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In components of variance models the data are viewed as arising through
a sum of two random variables, representing between- and within-group
variation, respectively. The former is generally interpreted as a group effect,
and the latter as error. It is assumed that these variables are stochastically
independent and that the distributions of the group effect and the error do
not vary from one instance to another. If each group effect can be replicated
a large number of times, then standard methods can be used to estimate the
distributions of both the group effect and the error. This cannot be achieved
without replication, however. How feasible is distribution estimation if it is
not possible to replicate prolifically? Can the distributions of random effects
and errors be estimated consistently from a small number of replications of
each of a large number of noisy group effects, for example, in a nonparametric
setting? Often extensive replication is practically infeasible, in particular,
if inherently small numbers of individuals exhibit any given group effect.
Yet it is quite unclear how to conduct inference in this case. We show
that inference is possible, even if the number of replications is as small
as 2. Two methods are proposed, both based on Fourier inversion. One,
which is substantially more computer intensive than the other, exhibits better
performance in numerical experiments.

1. Introduction. Problems involving components of variance arise in many
areas of sampling and design, including the design and analysis of interlaboratory
standardization trials and analysis of reliability of measurements such as blood
pressure. The components of variance approach dates from Airy’s (1861) work on
measurement errors in astronomy and has been used in the contexts of randomized
design, population genetics, variability of industrial processes, educational testing
and many other fields; see, for example, Tippett (1931), Daniels (1939) and
Cornfield and Tukey (1965). Eisenhart (1947) introduced the terms “fixed effects,”
“random effects” and “random effects of analysis of variance.” It is with the
latter problem, and the extent to which the distribution of random effects can be
estimated or approximated with minimal replication, that we are concerned.

The essence of a simple components of variance model is that variability may
be expressed as a sum of two independent random quantities, representing a group
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effect (corresponding roughly to a treatment effect in more conventional settings)
and an error, respectively. More generally, in a multilevel setting there can be
a group effect for each stratum of variation. By separating out a deterministic
location parameter we may assume that the random components have zero mean.
Then, under normality assumptions, and in the simplest balanced situations, the
distribution of each component is describable solely in terms of its variance.
Much recent research under the heading of hierarchical models emphasizes
unbalanced data and specific nonnormal distributions, however. In this paper a
relatively simple situation is revisited from the very different viewpoint of a wholly
nonparametric formulation.

It is not difficult to show that in this general setting the distributions of the
group effects and the errors are consistently estimable, provided the number of
groups, and the number of replications within each group, diverges without bound.
However, the situation in the case of small, fixed numbers of replications is quite
unclear.

Solving that problem motivates the present paper. More particularly, the
approach we adopt is motivated by three goals: (1) to give general conditions
under which, when the number of replications is fixed and as small as 2, the
problem of consistently estimating the distributions of group effects and errors can
be solved in a nonparametric context (and so is identifiable there); (2) to exhibit
two particular estimator types that achieve consistent estimation, one of them not
requiring separate choice of smoothing parameter; and (3) to provide a basis on
which other techniques can be developed, for example, more descriptive methods
based on moments.

We shall show that under very mild side conditions the distributions of group
effects and errors are identifiable, provided only that each group contains at
least two replications and the number of groups is allowed to diverge. The
main regularity condition is that the characteristic function of neither distribution
vanishes in an interval.

Once identifiability has been established, the way is open for a range
of relatively ad hoc methods to be implemented. In particular, t th moments of
the distributions of the group effects and errors may be estimated root-n con-
sistently using relatively simple techniques, such as those based on homoge-
neous polynomials of degree t in the data. We shall outline our methodology in
Section 2.1. The cases t = 1, 2 and 3 are straightforward, and t = 4 is quite
practicable, although t ≥ 5 presents significantly greater difficulty. Fitting, say,
a distribution from the Pearson system [see, e.g., Johnson, Kotz and Balakrish-
nan (1994), pages 15–25] to the first three or four estimated moments will often
provide very useful approximations to the distributions of group effects and er-
rors. Moreover, moment-based estimators can be used as starting values for iter-
ative solution of the likelihood equations, provided a finite-dimensional model is
appropriate.
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Thus the results in this paper pave the way for a variety of approaches for
estimating distributions of group effects and errors. While methods based on low-
order moments are arguably the most attractive, from a practical viewpoint, if one’s
only goal is to acquire an impression of the shape of the sampled distribution,
they do not lend themselves to consistent distribution estimation. In addition to the
difficulty of estimating moments of order 5 or more, and transiting from moment
approximations to distribution approximations, the problem of determining the
“smoothing parameter,” or, equivalently, how many moments should be fitted, is
very difficult to solve. One of our alternative approaches is particularly attractive
in this regard, since it involves an empirically chosen smoothing parameter and
leads to consistent distribution estimation.

Despite, or perhaps because of, their significant practical interest, components
of variance models are not without an element of controversy, not least because
it can be argued that general linear models may be developed to accommodate
a particularly wide range of sources of variability. See, for example, the
proposals of Nelder (1977) and Yates’ (1966) interpretation of Eisenhart’s (1947)
suggestions. But note, too, the discussion of Nelder (1977), and the views
of Kempthorne (1975). Variance components analysis has been discussed and
surveyed by Plackett (1960), Khuri and Sahai (1985) and Sahai, Khuri and
Kapadia (1985). A broad coverage of techniques for inference in variance
components models has been provided by Searle, Casella and McCulloch (1992).

A problem that is related, more in the context of mathematical methods than
direct statistical motivation, is that of estimating a linear relationship between
variables that are observed with error. Early contributions in this setting include
those of Reiersøl (1950), Neyman (1951) and Wolfowitz (1952); see the survey
paper by Moran (1971). The problem can be treated either parametrically [e.g.,
Bickel and Ritov (1987)] or nonparametrically [e.g., Spiegelman (1979)]. Methods
used for random coefficient regression are also related; see, for example, Beran,
Feuerverger and Hall (1996).

2. Methodology.

2.1. Structural models for components of variance. A naive model is

Xj = µ + ξj + εj , 1 ≤ j ≤ n,(2.1)

where µ is a constant, µ + ξj denotes the j th group effect, εj represents the
observation error associated with the j th group and the random variables ξj and εj

are mutually independent with zero mean. The common distributions F and G of
the ξj ’s and εj ’s, respectively, are clearly not identifiable from an infinite sequence
of data from the model (2.1). Even if Gaussian models are assumed for F and G

the parameters are not identifiable. We shall be primarily concerned with the
nonparametric setting, where identification is still more complex.
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Suppose, however, that each group is replicated r times:

Xjs = µ + ξj + εjs, 1 ≤ j ≤ n, 1 ≤ s ≤ r,(2.2)

where Xjs denotes the sth replicate of the j th group, observed with additive
error εjs , and the variables ξj and εjs are mutually independent with zero mean.
Each ξj is assumed to have distribution F , and each εjs to have distribution G.
If we allow n and r to diverge together, then we can obviously identify
F and G. One approach is via conventional empirical methods, for example, giving
convergence rates equal to min(n, r)−1/2. This is true in a nonparametric sense;
we do not require more than basic assumptions, such as moment conditions, on
the distributions of ξ and ε, and the assumption E(ξ) = E(ε) = 0, which serves to
identify the centers of F and G as well as the value of µ.

In contrast, it is unclear whether identification of F and G is even possible if r is
small relative to n, in particular, if r is held fixed as n → ∞. We shall introduce
and describe the properties of two characteristic function-based, nonparametric
methods for inference. Both methods are valid for r as small as 2. One is explicit,
and is based on estimating the characteristic functions of F and G and explicitly
inverting them. It has features in common with deconvolution. The other is
approach implicit, and is founded on fitting histogram-type density and distribution
estimators using a goodness of fit measure expressed in terms of characteristic
functions. The former method is less computer intensive; the latter requires an
algorithm such as simulated annealing, but has somewhat better performance.
Using our techniques, and provided the number of groups is large, it is unnecessary
to have conducted a large number of replications in order to estimate F and G.

Some insight into the types of regularity conditions needed can be gained
by simply calculating the characteristic function of X in formulas such as (2.1)
and (2.2). Assuming, without loss of generality, that µ = 0, we find that the
characteristic function of X equals the product of the characteristic functions of
ξ and ε, and so the characteristic function of ξ (respectively, ε) is not always
identifiable if the characteristic function of ε (respectively, ξ ) vanishes on an
interval. Therefore we should assume the latter does not occur. This argument
remains valid if we have only a bounded number of replications, because we can
never get close to the particular value of ξ .

Simple estimators of moments of the distributions of ξ and ε can be based on
polynomials in the data, for example,∑

s1,...,st

as1···st Yjs1 · · ·Yjst ,

where the coefficients as1···st are constants, Yjs = Xjs − X̄.., X̄.. denotes the grand
mean of the data Xjs generated by the model (2.2), the sum is over all distinct
unordered t-tuples s1, . . . , st , and each sj lies between 1 and r . The coefficients
as1···st can be chosen such that the estimator is order invariant, is root-n consistent
for either E(ξ t) or E(εt) and has bias equal to O(n−1). However, it is difficult to
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choose as1···st to have good variance properties unless t ≤ 4. Problems such as this
preclude a theory of consistent distribution estimation based on moment fitting.
Further details are given in Cox and Hall (2002).

2.2. Estimating characteristic functions. In this section we suggest estimators
of the characteristic functions φ and ψ of ξj and εjs , respectively, and of simple
functionals of those characteristic functions. Put

χ̂ (t | a, b) = 1

nr(r − 1)

n∑
j=1

∑∑
1≤s1,s2≤r : s1 �=s2

exp
{
it

(
aYjs1 + bYjs2

)}
,(2.3)

where i = √−1 and a and b are real numbers. Then χ̂ (t | a, b) estimates the
characteristic function, χ(t | a, b) say, of (a + b)ξ + aε1 + bε2:

χ(t | a, b) = φ
{
(a + b)t

}
ψ(at)ψ(bt),(2.4)

where ξ , ε1 and ε2 are mutually independent random variables, ξ being distributed
as ξj and εj distributed as εjs in the model at (2.2).

Observe that, in view of (2.4),

ψ(t) = exp

[ ∞∑
j=0

2j {
logχ(t/2j | 1,0) − logχ

(
t/2j

∣∣ 1
2 , 1

2

)}]
,(2.5)

assuming neither φ nor ψ vanishes. The infinite series on the right-hand side
of (2.5) converges provided

E|ξ | + E|ε| < ∞ and E(ξ) = E(ε) = 0.(2.6)

The latter condition serves to identify the centers of the distributions of ξ and ε as
well as the value of µ. Note particularly that (2.5) motivates the estimators

ψ̂(t) = exp

[ ∞∑
j=0

2j
{
log χ̂ (t/2j | 1,0) − log χ̂

(
t/2j

∣∣ 1
2 , 1

2

)}]
(2.7)

and φ̂(t) = χ̂(t | 1,0)/ψ̂(t) of ψ(t) and φ(t), respectively. To remove ambiguity
about the branch of the logarithm in (2.6) and (2.7), we stipulate that each should
be interpreted as the corresponding infinite product.

Our next result shows that these estimators are well defined, in particular, that
the infinite series converges.

PROPOSITION 2.1. Assume r ≥ 2 and the distributions F and G are
continuous. Then for each t ∈ (−∞,∞) the estimators φ̂ and ψ̂ are well defined
and finite with probability 1.
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Neither φ̂ nor ψ̂ is the characteristic function of a proper probability distrib-
ution, and, in fact, both will generally fail, for some value of their argument, to
satisfy the constraint that they do not exceed 1 in absolute value. To overcome
the latter difficulty, we may replace φ̂ and ψ̂ by their truncated forms φ̂tr and ψ̂tr,
respectively, where

κ̂tr = min(1, |κ̂|) exp(i arg κ̂)(2.8)

and κ̂ denotes either φ̂ or ψ̂ .
Both φ̂ and ψ̂ have analogues in cases where the number of replicates, r = r(j),

depends on j but nevertheless satisfies r(j) ≥ 2 for each j , or where the number
of values of j ≤ n for which r(j) ≥ 2 diverges to ∞ as n → ∞. For notational
convenience we shall not treat such cases explicitly. Our methods do not allow
ready inclusion of information from instances where r(j) = 1.

There are, however, alternative approaches to inference. It does not seem possi-
ble to address the issue of conventional statistical efficiency here, on account of the
difficulty of obtaining a limit theory that provides more information than simply
rates of convergence. Nevertheless, it is clearly possible to enhance the perfor-
mance of our estimators, for example, by altering their moduli using a subsidiary
method, but retaining our estimators of the args, or phases, of the characteristic
functions. The moduli of φ and ψ can be estimated relatively precisely as the
square roots of the absolute values of the empirical characteristic functions com-
puted from pairwise differences.

2.3. Explicit characteristic function inversion. We may invert φ̂ and ψ̂ in
elementary fashion, obtaining estimators f̂ and ĝ of the densities f and g of the
respective distributions F and G:

f̂ (x) = (2π)−1
R

∫
|t|≤tn

e−itx φ̂tr(t) dt,

(2.9)

ĝ(x) = (2π)−1
R

∫
|t|≤tn

e−itxψ̂tr(t) dt,

where the operator R denotes the real part, tn > 0 is a smoothing parameter
that regularizes the estimators, and φ̂tr and ψ̂tr are defined in terms of φ̂ and ψ̂

by (2.8).
In practice, the rather sharp truncation of the integrals at points ±tn, suggested

by (2.9), tends to introduce spurious oscillations of Gibbs phenomenon type.
A tapering operation can produce more satisfactory results; see Section 3 for
a discussion. Provided the characteristic functions φ and ψ do not vanish on
intervals, consistent estimators of f and g are obtained by allowing tn to diverge
to ∞ sufficiently slowly as n increases; see Section 4.
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Distributions are, of course, estimable by integrating the appropriate density
estimator. For future reference we give the formula here: if −∞ < x1 < x2 < ∞,
then

F̂ (x1, x2) = (2π)−1
R

∫
|t|≤tn

e−itx2 − e−itx1

−it
φ̂tr(t) dt(2.10)

estimates the probability F(x1, x2) that ξ ∈ (x1, x2), and the estimator Ĝ of G is
defined analogously. However, it is to be expected that accurate estimation of F ,
for example, would require a larger value of tn than would be appropriate for
estimating g, and we shall show in Section 4 that this is, in fact, the case.

Neither f̂ (x) nor ĝ(x) will be positive for all x, and neither F̂ (x1, x2) nor
Ĝ(x1, x2) will be monotone in either x1 or x2. These deficiencies may be overcome
by taking the positive parts of f̂ and ĝ and by monotonizing F̂ (x1, x2) and
Ĝ(x1, x2) in the standard way (e.g., as functions of x2 for small, fixed x1). An
alternative approach is to compute estimators that are constrained to be densities,
or constrained to be distributions, by fitting them to the characteristic function
estimator χ̂(t | a, b) defined in Section 2.2. This is the method suggested in the
next section.

2.4. Histogram-based estimators. Recall the definition of χ̂ (t | a, b) at (2.3)
and note that χ̂ (t | u,1−u) = χ̂1(t, u)+ iχ̂2(t, u), where χ̂1 and χ̂2 are real-valued
functions,

χ̂j (t | u) = 1

nr(r − 1)

n∑
j=1

∑∑
1≤s1,s2≤r : s1 �=s2

trigj

[
t
{
uYjs1 + (1 − u)Yjs2

}]
,

trig1 denotes the cosine function, and trig2 is the sine.
Observe too that, by (2.4),

χ(t | a, b) =
{∫

ei(a+b)txf (x) dx

}{∫
eiatxg(x) dx

}{∫
eibtxg(x) dx

}
.(2.11)

Suppose for the present that f and g are histograms, with heights fk and gk ,
respectively, on intervals (xk, xk+1) for −∞ < k < ∞. These intervals are the
histogram bins; for simplicity, we take them to have equal widths. We shall assume
the xk’s are given; for example, they might be integer multiples of the common bin
width. In the histogram case,∫

eitxf (x) dx = i

t

∑
−∞<k<∞

eitxk (fk − fk−1).

From this formula, and its analogue for g, we may deduce an expression for
the right-hand side of (2.11): when a = u and b = 1 − u the right-hand side
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has the form K1(t, u | f,g) + iK2(t, u | f,g), where K1 and K2 are real-valued
functions, f and g denote the sequences of values fk and gk , respectively, and

Kj(t, u | f,g) = (−1)j+1

t3u(1 − u)

∑
k1

∑
k2

∑
k3

trigj

[
1

2
π − {

txk1 + tuxk2 + t (1 − u)xk3

}]
× (

fk1 − fk1−1
)(

gk2 − gk2−1
)(

gk3 − gk3−1
)
.

We suggest computing empirical versions f̃ and g̃ of f and g by minimizing
the distance of χ̂ (t | u,1 − u) from χ(t | u,1 − u) when the latter is defined in the
histogram case. Thus, our density estimators will be histograms, and the smoothing
parameter will be the common bin width, h = xk+1 − xk. More particularly, letting
w denote a nonnegative weight function, we suggest estimating f and g as the
minimizers of

J (f,g, h) =
∫
−∞<t<∞

w(t) dt

(2.12)

×
∫ 1

0

{|χ̂1(t, u) − K1(t, u|f,g)|2 + |χ̂2(t, u) − K2(t, u|f,g)|2}
du,

subject to

(a) fk ≥ 0 and gk ≥ 0 for each k,

(b) h
∑
k

fk = h
∑
k

gk = 1,

(2.13)
(c)

∑
k

fk(xk + xk+1) = ∑
k

gk(xk + xk+1) = 0,

(d) h
∑
k

(fk + gk)(x
2
k + xkxk+1 + x2

k+1) ≤ 3C(nr)−1
∑
j

∑
s

Y 2
js,

where C > 1 is arbitrary. Conditions (a) and (b) require that the histogram densities
be nonnegative and integrate to 1, respectively, (c) requires that the distributions
corresponding to the densities have zero mean, and (d) requires that the sum of the
variances be no more than C times the variance of the dataset {Xjs} generated
by the model at (2.2). The latter constraint serves to prevent the algorithm
from producing distribution estimates that are too highly variable relative to the
empirical variance. In Section 4 we suggest a simple-to-code simulated annealing
approach to solving the problem.

We could generalize (2.12) by multiplying the quantities |χ̂j − Kj |2 by
respective weights wj(u), and taking the integral with respect to u over a wider
domain than simply the interval [0,1]. This has the potential to alter efficiency,
although it will not change convergence rates of estimators. Additionally, one
could incorporate within-group information from other sources and among-group
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information. Sieving via histograms is also appropriate; it leads to spline-based
estimators.

Our final estimators of f and g are thus

f̃ (x) = ∑
−∞<k<∞

f̃k I {x ∈ (xk, xk+1)},

g̃(x) = ∑
−∞<k<∞

g̃k I {x ∈ (xk, xk+1)},

where f̃k and g̃k are the kth elements of f̃ and g̃, respectively, and I denotes the
indicator function. The corresponding distribution estimators, F̃ and G̃ say, are
the integrals of f̃ and g̃, respectively. A more sophisticated approach would use
more general histosplines on the bins, rather than simply histograms (histosplines
of order 0).

We would generally restrict the range of bins for which fk and gk were nonzero,
for example, by taking them to lie within the range of the data Yjs . In the case of
distribution estimation there seems no good theoretical reason for restricting the
bin width h. In this setting we may interpret J at (2.12) as a function of h as
well as of f and g and take the minimum over h as well as over the histogram
heights fk and gk . In computational practice a lower bound on the value of h

is generally determined by feasible computational time and occurs well before
numerical instabilities arise.

Thus, for distribution estimation using the present method, there is a natural way
of selecting the smoothing parameter. Empirical choice of h for density estimation,
or (in the case of the method proposed in Section 2.3) choice of tn for either
density or distribution estimation, is more of a problem, however. Neither cross-
validation nor substitution methods seem to have attractive counterparts in the
present setting.

A third approach to distribution estimation would be to approximate the
characteristic functions of F and G by appropriate exponential functions of
empirical moments or cumulants, where the number of moments used grew slowly
with sample size. Approaches of this type were touched on in Section 2.1.

3. Numerical properties.

3.1. Introduction and summary. We report results of a simulation study in two
cases, first where F and G are both standard normal distributions, and second
where both are exponential. These examples were chosen because they are both
potentially difficult for different reasons. In the normal case, the fact that the
density is analytic means that its characteristic function has pathologically light
tails. That makes it difficult to recover high frequencies by Fourier inversion.
As a result, convergence rates in a range of deconvolution problems involving
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normal errors are particularly slow; see, for example, Carroll and Hall (1988) and
Fan (1991).

The second problem is potentially difficult because the density of the exponen-
tial distribution has a marked discontinuity at its finite boundary. This makes den-
sity estimation awkward and likewise complicates distribution estimation when (as
in the case of our first approach) the distribution estimators are intrinsically very
smooth functions.

We also experimented with other distribution combinations, for example, the
case of normal F and exponential G, and the opposite combination. Little that was
new was learned from such cases, however, so results there will not be detailed
here. Out of interest, in the exponential example we present results for the case
where F is skewed to the right and G is skewed to the left. Results for exponential
F and G skewed in the same direction were similar.

Our second technique, suggested in Section 2.4 and based on implicit histogram
approximation, performed strongly. In general, it produced distribution estimators
with low variability. In this respect it was preferable to the first method, introduced
in Section 2.3 and based on explicit characteristic function inversion. However,
implementation of the second method demanded substantially more computing
time, and because of its histogram nature it tended to produce rougher, less
pleasing density estimates. Since distribution estimation was our main goal, we did
not regard the latter difficulty as a major drawback, but the heavy computational
labor required by the second method was a problem.

For neither of our methods do we have a satisfactory empirical rule for
smoothing parameter choice when the goal is density estimation. Throughout our
numerical work we used adaptive methods to choose the amount of smoothing,
but in the case of density estimation they appear to undersmooth; they are
more appropriate to distribution than to density estimation. However, the density
estimation problem is of less direct statistical importance than distribution
estimation, and moreover (as we shall show) our empirical smoothing parameter
rules for distribution estimation perform well.

3.2. Explicit characteristic function inversion. For this method, performance
of the estimator depends on choice of the smoothing parameter tn. One approach
to selecting tn would be to use cross-validation to choose values that would be
optimal for estimating the distribution or density of ξj + εjs . For this purpose
one could adapt methods employed by Sarda (1993) and Bowman, Hall and
Prvan (1998) in the case of distribution estimation, and Rudemo (1982) and
Bowman (1984) for density estimation. However, we found this method too
computer intensive in the present setting. Additionally, its intuitive appeal was
significantly diminished by the fact that it targeted only the convolution of the
distributions of ξ and ε. Instead we used the following more numerically efficient
rule which, it can be proved, guarantees consistent distribution estimation.
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When implementing the characteristic function inversion method to estimate
distributions, we employed smoothing parameters t

(1)
n and t

(2)
n when estimating

F(x) and G(x), respectively, using tapered versions of the estimators suggested
at (2.10) for x = x2 and x1 large and negative. We chose t

(1)
n and t

(2)
n to minimize∫ ∞

−∞
∣∣χ̂ (t | 1,0) − φ̂(t | t(1)

n )ψ̂(t | t(2)
n )

∣∣e−Ct2
dt,

where χ̂(t | 1,0) was as defined at (2.3), φ̂(· | tn) and ψ̂(· | tn) were the
characteristic functions corresponding to the distribution estimators, and C > 0.
We chose C = 1

2 , making the weights proportional to the standard normal
density. When estimating densities we employed the same procedure, except that
t
(1)
n and t

(2)
n were now used to construct tapered versions f̂ (· | tn) and ĝ(· | tn) of

the estimators at (2.9). These in turn led to φ̂(· | tn) and ψ̂(· | tn). We constructed
f̂ (· | tn) as

f̂ (x | tn) = (2π)−1
R

∫ ∞
−∞

e−itx φ̂tr(t)K(t | tn) dt,

where Kn(t | tn) = 1 for |t| ≤ tn andK(t | tn) = exp{−C(|t|− tn)
2} for |t| > tn and

C > 0. (Again we chose C = 1
2 .) The tapering used to construct F̂ and Ĝ was done

analogously.
One might expect, from experience with random coefficient regression, tomo-

graphic inversion or other regularization methods in statistics, that this problem
requires rather large samples if good quantitative performance (as distinct from
qualitatively accurate results achievable through fitting low-order moments) is to
be achieved. This does indeed appear to be the case. In the (normal, normal) and
(exponential, exponential) cases we drew 100 samples with n = 1000 and r = 2.
Figure 1 summarizes simulation results when t

(1)
n and t

(2)
n were chosen between

1 and 10. Panels (a)–(d) show results for the (normal, normal) case. Each of pan-
els (a) and (c) gives pointwise median curves and pointwise 90% quantile curves
computed from the 100 distribution estimates, while panels (b) and (d) show analo-
gous information obtained from the 100 density estimates. Similarly, panels (e)–(h)
show results for the (exponential, exponential) case.

The characteristic function inversion method performs well in the (normal,
normal) case, but it has more difficulty in the (exponential, exponential) problem.
Nevertheless, in the latter setting it captures the shape of the true distribution, even
though it shows significant variability. For density estimation in the (exponential,
exponential) case, the best that can be said of the method is that it captures
skewness reasonably well. However, bearing in mind that the density estimator
is constrained to be a smooth curve, and the target density is characterized by a
marked discontinuity, density estimation in the (exponential, exponential) case is
arguably too difficult a problem for this technique.
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FIG. 1. Explicit characteristic function inversion. True distribution and density functions are shown
by thin unbroken lines, pointwise medians of curve estimates are depicted by thick unbroken lines,
and pointwise 90% upper and lower quantiles are indicated by dotted lines. The top four panels
give results in the (normal, normal) case, and the lower four panels show results in the (exponential,
exponential) setting. Results for distribution and density function estimates are given in the first and
second columns, respectively.

3.3. Histogram-based estimators. This method was proposed in Section 2.4,
along with a technique for choosing the smoothing parameter. We used a simulated
annealing approach, as follows. Starting with initial estimators f̃0 and g̃0, we
added an independent random Uniform(0, δ) perturbation to each of the bin
heights of both f̃0 and g̃0, where δ > 0 was a small constant. The new estimators
f̃1 and g̃1 were obtained by standardizing the perturbed histograms, as follows.
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We set the new bin height to 0 if its perturbed value was negative, we normalized
the histograms so they were proper densities, and we shifted the supports of the
histograms so their means were 0. We took (f̃0, g̃0) = (f̃1, g̃1) only if J (f̃1, g̃1) ≤
J (f̃0, g̃0) + τ , where τ > 0 was a small constant. [Recall that J was defined
at (2.12).]

We iterated this procedure until the minimum value of J , over successive
versions of (f̃0, g̃0), was not reduced after a large predetermined number, N say,
of attempts. We then repeated the above procedure m times, using reduced values
of δ and τ . The final estimator (f̃ , g̃) was the overall minimizer of J in the search
process. In theory the algorithm can converge to a local extremum, but the chance
of this occurring is minimized by starting the algorithm in different places and
checking that the same limit is achieved.

Throughout we took the number of bins to be 10. In the initial step of the
algorithm we took all bin heights to be equal. We set N = 3000 and δ = 0.5
and took τ equal to 20% of the value J for the initial estimators. The procedure
described in the previous paragraph was repeated m = 4 times, each time reducing
δ and τ by 70% and increasing N by 1000. The distribution estimators were simply
integrals of the density estimators; unlike the case in Section 3.3, no attempt was
made to smooth differently in the two problems.

We drew 40 samples with n = 1000 and r = 2. Each replication took about
4.8 hours using a PC equipped with a Pentium III 1 GHz processor. Results are
displayed in Figure 2. Analogously to Figure 1 they show pointwise medians
and 90% confidence bounds. The relatively low variation of histogram-based
distribution estimators, compared with estimators produced by the first method,
is clear on comparing the first columns of Figures 1 and 2. In the (exponential,
exponential) case the histogram-based approach also produces more accurate
density estimators.

3.4. A real-data example. Finally, we apply the histogram-based method to a
dataset reported by Heckman (1960). An experiment was conducted to compare
two approaches (i.e., r = 2) to measuring the calcium content of animal feeds.
Data on the percentage calcium content, using either technique, were recorded
for n = 118 feed samples. Assuming the model (2.2), we estimated the density
functions f and g. The range of the data was 7.09, and the difference of the
measurements from the two methods was always less than 0.5, so we assumed that
ξj and εjs were distributed on intervals with lengths 7.09 and 0.5, respectively.
Simulated annealing was used in the same manner as in Section 3.3, but now
with N = 100,000 and the increment 10,000 in each of m = 4 replications. The
histogram estimators, in the cases of 4 and 6 bins, are plotted in Figure 3. They
suggest that the distribution of ξj might have at least two modes, with the largest
mode around −2 and another around 4, and that the distribution of εjs may be
unimodal with its mode near 0.1.
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FIG. 2. Histogram-based estimators. Legend and arrangement of panels is as for Figure 1.

FIG. 3. Histogram estimators computed for the calcium data example in Section 3.5.
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4. Theoretical properties.

4.1. Explicit characteristic function inversion. Here we treat the method
suggested in Section 2.3. Our first result shows that under mild regularity
conditions the estimators φ̂ and ψ̂ , and hence φ̂tr and ψ̂tr, are root-n consistent
for φ and ψ .

THEOREM 4.1. Assume that the distributions F and G are continuous and
have finite moments of order 2 + η for some η > 0 and that r ≥ 2 is fixed. If, for a
particular t , φ(t) does not vanish and ψ(t/2j ) does not vanish for any j ≥ 0, then
φ̂(t) and ψ̂(t) are root-n consistent for φ(t) and ψ(t), respectively, as n → ∞.
Furthermore, if for some t0 ∈ (0,∞) neither φ nor ψ vanishes in the interval
[−t0, t0], then φ̂(t) and ψ̂(t) are uniformly root-n consistent there:

sup
|t|≤t0

{|φ̂(t) − φ(t)| + |ψ̂(t) − ψ(t)|} = Op(n−1/2).(4.1)

Next we show that the density estimators f̂ and ĝ, defined at (2.9), are
consistent if the smoothing parameter tn increases sufficiently slowly. Our proof
of Theorem 4.2 will show that under the conditions there, φ̂ and ψ̂ converge
strongly (i.e., with probability 1) to their respective limits φ and ψ at all but at
most countably many points.

THEOREM 4.2. Assume that the distributions F and G have densities
f and g, respectively, that their respective characteristic functions φ and ψ are
absolutely integrable and vanish at no more than a countable number of points,
and that both distributions have moments of order 1+η for some η > 0. Then there
exists a sequence of positive constants τn, increasing to ∞, such that, provided
tn → ∞ and tn ≤ τn, f̂ (x) and ĝ(x) converge to f (x) and g(x), respectively,
uniformly in x with probability 1.

The assumption, in Theorem 4.2, that |φ| and |ψ| are integrable is a mild
smoothness condition. It holds if fractional derivatives of f ′ and g′, of arbitrarily
small but positive order, exist and are integrable.

Convergence rates of density and distribution estimators depend on the tail
behavior of the characteristic functions φ and ψ . For simplicity, and to illustrate
theoretical arguments that can be used more generally, we shall assume that
φ and ψ both decrease polynomially fast and that neither function vanishes: for
constants α,β > 1,

both |φ(t)|(1 + |t|)α and |ψ(t)|(1 + |t|)β are
(4.2)

bounded away from 0 and ∞, uniformly in t.

Examples satisfying (4.2) include gamma distributions. Condition (4.2) is one of
smoothness, which increases with the values of α and β . For example, in the
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gamma case α and β are identical to the distributions’ respective exponents and are
increasing functions of the maximum number of derivatives that the densities have
on the real line. (A gamma density is infinitely differentiable everywhere except at
the origin, and so its smoothness at the origin determines overall differentiability.)

Our methods can also be used to derive convergence rates in many other
settings, for example, when (4.2) holds in the characteristic function tails but
either φ or ψ vanishes at a finite number of points, or when the tails of φ and ψ

decrease exponentially fast. In addition to (4.2) we shall assume of the smoothing
parameter tn that, for some η > 0,

tn → ∞ and tγ+1
n = O(n(1/2)−η),(4.3)

where γ = α + 2β . Define F̂ as at (2.10) and define Ĝ analogously.

THEOREM 4.3. Assume the distributions F and G have finite moments of
order 2 + η for some η > 0 and that (4.2) and (4.3) hold. Then, for each x0 > 0,

sup
−∞<x<∞

|f̂ (x) − f (x)| = Op

(
t1−α
n + tγ−α+(1/2)

n n−1/2),(4.4)

sup
−∞<x<∞

|ĝ(x) − g(x)| = Op

(
t1−β
n + tγ−β+(1/2)

n n−1/2),(4.5)

sup
x0≤x1≤x2≤x0

∣∣F̂ (x1, x2) − F(x1, x2)
∣∣ = Op

(
t−α
n + tγ−α−(1/2)

n n−1/2),(4.6)

sup
x0≤x1≤x2≤x0

∣∣Ĝ(x1, x2) − G(x1, x2)
∣∣ = Op

(
t−β
n + tγ−β−(1/2)

n n−1/2).(4.7)

The first term on the right-hand side of each of (4.4)–(4.7) represents the order
of bias, and the second is the order of stochastic error about the mean. The fact
that both terms are a little smaller in the case of distribution estimation, that
is, in (4.6) and (4.7), reflects the intrinsic relative simplicity of that problem; in
particular, a distribution function is smoother than its density. Upper bounds to
convergence rates may be derived by equating the two respective terms to obtain
an order of magnitude for tn. For example, taking tn to equal a constant multiple
of n−1/(2γ−1), we may show from (4.4) that

sup
−∞<x<∞

|f̂ (x) − f (x)| = Op

(
n−(α−1)/(2γ−1)

)
.

4.2. Histogram-based estimators. Here we treat the implicit method sug-
gested in Section 2.4. It produces estimators F̃ and G̃ of F and G, respectively; let
the corresponding characteristic functions be φ̃ and ψ̃ . We choose the histograms
f̃ and g̃ (the respective densities of F̃ and G̃) and the bin width h simultaneously,
by minimizing J (f,g, h) defined at (2.12). Of course, in theory the minimum of J

will occur at the limit as h ↓ 0, and an argument based on limits of subsequences
of characteristic functions shows that proper distributions F̃ and G̃ arise at this



430 P. HALL AND Q. YAO

practically infeasible limit. These distributions may be approximated arbitrarily
closely by regimes where h > 0.

THEOREM 4.4. Assume the distributions F and G have uniformly continuous
densities, finite variances and characteristic functions that vanish at no more
than a countable number of points. Suppose, too, that the weight function w is
strictly positive on the whole real line and is bounded and continuous and satisfies∫
(1 + t2)w(t) dt < ∞. Then (a) both sup |F̃ − F | and sup |G̃ − G| converge to 0

with probability 1 and (b)∫ ∞
−∞

w(t) dt

∫ 1

0

∣∣φ(t)ψ(tu)ψ{t (1 −u)}− φ̃(t)ψ̃(tu)ψ̃{t (1 −u)}∣∣2 du = Op(n−1).

5. Technical details.

5.1. Proof of Proposition 2.1. Since F and G are continuous, then for each t

the probability that either χ̂ (t | 1,0) or χ̂ (t | 1
2 , 1

2 ) vanishes equals 0. Hence the
probability that either χ̂ (t/2j | 1,0) or χ̂ (t/2j | 1

2 , 1
2 ) vanishes for some j ≥ 0

equals 0. Therefore the proposition will follow if we prove that the series on the
right-hand side of (2.7) converges. By definition of Yjs ,

∑
j

∑
s Yjs = 0, and so,

for each real a and b, χ̂ (t | a, b) = 1 − 1
2 t2σ̂ (a, b)2 + O(|t|3), with probability 1,

as t → 0, where

σ̂ (a, b)2 = 1

nr(r − 1)

n∑
j=1

∑∑
1≤s1,s2≤r : s1 �=s2

(
aYjs1 + bYjs2

)2
< ∞.

Hence, as j → ∞,

2j
{
log χ̂(t/2j | 1,0) − log χ̂

(
t/2j

∣∣ 1
2 , 1

2

)}
= 2−j−1t2{

σ̂
(1

2 , 1
2

)2 − σ̂ (1,0)2} + O(2−2j ),

with probability 1 as t → 0. It follows that the infinite series at (2.7) converges
with probability 1.

5.2. Proof of Theorem 4.1. We shall derive only (4.1). For fixed real numbers
a and b, let A denote the distribution of aYj1 + bYj2 and let Â1 be the empirical
distribution corresponding to the dataset {aYjs1 + bYjs2 : 1 ≤ j ≤ n, 1 ≤ s1, s2 ≤ r ,
s1 �= s2}. Then, integrating by parts, we may show that, for an absolute constant
C1 > 0,

|χ̂ (t | a, b) − χ(t | a, b)| ≤
∣∣∣∣ ∫ cos(tx) d

{
Â1(x) − A(x)

}∣∣∣∣
+

∣∣∣∣ ∫ sin(tx) d
{
Â1(x) − A(x)

}∣∣∣∣(5.1)

≤ C1|t|
∫

min
{
1, (tx)2}∣∣Â1(x) − A(x)

∣∣dx.
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(Here and below, integrals without specified limits will be assumed to be over the
whole real line.) Therefore we may show that, uniformly in |t| ≤ t0 and for all
ζ > 0,

S(t | a, b) ≡
∞∑

j=0

2j
∣∣{χ̂(t/2j | a, b) − χ(t/2j | a, b)

}/
χ(t/2j | a, b)

∣∣
= Op

[ ∞∑
j=0

∫
min

{
1, (tx/2j )2}∣∣Â1(x) − A(x)

∣∣dx

]
(5.2)

= Op

{∫
(1 + |x|ζ )

∣∣Â1(x) − A(x)
∣∣dx

}
.

Put Ujs = ξj + εjs and Ū = (nr)−1 ∑
j

∑
s Ujs . Let Â2 denote the empirical

distribution function of the dataset {aUjs1 + bUjs2 : 1 ≤ j ≤ n, 1 ≤ s1, s2 ≤ r ,
s1 �= s2}. Then Â1(x) = Â2(x + Ū ), and so∫

(1 + |x|ζ )∣∣Â1(x) − A(x)
∣∣dx

≤
∫

(1 + |x − Ū |ζ )
∣∣Â2(x) − A(x)

∣∣dx

+
∫

(1 + |x|ζ )∣∣A(x + Ū ) − A(x)
∣∣dx.

We may write Â2 as the mean of 1
2r(r − 1) empirical distribution functions,

each of which is computed from n independent and identically distributed random
variables. Arguing in this way, we may prove, using the fact that moments of order
2 + η are finite for some η > 0, that if 0 < ζ < 1

2η, then∫
(1 + |x|ζ )

∣∣Â2(x) − A(x)
∣∣dx = Op(n−1/2).

Moreover, if Ū > 0, then∫ ∞
0

(1 + |x|ζ )∣∣A(x + Ū ) − A(x)
∣∣dx

=
∫ Ū

0
(1 + xζ ){1 − A(x)}dx

+
∫ ∞
Ū

{xζ − (x − Ū )ζ }{1 − A(x)}dx,

which, for sufficiently small ζ > 0, equals Op(n−1/2) since Ū = Op(n−1/2).
Analogous results hold if Ū < 0 or if the integral on the left is taken over
−∞ < x < 0. Therefore, provided ζ > 0 is sufficiently small,∫

(1 + |x|ζ )∣∣A(x + Ū ) − A(x)
∣∣dx = Op(n−1/2).
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Combining the results in the previous paragraph, we deduce that∫
(1 + |x|ζ )∣∣Â1(x) − A(x)

∣∣dx = Op(n−1/2),(5.3)

which along with (5.2) implies that S(t | a, b) = Op(n−1/2) uniformly in |t| ≤ t0.
Therefore

∞∑
j=0

2j
∣∣log

[
1 + {

χ̂ (t/2j | a, b) − χ(t/2j | a, b)
}
χ(t/2j | a, b)−1]∣∣ = Op(n−1/2),

uniformly in |t| ≤ t0. This result, along with the fact that

log{ψ̂(t)/ψ(t)} =
∞∑

j=0

2j log
[{

1 + δ̂(t/2j | 1,0)
}/{

1 + δ̂
(
t/2j

∣∣ 1
2 , 1

2

)}]
,(5.4)

where δ̂(t | a, b) = {χ̂ (t | a, b)−χ(t | a, b)}/χ(t | a, b), implies that, uniformly in
|t| ≤ t0,

ψ̂(t) = ψ(t) + Op(n−1/2).(5.5)

From (5.1), with (a, b) = (1,0), and (5.3), it follows that χ̂ (t | 1,0) = χ(t |
1,0) + Op(n−1/2) uniformly in |t| ≤ t0. The latter result and (5.5) imply that
φ̂(t) = φ(t) + Op(n−1/2) uniformly in |t| ≤ t0, completing the proof of (4.1).

5.3. Proof of Theorem 4.2. Let (P1) denote the property that φ̂(t) → φ(t) with
probability 1 for all but a countable number of points t . Observe that

2π sup
−∞<x<∞

|f̂ (x) − f (x)| ≤
∫
|t|≤tn

∣∣φ̂tr(t) − φ(t)
∣∣dt +

∫
|t|>tn

|φ(t)|dt.

It follows from this result, and from the fact that |φ̂tr(t)−φ(t)| ≤ 2 for each t , that
if (P1) holds, and if we choose the constants τn to diverge so slowly that∫

|t|≤τn

∣∣φ̂tr(t) − φ(t)
∣∣dt → 0,

with probability 1, then sup |f̂ − f | → 0 with probability 1 whenever f̂ is defined
using a sequence tn ≤ τn for which tn → ∞.

An identical argument applies in the case of ĝ; there we should prove that
ψ̂ → ψ with probability 1 at all but countably many points. Let T denote the
set of t such that either φ or ψ vanishes at one or more elements of the set
{t, t/2, t/4, . . .}, and let T c denote the complement of T in the real line. We
shall show that ψ̂(t) and χ̂ (t | 1,0) converge to ψ(t) and χ(t | 1,0), respectively,
with probability 1 for each t ∈ T c; call this property (P2). Since T is countable,
(P2) implies (P1), and so we have proved the theorem.
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To establish (P2), return to step (5.2) of the proof of Theorem 4.1 and note that,
using the arguments there, we may show that, provided t ∈ T c,

S(t | a, b) = O

{∫
(1 + |x|ζ )∣∣Â1(x) − A(x)

∣∣dx

}
(5.6)

for all ζ > 0, with probability 1. Now, for each x0 > 0,∫
(1 + |x|ζ )∣∣Â1(x) − A(x)

∣∣dx

(5.7)
≤ 2x0(1 + x

ζ
0 ) sup

−∞<x<∞
∣∣Â1(x) − A(x)

∣∣ + R̂(x0),

where

R̂(x0) =
∫ ∞
x0

(1 + xζ )
{
1 − Â1(x) + 1 − A(x)

}
dx

+
∫ x0

−∞
(1 + |x|ζ )

{
Â1(x) + A(x)

}
dx.

In the notation of Section 5.2,∣∣Â1(x) − A(x)
∣∣ ≤ ∣∣Â2(x + Ū ) − A(x + Ū)

∣∣ + ∣∣A(x + Ū ) − A(x)
∣∣.(5.8)

Recall from Section 5.2 that Â2 can be expressed as an average of a finite
number of empirical distribution functions, each computed from n independent
and identically distributed random variables having distribution function A. It
follows that sup |Â2 −A| → 0 with probability 1. Since Ū → 0 with probability 1,
supx |A(x + Ū ) − A(x)| → 0. Combining the results from (5.8) down, we deduce
that sup |Â1 − A| → 0 with probability 1; call this result (P3). Also, if ζ > 0 is
sufficiently small, then

R̂(x0) → R(x0) ≡ 2
∫ ∞
x0

(1 + xζ ){A(−x) + 1 − A(x)}dx,(5.9)

with probability 1, and the value of R(x0) can be made arbitrarily small by
choosing x0 sufficiently large. [Finiteness of |R(x0)| follows from the assumption
of finite moments of order 1 + η; we require 0 < ζ ≤ η.]

Combining (5.6), (5.7), (5.9) and (P3), we deduce that, for each t ∈ T c,
S(t | a, b) → 0 with probability 1. Analogously to the proof of Theorem 4.1, this
is sufficient to imply first that

∞∑
j=0

2j
∣∣log

[
1 + {

χ̂ (t/2j | a, b) − χ(t/2j | a, b)
}
χ(t/2j | a, b)−1]∣∣ → 0,

with probability 1, and then that ψ̂(t) → ψ(t) with probability 1; compare the
argument leading to (5.5). Likewise, taking (a, b) = (1,0), we may deduce that
χ̂ (t | 1,0) → χ(t | 1,0) with probability 1. All these limit properties hold for each
t ∈ T c, and so we have established (P2).
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5.4. Proof of Theorem 4.3. We shall derive only (4.5); results (4.4), (4.6)
and (4.7) have similar proofs.

In establishing (4.5) we start with (5.4), from which it follows that, provided

sup
|t|≤tn

S(t | a, b) = op(1)(5.10)

for (a, b) = (1,0) and (1
2 , 1

2 ), we have, for each ν ≥ 2,

ψ̂(t) = ψ(t)
[
1+�1(t)+Q1ν (t)+Op

{
S(t | 1,0)ν+1 +S

(
t
∣∣ 1

2 , 1
2

)ν+1}]
,(5.11)

uniformly in t , where

�1(t) =
∞∑

j=0

2j
{
δ̂(t/2j | 1,0) − δ̂

(
t/2j

∣∣ 1
2 , 1

2

)}
(5.12)

and Q1ν(t) is a finite linear form in terms

T (k1, k2, l1, l2) =
{ ∞∑

j=0

2j δ̂(t/2j | 1,0)k1

}l1{ ∞∑
j=0

2j δ̂
(
t/2j

∣∣ 1
2 , 1

2

)k2

}l2

(5.13)

for 1 ≤ k1, k2 < ∞, 0 ≤ l1, l2 < ∞ and 2 ≤ k1l1 + k2l2 ≤ ν.
To derive (5.10), observe that (4.2) implies, for a constant C2 > 0,

|χ(t | 1,0)| + ∣∣χ(
t
∣∣ 1

2 , 1
2

)∣∣ ≥ C2(1 + |t|)−γ .(5.14)

Properties (5.1) and (5.14) imply that, for (a, b) = (1,0) or (1
2 , 1

2 ) and all t ,

|χ̂ (t | a, b) − χ(t | a, b)|/|χ(t | a, b)|
≤ C3|t|(1 + |t|)γ

∫
min

{
1, (tx)2}∣∣Â1(x) − A(x)

∣∣dx.

(Here and below, C2,C3, . . . denote positive constants depending on F and G but
not on t or n.) The argument leading to (5.2) now shows that, uniformly in t ,

S(t | a, b) ≤ C4

∞∑
j=0

(|t| + 2−γj |t|γ+1)

(5.15)
×

∫
min

{
1, (tx/2j )2}∣∣Â1(x) − A(x)

∣∣dx.

Since
∞∑

j=0

(|t| + 2−γj |t|γ+1)min
{
1, (tx/2j )2} ≤ C5 max(|t|, |t|γ+1),

then, by (5.15),

S(t | a, b) ≤ C4C5 max(|t|, |t|γ+1)

∫ ∣∣Â1(x) − A(x)
∣∣dx

(5.16)
= Op

{
max(|t|, |t|γ+1)n−1/2}

,
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uniformly in t . To obtain the last identity, we have used the fact that distributions
F and G have finite moments of order 2 + η for some η > 0.

We may deduce from (4.2), (4.3), (5.11) and (5.16) that∫
|t|≤tn

e−itx ψ̂(t) dt −
∫
|t|≤tn

e−itxψ(t) dt

=
∫
|t|≤tn

e−itxψ(t)
{
�1(t) + Q1ν(t)

}
dt(5.17)

+ Op

(
t(ν+1)(γ+1)+1−β
n n−(ν+1)/2),

uniformly in x. To derive a version of (5.17) in the case of φ̂ and φ, rather than
ψ̂ and ψ , note that χ̂ (t | 1,0) = χ(t | 1,0){1 + δ̂(t | 1,0)}, whence we obtain an
analogue of (5.11):

φ̂(t) = χ̂ (t | 1,0)/ψ̂(t)

= φ(t)
[
1 + �2(t) + Q2ν(t) + Op

{
S(t | 1,0)ν+1 + S

(
t
∣∣ 1

2 , 1
2

)ν+1}]
,

where �2(t) = δ̂(t | 1,0) − �1(t) and Q2ν(t) is a finite linear form in terms

T (k1, k2, l1, l2)δ̂(t | 1,0)m

for 1 ≤ k1, k2 < ∞, 0 ≤ l1, l2 < ∞, m = 0 or 1, and 2 ≤ k1l1 + k2l2 + m ≤ ν,
with T (k1, k2, l1, l2) defined as at (5.13). Thus we obtain the following analogue
of (5.17): ∫

|t|≤tn

e−itx φ̂(t) dt −
∫
|t|≤tn

e−itxφ(t) dt

=
∫
|t|≤tn

e−itxφ(t)
{
�2(t) + Q2ν(t)

}
dt(5.18)

+ Op

(
t(ν+1)(γ+1)+1−α
n n−(ν+1)/2).

We shall derive the rate of convergence of ĝ to g, given at (4.5), starting
from (5.17). An analogous argument would give the rate for f̂ to f , starting
from (5.18). We shall prove that∫

|t|≤tn

e−itxψ(t)�1(t) dt = Op

(
tγ−β+(1/2)
n n−1/2),(5.19)

uniformly in x. A similar argument will show that∫
|t|≤tn

e−itxQ2ν(t) dt = Op

(
tγ−β+(1/2)
n n−1/2).

In fact, the left-hand side immediately above is of smaller order; the quantities
�1(t) and Q2ν(t) denote in effect linear and higher order terms, respectively, and
the latter make a contribution of lower order than do the former.
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Condition (5.1) implies that

(2π)−1
∫
|t|≤tn

e−itxψ(t) dt = f (x) − (2π)−1
∫
|t|>tn

e−itxψ(t) dt

= f (x) + O(t1−β
n ),

uniformly in x. Combining (5.17) with the results from (5.19) down, we deduce
that

ĝ(x) = (2π)−1
∫
|t|≤tn

e−itx ψ̂(t) dt = g(x) + Op

(
t1−β
n + tγ−β+(1/2)

n n−1/2),
as claimed at (4.5).

Finally, we establish (5.19). Recall from (5.12) that �1 = δ̂2 − δ̂1, where

δ̂1(t) =
∞∑

j=0

2j{
χ̂

(
t/2j

∣∣ 1
2 , 1

2

) − χ
(
t/2j

∣∣ 1
2 , 1

2

)}
and δ̂2 has the same form except that (1

2 , 1
2 ) is replaced by (1,0). We shall derive

the version of (5.19) in which �1 is replaced by δ̂1:∫
|t|≤tn

e−itxψ(t)δ̂1(t) dt = Op

(
tγ−β+(1/2)
n n−1/2),(5.20)

uniformly in x. The case of δ̂2 is similar, although in that case the order of
magnitude on the right-hand side is smaller, since the quantity χ(t | a, b) appearing
in the denominators is of smaller order, as |t| → ∞, if (a, b) = (1

2 , 1
2 ) than it is

if (a, b) = (1,0).
Put r0 = 1

2r(r − 1) and let (s1(k), s2(k)), for 1 ≤ k ≤ r0, denote an enumeration
of the r0 pairs (s1, s2) such that 1 ≤ s1 < s2 ≤ r . Recall the definitions of Ujs

and Ū in Section 5.2, and for 1 ≤ k ≤ r0 put

χ̂k(t) = 1

n

n∑
j=1

exp
{

1

2
it

(
Ujs1(k) + Ujs2(k)

)}
, Ūk = 1

2n

n∑
j=1

(
Ujs1(k) + Ujs2(k)

)
.

Let χ̂0 = r−1
0

∑
k χ̂k and χ0 = χ(· | 1

2 , 1
2) and observe that Ū = r−1

0
∑

k Ūk ,

χ̂ (t | 1
2 , 1

2 ) = e−itŪ χ̂0(t) and

χ̂
(
t
∣∣ 1

2 , 1
2

) − χ0(t) = χ̂0(t) − (1 + itŪ )χ0(t)

(5.21)
+ Op

{
t2Ū2 + ∣∣χ̂0(t) − (1 + itŪ )χ0(t)

∣∣2}
,

uniformly in t . Standard moment methods, based on the linear structure of
χ̂0 and Ū , may be used to prove that

∞∑
j=0

2j
{
(t/2j )2E(Ū2) + E

∣∣χ̂0(t/2j ) − (1 + it2−j Ū)χ0(t/2j )
∣∣2} = O(t2/n),
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uniformly in t . Note, too, that |χ0(t/2j )|−1 = O(1 + |t|γ ) uniformly in t and in
j ≥ 0 and that if we define δ̂3 = r−1

0
∑

k δ̂3k where

δ̂3k(t) =
∞∑

j=0

2j
{
χ̂k(t/2j ) − (1 + it2−j Ūk)χ0(t/2j )

}/
χ0(t/2j ),(5.22)

then δ̂3 is also given by (5.22) if χ̂k and Ūk on the right-hand side are replaced by
χ̂0 and Ū , respectively. Combining the results from (5.21) down, we deduce that
δ̂1(t) = δ̂3(t) + Op(|t|γ+2/n) uniformly in t . Hence∫

|t|≤tn

e−itxψ(t)δ̂1(t) dt = r−1
0

r0∑
k=1

Snk(x) + Op(|tn|γ−β+3/n),(5.23)

uniformly in x, where Snk(x) = ∫
|t|≤tn

e−itxψ(t)δ̂3k(t) dt .
The real and imaginary parts of Snk(x) are both expressible as sums of

n independent and identically distributed random variables with zero means, and
so relatively conventional methods may be used to compute the variances of those
quantities. To illustrate the argument, we treat only one of the terms that arises; it is

Tn(x) =
∫
|t|≤tn

cos(tx)(1 + |t|)−βκ1(t)

×
[

1

n

n∑
l=1

∞∑
j=0

2j
{
cos(tVl/2j ) − E cos(tVl/2j )

}
× (1 + |t/2j |)γ κ2(t/2j )

]
dt,

where, here and below, κj denotes a real-valued function whose absolute value
is uniformly bounded and V1, . . . , Vn are independent and identically distributed
as 1

2(U11 + U12). (More generally, Snk is a linear form in terms like Tn.) Now,

nE{Tn(x)2}
=

∫ ∫
|t1|,|t2|≤tn

(1 + |t1| + |t2| + |t1t2|)−βκ3(x, t1, t2)

×
[ ∞∑

j1=0

∞∑
j2=0

2j1+j2
{1

2λ(t12−j1 + t22−j2)

+ 1
2λ(t12−j1 − t22−j2) − λ(t1/2j1)λ(t2/2j2)

}
(5.24)

× (1 + |t1/2j1| + |t2/2j2| + |t1/2j1 · t2/2j2|)γ

× κ4(t1/2j1, t2/2j2)

]
dt1 dt2,
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where λ(t) = E{cos(tV1)} = (1+|t|)−βκ5(t). The right-hand side of (5.24) equals
O(t

2(γ−β)+1
n ). Combining this result with its counterpart for the other, analogous

terms, we deduce (5.20) from (5.23).

5.5. Proof of Theorem 4.4. In the proof below we recede an arbitrarily small
amount from the h = 0 limit, which arises when theoretically minimizing J (f,g, h)

over h as well as f and g. Thus we work with an arbitrarily small but positive h.
First we prove part (a) of the theorem, addressing first the matter of whether it is

possible to identify the distributions of F and G using our approach. Suppose that,
along a subsequence of values of n, the distribution estimators F̃ and G̃ converge
to subdistributions F0 and G0, respectively. Let φ0 and ψ0 denote the respective
characteristic functions and assume that∫

−∞<t<∞
w(t) dt

∫ 1

0

∣∣φ(t)ψ(tu)ψ{t (1 − u)}
(5.25)

− φ0(t)ψ0(tu)ψ0{t (1 − u)}∣∣2 du = 0.

Then, since φ, ψ , φ0 and ψ0 are continuous,

φ(t)ψ(tu)ψ{t (1 − u)} = φ0(t)ψ0(tu)ψ0{t (1 − u)}(5.26)

for all −∞ < t < ∞ and 0 < u < 1. Taking t = 0 in (5.25), we deduce
that φ0(0) = ψ0(0) = 1, and so the two subdistributions are actually proper
distributions.

Let T be the (countable) set of points t such that φ(t/2j )ψ(t/2j ) = 0 for some
j ≥ 0 and let T c denote the complement of T . If t ∈ T c, then, replacing t by t/2j

in (5.26), taking the ratio of both sides of (5.26) in the cases u = 1 and u = 1
2 ,

taking logarithms of both sides of the ratio of equations, multiplying by 2j and
summing from j = 0 to j = k − 1 ≥ 1, we deduce that

logψ(t) − 2k log ψ(t/2k) = logψ0(t) − 2k logψ0(t/2k).(5.27)

Since the distribution of ε has zero mean, 2kψ(t/2k) converges to 0 as k → ∞,
and so 2kψ0(t/2k) must also converge. From this result and (5.27) it can be
deduced first that the limit, as δ converges to 0, of δ−1 logψ0(δ) must exist and
equal a constant, iµ say; second that ψ0(t) = 1 + iµt + o(|t|) as t → 0; and
third that ψ(t) = ψ0(t) e−iµt . By considering the behavior in the neighborhood
of t = 0 we may deduce that µ is real valued and equal to the mean of the
distribution with characteristic function ψ0. But constraint (c) on the histogram
density estimators, introduced as part of condition (2.13), implies that the mean of
each distribution estimator is 0; and constraint (d), which imposes an upper bound
on the distributions’ variances, implies that the means of any limit distributions,
such as F0 and G0, are equal to the limits of their respective means for finite
values of n. Therefore the mean of the distribution with characteristic function ψ0
is 0, and hence µ = 0.
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It follows that ψ(t) = ψ0(t) for each t ∈ T c and thus, by the continuity of the
characteristic functions, that ψ ≡ ψ0. We may now deduce from (5.26) that φ ≡ φ0
as well. Therefore (5.25) implies that (φ,ψ) ≡ (φ0,ψ0). Call this result (R).

Suppose, by way of contradiction of part (a), that either F̃ or G̃ does not
converge to F or G, respectively, with probability 1. Then there is an infinite
subsequence S of values of n, and there are subprobability distributions F0 and G0,
such that (i) either F0 �= F or G0 �= G, and (ii) as n → ∞ through values in S
we have F̃ → F0 and G̃ → G0 with probability 1, where the convergence is
“in distribution” (i.e., weak convergence). It follows that Kj(t, u | f̃, g̃) converges
to K0j (t, u) for j = 1,2, where the convergence is with probability 1, K01(t, u)

and K02(t, u) denote the real and imaginary parts, respectively, of φ0(t)ψ0(tu)×
ψ0{t (1 − u)}, and φ0 and ψ0 are the characteristic functions of F0 and G0,
respectively.

Standard methods show that for each t and u the empirical characteristic
function χ̂ (t | u,1 − u) converges with probability 1 to χ(t | u,1 − u), defined
at (2.4), and in particular that, for each t and u, χ̂1(t | u,1 −u) and χ̂2(t | u,1 −u)

converge (with probability 1), respectively, to the real and imaginary parts of
the limit, which we denote by χ1(t, u) and χ2(t, u), respectively. Since weak
convergence of distributions implies convergence of characteristic functions, since
the real and imaginary parts of characteristic functions are uniformly bounded and
since the weight function w is integrable, J (f̃, g̃), defined at (2.12), converges with
probability 1, as n → ∞ through values in S, to

J0 =
∫
−∞<t<∞

w(t) dt

(5.28)

×
∫ 1

0

{|χ1(t, u) − K01(t, u)|2 + |χ2(t, u) − K02(t, u)|2}
du.

By construction of S it cannot be true that both φ0 ≡ φ and ψ ≡ ψ0. It
follows from this property and result (R) that J0 �= 0. However, we may construct
deterministic histogram approximations to f and g which involve a bin width h

that converges to 0 as n increases and are such that the approximations converge
to f and g, respectively, and satisfy the constraint (2.13). In consequence, the
distributions derived from these histograms converge to F and G, respectively,
and so their respective characteristic functions converge. Taking f = fn, g = gn and
h = hn to be the quantities associated with these particular histograms, we see that
we may construct histograms such that J (f,g, h) converges to 0 with probability 1
as n → ∞ (through the full sequence of positive integers). Hence, for an infinite
number of values of n in S, the putative minimizer of J (f,g, h), employed in the
arguments in the two previous paragraphs, does not actually produce a minimum.
This contradiction proves part (a) of the theorem.

Next we turn to part (b). We may construct deterministic histogram approxima-
tions to f and g which depend on n and are arbitrarily accurate and, in particular,
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which are such that their respective characteristic functions φ1 and ψ1 have the
property: ∫ ∞

−∞
w(t) dt

∫ 1

0

∣∣φ(t)ψ(tu)ψ{t (1 − u)}
(5.29)

− φ1(t)ψ1(tu)ψ1{t (1 − u)
}∣∣2 du = O(n−1).

Next we show that∫ ∞
−∞

w(t) dt

∫ 1

0

∣∣χ̂ (t | u,1 − u) − φ(t)ψ(tu)ψ{t (1 − u)}∣∣2 du = Op(n−1).

(5.30)
Note that, for each real pair (a, b), χ̂ (t | a, b) = Â2(t | a, b) exp{−(a + b) itŪ },
where Â2(t | a, b) is the characteristic function of the dataset {aUjs1 + bUjs2 :
1 ≤ j ≤ n, 1 ≤ s1, s2 ≤ r , s1 �= s2}. Observe that

1
2

∣∣χ̂ (t | u,1 − u) − χ(t | u,1 − u)
∣∣2 ≤ |D(t,u)|2 + |tŪ |2,

where D(t,u) = Â2(t | u,1 − u) − χ(t | u,1 − u). Now, E{D(t,u)} = 0. Using
the property noted immediately below (5.8), we may show that E{|D(t,u)|2} =
O(n−1) uniformly in t and u. And since the data have finite variance, E(Ū2) =
O(n−1). Therefore E{|D(t,u)|2 + |tŪ |2} = O{(1 + t2)n−1} uniformly in t , u

and n. Result (5.30) is an immediate consequence.
Combining (5.29) and (5.30), we deduce that the histogram estimators that

minimize J (f,g, h), when minimization over h is included, must satisfy∫ ∞
−∞

w(t) dt

∫ 1

0

∣∣φ(t)ψ(tu)ψ{t (1 − u)} − φ̃(t)ψ̃(tu)ψ̃{t (1 − u)}∣∣2 du

= Op(n−1).

Result (b) follows from this property.
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