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ASYMPTOTICS FOR GENERALIZED ESTIMATING EQUATIONS
WITH LARGE CLUSTER SIZES

BY MINGE XIE1 AND YANING YANG

Rutgers University

Generalized estimating equations are used in regression analysis of lon-
gitudinal data, where observations on each subject are correlated. Statistical
analysis using such methods is based on the asymptotic properties of regres-
sion parameter estimators. This paper presents asymptotic results when either
the number of independent subjects or the cluster sizes (the number of obser-
vations on each subject) or both go to infinity. A set of (information matrix
based) general conditions is developed, which leads to the weak and strong
consistency as well as the asymptotic normality of the estimators. Most of
the results are parallel to the elegant work of Fahrmeir and Kaufmann on
maximum likelihood estimators related to the generalized linear models. The
conditions for weak consistency and asymptotic normality are verified for
several examples of general interest.

1. Introduction. The class of generalized linear models [Nelder and Wedder-
burn (1972)] plays a central role in regression problems with discrete or nonnega-
tive responses. This class of regression models was extended by Liang and Zeger
(1986) to analyze longitudinal or batch correlated data. In biostatistics, the Liang
and Zeger approach is known as the Generalized Estimating Equations (GEE)
method [see, e.g., Diggle, Liang and Zeger (1996)]. In the past, attention has been
paid to methodological development and modeling issues. Most of the work relies
on the asymptotic results presented by Liang and Zeger (1986), in which exact
conditions are not specified. There are some rigorous discussions of estimating
equation approaches, which may be applicable to the GEE setting. For example,
Crowder (1986) studied the (weak) consistency and inconsistency of the solutions
of general estimating equations. Li (1996) used a minimax approach introduced by
Cramér (1946) to identify a weakly consistent root of estimating equations. More
recently, Yuan and Jennrich (1998) developed weak consistency and asymptotic
normality conditions for estimating equations along the lines of Crowder (1986).
However, the estimating equations considered in Crowder (1986), Li (1996) and
Yuan and Jennrich (1998) are not particularly tailored for longitudinal data, and
their asymptotics do not cover cases when the number of observations on each
subject goes to infinity.
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Suppose (yij ,xij ) are observations for the j th measurement on the ith subject,
j = 1,2, . . . ,mi and i = 1,2, . . . , n, where yij is a scalar response, xij is a p × 1
covariate vector, and mi is the cluster size. Assume that the observations on
different subjects are independent and the observations on the same subject are
correlated. For i = 1, . . . , n, let yi= (yi1, . . . , yimi

)T and Xi = (xi1, . . . ,ximi
)T .

Liang and Zeger (1986) used a generalized linear model to model the marginal
density of yij (with respect to a σ -finite measure ξ ),

f (yij |xij , β,φ) = exp[{yij θij − a(θij ) + b(yij )}/φ],(1)

where θij = u(ηij ), u is a known injective function and ηij = xT
ijβ . The vector β

contains the regression parameters of interest, and φ is a nuisance scale parameter.
Under such a model specification, the first two moments of yij are given by

µij (β) = E(yij |xij , β,φ) = a′(θij ),

σ 2
ij (β) = Cov(yij |xij , β,φ) = a′′(θij )φ.

(2)

Let g(t) = (a′ ◦ u)−1(t); then g(µij (β)) = xT
ijβ . The function g(t) is the link

function and its inverse function h(s) = (a′ ◦ u)(s) is called the inverse link
function. Of importance are the canonical link functions, where u(s) = s, so
g(t) = (a′)−1(t) and h(s) = a′(s).

Denote µi(β) = E(yi |Xi, β,φ) = (µi1(β), . . . ,µimi
(β))T and �i (β) =

Cov(yi|Xi , β,φ). We write Ai(β) = diag(σ 2
i1(β), . . . , σ 2

imi
(β)) and �i (β) =

diag(u′(xT
i1β), . . . , u′(xT

imi
β)), where, for any vector v, diag(v) represents a di-

agonal matrix whose diagonal elements are the elements of v. Let Di(β) =
Ai (β)�i (β)Xi and Vi(β,α) = A1/2

i (β)Ri (α)A1/2
i (β). Here Ri (α) is the “work-

ing” correlation matrix that one can choose freely, which may possibly contain a
nuisance parameter (or parameter vector) α. If Ri (α) is equal to the true (often un-
specified) correlation matrix R̄i , then Vi(β0, α) = �i (β0) at the true parameter β0.

Liang and Zeger (1986) proposed solving the following equations:

gn(β) =
n∑

i=1

gmi,i =
n∑

i=1

Di (β)T V−1
i (β,α)

(
yi − µi(β)

) = 0,(3)

which are GEE. Note that (3) and its solution β̂n is “derived without specifying
the joint distribution of a subject’s observations” [Liang and Zeger (1986)],
that is, without specifying the R̄i’s. This is an appealing feature of the GEE
approach according to Liang and Zeger (1986), since, as they pointed out, the R̄i ’s
should be considered a “nuisance” in many applications and could be “difficult
to specify.” Because (3) depends only on the first and second moments of the
marginal distributions of the individual observations, under a slightly more general
GEE model setting, the density assumption (1) can be replaced by the first two
moment assumptions, such as in (2); see Zeger and Liang (1986). In Liang and
Zeger (1986), Zeger and Liang (1986) and subsequent literature, the asymptotic
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properties of the GEE estimator β̂n are studied under the assumption that the
number of independent subjects n goes to infinity and the cluster sizes are finite
with an upper bound.

In this paper, we study asymptotic properties of the GEE estimator β̂n under a
broader setting when either the number of independent subjects n or the cluster
sizes mi go to infinity. The results, initially developed under the setting where
n goes to infinity and the maximum cluster size m = m(n) = max1≤i≤n mi , as
a function of n, can either be bounded or go to infinity, were motivated by a
consulting project in which the maximum cluster size is relatively large [see Xie
and Simpson (1998) and Xie, Simpson and Carroll (2000)]. At the suggestion of
the editors, we have also extended our discussion to cover the case when n is
bounded but m → ∞, where possible. So, in particular, we are interested in three
large sample settings:

1. n → ∞ and m = m(n) = max1≤i≤n mi is bounded above, for all n;
2. n is bounded but m → ∞;
3. m → ∞ as n → ∞.

Under setting 3, in order that the GEE estimators have good large sample
properties, restrictions on the speed at which the maximum cluster size m tends
to infinity are usually required. For convenience, we will rewrite gn(β) in (3)
as gnm(β) and β̂n as β̂nm. Also, since mi can possibly be a function of n (e.g.,
mi = n), we shall treat gm1,1,gm2,2, . . . ,gmn,n, the summands of gnm, as a double
array sequence, when n → ∞.

We present in this paper a set of (unified) information matrix-based conditions
which assures the weak consistency, the strong consistency and the asymptotic
normality of the estimator β̂nm. Most of the conditions parallel the elegant
conditions presented by Fahrmeir and Kaufmann (1985) for maximum likelihood
estimators in generalized linear models. Unlike many papers on estimating
equations [Haberman (1977), Crowder (1986) and Yuan and Jennrich (1998)] and
in the M-estimation literature [Huber (1981) and Yohai and Maronna (1979)], we
do not use a fixed-point theorem to develop our consistency results. Instead, we use
a lemma of Chen, Hu and Ying (1999) on injective functions, leading to simpler
proofs. In addition, because gnm(β) essentially contains double summations and
both of them can tend to infinity, the GEE equations gnm(β) = 0 are not a set of
M-estimation equations in the usual sense. The standard results for M-estimators
are not applicable.

Let λmin(T) (λmax(T)) denote the smallest (largest) eigenvalue of the matrix T.
Also, we denote

Mnm(β) = Cov(gnm(β)) =
n∑

i=1

DT
i (β)V−1

i (β,α)�i(β)V−1
i (β,α)Di(β),(4a)

Dnm(β) = −∂gnm(β)

∂βT
,(4b)
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Hnm(β) =
n∑

i=1

DT
i (β)V−1

i (β,α)Di(β).(4c)

The matrix Dnm(β) is not symmetric in general. Let β0 be the true regression
parameter. In the sequel, when the terms of functions of β are evaluated at β0,
we will suppress β0. For example, we let gnm = gnm(β0), Hnm = Hnm(β0) and
Mnm = Mnm(β0), etc.

To prove the existence and weak consistency of β̂nm, we present two sets of
general conditions. The first set of conditions requires the sandwich information
matrix Fnm = HnmM−1

nmHnm to be divergent and the second set of conditions
requires the marginal information matrix Hnm to be divergent at a rate faster
than τnm = max1≤i≤n{λmax(R

−1
i (α)R̄i )}, in additon to some mild local conditions;

see Section 2 for details. The second set of conditions depends on the R̄i’s only
through τnm. Also, τnm can be replaced by mλ̃nm, a term that does not depend on
the R̄i ’s, where λ̃nm = max1≤i≤n λmax(R

−1
i (α)).

We establish, as in Crowder (1986) but under a simpler set of conditions, that
the asymptotic distributions of β̂nm and gnm differ only by a scale matrix. So
the asymptotic normality of β̂nm can be established by establishing asymptotic
normality of gnm. When m goes to infinity, the rate of m versus n is critical. When
n is bounded or m goes to infinity too fast, we usually do not have asymptotic
normality of gnm or β̂nm without specifying the dependence structure on each
subject; see Example 3.1 in Section 3. When m is bounded above or tends to ∞
at a limited rate as n → ∞, we present a set of sufficient conditions to ensure the
asymptotic normality of gnm and β̂nm. This set of conditions relies mainly on the
marginal moments of the individual distributions.

Our condition for almost sure existence and strong consistency is that, when
n → ∞ and β is in a neighborhood of β0, λmin(Dnm(β)T M−1

nmDnm(β)) increases
at the rate (logn)2(1+δ) or faster, almost surely, for some small δ > 0, plus some
additional minor conditions. A difficulty arises in proving the strong consistency
because gm1,1,gm2,2, . . . ,gmn,n, the summands of gnm, should be treated as a
double array sequence and results like Lemma 2 of Wu (1981) cannot be applied.

The conditions for weak consistency and normality are verified for several
examples of general interest, including (i) linear regression models, (ii) generalized
linear models with regressors in a compact range, (iii) Poisson regression models,
(iv) models with bounded responses, for example, logistic, probit and other
categorical regression models, etc. Although our conditions may not be the best
set of conditions for each specific model, the technical assumptions are very mild
in general and are typically satisfied in practice.

Following Fahrmeir and Kaufmann (1985), we will ignore the nuisance
parameter φ in (1) and (2). The estimator β̂nm remains the same with or without φ,
and the information matrices defined in (4a)–(4c) and Fnm only change by a scale
factor that can often be estimated consistently. For our asymptotic results, we do
not need to estimate the nuisance parameter φ. Also, to simplify our discussion,
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we will not study the other nuisance parameters α that appear in the working
correlation matrix Ri(α). The standard assumption on the estimator of α is that
it is consistent, given β and φ. The results presented here can be extended to this
case by the standard arguments similar to those used in Liang and Zeger (1986).

Let � be the natural parameter space of the exponential family distributions
presented in (1), that is, � = {θ |0 <

∫
exp{yθ + b(y)}dξ(y) < +∞}. The interior

of � is denoted as �o. Throughout the paper, we assume the following regularity
assumptions:

1. β is in an admissible set B , where B is an open set in Rp.
2. xT β ∈ g(M) for all β ∈ B and x ∈ X, where M is the image of a′(�o) and X

is the set of all possible covariate variables.
3. a′(θ) is three times continuously differentiable and a′′(θ) > 0 in �o. Also, u(η)

is three times continuously differentiable and u′(η) > 0 in g(M)o.
4. Hnm and Mnm are positive definite when n or m is large.

The rest of the paper is arranged as follows. Section 2 presents general theorems
on the existence and weak consistency of the GEE estimator β̂nm. Section 3
studies the asymptotic distributions of the GEE score function gnm and the GEE
estimator β̂nm. Section 4 develops conditions to ensure the existence and strong
consistency of the GEE estimator β̂nm. Section 5 studies several examples of
general interest in practice.

2. Asymptotic existence and weak consistency of the GEE estimator. In
addition to the regularity assumptions listed at the end of Section 1, we need
some further conditions to ensure the existence and weak consistency of the GEE
estimator. These are:

(Iw) λmin(Fnm) → ∞.
(Lw) There exists a constant c0 > 0, for any r > 0, such that

P
(
DT

nm(β)M−1
nmDnm(β) ≥ c0Fnm and

Dnm(β) is nonsingular, for all β ∈ Bnm(r)
) → 1,

where Bnm(r) = {β :‖M−1/2
nm Hnm(β − β0)‖ ≤ r}.

In (Lw) (also in the sequel), the square root of a positive definite matrix
is the (unique) symmetric positive definite square root [see, e.g., Gourieroux
and Monfort (1981)]. Also, we define ordering between two square matrices as:
C1 ≥ C2 if and only if λT C1λ ≥ λT C2λ for any vector λ, ‖λ‖ = 1. The two square
matrices need not be symmetric. When both C1 and C2 are symmetric, C1 ≥ C2
is equivalent to C1 − C2 being nonnegative definite.

REMARK 1. Condition (Lw) is a local condition. One can write

Dnm(β) = Hnm(β) + Bnm(β) + Enm(β),(5)
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where Bnm(β) = E{Dnm(β)} − Hnm(β) and Enm(β) = Dnm(β) − E{Dnm(β)}.
Exact formulas for Bnm(β) and Enm(β) are provided in Appendix A. It is easy
to see that

Bnm(β0) = 0 and E{Enm(β)} = 0.

Intuitively, if Bnm(β) is continuous in β and one can apply a uniform law of large
numbers to Enm(β), Dnm(β) will be close to Hnm(β) for any β close to the true
parameter β0. As pointed out by a referee, DT

nm(β)M−1
nmDnm(β) ≥ c0Fnm in (Lw)

may be replaced by Hnm(β)M−1
nmHnm(β) ≥ c0Fnm. The conditions required for

Hnm(β) to be continuous around β0 are almost the same as those required for
Bnm(β) to be continuous around β0. Typically, one would directly verify (Lw).

REMARK 2. Clearly, Dn(β) is a random matrix. Such a random matrix was
also used by Fahrmeir and Kaufmann (1985) in their conditions (C*) and (S∗

δ )
when they specify their consistency conditions for noncanonical link generalized
linear models [their Hn(β) matrix].

THEOREM 1. Under conditions (Iw) and (Lw), there exists a sequence of
random variables β̂nm, such that

P
(
gnm(β̂nm) = 0

) → 1

and

β̂nm → β0 in probability.

PROOF. For any ε > 0, take r =
√

2p
c0ε

, define Bnm(r) as in (Lw) and let

Enm =
{
ω :‖M−1/2

nm gnm‖ ≤ inf
β∈∂Bnm(r)

∥∥M−1/2
nm

(
gnm(β) − gnm

)∥∥}
,

where ∂Bnm(r) is the boundary of sphere Bnm(r). Under the regularity as-
sumptions listed at the end of Section 1, it follows that the mapping T :β →
M−1/2

nm gnm(β) is continuously differentiable. Since Dnm(β) is nonsingular for
β ∈ Bnm(r), it is clear that T is also an injection from Bnm(r) to T (Bnm(r)).
According to Lemma A of Chen, Hu and Ying (1999), on the set Enm ∩
{Dnm(β) is nonsingular }, there exists a β̂nm ∈ Bnm(r) such that gnm(β̂nm) = 0.
Therefore, we only need to prove P (Enm) > 1 − ε for n or m large enough. After
that, we prove P (‖β̂nm − β0‖ ≤ δ) > 1 − ε, for any δ > 0.

By Taylor’s expansion,

M−1/2
nm

(
gnm(β) − gnm

) = M−1/2
nm Dnm(β̄)(β − β0)

= M−1/2
nm Dnm(β̄)H−1

nmM1/2
nm M−1/2

nm Hnm(β − β0),
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where β̄ lies between β and β0. So, for β ∈ ∂Bnm(r), we have β̄ ∈ Bnm(r) and∥∥M−1/2
nm

(
gnm(β) − gnm

)‖ ≥ rz1/2
λ ,

where zλ = λmin(M
1/2
n H−1

nmDT
nm(β̄)M−1

nmDnm(β̄)H−1
nmM1/2

nm ). By (Lw), P (zλ ≥
c0) > 1 − ε/2 when n or m is large enough. By the Chebyshev inequality, we
have

P
({‖M−1/2

nm gnm‖ ≤ c0
1/2r

}) ≥ 1 − E‖M−1/2
nm gnm‖2

c0r2
= 1 − p

c0r2
= 1 − ε

2
.

Therefore,

P (Enm) ≥ P
(‖M−1/2

nm gnm‖ ≤ rz1/2
λ

) ≥ P
({‖M−1/2

nm gnm‖ ≤ rz1/2
λ

} ∩ {zλ ≥ c0})
≥ P

({‖M−1/2
nm gnm‖ ≤ rc

1/2
0

}) + P (zλ ≥ c0) − 1 > 1 − ε.

On Enm, there exists a GEE estimator β̂nm ∈ Bnm(r). This implies ‖M−1/2
nm ×

Hnm(β̂nm − β0)‖ < r . Since λmin(Fnm) → ∞, we have r/λmin(Fnm) < δ for any
given δ, when n or m is large. Therefore, on Enm we have ‖β̂nm(ω) − β0‖ ≤ δ.
This leads to

P
(
ω :‖β̂nm(ω) − β0‖ ≤ δ

)
> 1 − ε,

when n or m is large enough. �

The matrix Mnm in conditions (Iw) and (Lw) depends on the R̄i’s, and often it
is not completely specified in a GEE model. Next, we study an alternative set of
conditions not depending on the matrix Mnm. Although the conditions still depend
on the R̄i’s, the dependence is only through τnm = max1≤i≤n{λmax(R

−1
i (α)R̄i)}

and they can be further reduced to conditions free of the R̄i’s (see Remark 5 for
further details).

Note that Mnm ≤ τnmHnm. Condition (Iw) is implied by the following
assumption:

(I∗w) (τnm)−1λmin(Hnm) → ∞.

When (Iw) is replaced by the stronger condition (I∗w), we can replace (Lw) by
the following (L∗

w), which does not depend on Mnm.

(L∗
w) There exists a constant c0, for any δ > 0 and r > 0, such that

P
(
Dnm(β) ≥ c0Hnm and Dnm(β) is nonsingular, for β ∈ B∗

nm(r)
) → 1,

where B∗
nm(r) = {β :‖H1/2

nm (β − β0)‖ ≤ (τnm)1/2r}.

REMARK 3. In response to a comment by a referee, we note that the
eigenvalues of R−1

i (α)R̄i are the same as the eigenvalues of R−1/2
i (α)R̄iR

−1/2
i (α).
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This can be proved using, for example, Theorem 3.2(d) of Schott (1997), page 88.
By the same argument, the eigenvalues of M−1

nmHnm and M−1/2
nm HnmM−1/2

nm are the

same, and the same applies to H−1
nmMnm and H−1/2

nm MnmH−1/2
nm . In the sequel, we’ll

use these results without further comment.

REMARK 4. When Dnm(β) is positive definite, DT
nm(β)M−1

nmDnm(β) ≥
c0Fnm implies Dnm(β) ≥ c

1/2
0 Hnm. This is an immediate result from a basic matrix

theorem: For p × p matrices A, B and G, if A and G are positive definite and
AGA ≥ BGB , then A ≥ B [Ni (1984), Theorem 2.5, page 107]. So, when Dnm(β)

is positive definite, the statement in (L∗
w) is weaker than the statement in (Lw).

However, in general, Dnm(β) is not symmetric and Bn(r) ⊂ B∗
n(r), hence, neither

(Lw) nor (L∗
w) can be implied by the other.

THEOREM 2. The results of Theorem 1 hold if (Iw) and (Lw) are replaced by
(I∗w) and (L∗

w), respectively.

We first need to prove a lemma.

LEMMA 1. Suppose C is a p × p matrix. For any p × 1 vector λ, ‖λ‖ = 1,
we have λT CT Cλ ≥ (λT Cλ)2.

PROOF. For any given p×1 vector λ with λ, ‖λ‖ = 1, construct an orthogonal
matrix � such that its first column is λ. Denote b = �T Cλ. The first element of b
is then b1 = λT Cλ and Cλ = �b. So, λT CT Cλ = bT b ≥ b2

1 = (λT Cλ)2. �

PROOF OF THEOREM 2. The proof is the same as the proof of Theorem 1,
except for a few changes. We consider here the mapping T ∗ :β → H−1/2

nm gnm(β),
instead of T :β → M−1/2

nm gnm(β). In addition, we replace the ball Bnm(r) by
B∗

nm(r), replace the set Enm by

E∗
nm =

{
ω : ‖H−1/2

nm gnm‖ ≤ inf
β∈∂B∗

nm(r)

∥∥H−1/2
nm

(
gnm(β) − gnm

)∥∥}
with r =

√
2p

c2
0ε

, and replace the zλ by z∗
λ = λmin(H

1/2
nm DT

nm(β̄)H−1
nmDnm(β̄)H−1/2

nm ).

By Taylor’s expansion, we have∥∥H−1/2
nm

(
gnm(β) − gnm

)∥∥ ≥ r(τnm)1/2(z∗
λ)

1/2,

for β ∈ ∂B∗
nm(r) and β̄ between β and β0. By Lemma 1 and (L∗

w), we know that
z∗
λ > c2

0. By the Chebyshev inequality, we have

P
(‖H−1/2

nm gnm‖ ≤ c0r(τnm)1/2)
≥ 1 − E‖H−1/2

nm gnm‖2

c2
0r

2τnm

= 1 − tr(H−1
nmMnm)

c2
0r

2τnm

≥ 1 − ε

2
.
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With these changes, the proof proceeds exactly the same as that of Theorem 1. �

REMARK 5. The results in Theorem 2 still hold if τnm in (I∗w) and (L∗
w) is

replaced by mλ̃nm or λmax(H−1
nmMnm), where λ̃nm = max1≤i≤n λmax(R

−1
i (α)).

The proof is similar to that of Theorem 2. Note, when τnm is replaced by mλ̃nm,
the conditions (I∗w) and (L∗

w) only involve terms that are related to the marginal
distributions of the individual responses.

Before we end this section, let us give a brief discussion of the conditions (Iw)
and (I∗w) on the information matrices. In particular, we examine the divergence
rate of the information matrices Fnm and Hnm in these conditions. Clearly, the
rate depends on the correlation structure of clusters, the choice of the working
correlation matrix, the covariates design matrix as well as the assumed marginal
model, although the correlation structures may not be that critical for consistency
when n → ∞. Generally speaking, in the case when n → ∞, with some mild
restrictions on xij , there exists a set of working correlation matrices Ri ’s such
that both (τnm)−1λmin(Hnm) in (I∗w) and λmin(Fnm) in (Iw) diverge at the rate n

or faster, regardless of the dependence structure for each cluster and whether
m = m(n) → ∞ or not; the rates can be nm, depending on the correlation structure
of clusters. In the case when n is bounded and m → ∞, our theorems can still
apply. However, in order to obtain a consistent GEE estimator in this case, it is
necessary to impose restrictions on the correlation structure. We use the following
example of a simple linear regression model to illustrate some of the details. Note,
conditions (Lw) and (L∗

w) are trivially true for this model.

EXAMPLE 2.1. Assume the random response yij follows a marginal regres-
sion model,

yij = xijβ + εij for j = 1,2, . . . ,m, i = 1,2, . . . , n,(6)

where E(εij ) = 0 and, without loss of generality and to simplify our notation,
we assume that var(εij ) = 1 and the xij are scalars. The observations between
clusters are independent and the observations within a cluster may or may not be
correlated. The random effects model yij = µ + bi + ε′

ij , with random effect bi

and independent error ε′
ij , is a special case of model (6). We assume that the xij

are from a compact set and
∑n

i=1 xT
i xi = ∑n

i=1
∑m

j=1 x2
ij is of order nm. Denote

ρ̄i;jj ′ = corr(εij , εij ′), so ρ̄i;jj ′ is the (j, j ′) element of R̄i , for j �= j ′. Under the
current setting, Hnm = ∑n

i=1 xT
i Ri

−1(α)xi , Mnm = ∑n
i=1 xT

i Ri
−1(α)R̄iRi

−1(α)xi

and Fnm = (Hnm)2/Mnm.
When n → ∞, no matter what value ρ̄i;jj ′ is and whether m tends to infinity or

not, by taking the working correlation matrices Ri(α)’s to be an identity matrix,
we always have H−1

nm = O((nm)−1). Therefore, the rate of (τnm)−1Hnm in (I∗w) is
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at least n or faster. Since (I∗w) implies (Iw), Fnm in (Iw) diverges at the rate of n or
faster. When m tends to infinity and with some special correlation structures, we
can get even faster divergence. For example, in the extreme case that ρ̄i;jj ′ ≡ 0, by
taking the R̄i’s to be an identity matrix, both Hnm (now τnm = 1) in (I∗w) and Fnm

in (Iw) diverge at the order of nm.
Suppose now the number of clusters n is finite. Without loss of generality,

one can assume n = 1. In the case when ρ̄1;jj ′ ≡ 1, we essentially have only
one random observation, (τnm)−1Hnm and Fnm are bounded, and we usually
cannot get a consistent GEE estimator. Suppose, however, maxj �=j ′ |ρ1;jj ′ | is
uniformly bounded away from 1. In particular, if ρ1;jj ′ ≡ ρ for 0 < ρ < 1, we
can easily conclude that there exists a consistent GEE estimator if and only
if x1j �≡ x1j ′ , for some j �= j ′. Further, when |ρ1;jj ′ | ≤ ρ|j−j ′| for j �= j ′ and
limk→∞ ρk = 0, taking R1(α) = I, we have that Hm diverges at the order of m and
Mm ≤ 2 max{|x11|2, . . . , |x1m|2}∑m

k=0(m− k)ρk = o(m2). So Fm diverges and we
can always find a consistent GEE estimator in this case.

3. Asymptotic distribution of the GEE estimator. The asymptotic distribu-
tion of the GEE estimator β̂nm is closely related to the asymptotic distribution of
the score function gnm. The following condition is used in establishing the rela-
tionship.

(CC) For any given r > 0 and δ > 0,

P

(
sup

β∈B∗
nm(r)

‖H−1/2
nm Dnm(β)H−1/2

nm − I‖ < δ

)
→ 1,

where B∗
nm(r) is defined in (L∗

w) and the matrix norm is the Euclidean matrix
norm.

Note (CC) implies (L∗
w). We have the following result.

THEOREM 3. Suppose that conditions (Iw), (Lw) and (CC) hold, or the
conditions (I∗w) and (CC) hold. Then, there exists a sequence of solutions β̂nm

to the GEE equation in B∗
nm(r) such that M−1/2

nm Hnm(β̂nm − β0) and M−1/2
nm gnm

are asymptotically identically distributed.

PROOF. By Theorem 1 or Theorem 2, there exists a GEE solution β̂nm such
that β̂nm ∈ Bnm(r) or β̂nm ∈ B∗

nm(r), respectively. Since Bnm(r) ⊂ B∗
nm(r), β̂nm ∈

B∗
nm(r) in either case. By Taylor’s expansion, there exists β̄nm ∈ B∗

nm(r), which
lies between β̂nm and β0, such that

H−1/2
nm gnm = H−1/2

nm Dnm(β̄nm)(β̂nm − β0)

= {
H−1/2

nm Dnm(β̄nm)H−1/2
nm

}
H1/2

nm (β̂nm − β0).
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By (CC), the pair H1/2
nm (β̂nm − β0) and H−1/2

nm gnm are asymptotically identically
distributed. Therefore, the pair M−1/2

nm gnm and M−1/2
nm Hnm(β̂nm − β0) are asymp-

totically identically distributed. �

In order to establish the asymptotic normality of β̂nm using Theorem 3, we
need to establish that gnm is asymptotically normally distributed. Since gnm is
a summation of n independent terms, when n → ∞, one immediate sufficient
condition is the Lindeberg condition [see, e.g., Billingsley (1986), page 369] on

the double array series Znm;i = λT M−1/2
nm DT

i V−1
i (yi −µi) = λT M−1/2

nm gmi,i where
λ is any p × 1 vector with ‖λ‖ = 1. However, direct verification of the Lindeberg
condition for the Znm;i requires knowledge of the R̄i ’s, which is usually unknown
in a GEE model. It is natural to ask the question whether we can establish the
asymptotic normality for gnm without specifying the R̄i ’s. If m tends to infinity
too fast compared to n (this includes the case when n is bounded and m → ∞),
the answer is no. In these cases, one or a few of the summands in gnm can dominate
the rest. Example 3.1 below demonstrates that, when m tends to infinity too fast,
gnm (however normalized) may not converge to a normal distribution, even if the
marginal distributions of the responses are fully specified and have nice properties.

EXAMPLE 3.1. Suppose {Yij , j = 1, . . . ,m}, for i = 1, . . . , n, are n in-
dependent batches of random variables. The marginal distribution of Yij is a
Poisson(µij ) distribution with µij = exp(xT

ijβ), where xij ≡ 1 (scalar). The m

observations in the first cluster are identical, and the observations within the other
n − 1 clusters are independent. If we take Ri = I, then the GEE score function is

gnm(β) = m(y11 − eβ) +
n∑

i=2

m∑
j=1

(yij − eβ).

All terms in the above score function are independent of each other. When
m/n → ∞, the first term is dominant and gnm(β) has asymptotically a centered
Poisson distribution (after proper normalization). When m/n → c ∈ (0,∞),
gnm(β) is asymptotically a linear combination of a centered Poisson distribution
and a Gaussian distribution. In fact, gnm(β) is asymptotically normally distributed,
if and only if m/n → 0.

When n → ∞, if m is bounded or m → ∞ at a limited rate, we can establish
asymptotic normality for gnm. Next, we present such a result.

For t > 0, let ψ(t) be a positive nondecreasing function such that limt→∞ ψ(t)

= ∞ and tψ(t) is a convex function. Examples are ψ(t) = et , or t1/δ for a δ > 0,
etc. Also, we denote cnm = λmax(M−1

nmHnm) and

γ (D)
nm = max

1≤i≤n
λmax(H−1/2

nm DT
i V−1

i DiH−1/2
nm ).

The following lemma holds.
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LEMMA 2. Under the GEE setting, suppose there exist a constant K

(independent of n) and an integer n0 such that, for j = 1,2, . . . ,mi and i =
1,2, . . . n, when n > n0,

E
[
y∗
ij

2
ψ(y∗

ij
2
)
] ≤ K,

where y∗
i = (y∗

i1, . . . , y
∗
imi

)T = A−1/2
i (yi − µi). In addition, for any ε > 0,

cnmλ̃nmm

[
ψ

(
ε2

cnmλ̃nmmγ
(D)
nm

)]−1

→ 0.(7)

Then, when n → ∞, we have

M−1/2
nm gnm → N(0, I) in distribution.

PROOF. We only need to verify the Lindeberg condition for the double arrays
Znm,i = λT M−1/2

nm DT
i V−1

i (yi − µi), for any given p × 1 vector λ, ‖λ‖ = 1. By the
Cauchy–Schwarz inequality,

Z2
nm,i ≤ λmax(M−1

nmHnm)λT H−1/2
nm DT

i V−1
i DiH−1/2

nm λ (yi − µi)
T V−1

i (yi − µi)

≤ cnmλ̃nmγ
(D)
nm,i y∗

i
T y∗

i .

Here, γ
(D)
nm = λT H−1/2

nm DT
i V−1

i DiH
−1/2
nm λ. Let I(c) be the indicator function of the

set c. By the definition of ψ(t) and the Jensen inequality, we have

n∑
i=1

E
[
Z2

nm,iI(|Znm,i | > ε)
]

≤
n∑

i=1

cnmλ̃nmγ
(D)
nm,iE

[
y∗
i
T y∗

i I

{
y∗
i
T y∗

i >
ε2

cnmλ̃nmγ
(D)
nm,i

}]

≤ cnmλ̃nm

n∑
i=1

miγ
(D)
nm,iE

{∑mi

j=1 y∗
ij

2

mi

ψ

(∑mi

j=1 y∗
ij

2

mi

)}

×
{
ψ

(
ε2

cnmλ̃nmmiγ
(D)
nm,i

)}−1

≤ cnmλ̃nmm

n∑
i=1

γ
(D)
nm,i

{∑mi

j=1 E{y∗
ij

2ψ(y∗
ij

2)}
mi

}{
ψ

(
ε2

cnmλ̃nmmγ
(D)
nm

)}−1

≤ Kcnmλ̃nm

{
ψ

(
ε2

cnmλ̃nmmγ
(D)
nm

)}−1

→ 0.
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Thus, the lemma holds, by the Lindeberg central limit theorem and the Cramér–
Wold theorem. �

We introduce the following condition (Nδ). Aside from cnm, condition (Nδ)
only involves terms that are related to the marginal distributions of individual
observations.

(Nδ) There exists a δ > 0, such that E(y∗
ij )

2+(2/δ) is uniformly bounded above,
and

(cnmλ̃nmm)1+δγ (D)
nm → 0.(8)

The next theorem proves asymptotic normality of the GEE estimator under
condition (Nδ).

THEOREM 4. Suppose the marginal distribution of each individual observa-
tion has a density of the form from (1). If condition (Nδ) is satisfied, then, when
n → ∞, we have,

M−1/2
nm gnm → N(0, I) in distribution.

Further, under the conditions in Theorem 3, there exists a sequence of weakly
consistent GEE estimators β̂nm and

M−1/2
nm Hnm(β̂nm − β0) → N(0, I) in distribution.(9)

PROOF. Taking ψ(t) = t1/δ in Lemma 2, we can get the first result. The
second result follows immediately from Theorem 3. �

REMARK 6. In many cases, γ
(D)
nm → 0 at the rate O(n−1). Condition (8)

imposes a restriction on the rate of m → ∞, as n → ∞.

REMARK 7. In the nonlongitudinal case with m1 ≡ m2 ≡ · · · ≡ mn ≡ 1,
(8) reduces to γ

(D)
nm → 0. This condition is equivalent to the infinitesimal array

condition in Feller’s theorem [see, e.g., Billingsley (1986), pages 373 and 374].
Also, the moment restriction in (Nδ) is essentially the Lyapounov condition that
maxij E(y∗

ij )
2+δ′

is bounded above, where δ′ = 2/δ [see also, e.g., Billingsley
(1986), page 371].

REMARK 8. The normalization term in (9) involves Mnm, which depends on
the unknown covariance matrix �i . Following Liang and Zeger (1986), we suggest
estimating Mnm by

M̂nm =
n∑

i=1

DT
i (β)V−1

i (β,α)�̂iV
−1
i (β,α)Di(β)

∣∣
β=β̂

,
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where �̂i = (yi − µi(β̂))(yi − µi(β̂))T . Using Theorem 1 and Corollary 2
of Section 10.1 in Chow and Teicher [(1988), pages 338 and 340], one can
prove that under conditions such as those in Theorem 4, M−1/2

nm M̂nmM−1/2
nm → I

(elementwise) in probability as n → ∞. Details of its proof are omitted.

4. Asymptotic existence and strong consistency. As mentioned in the
introduction, when n → ∞, we treat the summands gm1,1, gm2,2, . . . , gmn,n of
the score function gnm as a double array sequence. It is well known that the strong
law of large numbers does not hold in general for an independent double array
sequence [see Romano and Siegel (1986), pages 112–114]. The next lemma gives
conditions under which a strong law of large numbers holds for double arrays.
It can be viewed as an extension of Lemma 2 of Wu (1981) for single array
sequences. We will use this result to give a strong consistency result for the GEE
estimators when n → ∞.

LEMMA 3. Consider a double array sequence,

Z11

Z21,Z22

. . . . . .

Zn1,Zn2, . . . ,Znn

. . . . . . ,

where, for each n, Zn1,Zn2, . . . ,Znn are independent and EZn,j = 0, j =
1,2, . . . , n. Suppose there is a constant c0 > 0 (independent of n), such that

lim sup
n→∞

max1≤i≤n |Zn,i |
sn

≤ c0 a.s.,(10)

where s2
n = ∑n

i=1 σ 2
n,i , σ 2

n,i = var(Zn,i). Let φ(n) be a positive nondecreasing
function satisfying

φ(n)/ logn → ∞ when n → ∞.(11)

Then, for an An → ∞ which satisfies

lim sup
n→∞

snφ(n)

An

= K < ∞,(12)

we have

lim
n→+∞

1

An

n∑
i=1

Zn,i = 0 a.s.

The proof of Lemma 3 is quite technical and can be found in Appendix B.
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REMARK 9. In Lemma 2 of Wu (1981), (12) is replaced by lim supn→∞ s1+δ
n /

An = K < ∞. In a double array sequence, φ(n) cannot be replaced by sδ
n and, also,

φ(n) should tend to ∞ faster than log n. This can be seen in a simple example:
Suppose, for each given n, Zn,i , i = 1, . . . , n, are n independent random variables,
with (Zn,i + 1/n) following a Gamma(n−1,1) distribution. In addition, the rows
of the array {Zn,i, 1 ≤ i ≤ n}, for n = 1,2, . . . , are independent. In this example,
sn = 1 and (10) can be directly verified. Because

∑n
i=1 Zn,i + 1 follows an

exponential distribution,
∑∞

n=1 P (|∑n
i=1 Zn,i| > logn) ≥ e−1 ∑∞

n=1(1/n) = ∞.
Thus, by the second Borel–Cantelli lemma,

∑n
i=1 Zn,i/ logn does not converge

to 0 almost surely. This suggests that
∑n

i=1 Zn,i/An does not converge to 0 almost
surely, for either An = s1+δ

n or An = snφ(n) where φ(n) = O(log n).

REMARK 10. Condition (10) cannot be omitted. To see this, we use a
counterexample given in Romano and Siegel [(1986), page 114, Example 5.41(ii)]:
Suppose, for each given n, Zn,i , i = 1, . . . , n, are n independent identically
distributed random variables taking on the values n, 0 and −n with probabilities
1/(2n2), 1 − 1/n2 and 1/(2n2), respectively. In addition, the rows of the
array {Zn,i, 1 ≤ i ≤ n} for n = 1,2, . . . are independent. Note that EZn,i = 0,
var(Zn,i) = 1, s2

n = n and (10) is violated. But (11) and (12) hold for φ(n) =
(log n)1+δ , δ > 0 and An = n. Romano and Siegel showed, however, that∑n

i=1 Zn,i/n does not converge to 0 almost surely.
Condition (10) places a restriction on the tails of the random variables in the

double array sequence. We call such kind of sequence a strong infinitesimal double
array sequence. The definition provided next is for random vectors.

DEFINITION 4.1. An independent double array sequence of p × 1 random
vectors {zn1, zn2, . . . , znn}, for n = 1,2, . . . , is said to form a strong infinitesimal
double array sequence if

lim sup
n→∞

max1≤i≤n ‖zn,i − Ezn,i‖
λ

1/2
min{

∑n
i=1 var(zn,i)}

≤ c0 a.s.(13)

REMARK 11. When p = 1, zn,i is a random variable, denote Zn,i , and (13)
becomes

lim sup
n→∞

max1≤i≤n |Zn,i − EZn,i |
sn

≤ c0 a.s.,(13)′

where s2
n = ∑n

i=1 σ 2
n,i and σ 2

n,i = var(Zn,i). Requirement (13)′ is the same as (10).
By the Borel–Cantelli lemma, either

E{max1≤i≤n |Zn,i − EZn,i |k}
snk

= O

(
1

n1+ε

)
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or

max1≤i≤n{E|Zn,i − EZn,i |k}
sn

k
= O

(
1

n2+ε

)
,

for some k > 2 and ε > 0, is sufficient to ensure (13)′. Note that, for an
independent single array sequence {Z1,Z2, . . . ,Zn, . . .}, s2

n is a summation of
(although not always) order n. In such a case, if sup1≤i≤∞ E|Zi − EZi |4+ε has
an upper bound for some ε > 0, then {Z1,Z2, . . . ,Zn, . . .} is a strong infinitesimal
double array sequence.

Before presenting our main result, we first prove the following lemma.

LEMMA 4. If gmi,i , i = 1,2, . . . , n, the summands of the GEE score func-
tion gnm, form a strong infinitesimal double array sequence, then

lim
n→∞

M−1/2
nm gnm

(logn)1+δ
= 0 a.s.

where the convergence is elementwise.

PROOF. Without loss of generality, we look at the first element of the p × 1
vector M−1/2

nm gnm. We define g(n)
i = gmi,i and Zn,i = eT

1 M−1/2
nm g(n)

i where the p×1
vector e1 = (1,0, . . . ,0)T . Then we have EZn,i = 0 and s2

n = ∑n
i=1 var(Zn,i) = 1.

Since |Zn,i |2 ≤ λmax(M−1
nm)‖g(n)

i ‖2, max1≤i≤n |Zn,i | ≤ (max1≤i≤n ‖g(n)
i ‖)/

λ
1/2
min(Mnm). The double array {Zn,i , for i = 1,2, . . . , n; n = 1,2, . . .} satis-

fies (10). By Lemma 3, taking φ(n) = (log n)1+δ and An = snφ(n), we have

lim
n→∞

eT
1 M−1/2

nm gnm

(log n)1+δ
= 0 a.s. �

To prove the existence and strong consistency of the GEE estimator when
n → ∞, we employ the following local condition.

(Ls) In a neighborhood of β0, say N , there exists a constant c0 > 0 (independent
of n) and δ > 0 such that, when n → ∞,

λmin
(
Dnm(β)T M−1

nmDnm(β)
) ≥ c0(logn)2(1+δ)

and

Dnm(β) is nonsingular a.s. for β ∈ N .

REMARK 12. When Dnm(β) is symmetric, (Ls) is implied by

λmin{Dnm(β)} ≥ c0λ
1/2
max(Mnm)(logn)1+δ a.s.
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This is comparable to the strong consistency conditions (Sδ) and (S∗
δ ) of Fahrmeir

and Kaufmann (1985) for multivariate generalized linear models [note, in their
setting, Dn(β) is symmetric and Hn ≡ Mn ≡ Fn]. The difference is that, in
their conditions, (logn)1+δ is replaced by λδ

max(Mn). Under our setting, the term
(log n)1+δ is unavoidable; see Remark 9.

Now, we state our main theorem for existence and strong consistency of the
GEE estimator.

THEOREM 5. Suppose gmi,i , i = 1,2, . . . , n, the summands of the GEE
score function gnm, form a strong infinitesimal double array sequence. Under
conditions (Ls), there exist a sequence of random variables β̂nm and a random
number n0, such that

P
(
gnm(β̂nm) = 0, for all n ≥ n0

) = 1,

and when n → ∞,

β̂nm → β a.s.

PROOF. For any ε > 0, define B(ε) = {β :‖β − β0‖ ≤ ε}. By Taylor’s
expansion, there exists a β̄ between β and β0 such that M−1/2

nm (gnm(β) − gnm) =
M−1/2

nm Dnm(β̄)(β − β0). Therefore,

inf
β∈∂B(ε)

∥∥M−1/2
nm

(
gnm(β) − gnm

)∥∥ ≥ ε inf
β∈B(ε)

λ
1/2
min

(
Dnm(β)T M−1

nmDnm(β)
)
.(14)

By Lemma 4, we have

‖M−1/2
nm gnm‖

(logn)1+δ
→ 0 when n → ∞ a.s.

So, by (Ls ), when n is sufficiently large,

‖M−1/2
nm gnm‖ ≤ inf

β∈∂Bnm(r)

∥∥M−1/2
nm

(
gnm(β) − gnm

)∥∥ a.s.(15)

By (Ls), Dnm(β) is nonsingular. Under the regularity assumptions listed at the
end of Section 1, the mapping T :β → M−1/2

nm gnm(β) is a smooth injection from
Bnm(r) to T (Bnm(r)). According to Lemma A of Chen, Hu and Ying (1999), (15)
implies that almost surely there exists a β̂nm ∈ B(ε) such that gnm(β̂nm) = 0. Note,
β̂nm ∈ B(ε) implies ‖β̂nm −β0‖ < ε and, hence, the strong consistency conclusion
also follows. �

As in Section 2.1, condition (Ls) can be reduced to be stated only in terms of
Hnm and Dnm(β).
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(L∗
s ) In a neighborhood of β0, say N , there exist a constant c0 > 0 and some δ > 0,

such that, when n → ∞,

λmin
(
Dnm(β)T H−1

nmDnm(β)
) ≥ c0τnm(logn)2(1+δ)

and

Dnm(β) is nonsingular a.s. for β ∈ N .

Similar to Remark 11, when Dnm(β) is symmetric, (L∗
s ) is implied by

λmin{Dnm(β)} ≥ c0λ
1/2
max(Hnm)(τnm)1/2(log n)1+δ a.s. for β ∈ N .

THEOREM 6. The results of Theorem 5 hold if condition (Ls) is replaced
by (L∗

s ).

PROOF. The proof is similar to that of Theorem 5, except that we prove
the inequality ‖H−1/2

nm gnm‖ ≤ infβ∈∂B(ε) ‖H−1/2
nm (gnm(β) − gnm)‖ here. Details are

omitted. �

In a special case when m = m(n) is bounded above as n → ∞, to get a strong
consistency result, Lemma 2 of Wu (1981) can be used, along with the following
two alternative conditions:

(Is )sp λmin(Mn) → ∞ for some δ > 0, when n → ∞.
(Ls)sp In a neighborhood of β0, say N , there exists a constant c0 > 0, independent

of n, such that, when n → ∞, for any p × 1 vector λ, ‖λ‖ = 1,

λT Dn(β)λ ≥ c0λ
(1/2)+δ
max (Mn) a.s. for β ∈ N.

THEOREM 7. Suppose m = max1≤i≤n mi is bounded above by a finite
constant, independent of n. Under conditions (Is )sp and (Ls)sp , there exist a
sequence of random variables β̂n and a random number n0, such that,

P
(
gn(β̂n) = 0, for all n ≥ n0

) = 1

and when n → ∞,

β̂n → β a.s.

The proof is similar to the proofs of Theorem 5 and Theorem 6, and is therefore
omitted.

Finally, before we end this section, let us briefly consider the case when n is
bounded and m → ∞. Without loss of generality, we can assume that n = 1, that
is, we only have one single cluster. In this case, the score g1m is a weighted sum of
dependent random variables. We need to establish a strong law of large numbers
similar to Lemma 2 of Wu (1981) for the weighted sum of dependent variables. To
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do so, obviously, we need to make assumptions on the dependence structure. There
are many ways to do so. For example, one could impose martingale assumptions
or mixing conditions on the dependent sequence. Or, one can use Serfling’s (1970)
stability results where only moment conditions are assumed. This is a topic that
deserves further development. As the first step in this development, we provide
below a result for a special set of dependent sequences that is fairly common.
Here, the goal is to provide simple and “easy to verify” conditions, rather than the
best set of conditions.

Suppose, for j = 1,2, . . . ,m, yj is the j th observation of a cluster of
m dependent random variables, and µj and σj are its marginal mean and marginal
standard deviation, respectively. Denote ej = (yj − µj)/σj . We assume that, for
any j < j ′,

Ee2
j e

2
j ′ ≤ ρj ′−j (Ee4

jEe4
j ′)1/2,(16)

where
∑+∞

k=1 ρ
1/2
k < +∞. We set ρ0 = 1. We have the following lemma.

LEMMA 5. Suppose e1, . . . , em are a dependent sequence satisfying (16) and
Ee4

j ≤ M < ∞, for j = 1, . . . ,m. If we have a set of double array coefficients
{am,j , j = 1,2, . . . ,m}, a constant K and an integer l0, such that

m∑
j=1

a2
m,j < K < +∞ for m = l0, l0 + 1, . . . ,

then we have

lim
m→+∞

∑m
j=1 am,j ej

m1/4(logm)(1+δ)/4
= 0.

The proof of Lemma 5 can be found in Appendix B.
In the case when n = 1 and m → ∞, we employ the following condition to

assure the almost sure existence and strong consistency of a GEE estimator.

(Ls)Bm In a neighborhood of β0, say N , there exists a constant c0 > 0,
independent of m, such that, when m → ∞,

λmin
(
D1m(β)T M−1

1mD1m(β)
) ≥ c0m

1/2(log m)(1+δ)/2

and

D1m(β) is nonsingular almost surely.

THEOREM 8. Suppose in a single cluster the dependent responses satisfy
(16) and the fourth marginal moments of (y1j − µ1j )/σ1j are bounded above. If
λmin(R̄1) ≥ c1, for some constant c1 > 0 independent of m, and condition (Ls)Bm
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holds, then there exist a sequence of random variables β̂m and a random number
m0, such that

P
(
g1m(β) = 0, for all m ≥ m0

) = 1

and when m → +∞,

β̂m → β0 a.s.

PROOF. The proof is similar to that of Theorem 5, except that we use Lemma 5
instead of Lemmas 3 and 4. In Lemma 5, for any given p × 1 vector λ, ‖λ‖ = 1,
we take am,j to be the j th element of the 1 × m vector λT M−1/2

1m D1V
−1
1 (α)A

1/2
1 .

So
∑n

i=1 a2
m,j = λT M−1/2

1m X1�1A
1/2
1 R−1

1 R−1
1 A

1/2
1 �1X1M−1/2

1m λ ≤ λmax(R̄−1) ≤
c1

−1 < ∞. From Lemma 5, we have

lim sup
m→∞

‖M−1
1mgm(β)‖

m1/4(log m)(1+δ)/4 = 0.

The rest of the proof proceeds as the proof of Theorem 5 from (14) on. �

5. Examples. In this section, we first consider the linear regression model
and show how consistency and asymptotic normality can be deduced in this
special case. Subsequently, we provide some corollaries of general interest for
cases of practical importance, such as (i) marginal generalized linear models with
compact covariate set, (ii) marginal Poisson regression models and (iii) marginal
generalized linear models with bounded responses (binomial or polytomous
regression models). Poisson, binomial and polytomous regressions are the most
commonly used models in categorical data analysis, and the assumption of
covariate regressors in a compact set is satisfied in many applications.

EXAMPLE 5.1 (Linear regression model). Suppose the j th individual re-
sponse in the ith cluster follows a linear regression model,

yij = xT
ijβ + εij ,

where εij need not have a normal distribution. Without loss of generality, we
assume Eεij = 0 and var(εij ) = 1. It is easy to see that the score function is

gnm(β) =
n∑

i=1

XT
i Ri

−1(α)(yi − Xiβ),

and the information matrices in (4a)–(4c) are

Dnm(β) = Hnm(β) = Hnm =
n∑

i=1

XT
i Ri

−1(α)Xi
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and

Mnm =
n∑

i=1

XT
i Ri

−1(α)R̄iRi
−1(α)Xi .

Under this model, conditions (Lw), (L∗
w) and (CC) are trivially true. By

Theorems 1, 2 and 3, if either (Iw) or (I∗w) is true, then there exists a consistent

GEE estimator β̂nm, and M−1/2
nm Hnm(β̂nm −β0) and M−1/2

nm gnm are asymptotically
identically distributed. Although conditions (Iw) and (I∗w) allow no general
reduction, both Mn and Hn have a simpler form and they do not depend on the
value of β0.

If εi = (εi1, . . . , εimi
)T , for i = 1, . . . , n, are normal random vectors, M−1/2

nm ×
Hnm(β̂nm −β0) will follow a standard multivariate normal distribution. Otherwise,
we can use condition (Nδ) to ensure the asymptotic normality of the GEE
estimator β̂nm. In particular, (8) can be implied by

(cnmm)1+δλ̃2+δ
nm max

1≤i≤n
λmax(XiH−1

nmXT
i ) → 0 for some δ > 0.(17)

In the nonlongitudinal case, each subject only has one observation (i.e., m1 ≡
m2 ≡ · · · ≡ mn ≡ 1) and Xi is a 1 × p vector xT

i . In this case, both (Iw) and (I∗w)
reduce to

λmin

(
n∑

i=1

xixT
i

)
→ ∞

and (17) reduces to

γ̃n = max
1≤i≤n

xT
i

(
n∑

i=1

xixT
i

)−1

xi → 0.

These are exactly the conditions for consistency and normality of least squares
estimators in the standard linear regression models [cf. Eicker (1967)].

Next, we provide several corollaries of general interest for some cases of
practical importance. Unlike the case of the linear regression models, we need to
verify conditions (Lw) or (L∗

w), as well as condition (CC). The verification of (Lw),
(L∗

w) and (CC) involves lengthy calculations in most cases. To save computing
effort, we provide in Appendix C (Theorems A1 and A2) sufficient conditions
for (Lw), (L∗

w) and (CC) under a very general setting. In particular, we make the
following (smoothness) assumption on the functions a(θ) and h(η):

(AH) k[l]
nm, for l = 1,2,3,4, are bounded, where we denote

k[1]
nm = sup

β∈B∗
n(r)

max
ij

{∣∣∣∣a(3)(θij )

a′′(θij )

∣∣∣∣},
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k[2]
nm = sup

β∈B∗
n(r)

max
ij

{∣∣∣∣ h′′(ηij )

{h′(ηij )}2 a′′(θij )

∣∣∣∣},

k[3]
nm = sup

β∈B∗
n(r)

max
ij

{∣∣∣∣a(4)(θij )

a′′(θij )

∣∣∣∣}
and

k[4]
nm = sup

β∈B∗
n(r)

max
ij

{∣∣∣∣ h(3)(ηij )

{h′(ηij )}3
{a′′(θij )}2

∣∣∣∣}.

Assumption (AH) is usually satisfied in commonly used models. In models with
canonical link functions, k[1]

nm ≡ k[2]
nm and k[3]

nm ≡ k[4]
nm. Theorems A1 and A2 are

developed under assumption (AH) and they are used to prove the corollaries in
this section.

Define

γ (0)
nm = max

1≤i≤n
max

1≤j≤mi

xT
ij H−1

nmxij .

We also adopt the notation

κnm = max
i,j

{
u′(xT

ijβ0)
}2

and πnm = max1≤i≤n{λmax(R
−1
i (α))}

min1≤i≤n{λmin(R
−1
i (α))} .

In models with canonical link functions, κnm ≡ 1. When Ri (α) ≡ I, we have
πnm = 1.

First, we consider the case of generalized linear models with compact
regressors. We introduce the following assumptions:

(C1) The covariates {xij , j = 1, . . . ,mi, i = 1, . . . , n}, for n = 1,2, . . . , are in a
compact set X with xT β ∈ �o for any x ∈ X and β ∈ B .

(C2) (i) τnmλmax(H−1
nm) → 0;

(ii) π2
nmτnmmγ

(0)
nm → 0.

(C3) (cnm)1+δ(̃λnmm)2+δγ
(0)
nm → 0 for some δ > 0.

We have the following corollary.

COROLLARY 1 (Generalized linear model with compact regressors). Suppose
assumptions (C1) and (C2) hold.

(a) There exists a sequence of random variables β̂nm such that β̂nm → β0 in
probability, and M−1/2

nm Hnm(β̂nm − β0) and M−1/2
nm gnm have the same asymptotic

distribution.
(b) If, further, (C3) is true, then, when n → ∞,

M−1/2
nm Hnm(β̂nm − β0) → N(0, I) in distribution.
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PROOF. It is clear that (C2)(i) is (I∗w). To verify conditions (L∗
w) and (CC),

we use Theorem A1(ii) and Theorem A2 provided in Appendix C. Note that
a′′(u(t)), h′(t) and their first and second derivatives are all continuous functions.
By conditions (C1) and (C2)(i), it is easy to see that, for β ∈ B∗

nm(r), a′′(θij ),
|a(3)(θij )|, |a(4)(θij )|, and |h′′(ηij )| are uniformly bounded above, and a′′(θij ),
|h′(ηij )| are uniformly bounded below away from zero. Therefore, assumption
(AH) is true, κnm is bounded above, and bnm = mini,j {σ 2

ij } is bounded below away
from zero. Thus, by Theorem A1(ii) and Theorem A2, conditions (L∗

w) and (CC)
hold. By Theorem 2 and Theorem 3, part (a) follows.

To prove the asymptotic normality in part (b), we use Theorem 4. Since
E(y∗

ij
2(1+1/δ)) is a continuous function of xij for each i, j , it is easy to see

from (C1) that it is uniformly bounded above. Also by (C1), there exists a finite
constant K such that γ

(D)
nm ≤ Kλ̃nmmγ

(0)
nm . Hence, (8) can be implied immediately

from (C3). By Theorem 4, part (b) follows. �

REMARK 13. One can prove that (C2) and (C3) are implied by the following
conditions (in terms of the design matrix Xi ):

(C2)′ (πnm)3m2λmax{(∑n
i=1 XT

i Xi )
−1} → 0.

(C3)′ πnm(cnmλ̃nm)1+δm2+δλmax{(∑n
i=1 XT

i Xi)
−1} → 0 for some δ > 0.

REMARK 14. In the nonlongitudinal case, m1 ≡ m2 ≡ · · · ≡ mn ≡ 1.
Condition (C1) is exactly condition (R∗

c )(i) of Fahrmeir and Kaufmann (1985).
In addition, both conditions (C2)′ and (C3)′ reduce to

λmin

(
n∑

i=1

XT
i Xi

)
→ ∞.

This is the same as condition (R∗
c )(ii) of Fahrmeir and Kaufmann (1985).

In a marginal Poisson model, the marginal distribution of yij is

P (yij = y) = exp(yθij − eθij )/y!,(18)

where θij = xT
ijβ . Under this model, a(θij ) = eθij , µij (β) = eηij , h(ηij ) = eηij and

ηij = θij .
We consider the following assumptions:

(P1) (i) τnmλmax(H−1
nm) → 0;

(ii) π2
nmτnmmγ

(0)
nm → 0;

(iii) {µij (β0) = exp(xT
ijβ0), j = 1, . . . ,mn and i = 1, . . . , n} are bounded

above and below away from zero.
(P2) (cnm)1+δ(̃λnmm)2+δγ

(0)
nm → 0 for some δ > 0.

COROLLARY 2 (Poisson model). Suppose model (18) and assumption (P1)
hold.
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(a) There exists a sequence of random variables β̂nm such that β̂nm → β0 in
probability, and M−1/2

nm Hnm(β̂n − β0) and M−1/2
nm gnm have the same asymptotic

distribution.
(b) If, further, (P2) is true, then, when n → ∞,

M−1/2
nm Hnm(β̂nm − β0) → N(0, I) in distribution.

PROOF. It is clear that (I∗w) is (P1)(i). Under model (18), κnm ≡ 1 and k[l]
nm ≡ 1,

for l = 1,2,3,4. Assumption (AH) is trivially true. By Theorem A1(ii) and
Theorem A2, we have both (L∗

w) and (CC). By Theorem 2 and Theorem 3, we
can conclude part (a).

To prove part (b), we only need to verify condition (Nδ). Note that, for δ in (P2),
there exist some constants C1,C2 depending only on δ such that E(y∗

ij )
2(1+1/δ) ≤

C1 +C2{µij (β0)}2(1+1/δ)+1, which is uniformly bounded above by (P1)(iii). Also,
it is clear that (P2) implies (8). So, (Nδ) holds. By Theorem 4, we have the
asymptotic normality result in part (b). �

REMARK 15. In the nonlongitudinal case with m1 ≡ m2 ≡ · · · ≡ mn ≡ 1,
condition (P1)(i) becomes λmin(Hnm) → ∞, which is exactly the same as
condition (D) of Fahrmeir and Kaufmann (1985). Both conditions (P1)(ii) and (P2)
reduce to γ

(0)
n = maxi{xT

i H−1
n xi} → 0, which is equivalent to (3.14) of Fahrmeir

and Kaufmann (1985). Although we require an extra condition (P1)(iii) here from
Corollary 2, we find that condition (P1)(iii) can be dropped in the nonlongitudinal
case, based on a step-by-step examination of the proofs of our related theorems.
But, in general, in order to ensure the uniform convergence and asymptotic
normality in the longitudinal case, we need to have condition (P1)(iii).

Finally, we consider regression models with bounded responses. These include
binary and categorical regression models. First let us verify assumption (AH) for
some special models:

Logistic regression models. In this case, a(θij ) = log(1 + eθij ),
h(ηij ) = eηij /(1+eηij ) and θij = ηij . We have k[1]

nm = k[2]
nm = supβ∈B∗

n(r) maxi,j |1−
2h(ηij )| ≤ 3 and k[3]

nm = k[4]
nm = supβ∈B∗

n(r) maxi,j |1−6{h(ηij )(1−h(ηij ))}| ≤ 2.5.
So, assumption (AH) holds.

Probit regression models. In this case, a(θij ) = log(1+eθij ), h(ηij ) = �(ηij ),
and h(ηij ) = a′(θij ). Note that u′(ηij ) = �(ηij )/{�(ηij )(1 − �(ηij ))}. Here
�(ηij ) and �(ηij ) are the cumulative distribution function and the density
function of the standard normal distribution, respectively. From direct computa-
tion, k[1]

nm = supβ∈B∗
n(r) maxi,j |1 − 2�(ηij )|, k[2]

nm = supβ∈B∗
n(r) maxi,j {|ηij |�(ηij )

× (1 − �(ηij ))/�(ηij )}, k[3]
nm = supβ∈B∗

n(r) maxi,j |1 − 6�(ηij )(1 − �(ηij ))| and

k[4]
nm = supβ∈B∗

n(r) maxi,j [|η2
ij − 1|{�(ηij )(1 − �(ηij ))}2/{�(ηij )}2]. Note that
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limηij →+
−∞ |ηij |�(ηij )(1−�(ηij ))/�(ηij ) = 1. All the above terms are bounded,

and hence assumption (AH) holds.

Models with canonical link functions. In this case, θij = ηij and

k[1]
nm = k[2]

nm = supβ∈B∗
n(r) maxi,j |a(3)(θij )|/{a′′(θij )}, k[3]

nm = k[4]
nm =

supβ∈B∗
n(r) maxi,j |a(4)(θij )|/{a′′(θij )}. When yij has a density function of

form (1), we have |a(3)(θij )| = |E(yij − µij )
3/φ2| and |a(4)(θij )| = |E(yij −

µij )
4/φ3 − 3{a′′(θij )}2/φ|. If the responses yij are bounded, then |a(3)(θij )| and

|a(4)(θij )| are bounded, for each fixed scale parameter φ. So, if one assumes
that a′′(θij ) are uniformly bounded below away from zero, then assumption (AH)
holds.

We set the following assumptions:

(B1) Responses yij are bounded.
(B2) (i) τnmλmax(H−1

nm) → 0;

(ii) π2
nmτnmκnmmγ

(0)
nm/mini,j σ 2

ij → 0.

(B3) cnmλ̃2
nmκnmm2γ

(0)
nm/mini,j σ 2

ij → 0.

We now have the following corollary.

COROLLARY 3 (Generalized linear model with bounded responses). Suppose
assumptions (AH), (B1) and (B2) hold.

(a) There exists a sequence of random variables β̂nm such that β̂nm → β0 in
probability, and M−1/2

nm Hnm(β̂n − β0) and M−1/2
nm gnm have the same asymptotic

distribution.
(b) If further, (B3) is true, then, when n → ∞,

M−1/2
nm Hnm(β̂nm − β0) → N(0, I) in distribution.

PROOF. Under assumptions (AH) and (B2), the results in part (a) are
immediate by Theorem A2, Theorem 2 and Theorem 3. In order to prove the
result in part (b), we directly verify the Lindeberg condition on the double
arrays sequence Znm,i = λT M−1/2

nm DT
i V−1

i (yi − µi). By (B1), y∗
i
T y∗

i is uniformly
bounded above by m/mini,j σ 2

ij times a constant. So, by (B3), for any given

ε, when n is large enough, y∗
i
T y∗

i < ε2{cnmλ̃2
nmκnmmγ

(0)
nm }−1. Therefore, when

n → ∞,
n∑

i=1

E
[
Z2

nm,iI(|Znm,i | > ε)
]

≤
n∑

i=1

cnmλ̃nmκnmmγ (0)
nm E

[
y∗
i
T y∗

i I

{
y∗
i
T y∗

i >
ε2

cnmλ̃2
nmκnmmγ

(0)
nm

}]
→ 0.



ASYMPTOTICS FOR GEE ESTIMATORS 335

By the Lindeberg central limit theorem and the Cramér–Wold theorem, part (b)
follows. �

REMARK 16. In the nonlongitudinal case, with m1 ≡ m2 ≡ · · · ≡ mn ≡ 1,
conditions (B2)(ii) and (B3) are implied by κnmγ

(0)
n /mini,j σ 2

ij → 0. In the
special case of probit models, limηij →±∞ u′(ηij )/|ηij | = 1. In such a case, if
mini,j σ 2

ij is bounded away from zero, then conditions (B2)(ii) and (B3) become

maxij {|ηij |2}γ (0)
n → 0. This is equivalent to condition (A)(c) of Fahrmeir and

Kaufmann (1986).

APPENDIX A

Formulas for Bnm(β) and Enm(β). One can write Bnm(β) = B[1]
nm(β) +

B[2]
nm(β) and Enm(β) = E [1]

nm(β) + E [2]
nm(β), where

B[1]
nm(β) =

n∑
i=1

XT
i diag

[
R−1

i (α)A−1/2
i (β)

(
µi − µi(β)

)]
G[1]

i (β)Xi,

B[2]
nm(β) =

n∑
i=1

XT
i �i (β)A1/2

i (β)R−1
i (α)diag

[(
µi − µi(β)

)]
G[2]

i (β)Xi,

E [1]
nm(β) =

n∑
i=1

XT
i diag

[
R−1

i (α)A−1/2
i (β)(yi − µi)

]
G[1]

i (β)Xi

and

E [2]
nm =

n∑
i=1

XT
i �i (β)A1/2

i (β)R−1
i (α)diag[(yi − µi)]G[2]

i (β)Xi .

Here, G[k]
i (β) = diag(q

′
k(ηij ), . . . , q

′
k(ηij )), for k = 1,2, where

q1(ηij ) = [a′′(θij )]−1/2h′(ηij ), q2(ηij ) = [a′′(θij )]−1/2,

and their derivatives

q ′
1(ηij ) = −1

2

a(3)(θij )

[a′′(θij )]5/2
{h′(ηij )}2 + h′′(ηij )

[a′′(θij )]1/2
,

q ′
2(ηij ) = −1

2

a(3)(θij )

[a′′(θij )]5/2 h′(ηij ).
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APPENDIX B

Proof of Lemma 3. For c = c0/(K + 1), denote Zc
n,i = Zn,iI(|Zn,i| ≤

cAn/φ(n)), where I(C) is the indicator function for set C. We have

1

An

n∑
i=1

Zn,i = 1

An

n∑
i=1

EZc
n,i + 1

An

n∑
i=1

(Zc
n,i − EZc

n,i) + 1

An

n∑
i=1

(Zn,i − Zc
n,i)

= I + II + III.

Since EZc
n,i = −EZn,iI(|Zn,i| > cAn/φ(n)) and by (12), we have

|I| =
∣∣∣∣∣ 1

An

n∑
i=1

EZc
n,i

∣∣∣∣∣ ≤ 1

An

n∑
i=1

E|Zn,i |I
(
|Zn,i | ≥ c

An

φ(n)

)

≤ φ(n)

cA2
n

n∑
i=1

E|Zn,i|2 → 0.

Take Wn,i = (Zc
n,i − EZc

n,i)φ(n)/An. We have E|Wn,i|s = E|Wn,i |2|Wn,i |s−2 ≤
E|Wn,i|2(2c)s−2 ≤ σ 2

n,iφ(n)2(2c)s−2A−2
n , for s > 2. By the Bernstein inequality

[Chow and Teicher (1988), page 111],
∞∑

n=1

P

(∣∣∣∣∣ 1

An

n∑
i=1

(Zc
n,i − EZc

n,i)

∣∣∣∣∣ > ε

)

=
∞∑

n=1

P

(∣∣∣∣∣
n∑

i=1

Wn,i

∣∣∣∣∣ > εφ(n)

)

≤
∞∑

n=1

exp

{ −[εφ(n)]2

2[(∑n
i=1 var(Zc

n,i)φ(n)2)/A2
n + εφ(n)]

}

≤ C

∞∑
n=1

exp
{
− ε

2
φ(n)

}
< ∞,

for some finite constant C. The last two inequalities follow from (12) and (11),
respectively. Therefore, by the Borel–Cantelli Lemma, |II| → 0, a.s.

Finally, Zn,i − Zc
n,i = Zn,iI(|Zn,i | > cAn/φ(n)). By (12), when n is large

enough,∣∣∣∣∣ 1

An

n∑
i=1

(Zn,i − Zc
n,i)

∣∣∣∣∣ ≤ K + 1

snφ(n)

n∑
i=1

|Zn,i |I(|Zn,i | > c0sn)

≤ (K + 1)

∑n
i=1 |Zn,i |
snφ(n)

I
(

max
1≤i≤n

|Zn,i | > c0sn

)
.

By (10), I(max1≤i≤n |Zn,i | > c0sn) = 0, a.s., when n is large enough. Thus,
|III| → 0, a.s.
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Proof of Lemma 5. Note that

E

(
m∑

j=1

am,j ej

)4

= ∑
�<j<k<s

am,�am,j am,kam,sE(e�ej ekes) + 4
∑

��=j �=k

a2
m,�am,j am,kEe2

�ej ek

+6
∑
j<�

a2
m,ja

2
m,�Ee2

j e
2
� +

m∑
j=1

a4
m,jEe4

j

= I + II + III + IV.

First, we have

I ≤ ∑
�<j<k<s

|am,�||am,j ||am,k||am,s |(Ee2
�e

2
j · Ee2

ke
2
s )

1/2

≤ K
∑

�<j<k<s

|am,�||am,j ||am,k||am,s |ρ1/2
j−�ρ

1/2
s−k

≤ K

(∑
l<j

|am,�||am,j |ρ1/2
j−�

)2

≤ K

(∑
l<j

a2
m,� + a2

m,j

2
ρ

1/2
j−�

)2

≤ K
(∑

a2
m,j

)2(∑
ρ

1/2
j

)2
.

Similarly, II ≤ 4K(
∑m

i=1 a2
m,i)

2(
∑

ρ
1/2
j ), III ≤ 6K(

∑m
i=1 a2

m,i)
2 and IV ≤

K(
∑m

i=1 a2
m,i)

2.
So, by the Markov inequality and for a constant C,

P

(∣∣∣∣
∑m

j=1 am,j ej

m1/4(logm)(1+δ)/4

∣∣∣∣ > ε

)

≤ 1

ε4

1

m(logm)1+δ

(
m∑

�=1

a2
m,�

)2

K

[
7 + 4

(
m∑

u=1

ρ1/2
u

)
+

(
m∑

u=1

ρ1/2
u

)2]

≤ Cm−1(logm)−(1+δ).

Therefore,

∞∑
m=1

P

( ∑m
j=1 am,j ej

m1/4(logm)(1+δ)/4 > ε

)
< +∞.

The result follows by the Borel–Cantelli lemma.
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APPENDIX C

Sufficient conditions for (Lw), (L∗
w) and (CC). Denote

γnm = max
i,j

{xT
ijF−1

nmxij } and γ ∗
nm = τnm max

i,j
{xT

ijH−1
nmxij };

wnm = λmax(H−1
nmMnm)

λmin(H
−1
nmMnm)

and w′
nm = max1≤i≤n λmax(R

−1
i (α)R̄i )

λmin(H
−1
nmMnm)

.

It is clear that wnm ≤ w′
nm ≤ max1≤i≤n{λmax(R−1

i (α)R̄i )}
min1≤i≤n{λmin(R

−1
i (α)R̄i)} .

First, we present three lemmas. Lemma A.1 provides conditions under which
Hnm(β) is close to Hnm. Lemma A.2 provides conditions under which Bnm(β)

is dominated by Hnm. Lemma A.3 provides conditions that assure the uniform
convergence of Enm(β).

LEMMA A.1. Suppose assumption (AH) holds.

(i) If πnmκnmγnm → 0, then, for any p × 1 vector λ, ‖λ‖ = 1, we have

supβ∈Bnm(r) |λT H−1/2
nm Hnm(β)H−1/2

nm λ − 1| = o(1).
(ii) If πnmκnmγ ∗

nm → 0, then, for any p × 1 vector λ, ‖λ‖ = 1, we have

supβ∈B∗
nm(r) |λT H−1/2

nm Hnm(β)H−1/2
nm λ − 1| = o(1).

LEMMA A.2. Suppose assumption (AH) holds.

(i) If wnm(πnm)2κnmγnm → 0, then, for any p × 1 vector λ, ‖λ‖ = 1,
supβ∈Bnm(r)

{λT M−1/2
nm Bnm(β)H−1

nmM1/2
nm λ} = o(1).

(ii) If (πnm)2κnmγ ∗
nm → 0, then, for any p × 1 vector λ, ‖λ‖ = 1,

supβ∈B∗
nm(r){λT H−1/2

nm Bnm(β)H−1/2
nm λ} = o(1).

LEMMA A.3. Suppose assumption (AH) holds. Denote bnm = mini,j σ 2
ij ,

νnm = min{(nm/w′
nm)1/2, (mπnm)/bnm} and ν∗

nm = min{(nm)1/2, (mπnm)b−1
nm}.

(i) If νnmw′
nmπnmκnmγnm → 0, then, for any p × 1 vector λ, ‖λ‖ = 1,

supβ∈B∗
nm(r){λT M−1/2

nm Enm(β)H−1
nm(β)M1/2

nm λ} = op(1).
(ii) If ν∗

nmπnmκnmγ ∗
nm → 0, then, for any p × 1 vector λ, ‖λ‖ = 1,

supβ∈B∗
n,m(r){λT H−1/2

nm Enm(β)H−1/2
nm λ} = op(1).

REMARK A.1. There is an extra price one needs to pay for uniform
convergence in Lemma A.3, compared to the assumptions in Lemmas A.1
and A.2. In Lemmas A.1 and A.2, we essentially require γnm or γ ∗

nm → 0; But
in Lemma A.3, we require γnm or γ ∗

nm → 0 faster than either (nm)−1/2 or m−1.
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We have the following two theorems. Theorem A.1 provides sufficient condi-
tions for (Lw) and (L∗

w), and Theorem A.2 provides sufficient conditions for (CC).

THEOREM A.1. Suppose assumption (AH) holds.

(i) [Sufficient conditions for (Lw)]. If the conditions of Lemmas A.2(i) and
A.3(i) hold, then

P
{
DT

nm(β)M−1
nmDnm(β) ≥ c0Fnm, for all β ∈ Bnm(r)

} → 1.

(ii) [Sufficient conditions for (L∗
w)]. If the conditions of Lemmas A.2(ii)

and A.3(ii) hold, then

P
{
Dnm(β) ≥ c0Hnm, for all β ∈ B∗

nm(r)
} → 1.

THEOREM A.2 [Sufficient conditions for (CC)*]. If the conditions of Theo-
rem A.1(ii) hold, then condition (CC) holds.

Proofs of Lemmas A.1–A.3 and Theorems A.1–A.2. In the sequel, we use
the notation η

(0)
ij and θ

(0)
ij to denote the values of ηij and θij evaluated at β0,

respectively. First, we state two additional lemmas, which are used in the proofs of
Lemmas A.1–A.3.

LEMMA B.1. Suppose assumption (AH) holds.

(i) When κnmγnm → 0, we have

δa,nm = sup
β∈Bnm(r)

{
max

1≤i≤n
max

1≤j≤mi

∣∣∣∣∣ a′′(θij )

a′′(θ(0)
ij )

− 1

∣∣∣∣∣
}

= O
(
(κnmγnm)1/2)

and

δh,nm = sup
β∈Bnm(r)

{
max

1≤i≤n
max

1≤j≤mi

∣∣∣∣∣ h′(ηij )

h′(η(0)
ij )

− 1

∣∣∣∣∣
}

= O
(
(κnmγnm)1/2)

.

(ii) When κnmγ ∗
nm → 0, we have

δ∗
a,nm = sup

β∈Bnm∗(r)

{
max

1≤i≤n
max

1≤j≤mi

∣∣∣∣∣ a′′(θij )

a′′(θ(0)
ij )

− 1

∣∣∣∣∣
}

= O
(
(κnmγ ∗

nm)1/2)
and

δ∗
h,nm = sup

β∈Bnm∗(r)

{
max

1≤i≤n
max

1≤j≤mi

∣∣∣∣∣ h′(ηij )

h′(η(0)
ij )

− 1

∣∣∣∣∣
}

= O
(
(κnmγ ∗

nm)1/2).
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LEMMA B.2. Suppose assumption (AH) holds.

(i) When κnmγnm → 0,

sup
β∈Bnm(r)

[∣∣∣∣∣ a(3)(θij )

[a′′(θij )]5/2
{h′(ηij )}2 − a(3)(θ

(0)
ij )

[a′′(θ(0)
ij )]5/2

{
h′(η(0)

ij )
}2

∣∣∣∣∣
∣∣∣∣∣{a

′′(θ(0)
ij )}3/2

{h′(η(0)
ij )}2

∣∣∣∣∣
]

= O
(
(κnmγnm)1/2)

and

sup
β∈Bnm(r)

[∣∣∣∣∣ h′′(ηij )

[a′′(θij )]1/2 − h′′(η(0)
ij )

[a′′(θ(0)
ij )]1/2

∣∣∣∣∣
∣∣∣∣∣ {a

′′(θ(0)
ij )}3/2

{h′(η(0)
ij )}2

∣∣∣∣∣
]

= O
(
(κnmγnm)1/2).

(ii) When κnmγ ∗
nm → 0,

sup
β∈Bnm(r)

[∣∣∣∣∣ a(3)(θij )

[a′′(θij )]5/2 {h′(ηij )}2 − a(3)(θ
(0)
ij )

[a′′(θ(0)
ij )]5/2

{
h′(η(0)

ij )
}2

∣∣∣∣∣
∣∣∣∣∣{a

′′(θ(0)
ij )}3/2

{h′(η(0)
ij )}2

∣∣∣∣∣
]

= O
(
(κnmγ ∗

nm)1/2)
and

sup
β∈Bnm(r)

[∣∣∣∣∣ h′′(ηij )

[a′′(θij )]1/2
− h′′(η(0)

ij )

[a′′(θ(0)
ij )]1/2

∣∣∣∣∣
∣∣∣∣∣ {a

′′(θ(0)
ij )}3/2

{h′(η(0)
ij )}2

∣∣∣∣∣
]

= O
(
(κnmγ ∗

nm)1/2).
PROOFS OF LEMMAS B.1 AND B.2. One can directly prove the results by

Taylor’s expansion around the true parameter β0 and assumption (AH). Details are
omitted.

PROOF OF LEMMA A.1. Write sλ(β) = λT H−1/2
nm Hnm(β)H−1/2

nm λ− 1. By the
Cauchy–Schwarz inequality and direct computation, we have∣∣∣∣∣

n∑
i=1

λT H−1/2
nm XT

i

(
�i(β)A1/2

i (β) − �iA
1/2
i

)
R−1

i (α)A1/2
i (β)�i(β)XiH−1/2

nm λ

∣∣∣∣∣
≤

(
n∑

i=1

λT H−1/2
nm XT

i �iA
1/2
i R−1

i (α)A1/2
i �iXiH−1/2

nm λ

)1/2

×
[

n∑
i=1

λT H−1/2
nm Xi�i(β)A1/2

i (β)R−1
i (α)
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× (
�−1

i �i(β)A−1/2
i A1/2

i (β) − I
)
Ri (α)

× (
�−1

i �i(β)A−1/2
i A1/2

i (β) − I
)

× R−1
i (α)�i(β)A1/2

i (β)XiH−1/2
nm λ

]1/2

≤ (πnm)1/2 max
1≤i≤n

[
λmax

{|�−1
i �i(β)A−1/2

i A1/2
i (β) − I |}]

× [
λT H−1/2

nm Hnm(β)H−1/2
nm λ

]1/2

≤ (πnm)1/2 max
1≤i≤n

max
1≤j≤mi

[∣∣∣∣∣ h′(ηij )

h′(η(0)
ij )

{a′′(θ(0)
ij )

a′′(θij )

}1/2

− 1

∣∣∣∣∣
](

1 + |sλ(β)|)1/2
.

Similarly, we have∣∣∣∣∣
n∑

i=1

λT H−1/2
nm XT

i �iA
1/2
i R−1

i (α)(A1/2
i (β)�i(β) − A1/2

i �i)XiH−1/2
nm λ

∣∣∣∣∣
≤ π1/2

nm max
1≤i≤n

max
1≤j≤mi

∣∣∣∣∣ h′(ηij )

h′(η(0)
ij )

{a′′(θ(0)
ij )

a′′(θij )

}1/2

− 1

∣∣∣∣∣.
Therefore,

sup
β∈Bnm(r)

|sλ(β)|

≤
{(

1 + sup
β∈Bnm(r)

|sλ(β)|
)1/2

+ 1

}

×(πnm)1/2 sup
β∈Bnm(r)

{
max

1≤i≤n
max

1≤j≤mi

[∣∣∣∣∣ h′(ηij )

h′(η(0)
ij )

{a′′(θ(0)
ij )

a′′(θij )

}1/2

− 1

∣∣∣∣∣
]}

.

From Lemma B.1(i), we have that

(πnm)1/2 sup
β∈Bnm(r)

{
max

1≤i≤n
max

1≤j≤mi

[∣∣∣∣∣ h′(ηij )

h′(η(0)
ij )

{a′′(θ(0)
ij )

a′′(θij )

}1/2

− 1

∣∣∣∣∣
]}

= o(1).

So, supβ∈Bnm(r) |sλ(β)| = o(1). This proves part (i). The proof of part (ii) is similar.
�

PROOF OF LEMMA A.2. By Taylor’s expansion, (µi(β) − µi) = Ai(β̄) ×
�i(β̄)Xi (β − β0), where β̄ is between β and β0. So, by Lemma B.1 and
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Lemma A.1, there exists a constant C1 such that

n∑
i=1

(
µi − µi(β)

)T A−1/2
i (β)R−1

i A−1/2
i (β)

(
µi − µi(β)

)
≤ (β − β0)

T Hnm(β̄)(β − β0) max
1≤i≤n

{
λmax(Ri(α))

λmin(Ri (α))
λmax

{
Ai (β̄)A−1

i (β)
}}

≤ C1πnm(β − β0)
T Hnm(β̄)(β − β0) ≤ C1r

2πnmλmax(MnmH−1
nm).

By the Cauchy–Schwarz inequality, assumption (AH) and Lemma B.1, there
exists a constant C2 such that, for any β ∈ Bnm(r),

λT M−1/2
nm B[1]

nm(β)H−1
nmM1/2

nm λ

=
n∑

i=1

λT M−1/2
nm XT

i G[1]
i (β)�−1

i diag{�iXiH−1
nmM1/2

n λ}

× R−1
i (α)A−1/2

i (β)
(
µi − µi(β)

)
≤ π1/2

nm

[
λT M−1/2

nm HnmM−1/2
nm λ

]1/2

×
[

n∑
i=1

(
µi − µi(β)

)T A−1/2
i (β)R−1

i (α)A−1/2
i (β)

(
µi − µi(β)

)]1/2

× max
1≤i≤n

{
λmax

{|�−2
i A−1/2

i G[1]
i (β)|} max

1≤j≤mi

[{
u′(η(0)

ij )
}2xT

ij F−1
nmxij

]1/2
}

≤ C2πnmw1/2
nm (κnmγnm)1/2.

In the above inequalities, we used the facts that supβ∈Bnm(r) λmax{|�−2
i (β) ×

{Ai (β)}−1/2G[1]
i (β)|} ≤ k[1]

nm/2 + k[2]
nm and the absolute value of the j th diagonal

element of diag{�iXiH−1
nmM1/2

nm λ} is less than u′(η(0)
ij )(xT

ij F−1
nmxij )

1/2.
Similarly, there exists a constant C3 such that, for any β ∈ Bnm(r),

λT M−1/2
nm B[2]

nm(β)H−1
nmM1/2

nm λ

=
n∑

i=1

λT M−1/2
nm XT

i �i(β)A1/2
i (β)R−1

i (α)diag{�iXiH−1
nmM1/2

nm λ}

×�−1
i G[2]

i (β)
(
µi − µi(β)

)
≤ C3πnmw1/2

nm (κnmγnm)1/2,

where we use the fact that supβ∈Bnm(r) λmax{|{�i(β)}−1{Ai(β)}1/2G[2]
i (β)|} ≤

k[1]
nm/2. This proves part (i). Part (ii) can be proved in the same fashion. �
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PROOF OF LEMMA A.3.

λT M−1/2
nm Enm(β)H−1

nmM1/2
nm λ

=
n∑

i=1

λT M−1/2
nm XT

i G[1]
i �−1

i diag{�iXiH−1
nmM1/2

nm λ}R−1
i (α)A−1/2

i (yi − µi)

+
n∑

i=1

λT M−1/2
nm XT

i �iA
1/2
i R−1

i (α)

× diag{�iXiH−1
nmM1/2

nm λ}�−1
i G[2]

i (yi − µi)

+
n∑

i=1

λT M−1/2
nm XT

i �−1
i G[1]

i (β)

× diag{�iXiH−1
nmM1/2

nm λ}R−1
i (α)

(
A−1/2

i (β) − A−1/2
i

)
(yi − µi)

+
n∑

i=1

λT M−1/2
nm XT

i

(
�i(β)A1/2

i (β) − �iA
1/2
i

)
R−1

i (α)

× diag{�iXiH−1
nmM1/2

nm λ}�−1
i G[2]

i (β)(yi − µi)

+
n∑

i=1

λT M−1/2
nm XT

i �−1
i

(
G[1]

i (β) − G[1]
i

)
× diag{�iXiH−1

nmM1/2
nm λ}R−1

i (α)A−1/2
i (yi − µi)

+
n∑

i=1

λT M−1/2
nm XT

i �iA
1/2
i R−1

i (α)

× diag{�iXiH−1
nmM1/2

nm λ}�−1
i

(
G[2]

i (β) − G[2]
i

)
(yi − µi)

= I + II + III + IV + V + VI.

Note that I and II do not depend on β . By direct computation, we have

EI2 =
n∑

i=1

E
{
λT M−1/2

nm XT
i G[1]

i �−1
i

× diag{�iXiH−1
nmM1/2

nm λ}R−1
i (α)A−1/2

i (yi − µi)
}2

=
n∑

i=1

λT M−1/2
nm XT

i G[1]
i �−1

i diag{�iXiH−1
nmM1/2

nm λ}R−1
i (α)R̄iR

−1
i (α)

× diag{�iXiH−1
nm(β)M1/2

nm λ}�−1
i G[1]

i XiM−1/2
nm λ

≤ (k[1]
nm/2 + k[2]

nm)2λmax(M−1
nmHnm) max

1≤i≤n
λmax

(
R−1

i (α)R̄i

)
πnmκnmγnm

≤ C4w
′
nmπnmκnmγnm,
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where C4 is a constant given by (AH). By the Chebyshev inequality, I = op(1).
Similarly, we can prove II = op(1).

In III, IV , V and VI, the terms involve the parameter β . To prove uniform
convergence, we need to separate the terms with yi − µi from the terms that
involve β , so that expectations can be applied directly to the terms with yi − µi .
We consider here two different ways to separate the terms with yi − µi and the
terms with β , which correspond to the two terms in the definition of νnm. The νnm

has the same rate as the first term when m → ∞ very fast (compared to n), and it
has the same rate as the second term when m is bounded or m → ∞ at a slow rate
(compared to n). Next, we prove the uniform convergence for III. The proofs for
IV , V and VI are similar.

By the Cauchy–Schwarz inequality, assumption (AH) and Lemma B.1, there
exists a constant C5 such that

E
{

sup
β∈Bnm(r)

|III|2
}

= E

{
sup

β∈Bnm(r)

[
n∑

i=1

λT M−1/2
nm XT

i �−1
i G[1]

i (β)diag{�iXiH−1
nmM1/2

nm λ}

× R−1
i (α)

(
A−1/2

i (β) − A−1/2
i

)
(yi − µi)

]2}

≤ (πnm)2{
λT M−1/2

nm HnmM−1/2
nm λ

}
× E

{
n∑

i=1

(yi − µi)
T A−1/2

i R−1
i (α)A−1/2

i (yi − µi)

}

× sup
β∈Bnm(r)

max
1≤i≤n

[
λmax

{(
A−1/2

i (β)A1/2
i − I

)2}
×λmax

{(
G[1]

i (β)�−2
i A−1/2

i

)2}
×λmax

{
diag[�iXiH−1

nmM1/2
nm λ]2}]

≤ C5(πnm)2λmax(M−1
nmHnm)

n∑
i=1

tr{R−1
i (α)R̄i}κnmγ 2

nm

≤ C5 (nm)w′
nm(πnmκnmγnm)2.

Alternatively, we set sij = eT
ijR−1

i (α)(A−1/2
i (β)A1/2

i −I )2R−1
i (α)eij , where eij

is the mi × 1 indicator vector with the j th element equal to 1. By the Cauchy–
Schwarz inequality, assumption (AH) and Lemma B.1, there exists a constant C6
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such that

E
{

sup
β∈Bnm(r)

|III|2
}

= E

{
sup

β∈Bnm(r)

[
n∑

i=1

λT M−1/2
nm XT

i G[1]
i (β)

× diag
{
R−1

i (α)
(
A−1/2

i (β) − A−1/2
i

)
(yi − µi)

}
× XiH−1

nmM1/2
nm λ

]2}

≤ max
1≤i≤n

[
λmax{Ri(α)}]{λT M−1/2

nm HnmM−1/2
nm λ

}
× sup

β∈Bnm(r)

max
i

λmax
{
G[1]

i (β)�−2
i A−1/2

i

}2

× E

{
sup

β∈Bnm(r)

n∑
i=1

λT M1/2
nm H−1

nmXT
i �i

× diag
{
R−1

i (α)
(
A−1/2

i (β) − A−1/2
i

)
(yi − µi)

}2

×�iXiH−1
nmM1/2

nm λ

}

≤ C6 max
1≤i≤n

[
λmax{Ri (α)}]λmax{M−1

nmHnm}E{
(yi − µi)

T A−1
i (yi − µi)

}
× sup

β∈Bnm(r)

{
n∑

i=1

λT M1/2
nm H−1

nmXT
i �i diag{si1, . . . , simi

}�iXiH−1
nmM1/2

nm λ

}

≤ C6 m(πnm)2w′
nmb−1

nm sup
β∈Bnm(r)

max
1≤i≤n

{
λmax{A−1/2

i (β)A1/2
i − I }2}

≤ C6 mb−1
nmw′

nm(πnm)2κnmγnm.

Hence, E{supβ∈Bnm(r) |III|2} ≤ max{C5,C6}νnmw′
nmπnmκnmγnm. By the

Chebyshev inequality, supβ∈Bnm(r) |III| = op(1). �

PROOF OF THEOREM A.1. By (5), Lemma A.2(i) and Lemma A.3(i), we
have, for any p × 1 vector λ, ‖λ‖ = 1,

sup
β∈Bnm(r)

{|λT M−1/2
nm Dnm(β)H−1

nm(β)M1/2
nm λ − 1|} = op(1).
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By Lemma 1, it is easy to see that the result in part (i) is true. Part (ii) follows
similarly, using the representation given in (5), Lemma A.2(ii) and Lemma A.3(ii).

�

PROOF OF THEOREM A.2. Note p is fixed. We only need to prove that, for
any k, l, 1 ≤ k, l ≤ p,

sup
β∈B∗

nm(r)

∣∣eT
k

{
H−1/2

nm Dnm(β)H−1/2
nm − I

}
el

∣∣ = op(1),

where ek is a p × 1 vector with the kth element equal to 1 and the other elements
equal to 0. Using the representation given in (5), the proof can be broken into three
pieces. The proofs of these three pieces follow as in the proofs of Lemma A1(ii),
Lemma A2(ii) and Lemma A3(ii), respectively, except that λ must replaced by ek

or el in the appropriate places. Details are omitted. �
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