THE PUBLICATIONS AND WRITINGS OF HERBERT ROBBINS

Papers in Refereed Journals

[1] (1937) On a class of recurrent sequences. Bull. Amer. Math. Soc. 43 413-417.
[2] (1939) A theorem on graphs, with an application to a problem of traffic control. Amer. Math. Monthly 46 281-283.
[3] (1941a) On the classification of the mappings of a 2-complex. Trans. Amer. Math. Soc. 49 308-324.
[4] (1943) A note on the Riemann integral. Amer. Math. Monthly 50 617-618.
[5] (1944a) Two properties of the function $\cos x$. Bull. Amer. Math. Soc. 50 750-752.
[6] (1944b) On distribution-free tolerance limits in random sampling. Ann. Math. Statist. 15 214216.
[7] (1944c) On the measure of a random set. Ann. Math. Statist. 15 70-74.
[8] (1944d) On the expected values of two statistics. Ann. Math. Statist. 15 321-323.
[9] (1945) On the measure of a random set. II. Ann. Math. Statist. 16 342-347.
[10] (1946) On the ($C, 1$) summability of certain random sequences. Bull. Amer. Math. Soc. 52 699-703.
[11] (1947) Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. U.S.A. 33 25-31 (with P. L. Hsu).
[12] (1948b) Convergence of distributions. Ann. Math. Statist. 19 72-76.
[13] (1948c) On the asymptotic distribution of the sum of a random number of random variables. Proc. Nat. Acad. Sci. U.S.A. 34 162-163.
[14] (1948d) The central limit theorem for dependent random variables. Duke Math. J. 15773-780 (with W. Hoeffding).
[15] (1948e) The asymptotic distribution of the sum of a random number of random variables. Bull. Amer. Math. Soc. 54 1151-1161.
[16] (1948f) The distribution of a definite quadratic form. Ann. Math. Statist. 19 266-270.
[17] (1948g) Mixture of distributions. Ann. Math. Statist. 19 360-369.
[18] (1948h) The distribution of Student's t when the population means are unequal. Ann. Math. Statist. 19 406-410.
[19] (1949) Application of the method of mixtures to quadratic forms in normal variates. Ann. Math. Statist. 20 552-560 (with E. J. G. Pitman).
[20] (1950a) Competitive estimation (abstract). Ann. Math. Statist. 21 311-312.
[21] (1950b) A generalization of the method of maximum likelihood: Estimating a mixing distribution (abstract). Ann. Math. Statist. 21 314-315.
[22] (1950c) The problem of the greater mean. Ann. Math. Statist. 21 469-487, 22310 (with R. R. Bahadur).
[23] (1951a) Asymptotically subminimax solutions of compound decision problems. Proc. Second Berkeley Symp. Math. Statist. Probab. 1131-148. Univ. California Press, Berkeley.
[24] (1951b) A stochastic approximation method. Ann. Math. Statist. 22 400-407 (with S. Monro).
[25] (1951c) Minimum variance estimation without regularity assumptions. Ann. Math. Statist. 22 581-586 (with D. G. Chapman).
[26] (1952a) Some aspects of the sequential design of experiments. Bull. Amer. Math. Soc. 58 527-535.
[27] (1952b) A note on gambling systems and birth statistics. Amer. Math. Monthly 59 685-686.
[28] (1953a) Ergodic property of the Brownian motion process. Proc. Nat. Acad. Sci. U.S.A. 39 525-533 (with G. Kallianpur).
[29] (1953b) On the equidistribution of sums of independent random variables. Proc. Amer. Math. Soc. 4786-799.
[30] (1953c) Ergodic theory of Markov chains admitting an infinite invariant measure. Proc. Nat. Acad. Sci. U.S.A. 39 860-864 (with T. E. Harris).
[31] (1954a) The sequence of sums of independent random variables. Duke Math. J. 21 285-308 (with G. Kallianpur).
[32] (1954b) Two-stage procedures for estimating the difference between means. Biometrika 41 146-152 (with S. G. Ghurye).
[33] (1954c) A note on information theory. Proc. Inst. Radio Engrg. 421193.
[34] (1954d) A remark on the joint distribution of cumulative sums. Ann. Math. Statist. 25614 616.
[35] (1954e) A one-sided confidence interval for an unknown distribution function (abstract). Ann. Math. Statist. 25409.
[36] (1955a) A remark on Stirling's formula. Amer. Math. Monthly 62 26-29.
[37] (1955b) Asymptotic solutions of the compound decision problem for two completely specified distributions. Ann. Math. Statist. $2637-51$ (with J. F. Hannan).
[38] (1955c) The strong law of large numbers when the first moment does not exist. Proc. Nat. Acad. Sci. U.S.A. 41 586-587 (with C. Derman).
[39] (1956a) An empirical Bayes approach to statistics. Proc. Third Berkeley Symp. Math. Statist. Probab. 1 157-163. Univ. California Press, Berkeley.
[40] (1956b) A sequential decision problem with finite memory. Proc. Nat. Acad. Sci. U.S.A. 42 920-923.
[41] (1959a) Comments on a paper by James Albertson. J. Biblical Literature 78 347-350.
[42] (1961a) On sums of independent random variables with infinite moments and "fair" games. Proc. Nat. Acad. Sci. U.S.A. 47 330-335 (with Y. S. Chow).
[43] (1961b) A martingale system theorem and applications. Proc. Fourth Berkeley Symp. Math. Statist. Probab. 1 93-104. Univ. California Press, Berkeley (with Y. S. Chow).
[44] (1961c) Recurrent games and the Petersburg paradox. Ann. Math. Statist. 32 187-194.
[45] (1962a) A Bayes test of $p \leq 1 / 2$ versus $p>1 / 2$. Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs. 9 39-60 (with S. Moriguti).
[46] (1963a) On optimal stopping rules. Z. Wahrsch. Verw. Gebiete 2 33-49 (with Y. S. Chow).
[47] (1963b) A renewal theorem for random variables which are dependent or non-identically distributed. Ann. Math. Statist. 34 390-395 (with Y. S. Chow).
[48] (1963c) Some problems of optimal sampling strategy. J. Math. Anal. Appl. 6 1-14 (with C. L. Mallows).
[49] (1963d) The empirical Bayes approach to testing statistical hypotheses. Rev. Internat. Statist. Inst. 31 195-208.
[50] (1964a) The empirical Bayes approach to statistical decision problems. Ann. Math. Statist. 35 $1-20$.
[51] (1964b) On the "parking" problem. Publ. Math. Inst. Hungar. Acad. Sci. Ser. A 9 209-225 (with A. Dvoretzky).
[52] (1964c) Optimal selection based on relative rank-the "secretary problem." Israel J. Math. 2 81-90 (with Y. S. Chow, S. Moriguti and S. M. Samuels).
[53] (1965a) On optimal stopping rules for S_{n} / n. Illinois J. Math. 9 444-454 (with Y. S. Chow).
[54] (1965b) Moments of randomly stopped sums. Ann. Math. Statist. 36 789-799 (with Y. S. Chow and H. Teicher).
[55] (1965c) On the asymptotic theory of fixed-width sequential confidence intervals for the mean. Ann. Math. Statist. 36 457-462 (with Y. S. Chow).
[56] (1966) An extension of a lemma of Wald. J. Appl. Probability 3 272-273 (with E. Samuel).
[57] (1967a) A class of optimal stopping problems. Proc. Fifth Berkeley Symp. Math. Statist. Probab. 1 419-426. Univ. California Press, Berkeley (with Y. S. Chow).
[58] (1967b) On values associated with a stochastic sequence. Proc. Fifth Berkeley Symp. Math. Statist. Probab. 1 427-440. Univ. California Press, Berkeley (with Y. S. Chow).
[59] (1967c) Finding the size of a finite population. Ann. Math. Statist. 38 1392-1398 (with D. A. Darling).
[60] (1967d) Some complements to Brouwer's fixed point theorem. Israel J. Math. 5225-226.
[61] (1967e) Iterated logarithm inequalities. Proc. Nat. Acad. Sci. U.S.A. 57 1188-1192 (with D. A. Darling).
[62] (1967f) Inequalities for the sequence of sample means. Proc. Nat. Acad. Sci. U.S.A. 57 15771580 (with D. A. Darling).
[63] (1967g) Confidence sequences for mean, variance, and median. Proc. Nat. Acad. Sci. U.S.A. 58 66-68 (with D. A. Darling).
[64] (1967h) A sequential analogue of the Behrens-Fisher problem. Ann. Math. Statist. 38 13841391 (with G. Simons and N. Starr).
[65] (1968a) A sequential procedure for selecting the largest of k means. Ann. Math. Statist. 39 88-92 (with M. Sobel and N. Starr).
[66] (1968b) Estimating the total probability of the unobserved outcomes of an experiment. Ann. Math. Statist. 39 256-257.
[67] (1968c) Some further remarks on inequalities for sample sums. Proc. Nat. Acad. Sci. U.S.A. 60 1175-1182 (with D. A. Darling).
[68] (1968d) The limiting distribution of the last time $s_{n} \geq n \varepsilon$. Proc. Nat. Acad. Sci. U.S.A. 61 1228-1230 (with D. Siegmund and J. Wendel).
[69] (1968e) Some nonparametric sequential tests with power one. Proc. Nat. Acad. Sci. U.S.A. 61 804-809 (with D. A. Darling).
[70] (1969a) Probability distributions related to the law of the iterated logarithm. Proc. Nat. Acad. Sci. U.S.A. 62 11-13 (with D. Siegmund).
[71] (1969b) Confidence sequences and interminable tests. Bull. Internat. Statist. Inst. 43 379-387 (with D. Siegmund).
[72] (1970a) Statistical methods related to the law of the iterated logarithm. Ann. Math. Statist. 41 1397-1409.
[73] (1970b) Boundary crossing probabilities for the Wiener process and sample sums. Ann. Math. Statist. 41 1410-1429 (with D. Siegmund).
[74] (1970c) Optimal stopping. Amer. Math. Monthly 77 333-343.
[75] (1972a) Reducing the number of inferior treatments in clinical trials. Proc. Nat. Acad. Sci. U.S.A. 69 2993-2994 (with B. Flehinger, T. Louis and B. Singer).
[76] (1972b) On the law of the iterated logarithm for maxima and minima. Proc. Sixth Berkeley Symp. Math. Statist. Probab. 3 51-70. Univ. California Press, Berkeley (with D. Siegmund).
[77] (1972c) A class of stopping rules for testing parametric hypotheses. Proc. Sixth Berkeley Symp. Math. Statist. Probab. 4 37-41. Univ. California Press, Berkeley (with D. Siegmund).
[78] (1973a) Statistical tests of power one and the integral representation of solutions of certain partial differential equations. Bull. Inst. Math. Acad. Sinica 1 93-120 (with D. Siegmund).
[79] (1973b) Mathematical probability in election challenges. Columbia Law Rev. 73 241-248 (with M. O. Finkelstein).
[80] (1974a) The expected sample size of some tests of power one. Ann. Statist. 2 415-436 (with D. Siegmund).
[81] (1974b) Sequential tests involving two populations. J. Amer. Statist. Assoc. 69 132-139 (with D. Siegmund).
[82] (1974c) A sequential test for two binomial populations. Proc. Nat. Acad. Sci. U.S.A. 71 44354436.
[83] (1975a) Sequential estimation of p with squared relative error loss. Proc. Nat. Acad. Sci. U.S.A. 72 191-193 (with P. Cabilio).
[84] (1975b) Wither mathematical statistics? Suppl. Adv. in Appl. Probab. 7 116-121.
[85] (1975c) The candidate problem with unknown population size. J. Appl. Probability 12 692701 (with W. T. Rasmussen).
[86] (1976) Maximally dependent random variables. Proc. Nat. Acad. Sci. U.S.A. 73 286-288 (with T. L. Lai).
[87] (1977a) Prediction and estimation for the compound Poisson distribution. Proc. Nat. Acad. Sci. U.S.A. 74 2670-2671.
[88] (1977b) Strong consistency of least-squares estimates in regression models. Proc. Nat. Acad. Sci. U.S.A. 74 2667-2669 (with T. L. Lai).
[89] (1978a) A class of dependent random variables and their maxima. Z. Wahrsch. Verw. Gebiete 42 89-111 (with T. L. Lai).
[90] (1978b) Adaptive design in regression and control. Proc. Nat. Acad. Sci. U.S.A. 75 586-587 (with T. L. Lai).
[91] (1978c) Limit theorems for weighted sums and stochastic approximation processes. Proc. Nat. Acad. Sci. U.S.A. 75 1068-1070 (with T. L. Lai).
[92] (1978d) Strong consistency of least squares estimates in multiple regression. Proc. Nat. Acad. Sci. U.S.A. 75 3034-3036 (with T. L. Lai and C. Z. Wei).
[93] (1979a) Strong consistency of least squares estimates in multiple regression. II. J. Multivariate Anal. 9 343-361 (with T. L. Lai and C. Z. Wei).
[94] (1979b) Sequential rank and the Polya urn. J. Appl. Probability 16 213-219 (with J. Whitehead).
[95] (1979c) Adaptive design and stochastic approximation. Ann. Statist. 7 1196-1221 (with T. L. Lai).
[96] (1979d) Local convergence theorems for adaptive stochastic approximation schemes. Proc. Nat. Acad. Sci. U.S.A. 76 3065-3067 (with T. L. Lai).
[97] (1980a) Estimation and prediction for mixtures of the exponential distribution. Proc. Nat. Acad. Sci. U.S.A. 77 2382-2383.
[98] (1980b) Sequential medical trials. Proc. Nat. Acad. Sci. U.S.A. $773135-3138$ (with T. L. Lai, B. Levin and D. Siegmund).
[99] (1980c) An empirical Bayes estimation problem. Proc. Nat. Acad. Sci. U.S.A. 77 6988-6989.
[100] (1981a) Consistency and asymptotic efficiency of slope estimates in stochastic approximation schemes. Z. Wahrsch. Verw. Gebiete 56 329-360 (with T. L. Lai).
[101] (1981b) Selecting the highest probability in binomial or multinomial trials. Proc. Nat. Acad. Sci. U.S.A. 78 4663-4666 (with B. Levin).
[102] (1982a) Iterated least squares in multiperiod control. Adv. in Appl. Math. 3 50-73 (with T. L. Lai).
[103] (1983a) Some thoughts on empirical Bayes estimation. Ann. Statist. 11 713-723.
[104] (1983b) A note on the underadjustment phenomenon. Statist. Probab. Lett. 1 137-139 (with B. Levin).
[105] (1983c) Adaptive choice of mean or median in estimating the center of a symmetric distribution. Proc. Nat. Acad. Sci. U.S.A. 80 5803-5806 (with T. L. Lai and K. F. Yu).
[106] (1983d) Urn models for regression analysis, with applications to employment discrimination studies. Law Contemp. Problems 46 247-267 (with B. Levin).
[107] (1984a) Some breakthroughs in statistical methodology. College Math. J. 15 25-29.
[108] (1984b) Optimal sequential sampling from two populations. Proc. Nat. Acad. Sci. U.S.A. 81 1284-1286 (with T. L. Lai).
[109] (1984c) A probabilistic approach to tracing funds in the law of restitution. Jurimetrics 24 65-77 (with M. O. Finkelstein).
[110] (1985a) Linear empirical Bayes estimation of means and variances. Proc. Nat. Acad. Sci. U.S.A. 82 1571-1574.
[111] (1985b) Asymptotically efficient adaptive allocation rules. Adv. in Appl. Math. 64-22 (with T. L. Lai).
[112] (1987) Asymptotically minimax stochastic search strategies in the plane. Proc. Nat. Acad. Sci. U.S.A. 84 2111-2112 (with S. P. Lalley).
[113] (1988a) Estimating a treatment effect under biased sampling. Proc. Nat. Acad. Sci. U.S.A. 85 3670-3672 (with C.-H. Zhang).
[114] (1988b) Stochastic search in a convex region. Probab. Theory Related Fields 77 99-116 (with S. P. Lalley).
[115] (1989a) Estimating the superiority of a drug to a placebo when all and only those patients at risk are treated with the drug. Proc. Nat. Acad. Sci. U.S.A. 86 3003-3005 (with C.-H. Zhang).
[116] (1989b) Comment on "Who solved the secretary problem?" Statist. Sci. 4291.
[117] (1991a) Estimating a multiplicative treatment effect under biased allocation. Biometrika 78 349-354 (with C.-H. Zhang).
[118] (1991b) Remarks on the secretary problem. Amer. J. Math. Management Sci. 11 25-37.
[119] (1995) Sequential choice from several populations. Proc. Nat. Acad. Sci. U.S.A. 928584 8585 (with M. N. Katehakis).
[120] (1996a) Clinical and prophylactic trials with assured new treatment for those at greater risk. I. A design proposal. Amer. J. Public Health 86 691-695 (with M. O. Finkelstein and B. Levin).
[121] (1996b) Clinical and prophylactic trials with assured new treatment for those at greater risk. II. Examples. Amer. J. Public Health 86 696-705 (with M. O. Finkelstein and B. Levin).
[122] (2000) Efficiency of the u, v method of estimation. Proc. Nat. Acad. Sci. U.S.A. 97 1297612979 (with C.-H. Zhang).
[123] (2002) Mathematical aspects of estimating two treatment effects and a common variance in an assured allocation design. J. Statist. Plann. Inference 108 255-262 (with B. Levin and C.-H. Zhang).

Book Review

[124] (1978e) Review of Adventures of a Mathematician by S. M. Ulam. Bull. Amer. Math. Soc. 84 107-109.

Papers in Proceedings Volumes

[125] (1948a) Some remarks on the inequality of Tchebychef. In Studies and Essays (K. O. Friedrichs et al., eds.) 345-350. Interscience, New York.
[126] (1957) The theory of probability. In Insights into Modern Mathematics (F. L. Wren, ed.) 336-371. National Council of Teachers of Mathematics, Washington, DC.
[127] (1959b) Sequential estimation of the mean of a normal population. In Probability and Statistics (U. Grenander, ed.) 235-245. Almqvist and Wiksell, Stockholm.
[128] (1959c) Probability. In Spectrum: The World of Science (R. Ginger, ed.) 100-114. Holt, New York.
[129] (1960) A statistical screening problem. In Contributions to Probability and Statistics (I. Olkin et al., eds.) 352-357. Stanford Univ. Press.
[130] (1962b) Some numerical results on a compound decision problem. In Recent Developments in Information and Decision Processes (R. E. Machol and P. Gray, eds.) 52-62. Macmillan, New York.
[131] (1962c) Testing statistical hypotheses; the compound approach. In Recent Developments in Information and Decision Processes (R. E. Machol and P. Gray, eds.) 63-70. Macmillan, New York (with E. Samuel).
[132] (1963e) A new approach to a classical statistical decision problem. In Induction: Some Current Issues (H. E. Kyburg, Jr. and E. Nagel, eds.) 101-110. Wesleyan Univ. Press, Middletown, CT.
[133] (1968f) Iterated logarithm inequalities and related statistical procedures. In Mathematics of the Decision Sciences (G. B. Dantzig and A. F. Veinott, eds.) 267-279. Amer. Math. Soc., Providence, RI (with D. Siegmund).
[134] (1970d) Sequential estimation of an integer mean. In Scientists at Work (T. Dalenius et al., eds.) 205-210. Almqvist and Wiksell, Uppsala.
[135] (1971a) A convergence theorem for non-negative almost supermartingales and some applications. In Optimizing Methods in Statistics (J. Rustagi, ed.) 233-257. Academic Press, New York (with D. Siegmund).
[136] (1971b) Simultaneous estimation of large numbers of extreme quantiles. IBM Research RC3621. IBM, Yorktown Heights, NY (with A. S. Goodman and P. A. W. Lewis).
[137] (1974d) The statistical mode of thought. In The Heritage of Copernicus (J. Neyman, ed.) 419-432. MIT Press.
[138] (1974e) Sequential estimation of p in Bernoulli trials. In Studies in Probability and Statistics (E. J. Williams, ed.) 103-107. Jerusalem Acad. Press (with D. Siegmund).
[139] (1977c) Sequential decision about a normal mean. In Statistical Decision Theory and Related Topics II (S. S. Gupta, ed.) 213-221. Academic Press, New York (with T. L. Lai and D. Siegmund).
[140] (1980d) Some estimation problems for the compound Poisson distribution. In Asymptotic Theory of Statistical Tests and Estimation (I. M. Chakravarti, ed.) 251257. Academic Press, New York.
[141] (1982b) Adaptive design and the multi-period control problem. In Statistical Decision Theory and Related Topics III (S. S. Gupta, ed.) 2 103-120. Academic Press, New York (with T. L. Lai).
[142] (1982c) Estimating many variances. In Statistical Decision Theory and Related Topics III (S. S. Gupta, ed.) 2 251-261. Academic Press, New York.
[143] (1983e) Sequential design of comparative clinical trials. In Recent Advances in Statistics: Papers in Honor of Herman Chernoff on His Sixtieth Birthday (M. H. Rizvi, J. S. Rustagi and D. Siegmund, eds.) 51-68. Academic Press, New York (with T. L. Lai and D. Siegmund).
[144] (1984d) Asymptotically optimal allocation of treatments in sequential experiments. In Design of Experiments: Ranking and Selection (T. Santner and A. Tamhane, eds.) 127142. Dekker, New York (with T. L. Lai).
[145] (1986a) Maximum likelihood estimation in regression with uniform errors. In Adaptive Statistical Procedures and Related Topics (J. Van Ryzin, ed.) 365-385. IMS Hayward, CA (with C.-H. Zhang).
[146] (1986b) Comments on "The probability of reversal in contested elections." In Statistics and the Law (M. H. DeGroot, S. E. Fienberg and J. B. Kadane, eds.) 412-414. Wiley, New York.
[147] (1988c) Stochastic search in a square and on a torus. In Statistical Decision Theory and Related Topics IV (S. S. Gupta and J. O. Berger, eds.) 2 145-162. Springer, New York (with S. P. Lalley).
[148] (1988d) The u, v method of estimation. In Statistical Decision Theory and Related Topics IV (S. S. Gupta and J. O. Berger, eds.) 1 265-270. Springer, New York.
[149] (1989c) Uniformly ergodic search in a disk. In Search Theory (D. and G. Chudnovsky, eds.) 131-151. Dekker, New York (with S. P. Lalley).

Books

[150] (1941b) What is Mathematics? Oxford Univ. Press, New York (with R. Courant).
[151] (1971c) Great Expectations: The Theory of Optimal Stopping. Houghton Mifflin, Boston (with Y. S. Chow and D. Siegmund).
[152] (1975d) Introduction to Statistics. Science Research Associates, Palo Alto, CA (with J. Van Ryzin).

