+1

c2
mi → σ 2 := 1 −

∞∑
i=1

c2
i −

∞∑
j=1

c̃2
j .(7.20)

Now the central limit theorem for triangular arrays can be applied to the middle
part (7.18) since (7.19) together with the L2-convergence of the sequence ϕm

implies Lindeberg’s condition; see Lemma 3 of Section 3.
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(a) Again we may restrict ourselves to the middle part (7.18) which is
assumed to be convergent along the subsequence {m}. Recall from Gnedenko and
Kolmogorov [(1954), page 116] that the limit variance of the normal part is given
by

σ̃ 2 = lim
ε→0

lim sup
m→∞

k(m)−sm∑
i=rm+1

Var
(
cmiϕm(Um,i)1(−ε,ε)

(
cmiϕm(Um,i)

))
.(7.21)

In a first step assume that ϕm(Um,i) are symmetric random variables. Since without
restriction ω̃ �→ ‖ϕm(ω̃, ·)−ϕ(ω̃, ·)‖1 converges in P̃ -probability to 0 on a suitable
probability space there exist for each δ > 0 some K > 0 and m0 with

Var
(
ϕm(Um,1)1(−K,K)

(
ϕm(Um,1)

))
≥

∫ ∫
ϕ(ω̃, x)2 dx dP̃ (ω̃) − δ =: β(δ)

(7.22)

for all m ≥ m0.
It is easy to see that for any random variable X with E(X) = 0 we have

Var(X) ≥ Var(X1A(X)) for all measurable sets A ⊂ R.
On the other hand for each i, r(m) + 1 ≤ i ≤ k(m) − sm, finally

|ε/cmi | > K(7.23)

holds according to (7.19) whenever cmi �= 0. Thus finally

Var
(
cmiϕm(Um,i)1(−ε,ε)

(
cmiϕm(Um,i)

))
(7.24) ≥ c2

mi Var
(
ϕm(Um,i)1(−K,K)

(
ϕm(Um,i)

)) ≥ c2
miβ(δ)

holds. The result now follows from (7.20), (7.21) and
k(m)−sm∑
i=rm+1

c2
miβ(δ) → σ 2β(δ).(7.25)

The proof of the general case is similar. Choose independent copies ϕ̃m(Ũm,i) and
consider ϕm(Um,i) − ϕ̃m(Ũm,i). Here the bound of the normal variance can be
established as above. �

We will now discuss applications for rank statistics. It is sometimes convenient
to interchange the role of regression coefficients and scores; see (7.26) below
and Janssen (1997). That approach can be applied to the two-sample problem,
Example 1(a); see (2.2) for the notation of antiranks Di .

EXAMPLE 6 (Two-sample rank statistics). Consider a two-sample problem of
size n1 and n2 with n1 + n2 = k(n) and deterministic scores; see Example 1. Let

Sn =
k(n)∑
i=1

bnDi
an(i)(7.26)
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be a two-sample statistic with real scores an(i), i ≤ k(n). Let bni be the regression
coefficients given by (2.3) which are centered and for which (7.2) holds. If we now
set

dn(i) = (
k(n) − 1

)1/2
bni and cni = (

k(n) − 1
)−1/2

an(i),(7.27)

the new scores dn(i) are of the form (7.3) and (7.5) and the meaning of Theorem 1
can be discussed; see also Remark 6. Suppose that the c’s of (7.27) satisfy the
required conditions (7.2) and (7.4) with convergent schemes cni − c̄n → ci and
cnk(n)+1−j − c̄n → c̃j as n → ∞ for all i, j ∈ N; see (3.11). Check that the scheme

dn(Di)/(k(n)−1)1/2 fulfills (3.3)–(3.5) whenever min(n1, n2) → ∞. Under these
assumptions the cluster points of Sn are given by T0 (7.10).

(a) Suppose that n1/k(n) → κ ∈ (0,1) holds for n → ∞. Then Sn → T0
converges in distribution where Z is a centered normal random variable with
variance σ 2 given by (7.20). In this case obviously ϕn is L2(0,1)-convergent with
limit

ϕ(u) = −
(

1 − κ

κ

)1/2

1[0,κ](u) +
(

κ

1 − κ

)1/2

1(κ,1)(u).(7.28)

Thus we have convergence of Sn.
However, it is known from the nonregular two-sample Weibull location model

that Z = 0 and σ 2 = 0 may occur and that T0 is given by the remaining sum;
see Janssen and Mason [(1990), Theorem 5.4, Example 5.7, Corollary 6.5 and
Example 6.6].

(b) If n1/k(n) is bounded away from 0 and 1 for n → ∞ the condition

max
1≤i≤k(n)

|an(i) − ān|
/(

k(n)∑
i=1

(
an(i) − ān

)2
)1/2

→ 0(7.29)

implies asymptotic normality Sn → T0 = Z. To see this assume first that n1/k(n)

is convergent. Thus Sn has only standard normal cluster points.
(c) In the remaining case min(n1, n2) → ∞ and n1/k(n) → 0 the limit

L2(0,1)-function vanishes, ϕ = 0. Thus all cluster points T0 = Z are infinitely
divisible and examples are known when T0 is normal or when T0 has nontrivial
Poisson parts. Its behaviour depends on regularity conditions concerning the a’s.

8. Proofs.
PROOF OF LEMMA 1. It is well known that condition (b) implies (a); see

Witting and Nölle (1970), page 58.
Suppose now that (a) holds for all α ∈ (0,1). Let c(α) = F−1

T (1 − α) be the
(1 − α)-quantile of the distribution function of T . Then it is easy to see that

E
(|ϕn,α − 1(c(α),∞)(Tn)|) → 0(8.1)
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holds and we may choose cn(α) = c(α). Let now Fn denote the distribution
function of Tn and let U be a uniformly distributed random variable on (0,1)

which is independent of the data. Thus condition (a) implies

E
(|Fn(c(U)) − Fn(c

∗
n(U))|)

≤ P
({

Tn ∈ (
c(U), c∗

n(U)
]} ∪ {

Tn ∈ (
c∗
n(U), c(U)

]})
≤

∫ 1

0
E(|ϕn,α − ϕ∗

n,α|) dα + 2 sup
x∈R

P ({Tn = x}) → 0.

For each subsequence there exists a further subsequence {m} such that

Fm(c(U)) − Fm(c∗
m(U)) → 0 P a.e.(8.2)

The present assumptions imply Fm(x) → FT (x) and F−1
m (u) → F−1

T (u) for all
x ∈ R, u ∈ (0,1), respectively. Thus

c∗
m(U) → c(U)(8.3)

holds P a.e. Observe now that c(U)
D= T and c∗

n(U) has conditional distribution
L(T ∗

n | Xn,1, . . . ,Xn,k(n)) given the X’s. Altogether we have convergence

d
(
L(T ),L(T ∗

m | Xm,1, . . . ,Xm,k(m))
) → 0(8.4)

P a.e. along the present subsequence {m}. This statement implies the convergence
of (b) in probability. �

The key for our investigations is the following compactness lemma.

LEMMA 6. The space (S,‖ · ‖1), see (3.15), is a compact metric space.

PROOF. Let ϕn be a sequence in S. Similarly to Janssen [(1997), Lemma 3.4]
notice that the inequality

|ϕn(u)| ≤ max
(
u−1/2, (1 − u)−1/2) =: ϕ0(u), 0 < u < 1,(8.5)

holds, where ϕ0 ∈ L1(0,1) dominates the whole sequence. For fixed u the
sequence (ϕn(u))n is bounded. Thus there exists a subsequence {m} ⊂ N so that
(ϕm(u))m is convergent for all u ∈ Q ∩ (0,1). Since ϕm is nondecreasing we have

ϕm(u) → ϕ(u)(8.6)

for some function ϕ : (0,1) → R for almost every u ∈ (0,1). The dominated
convergence theorem now implies L1(0,1)-convergence of (8.6). �

PROOF OF THEOREMS 1 AND 2 IN GENERAL FORM. Part (a) of Theorem 1
is a consequence of common tightness arguments.
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(b) This proof extends the proof of Section 7 given for fixed X’s. Consider again
the ranks (Ri)i≤k(n) : (�′,A′,P ′) → Sk(n) of (7.11) jointly independent of the X-
and W -variables. By (3.3)–(3.5), we have equality in distribution of

T ∗
n

D= k(n)1/2
k(n)∑
i=1

WRi :k(n)(Xn,i − Xn) =: T̃ ∗
n(8.7)

on � × �̃ × �′. Since it is enough to prove distributional convergence of (3.13)
under P , by Lemma 5 we may replace the jointly distributionally convergent
order statistics (3.11) and indicators 1Hn , see (3.1), by P almost surely convergent
versions. Here we apply Lemma 5 to the compact space ([−1,1]N)2 × {0,1}.

On the new probability space we have by the dominated convergence theorem
L1(P )-convergence of the components of (3.11), namely

‖Yi:k(m) − ζi‖1 → 0, ‖Yk(m)+1−j :k(n) − ζ̃j‖1 → 0(8.8)

along the subsequence for all i, j ∈ N. It is easy to see that there exist sequences
rm ↑ ∞, sm ↑ ∞ in N with

rm∑
i=1

|Yi:k(m) − ζi | → 0 and
sm∑

j=1

|Yk(m)+1−j :k(m) − ζ̃j | → 0(8.9)

both in L1(P ). Turning again to subsequences we may assume that in addition
to (8.8), the sequences (3.11) and (8.9) are P a.e. convergent, say for ω ∈ M ,
P (M) = 1. By our construction we have 1Hm → V a.e. where V is a random
variable with values 0 or 1.

At this stage we have prepared all ingredients to adapt the proof of Section 7 for
deterministic Xn,i where now the choice cni = Yi:k(n)(ω), ω ∈ M ∩ {V = 0}, given
by (3.10), is appropriate. If ω is fixed then

ω̃ �→ T̃ ∗
m

(
∑k(m)

i=1 (Xm,i (ω) − Xm(ω))2)1/2
= k(m)1/2

k(m)∑
i=1

cmiWRi :k(m)(8.10)

is a permutation statistic with random scores. For fixed ω the proof of the
deterministic case can be repeated, see Section 7. Thus we have convergence
of the rm lower and the sm upper parts of (8.10) along a subsequence. These
subsequences are independent of ω ∈ M ∩ {V = 0}. On the other hand, the central
part (7.18) defines a tight sequence

ω �→ L

(
k(m)−sm∑
i=rm+1

cmiϕm(Um,i)
∣∣∣Xm,1, . . . ,Xm,k(m)

)
(8.11)

on � into (M1(R), d). Recall that the set of centered distributions with bound 1
for its second moments is relatively compact in M1(R). For these reasons we may
assume that (8.11) is P a.e. convergent along a further subsequence (also denoted
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by {m}). For fixed ω the sequence is infinitesimal and the limit variables Z(ω) are
infinitely divisible.

For ω ∈ M ∩ {V = 1} we may define Z(ω) = 0. On the new probability space
we have 1Hm(ω) = 1 and T̃ ∗

m(ω) = 0 finally. Since also ζi(ω) = ζ̃j (ω) = 0 holds
we have T0(ω) = 0. The same arguments imply Theorem 2 in its general form. As
pointed out above cni = Yik(n)(ω) may again be fixed and the proof of Section 7
works. �

PROOF OF LEMMA 3. Consider almost everywhere convergent versions
of ϕm on (S,‖·‖1) for a suitable probability space with ‖ϕm(ω̃, ·) − ϕ(ω̃, ·)‖1 → 0
P̃ a.e. Clearly we have E(ϕ(U)) = E(ϕm(U)) = 0 and ‖ϕm(ω̃, ·)‖2 → 1 in
P̃ -probability. If E(ϕ(U)2) = 1 holds then obviously ‖ϕ(ω̃, ·)‖2 = 1 a.e. follows
and in conclusion we have ‖ϕm(ω̃, ·)‖2 → ‖ϕ(ω̃, ·)‖2 in P̃ -probability. Via a.e.
convergent subsequences we may apply Vitali’s theorem for fixed ω̃; see Shorack
[(2000), page 55] which yields

‖ϕm(ω̃, ·) − ϕ(ω̃, ·)‖2 → 0

in P̃ -probability and distributional convergence in (S,‖ · ‖2).
Conversely, we may assume that we have ϕm → ϕ a.e. in (S,‖ · ‖2). Then again

Vitali’s theorem implies ‖ϕ(ω, ·)‖2 = 1 a.e. and E(ϕ(U)2) = 1 holds. �

PROOF OF THEOREM 3. Suppose first that (P (Hn))n is convergent. Again
we may assume that (3.23) and 1Hn are almost surely convergent on another
probability space. Thus we may divide by (

∑k(n)
i=1 (Xn,i − Xn)

2)1/2 1Hc
n

on the
set {ξ0 > 0} and the result follows from Theorem 2(b) on {ξ0 > 0} (where Hc

n =
� \ Hn).

On the complement {ξ0 = 0} the limit variable T̃0 vanishes. It is now easy to
prove that the conditional distributions (3.24) converge to ε0 under the restriction
ξ0 = 0. For this purpose define similarly to (8.10) regression coefficients cni =
Xi:k(n)(ω) − Xn(ω) for fixed ω. The condition ξ0(ω) = 0 together with almost

sure convergence of (3.23) now implies
∑k(n)

i=1 c2
ni → 0 and

Var

(
k(n)1/2

k(n)∑
i=1

cniWRi :k(n)

)
→ 0.

If (P (Hn))n is not convergent we may turn to convergent subsequences and
proceed as above. However, the limit variable T̃0 is the same for all subsequences.
This implies the desired result (3.24). �

LEMMA 7. Let (Xn,i)i≤k(n) as in Section 4 be such that the conditions (4.1),
(4.2) and (4.8) hold. Taking (4.3)–(4.7) into account we have distributional
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convergence on RN × RN × R of the following random variables:(
(Xi:k(n))i∈N, (Xk(n)+1−j :k(n))j∈N,

k(n)∑
k=1

X2
n,k

)

−→
(
(ψ1(Si))i∈N, (ψ2(S̃j ))j∈N,

∞∑
i=1

ψ1(Si)
2 +

∞∑
j=1

ψ2(S̃j )
2 + σ 2

)
.

(8.12)

REMARK 7. (a) The lemma extends Raikov’s result, see Gnedenko and
Kolmogorov (1954) and Raikov (1938), which states

∑k(n)
k=1 X2

n,k → σ 2 whenever
ξ = N is normal and the Xn,k are centered.

(b) The series
∞∑
i=1

ψ1(Si)
2 and

∞∑
j=1

ψ2(S̃j )
2(8.13)

are almost surely convergent infinitely divisible random variables with character-
istic functions

t �→ exp
(∫

(0,∞)

(
(exp(iut) − 1

)
dνi(u)

)
, i = 1,2,(8.14)

given by the following Lévy measures νi on (0,∞). They are defined by

x �→ ν1
([x,∞)

) := η
(
(−∞,−√

x]),
x �→ ν2

([x,∞)
) := η

([√x,∞)
)(8.15)

for x > 0; see Janssen [(1994), Section 4] for details about convergent series.

PROOF OF LEMMA 7.
Step 1. In a first step the distributional convergence of the squares given by the

third component of (8.12) is treated. Suppose first that our Xn,i are symmetric.
The proof relies on truncation arguments similar to Janssen [(1994), Section 5].
Choose δ > 0 such that ±δ are continuity points of the Lévy measure η of ξ . The
joint convergence of the order statistics, see Janssen [(1994), (2.13)] implies

k(n)∑
i=1

X2
n,i1[δ,∞)(|Xn,i |)

=
k(n)∑
k=1

X2
k:k(n)1[δ,∞)(|Xk:k(n)|)

→
∞∑
i=1

ψ1(Si)
21(−∞,−δ](ψ1(Si)) +

∞∑
j=1

ψ2(S̃j )
21[δ,∞)(ψ2(S̃j )).

(8.16)

The asymptotic independence of our upper and lower order statistic parts
follows as in Janssen [(1994), Section 5, Lemma 5.3], which is refered to as the
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splitting lemma. Similar arguments are well known in the literature; see Araujo and
Giné (1980). For δ ↓ 0 the right-hand side is almost surely convergent, see (8.13).
Thus there exists a sequence δn ↓ 0 with

k(n)∑
i=1

X2
n,i1[δn,∞)(|Xn,i |) →

∞∑
i=1

ψ1(Si)
2 +

∞∑
j=1

ψ2(S̃j )
2(8.17)

in distribution. We may choose δn → 0 slow enough such that the splitting
Lemma 5.3 may be applied and

k(n)∑
i=1

Xn,i1(−δn,δn)(Xn,i) → N(8.18)

is convergent to the normal part N of ξ . Thus Raikov’s result implies

k(n)∑
i=1

X2
n,i1(−δn,δn)(Xn,i) → σ 2(8.19)

and (8.17) combined with (8.19) establishes the results for the symmetric case.
The convergence for arbitrary sums of squares can be established as follows.

Choose an i.i.d. sequence (εi)i∈N, εi ∈ {+1,−1}, of uniformly distributed signs
which is independent of the triangular array. We claim that

k(n)∑
i=1

εi(Xn,i − an,i) → T(8.20)

converges in distribution to a symmetric infinitely divisible random variable T

with variance σ 2 for its normal part and Lévy measure η̄,

η̄(A) := 1
2

(
η(A) + η(−A)

)
, A ⊂ R \ {0}.(8.21)

The proof follows from Petrov [(1995), Theorem 3.3]. Using his notation with
Fn,i for the distribution function of Xn,i − an,i the symmetric random variable
εi(Xn,i − an,i) has then the distribution function

x �→ 1
2

(
Fn,i(x) + 1 − Fn,i((−x)−)

)
.(8.22)

The convergence criterion for triangular arrays now implies the result. Condi-
tion (4.8) ensures

k(n)∑
i=1

εiXn,i → T(8.23)

and
∑k(n)

i=1 X2
n,i → ξ0 is convergent in distribution according to our first result. Thus

the Lévy measure of ξ0 is just x �→ 2η̄([√x,∞)), x > 0 on (0,∞). According to
Remark 7 the sum of the series (8.13) has the Lévy measure ν1 + ν2, see (8.15).
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This is just the Lévy measure of ξ0. These arguments complete the treatment of
the third component of (8.12).

Step 2. The joint convergence of the first two components on RN × RN follows
from Janssen (1994). The joint convergence of the triple (8.12) can be treated
as follows. The splitting Lemma 5.3 of Janssen (1994) together with Raikov’s
theorem implies

k(n)∑
i=1

(εiXn,i)
21(−τn,τn)(εiXn,i) → σ 2(8.24)

for some sequence τn ↓ 0. Since (8.12) is tight it remains to identify the cluster
points. Let (

(ζi)i∈N, (ζj )j∈N,R
)

(8.25)

be a cluster point of (8.12). By Lemma 5 we may change the probability space
such that (8.24) and (8.25) are almost sure limits. For fixed m we have

m∑
i=1

ζ 2
i +

m∑
j=1

ζ̃ 2
j + σ 2 ≤ R a.e.(8.26)

and
∞∑
i=1

ζ 2
i +

∞∑
j=1

ζ̃ 2
j + σ 2 ≤ R a.e.(8.27)

However, we have equality in distribution of the latter random variables (8.27). It
is easy to see that this already implies equality a.e. for (8.27). Thus the proof of
Lemma 7 is complete. �

REMARK 8. In case of rowwise i.i.d. random variables the change of
the underlying probability space as well as the representation (3.3) have a
nice interpretation in terms of order statistics and their well-known quantile
representation. Almost sure convergence of the order statistics in (3.23) can be
proved by using a common representation of uniform order statistics given by
ratios of partial sums of exponential random variables. For details see Csörgő,
Csörgő, Horváth and Mason (1986) or Janssen [(2000), (2.7)]. Observe in addition
that F−1

n (u/k(n)) → ψ1(u) is convergent where Fn denotes the distribution
function of Xn,1.

PROOF OF THEOREM 5. (a) Obviously, it is enough to determine the
characteristic function of the series part of X0. For these reasons we may
assume that σ 2 = 0 holds. Since L(ξ) is infinitely divisible we may choose a

rowwise i.i.d. infinitesimal triangular scheme with Xn,1 + · · · + Xn,n
D= ξ for

each n. Theorem 1 of Gnedenko and Kolmogorov [(1954), page 116] implies that
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nE(Xn,i1(−τ,τ)(Xn,i)) is convergent. Thus (4.8) holds. Hence Theorem 4 applies
to the present wild bootstrap scheme (3.8) with Zn,i = Zi and

n∑
i=1

ZiXn,i → X0(8.28)

is convergent in distribution where X0 is given by the series (4.10). After an
obvious renormalization the result also holds when 0 < Var(Z1) < 1 occurs. The
limit distribution of (8.28) can now be identified via characteristic functions.
Write (4.14) in the form exp(�(t)) where σ = 0 is kept in mind. Fubini’s theorem
implies that

∫ |�|dν is finite. The characteristic function of the left-hand side
of (8.28) is

t �→
(∫

exp
(
�(tz)/n

)
dν(z)

)n

.(8.29)

A Taylor expansion yields for fixed t∫
exp

(
�(tz)/n

)
dν(z) = 1 +

∫
�(tz) dν(z)/n + o

(
1

n

)
.(8.30)

To prove this let � = �1 + i�2 be its representation given by real functions �j

with �1 ≤ 0. Uniformly in s > 0 we have∣∣∣∣exp(s�(tz)) − 1

s

∣∣∣∣ ≤
∣∣∣∣exp(s�1(tz)) − 1

s

∣∣∣∣ +
∣∣∣∣exp(is�2(tz)) − 1

s

∣∣∣∣
≤ |�1(tz)| + |�2(tz)|.

The dominated convergence theorem establishes (8.30) and (8.29) tends to
exp(

∫
�(tz) dν(z)). Taking

∫
x dν(x) = 0 and Fubini’s theorem into account we

arrive at (4.16) and the Lévy measure can be identified to be η0. The shift b is
given by

itb =
∫

�(tz) dν(z) −
∫

ρ(t, x) dη0(x).

(b) Suppose that (b)(i) or (b)(ii) is true. It is obvious that ξ
D= X0 holds if η = η0.

Let η̄(A) = η(−A) be the reflection of η. Then η0 = (η + η̄)/2 = η easily follows
since ν = 1

2 (ε1 + ε−1).
Conversely, assume now that ξ

D= X0 is not a centered normal variable and is not
ξ = 0. A shifted normal random variable is not of type (4.16). Also if ξ is constant
then X0 = 0 follows. Thus the Lévy measure is nontrivial η �= 0 and η = η0 holds.
We may assume that 1 ∈ supp(η) belongs to the support of η. Otherwise the whole
partial sum (4.1) can be multiplied by a factor and it can be reconsidered. Recall
that ∫

x dν(x) = 0 and
∫

x2 dν(x) ≤ 1(8.31)



800 A. JANSSEN AND T. PAULS

hold. For convenience set νs(A) := ν(s−1A) for s �= 0 and a ∧b = min(a, b). Thus
we have ∫

y2 ∧ 1 dη0(y) =
∫ ∫

x2 ∧ 1 dνs(x) dη(s) ≤
∫

s2 ∧ 1 dη(s).(8.32)

Notice that f (s) = s2 ∧ 1 − ∫
x2 ∧ 1 dνs(x) ≥ 0 is a continuous function with∫

f dη = 0 if η = η0. Since 1 belongs to the support of η we have f (1) = 0 and∫
x2 ∧ 1 dν(x) = 1.(8.33)

Together with (8.31) we see that ν must be supported by [−1,1] with
∫

x2 ×
dν(x) = 1. Hence x2 = 1 ν a.e. follows. Since the first moment of ν vanishes

it must be symmetric and ν has the desired form. Consequently, ξ
D= X0 is

symmetric. �

PROOF OF LEMMA 4. (a) This result is well known. Check that condi-
tion (3.5) holds since

E

(
k(n)∑
i=1

W 2
n,i

)
= 1 − 1

k(n)
→ 1(8.34)

and

Var

(
k(n)∑
i=1

W 2
n,i

)
= (m(n) − 1)(k(n) − 1)

m(n)k(n)2
→ 0.(8.35)

Condition (3.4) can be proven as follows. For ε > 0,

P

(
max

1≤i≤k(n)
|Wn,i| ≥ ε

)
≤ k(n)P

(∣∣∣∣Mn,1 − m(n)

k(n)

∣∣∣∣ ≥ m(n)1/2ε

)

≤ k(n)m(n)−2ε−4E
((

Mn,1 − m(n)

k(n)

)4)

holds. Elementary computations show that the right-hand side converges to zero.
(b) It is well known that the central limit theorem, applied to the scheme

Wni (3.8), implies Wn → 0 and max1≤i≤k(n) |Wni| → 0. Moreover, Raikov’s

theorem proves
∑k(n)

i=1 W 2
ni → 1 in probability; see Remark 7. Suppose now that

condition (5.1) holds. Consider the quantile representation

Zn,1 = F−1
n (U), Z1 = F−1

0 (U)(8.36)

via inverse distribution functions and uniformly distributed random variables U .
Then F−1

n → F−1
0 holds almost everywhere and F−1

n (U) − F−1
0 (U) → 0 is

convergent in L2(0,1) by Vitali’s theorem. Thus Var(F−1
n (U) − F−1

0 (U)) → 0
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holds which establishes a central limit theorem for the scheme Zn,i given by its
quantile representation (8.36). �

PROOF OF THEOREM 6. (I)(a) The choice of the bootstrap weights (3.7)
implies Wn = 0. The (S,‖ · ‖2) convergence of ϕn will be established for a special
construction of the multinomial variables. Let U1,U2, . . . be i.i.d. uniformly
distributed random variables on (0,1) and let e1 = (1,0, . . .), e2 = (0,1,0, . . .), . . .

be the unit vectors in Rk(n). Then

Mn,i =
m(n)∑
k=1

1{ei}(Zn,k), 1 ≤ i ≤ k(n),(8.37)

has a multinomial distribution if

Zn,k = (
1((j−1)/k(n),j/k(n)](Uk)

)
1≤j≤k(n).(8.38)

The functions ϕn are much the same as

ϕ̃n(u) := (k(n) − 1)1/2

m(n)1/2

(
M1+[k(n)u]:k(n) − m(n)

k(n)

)
(8.39)

which will turn out to be convergent. First the case 0 < c < ∞ is treated.
Let Fn denote the distribution functions of the B(m(n), 1

k(n)
) binomial

distribution of Mn,1. For fixed real x we have Fn(x) → G(x) where G is the
distribution function of a Poisson random variable with mean c. Consider now
the variables

(Ui)i �→ 1(−∞,x](Mn,1) and (Ui)i �→ −1(−∞,x](Mn,k(n))(8.40)

which are both nondecreasing in each argument Ui . Thus Hájek’s inequality, Hájek
[(1968), Lemma 3.1] implies

Cov
(
1(−∞,x](Mn,1),−1(−∞,x](Mn,k(n))

) ≥ 0.(8.41)

Since the Mn,i are exchangeable we have Cov(1(−∞,x](Mn,i),1(−∞,x](Mn,j )) ≤ 0
for each pair i < j and

Var

(
1

k(n)

k(n)∑
k=1

1(−∞,x](Mn,k)

)
≤ 1

k(n)2

k(n)∑
k=1

Var
(
1(−∞,x](Mn,k)

) → 0.(8.42)

This result implies first for fixed x and then uniformly in x the convergence of

sup
x∈R

∣∣∣∣∣ 1

k(n)

k(n)∑
k=1

1(−∞,x](Mn,k) − G(x)

∣∣∣∣∣ → 0(8.43)

in P -probability.
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Let now u ∈ (0,1) be fixed. For each integer r ≥ 0 we have convergence of

P (M1+[k(n)u]:k(n) ≤ r) = P

(
1

k(n)

k(n)∑
k=1

1(−∞,r](Mn,k) ≥ 1 + [k(n)u]
k(n)

)
.(8.44)

The limit is 1 for u > G(r) and 0 for u < G(r). This result implies

M1+[k(n)u]:k(n) → G−1(u)(8.45)

in P -probability for all u ∈ S(G−1) = {v : continuity point of G−1}. Now we can
proceed as in the proof of Lemmas 3 and 6 and we have pointwise convergence
along suitable subsequences of

ϕ̃m(u) → c−1/2(G−1(u) − c
) := ϕ(u), u ∈ S(G−1),P a.e.(8.46)

For a further subsequence (3.4) holds P a.e. and (8.46) also follows for ϕm.
Since E(ϕ(U1)) = 0 and Var(ϕ(U1)) = 1 we have (S,‖ · ‖2)-convergence of
ϕm → ϕ. Thus we have only one cluster point and tightness yields the result in
case 0 < c < ∞.

For c = ∞ the present proof can be modified as follows and we end up with the
inverse normal distribution function ϕ = �−1. Recall first that a sequence ζn of
B(m(n), 1

k(n)
) binomial distributed random variables is now normal, that is,

(
m(n)

k(n)

)−1/2(
ζn − m(n)

k(n)

)
→ Y(8.47)

in distribution with standard normal Y . Instead of 1(−∞,x](Mn,k) we will now
consider

1(−∞,x]
((

k(n)

m(n)

)−1/2(
Mn,k − m(n)

k(n)

))
.(8.48)

Analogous results (8.41) and (8.42) imply

sup
x∈R

∣∣∣∣∣ 1

k(n)

k(n)∑
k=1

1(−∞,x]
((

k(n)

m(n)

)−1/2(
Mn,k − m(n)

k(n)

))
− �(x)

∣∣∣∣∣ → 0.(8.49)

Similarly as in (8.44), we have

P

((
k(n)

m(n)

)−1/2(
M1+[k(n)u]:k(n) − m(n)

k(n)

)
≤ r

)
→ 1

if u > �(r) and the limit is zero in case u < �(r). Thus (8.45) can be substituted
by (

k(n)

m(n)

)−1/2(
M1+[k(n)u]:k(n) − m(n)

k(n)

)
→ �−1(u)(8.50)

and the proof for c = ∞ is complete.
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(b) The proof for the wild bootstrap follows the device above. Using the notation
of the proof of Lemma 4(b) we again have

sup
x∈R

∣∣∣∣∣ 1

k(n)

k(n)∑
k=1

1(−∞,x](Zn,k) − F0(x)

∣∣∣∣∣ → 0(8.51)

which implies Z1+[k(n)u]:k(n) → F−1
0 (u) except for a countable number of u’s,

u ∈ (0,1), and ϕ = F−1
0 follows since Zn → 0 holds.

(II) We will show that in case c = 0 the limit ϕ vanishes. Notice first that the
limit variable of (8.47) is Y = 0. To prove this we may apply Poisson’s limit law
and we may substitute ζn by a sequence of Poisson random variables ηn with mean
E(ηn) = m(n)/k(n). The characteristic function

ρn(t) = E
(

exp
(
it

(
k(n)

m(n)

)1/2(
ηn − m(n)

k(n)

)))

is equal to

ρn(t) = exp

(
m(n)

k(n)

[
exp

(
it

(
k(n)

m(n)

)1/2)
− 1

]
−

(
m(n)

k(n)

)1/2

it

)

and ρn(t) → 1 holds for all t . Thus (8.49) holds with � substituted by F0 = 1[0,∞)

and (8.50) converges to the inverse F−1
0 = 0. Obviously, the sequence (ϕn)n is

(S,‖ · ‖1)-convergent but not with respect to ‖ · ‖2. Consult Lemma 3. �

PROOF OF THEOREM 7. Under tightness of (L(Tn | P k(n)))n the uncon-
ditional critical values cn of ϕn (1.2) remain bounded above. By the tightness
of (6.3) we may turn to subsequences and a.e. convergent versions of L(Tn |
Xn,1, . . . ,Xn,k(n)) as well as for P k(n) and Qn. Along subsequences then{

ω : lim sup
n→∞

c∗
n

(
α,Xn,1(ω), . . . ,Xn,k(n)(ω)

) = ∞
}

(8.52)

is of probability 0 as well for P k(n) as for Qn. Since now Tn → ∞ follows we
have 1(c∗

n,∞)(Tn) → 1 in Qn-probability first along subsequences. �

APPENDIX

The following technical tool is frequently used. The proof is obvious and left to
the reader.

LEMMA 8. Let Rn(S,T ) be a sequence of real statistics given by independent
random variables T and S. Then:
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(a) Weak convergence of the conditional distributions

d
(
L

(
Rn(S,T ) | T = ·),L(

R0(S,T ) | T = ·)) → 0

in L(T ) probability implies unconditional weak convergence L(Rn) → L(R0) as
n → ∞.

(b) Suppose that E(Rn | T ) = 0 and Var(Rn | T ) := E(R2
n | T ) → 0 hold in

probability. Then Rn → 0 follows in probability. If in addition Var(Rn | T ) is
uniformly bounded then Var(Rn) → 0 holds.
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