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THRESHOLDING ESTIMATORS FOR LINEAR INVERSE
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Thresholding algorithms in an orthonormal basis are studied to estimate
noisy discrete signals degraded by a linear operator whose inverse is not
bounded. For signals in a set �, sufficient conditions are established on
the basis to obtain a maximum risk with minimax rates of convergence.
Deconvolutions with kernels having a Fourier transform which vanishes
at high frequencies are examples of unstable inverse problems, where a
thresholding in a wavelet basis is a suboptimal estimator. A new “mirror
wavelet” basis is constructed to obtain a deconvolution risk which is proved
to be asymptotically equivalent to the minimax risk over bounded variation
signals. This thresholding estimator is used to restore blurred satellite images.

1. Introduction. We consider inverse problems where a signal is degraded by
a linear operator and by the addition of a Gaussian white noise. In many statistical
settings [22], a function f (t) for t ∈ [0,1] must be estimated from noisy samples
obtained at the output of a linear operator G,

Y [n] = Gf (n/N) + ν[n] for 0 ≤ n < N,(1.1)

where ν[n] are independent Gaussian random variables of variance σ 2. When
G−1 does not exist as a bounded linear operator then the problem is said to be
ill-posed [22]. Depending upon the properties of G, minimax estimators have been
studied for functions f that belong to balls � over different types of functional
spaces such as Sobolev or Besov spaces [26], which give asymptotic results for
N large. In particular, Donoho [8] showed that a nearly minimax estimator is
obtained with a thresholding strategy in wavelet–vaguelette bases, if the wavelets
are nearly eigenvectors of GG∗ and if � is an orthosymmetric set in this wavelet
basis. The discrete data Y [n] is then decomposed and thresholded in discrete
wavelet–vaguelette bases. This approach has found applications in several inverse
problems including inversion of the Radon transform, density deconvolution, and
estimation with fractional Gaussian noise [8, 18, 23, 27].

When inverting the degradation of measuring devices such as cameras, where
the diffraction of the optics creates a blur, the situation may be quite different.
The sampling interval N−1 is adapted to the degradation operator G, and as the
technology improves the operator G is modified and N increases. The operator G
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thus depends upon N . This degradation operator is often calibrated a posteriori,
once the system is built and defined directly on the sampled signal. In this
framework, the inverse problem can be written

Y [n] = Uθ[n] + ν[n] for 0 ≤ n < N,(1.2)

where θ ∈ C
N is a vector obtained by discretizing f (t) and U is a calibrated linear

operator from C
N to C

N . If f ∈ � its discretization θ belongs to a subset � of C
N .

The operator U depends upon N but if the properties of U are known for N large,
then an asymptotic study of the minimax estimators can still be performed. The
fact that the operator G may change with N opens new asymptotic situations.

Such a problem has been proposed by the spatial agency in France (CNES) to
the research community working on linear inverse problems, for the deconvolution
of high resolution images obtained with a new generation of satellites. In this
case, U is a calibrated convolution operator which blurs the image by suppressing
the highest frequencies. A testing procedure was set up by the CNES to compare
the results of existing algorithms. Thresholding estimators in wavelet–vaguelette
lead to relatively disappointing numerical results, as opposed to a thresholding
algorithm in a wavelet packet basis developed by Rougé [24], an engineer in
image processing. Surprisingly, this thresholding algorithm clearly outperformed
numerically and perceptually all other deconvolution algorithms on all tested
satellite images.

The restoration of high resolution satellite images is typically in an asymptotic
regime which allows us to compute upper and lower bounds of the minimax risk.
To understand this type of problem, Section 3.2 studies general conditions to
obtain a nearly minimax estimator with a thresholding algorithm in an arbitrarily
chosen basis B of C

N . In the spirit of the work of Donoho [8], it is shown that a
sufficient condition is that UU∗ is “nearly” diagonal in the basis B , in a sense that
is specified. This general result applies to wavelet bases but to other bases as well.

The paper concentrates on application to deconvolutions. If G is a convolution
operator then (1.1) can be written as a discrete inverse problem (1.2) where U is
a discrete convolution operator. Measuring devices such as cameras introduce a
degradation which is a convolution of the input signal f with a kernel whose
Fourier transform vanishes at high frequencies. The sampling rate N−1 is adapted
to satisfy the Shannon sampling theorem. The resulting discrete inverse problem
is a hyperbolic deconvolution, where wavelet bases do not “nearly diagonalize”
UU∗, and hence lead to relatively poor estimators. For one-dimensional signals,
Section 4.3 introduces a new type of orthonormal basis, called mirror wavelet
basis which nearly diagonalizes UU∗ for hyperbolic deconvolutions. Section 4.4
computes the minimax risk for bounded variation signals and proves that a
thresholding in a mirror wavelet basis has an equivalent asymptotic risk. Section 5
studies a two-dimensional extension for separable deconvolutions of images. For
hyperbolic deconvolutions, the bounded variation model presented without proof
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in [16] is refined with directional total variation conditions, to obtain asymptotic
minimax results that are consistent with the observed numerical performance on
satellite images.

This paper concentrates on asymptotic computations as opposed to numerical
implementation with fast algorithms, which are presented in [17]. The asymptotic
behavior of the risk is computed up to a multiplicative constant. If α and β

depend upon the parameters of the problem, such as the signal size N , the noise
variance σ or any other parameter, we write α ∼ β and say that they are equivalent,
if there exists two constant A,B > 0 such that for all values of these parameters
Aα ≤ β ≤ Bα.

2. Minimax estimation of inverse problems. A signal θ ∈ C
N must be

estimated from the measured data

Y [n] = Uθ[n] + ν[n] for 0 ≤ n < N,(2.1)

where ν is a Gaussian white noise of known variance σ 2 and U is a linear
operator in CN . Such inverse problems are studied for large N , depending upon
the asymptotic properties of the operator U when N increases.

To invert the degradation, since U may not be invertible we use a pseudo-
inverse. We denote by ImU the range of U and by KerU its null space. Let us also
write W⊥ for the orthogonal complement in CN of a subspace W. The pseudo

inverse U
−1

of U is the operator whose null space is ImU⊥ and whose range is

KerU⊥. The restriction of U
−1

to ImU is the inverse of the restriction of U

to KerU⊥. The restoration is unstable if

lim
N→+∞‖U−1‖s = +∞

where ‖T ‖s is the sup operator norm of a linear operator T defined from the
Euclidean norm ‖·‖ in CN by

‖T ‖s = sup
g∈CN

‖T g‖
‖g‖ .(2.2)

Following a standard approach, the linear inverse problem (2.1) is transformed
into an additive noise estimation problem. Estimating θ from Y in (2.1) is
equivalent to estimating it from

X = U
−1

Y = U
−1

Uθ + U
−1

ν.(2.3)

The operator U
−1

U = PV is an orthogonal projection on V = KerU⊥ so

X = PVθ + z with z = U
−1

ν.(2.4)
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The noise z is not white but remains Gaussian because U
−1

is linear. It is
considerably amplified when the problem is unstable. The covariance operator K

of z is

K = σ 2U
−1

U
−1∗

,(2.5)

where A∗ is the adjoint of an operator A.
We suppose that our prior knowledge of signals defines a set � such that θ ∈ �.

The inverse problem (2.1) is equivalent to estimating θ ∈ � from X = PVθ + z.
The risk of an estimator θ̂ is calculated with a Euclidean norm

r(θ̂ , θ) = ∃{‖θ̂ − θ‖2}.
To control the risk for any θ ∈ �, we compute the maximum risk:

r�(θ̂ ,�) = sup
θ∈�

∃{‖θ̂ − θ‖2}.

The nonlinear minimax risk is

rn(�) = inf
θ̂

r(θ̂ ,�).

In practice, we must find an estimator that is simple to implement and such that
r(θ̂ ,�) is close to the minimax risk rn(�).

A first approach, often used in signal processing, simplifies this problem by
choosing an estimator computed with a linear operator. The linear minimax risk
over � is the lower bound:

rl(�) = inf
θ̂ linear

r(θ̂ ,�).

This strategy is efficient only if rl(�) is of the same order as rn(�). When this
is not the case, according to the strategy of Donoho and Johnstone [9] one can
still try to simplify the problem by approaching the nonlinear minimax risk with
nonlinear estimators that are diagonal in an orthonormal basis.

3. Diagonal estimation. Since a linear inverse problem can be reduced to an
additive noise estimation problem, we study the minimax estimation of θ ∈ � from

X = θ + z,(3.1)

where z is a Gaussian random vector of covariance K . This section first
briefly reviews important results concerning the minimax optimality of diagonal
estimators in an orthonormal basis B = {gm}0≤m<N of C

N . We write hB[m] =
〈h,gm〉 for any h ∈ CN . The decomposition coefficients of X = θ + z in B are
〈X,gm〉 = 〈θ, gm〉 + 〈z, gm〉, which we write

XB[m] = θB[m] + zB[m].(3.2)
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A diagonal estimator θ̂ in B estimates each coefficient θB[m] independently
with some decision function δm(XB[m]):

θ̂ =
N−1∑
m=0

δm(XB[m])gm.(3.3)

The estimation risk is

r(θ̂ , θ) = ∃{‖θ̂ − θ‖2} =
N−1∑
m=0

∃{|θB[m] − δm(XB[m])|2}
.(3.4)

Observe that XB[m] = θB[m] + zB[m] is a Gaussian random variable of mean
θB[m] and variance

σ 2
m = ∃{|zB[m]|2} = 〈Kgm,gm〉.(3.5)

If δm(XB[m]) = a[m]XB [m], one can verify that the minimum risk r(θ̂ , θ) is
achieved by choosing

a[m] = |θB[m]|2
|θB[m]|2 + σ 2

m

,(3.6)

and

r(θ̂ , θ) = rinf,d(θ) =
N−1∑
m=0

σ 2
m|θB[m]|2

σ 2
m + |θB[m]|2 .(3.7)

Over a signal set �, the resulting maximum risk is

rinf,d(�) = sup
θ∈�

rinf,d(θ).

The oracle attenuation (3.6) cannot be implemented because a[m] depends
upon |θB[m]| which is not known in practice. The risk rinf,d(�) is thus only a
lower bound for the minimax risk of diagonal estimators. However, Donoho and
Johnstone [9] proved that a simple thresholding estimator can have a maximum
risk that is close to rinf,d(�).

3.1. Linear versus nonlinear. For a linear diagonal estimator θ̂ , each a[m]
is a constant. Clearly, the linear diagonal minimax risk is larger than the linear
minimax risk

rl,d(�) = inf
θ̂ linear diagonal

r(θ̂ ,�) ≥ rl(�).

Diagonal estimators that achieve the minimax risk rl,d (�) are characterized by
considering the quadratic convex hull QH[�] of �.
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The “square” of a set � in the basis B is defined by

(�)2
B =

{
θ : θ =

N−1∑
m=0

|θB[m]|2gm with θ ∈ �

}
.(3.8)

We say that � is quadratically convex in B if (�)2
B is a convex set. The quadratic

convex hull QH[�] of � in the basis B is such that (QH[�])2
B is the convex hull

of (�)2
B :

QH[�] =
{
θ :

N−1∑
m=0

|θB[m]|2gm is in the convex hull of (�)2
B

}
.(3.9)

The risk of an oracle attenuation (3.7) is a lower bound of the minimax linear
diagonal risk rl,d(�):

rl,d(�) ≥ rinf,d(�).(3.10)

If � is a closed and bounded set then Donoho, Liu and Gibbon [11] proved that

rl,d(�) = rl,d(QH[�]) = rinf,d(QH[�]).(3.11)

If � is not quadratically convex in the basis B then it may be much smaller than
QH[�]. In this case, a nonlinear diagonal estimator may have a much smaller risk,
that remains of the order of rinf,d(�).

Among nonlinear diagonal estimators, we concentrate on thresholding estima-
tors:

θ̂ =
N−1∑
m=0

ρTm(XB[m])gm,(3.12)

where ρTm(x) is a soft thresholding function

ρTm(x) =


x − Tm, if x ≥ Tm,
x + Tm, if x ≤ −Tm,
0, if |x| ≤ Tm.

(3.13)

For a Gaussian random variable X0 of mean µ and variance σ 2, Donoho and
Johnstone [9] prove that with a threshold T = σ

√
2 loge M the thresholding risk

satisfies

r(T ,µ,σ ) = ∃{|µ − ρT (X0)|2}
(3.14)

≤ (2 loge M + 1)σ 2

M
+ min(T 2 + σ 2,µ2).
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Since XB[m] is a Gaussian random variable of mean θB[m] and variance σ 2
m,

rt (θ) = r(θ̂ , θ) =
N−1∑
m=0

∃{|θB[m] − ρTm(XB[m])|2}
(3.15)

=
N−1∑
m=0

r(Tm, θB[m], σm).

To control this risk, Johnstone and Silverman [14] propose to use thresholds
Tm = σm

√
2 loge N . Taking into account the maximum coefficient amplitude for

signals in �,

sB[m] = sup
θ∈�

|θB[m]|,

the thresholds are rather defined by

Tm =
{

σm

√
2 loge N, if σm

√
2 loge N ≤ sB[m],

∞, otherwise.
(3.16)

Setting Tm = ∞ guarantees that ρTm(XB[m]) = 0 if σm

√
2 loge N > sB[m] in

which case the risk is equal to |θB[m]|2. Inserting (3.14) in (3.15) together with
the threshold expressions (3.16) gives

rt (θ) ≤
N−1∑
m=0

Tm =∞

σ 2
m(2 loge N + 1)

N
+

N−1∑
m=0

min
(
σ 2

m(2 loge N +1), |θB[m]|2)
.(3.17)

Let rt (�) = supθ∈� rt(θ). Since min(αa, b) ≤ (α + 1)ab/(a + b) for a ≥ 0 and
b ≥ 0, and since σm

√
2 loge N ≤ sB[m] if Tm = ∞, using (3.7) we get

rt (�) ≤ (2 loge N + 1)

N(2 loge N)

N−1∑
m=0

min
(
σ 2

m2 loge N, |sB[m]|2) + (2 loge N + 2)rinf,d(�)

≤ (2 loge N + 1)2

N(2 loge N)

N−1∑
m=0

σ 2
m|sB[m]|2

σ 2
m + |sB[m]|2 + (2 loge N + 2)rinf,d(�).

But σ 2
m|sB[m]|2/(σ 2

m + |sB[m]|2) ≤ rinf,d(�) so we get a simple upper bound

rt (�) = sup
θ∈�

rt(θ) ≤ 4(loge N + 1)rinf,d(�).(3.18)

The risk of this thresholding estimator is thus above rinf,d(�) by at most a
factor proportional to loge N . In some cases, the loge N factor can be reduced
by choosing lower amplitude thresholds.
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For each index m, we denote by jm the integer such that 2jm ≤ σm < 2jm+1,
and by Nm the total number of noise coefficients zB[n] whose variances have
same order of magnitude and which satisfy 2jm ≤ σn < 2jm+1. Let us define the
thresholds

Tm =
{

σm

√
2 loge Nm, if σm

√
2 loge Nm ≤ sB[m],

∞, otherwise,
(3.19)

and for Nm = 1

Tm =
{

σm, if σm ≤ sB[m],
∞, otherwise.

(3.20)

The risk upper bound (3.17) then becomes

rt (θ) ≤
N−1∑
m=0

Tm =∞

σ 2
m(2 loge Nm + 1)

Nm

(3.21)

+
N−1∑
m=0

min
(
σ 2

m(2 loge Nm + 1), |θB[m]|2)
.

Section 4 computes this thresholding risk for a deconvolution problem.

3.2. Nearly diagonal covariance. It now remains to find conditions so that
the risk of diagonal operators in a basis B can approach the minimax risk. This
depends upon the geometry of the set � relative to the vectors of B and on the
covariance matrix of the noise in B .

When z is a Gaussian white noise, Donoho [7, 11] studied the optimality of
diagonal estimators in orthosymmetric sets. Any signal θ can be decomposed as
θ = ∑N−1

m=0 θB[m]gm. A set � is orthosymmetric in B if for any θ ∈ � and for any
a ∈ CN with |a[m]| ≤ 1, then

N−1∑
m=0

a[m]θB [m]gm ∈ �.

This means that the set � is elongated along the directions of the vectors gm of B .
In this case, one can prove [10] that

rl(�) = rinf,d(QH[�]),(3.22)

and we derive from (3.11) that linear diagonal estimators in B achieve the linear
minimax risk. Moreover, we also have [13, 12]

1

1.25
rinf,d(�) ≤ rn(�).(3.23)

When the noise z is not white, to obtain similar near optimality results
with diagonal estimators, the noise coefficients zB[m] should still be “nearly”



66 J. KALIFA AND S. MALLAT

independent. Since z is Gaussian, to guarantee that the coefficients zB[m]
are nearly independent is equivalent to have them nearly uncorrelated, which
means that the covariance K of z is nearly diagonal in B . This approach
was studied by Donoho to prove the optimality of wavelet bases for particular
inverse problems [8], and these results have been refined by Abramovich and
Silverman [1] and Lee and Lucier [19]. Johnstone and Silverman [14] give a
different set of conditions that applies to short range dependent noise which has
a behavior equivalent to a white noise or for long range dependent stationary
noise having a power spectrum that increases like a power law. The following
theorem gives a general condition on B to nearly reach the minimax risk with
diagonal estimators for any type of Gaussian noise. We denote by Kd the diagonal
operator in the basis B , whose diagonal values are equal to the diagonal values
of K: σ 2

m = 〈Kgm,gm〉. The square root K
1/2
d is the diagonal matrix whose

diagonal entries are σm.

THEOREM 1. Suppose that K is invertible. The diagonal preconditioning
factor of K−1 in the basis B is defined by

λB = ‖K1/2
d K−1K

1/2
d ‖s .(3.24)

It satisfies λB ≥ 1. If � is orthosymmetric in B then

rl(�) ≥ 1

λB
rinf,d(QH[�])(3.25)

and

rn(�) ≥ 1

1.25λB
rinf,d(�).(3.26)

The proof is in Appendix A. The fact that K is invertible means that the noise
is not concentrated in a subspace of CN . Otherwise, we restrict ourselves to this
subspace. One can verify that λB = 1 if and only if K = Kd , which means that
K is diagonal in B . The closer λB is to 1 the more diagonal is K .

An upper bound of rl(�) is computed in (3.11) with linear diagonal operators,
and together with (3.25) we get

1

λB
rinf,d(QH[�]) ≤ rl(�) ≤ rinf,d(QH[�]).(3.27)

If λB is of the order of 1 then rl(�) is of the order of rinf,d(QH[�]). For a
thresholding estimator with (3.16) since rn(�) ≤ rt (�), the upper bound (3.18)
of the thresholding risk and (3.26) give

1

1.25λB
rinf,d(�) ≤ rn(�) ≤ rt (�) ≤ (4 loge N + 4)rinf,d(�).(3.28)
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If λB is of the order of 1 then rn(�) and rt (�) are of the order of rinf,d(�), up to
a factor at most proportional to loge N .

The set � is often not orthosymmetric in any basis B . Yet, if one can find two
orthosymmetric sets �1 and �2 such that �1 ⊂ � ⊂ �2, then applying Theorem 1
to �1 and �2 gives upper bounds and lower bounds of rl(�) and rn(�). We say
that � is “nearly” orthosymmetric in B if the two sets �1 and �2 are close
enough so that the upper and lower bounds of the risk are equivalent up to a
multiplicative constant. The main difficulty is to find a basis B where � is “nearly”
orthosymmetric, and which “nearly” diagonalizes the covariance K of the noise.

3.3. Inverse problems. Let us now come back to the estimation of θ ∈ � given
the degraded data Y = Uθ + ν. This inverse problem is rewritten in (2.4) as

X = PVθ + z with z = U
−1

ν.(3.29)

The range of U
−1

is V = KerU⊥. Let B = {gm}0≤m<N be an orthonormal basis
such that a subset of its vectors defines a basis of V. We consider diagonal
estimations θ̂ ∈ V. Over V , the risk has the same expression as (3.4). There is
no data on the projection of θ on V⊥ = KerU. We shall suppose that given PVθ

the minimax estimator of PV⊥θ is 0. A sufficient condition is that for

�θ = {φ ∈ � :PVφ = PVθ}
then

arg min
y∈V⊥

sup
φ∈�θ

‖y − PV⊥φ‖ = 0.

This condition is clearly satisfied if � is orthosymmetric in B since θ = PVθ +
PV⊥θ ∈ � and PVθ − PV⊥θ ∈ �. As a result the best estimator over V⊥ = KerU
is 0 and the risk over V⊥ is equal to the signal energy. Hence

r(θ̂ , θ) = ∃{‖θ̂ − θ‖2}
(3.30)

= ∑
gm∈V

∃{|θB[m] − δm(XB[m])|2} + ∑
gm∈V⊥

|θB[m]|2.

An oracle diagonal estimator in B has a risk calculated as in (3.6)

rinf,d(θ) = ∑
gm∈V

σ 2
m|θB[m]|2

σ 2
m + |θB[m]|2 + ∑

gm∈V⊥
|θB[m]|2.(3.31)

This oracle risk is equal to the limit of the oracle risk (3.7) computed for the
estimation problem X = θ + z with θ ∈ � when letting σ 2

m = ∃{|zB[m]|2} tend
to +∞ for all gm ∈ V⊥. This reflects the fact that we have lost all information
about θ ∈ V⊥. With this observation, we easily verify that Theorem 1 applies to the
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estimation problem (3.29), which is interpreted as a limit of estimation problems
for a noise which tends to ∞ in V⊥. The inverse of the covariance K of z over V
is K−1 = σ−2U∗U . In this case, the diagonal preconditioning factor is

λB = ‖K1/2
d K−1K

1/2
d ‖s = ‖Uσ−1K

1/2
d ‖2

s .

It corresponds to a diagonal preconditioning factor of the degradation operator U

in the basis B .
If λB remains bounded and � is orthosymmetric then a thresholding estimator

in B has a risk that is close to the minimax risk. In practice, we do not need to

compute X = U
−1

Y which is numerically unstable since ‖U−1‖s is huge. The
thresholding estimator θ̂ in (3.12) requires only the calculation of

〈X,gm〉 = 〈
U

−1
Y,gm

〉 = 〈
Y,U

−1∗
gm

〉
for a threshold Tm = ∞. Since ‖U−1∗

gm‖2 = σ 2
m/σ 2 for Tm = ∞, and (3.16)

implies that σm ≤ sB[m], we get∥∥U−1∗
gm

∥∥ ≤ sB[m]/σ.

The vector gm = U
−1∗

gm has a bounded norm and can be precalculated to
estimate θ with a stable numerical procedure:

θ̂ =
N−1∑
m=0

Tm =∞

ρTm(〈Y,gm〉)gm.(3.32)

If B = {gm}0≤m<N is a wavelet basis then Donoho [8] calls {gm}0≤m<N

a vaguelette family and the estimator θ̂ is a wavelet–vaguelette thresholding
estimator. Abramovich and Silverman [1] showed that inverting the role of
wavelets and vaguelettes in (3.32) can improve the constant in the asymptotic
behavior of the risk of these estimators.

4. Deconvolution of one-dimensional signals. In many physical measuring
devices the desired analog signal is degraded by a convolution operator to which
is added a white noise. Section 4.1 writes this inverse problem as a discrete
deconvolution and specifies a bounded variation model for the discretized signal
that must be estimated. Section 4.2 reviews the properties of discrete wavelet
bases, which are particularly well adapted to power law deconvolutions. For
hyperbolic deconvolutions, wavelet bases must be modified. Section 4.3 constructs
a new orthonormal basis in which a thresholding estimator can have a minimax
convergence rate, as proved in Section 4.4.
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4.1. From continuous to discrete deconvolution. Suppose that the measured
discrete signal is a convolution of the desired signal f (t) with a convolution kernel
g(t), which is uniformly sampled and contaminated by a Gaussian white noise:

Y [n] = Gf

(
n

N

)
+ ν[n] with Gf (t) =

∫ +∞
−∞

f (x)g(t − x) dx.(4.1)

This deconvolution problem is rewritten as a discrete inverse problem, and a
bounded variation model is specified for discrete signals.

Let g̃(ω) be the Fourier transform of g(t). If g ∈ L2(R) then Appendix B shows
that we can write

Gf

(
n

N

)
= θ � v[n] with θ[n] = 〈f (t), φ(t − n/N)〉(4.2)

where {φ(t − n/N)}n∈Z is an orthonormal family in L2(R) and v ∈ l2(Z) has a
Fourier transform which satisfies

|̃v(ω)|2 =
+∞∑

p=−∞
|g̃(Nω + 2pNπ)|2.

We can therefore rewrite (4.1) as a discrete convolution equation

Y [n] = θ � v[n] + ν[n].(4.3)

We shall simplify border problems with periodic assumptions, by supposing that
f is 1 periodic and hence that θ[n] is N periodic. Appendix B derives that
the convolution in (4.2) can then be replaced by a circular convolution with an
N periodic filter u[n] whose discrete Fourier transform

ũ[k] =
N−1∑
n=0

u[n]e−i2πkn/N(4.4)

satisfies

|ũ[k]|2 =
∣∣∣∣ṽ(

2kπ

N

)∣∣∣∣2 =
+∞∑

p=−∞
|g̃(2kπ + 2pNπ)|2(4.5)

and hence

Y [n] = Uθ[n] + ν[n] = θ � u[n] + ν[n] for 0 ≤ n < N.(4.6)

The pseudo inverse of U is U
−1

θ = θ �u−1 where the discrete Fourier transform
of u−1 is

ũ−1[k] =
{

1/ũ[k], if ũ[k] = 0,
0, if ũ[k] = 0.

(4.7)
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The noise after deconvolution is z = ν � u−1. It is circular stationary and its
covariance K is a circular convolution whose kernel is

c[n] = σ 2u−1 � u−1∗[n] with u−1∗[n] = u−1[−n].(4.8)

This covariance is diagonalized in the discrete Fourier basis and the eigenvalues
of K (power spectrum) are

σ 2
k = σ 2|ũ[k]|−2.

If the convolution kernel in (4.1) has a power law decay |g̃(ω)| ∼ 1+|ω|−β with
β > 1/2 then we derive from (4.5) that |ũ[k]| ∼ 1 + |k|−β for −N/2 ≤ k ≤ N/2.
This power law deconvolution has been studied by many authors [26, 8]. A
simple example is the estimation of derivatives, which can be cast as a power law
deconvolution with β = 1 [1].

A different type of deconvolution problem arises with measuring devices
which have a limited resolution and where the sampling rate is adapted to the
highest accessible frequencies. Suppose that g̃(ω) = 0 for |ω| > ξ and |g̃(ω)| ∼
|1 − |ω|/ξ |p for |ω| ≤ ξ . The Shannon sampling rate is N−1 = π/ξ and (4.5)
implies that

|ũ[k]| ∼
∣∣∣∣2|k|

N
− 1

∣∣∣∣p.(4.9)

As opposed to the power law example, in this case the convolution kernel g

depends upon N . After deconvolution, the power spectrum σ 2
k has a hyperbolic

growth when the frequency k is in the neighborhood of ±N/2. We call it a
hyperbolic deconvolution problem of order p. If p = 0 then the inverse problem is
not ill-defined and is equivalent to estimation in the presence of white noise.

The restoration is particularly difficult when the signal includes regular com-
ponents and sharp transitions such as singularities. Bounded variation functions
f (t) have been used to model such signals [6, 8]. Over [0,1] the total variation is
defined by

‖f ‖tv =
∫ 1

0
|f ′(t)|dt

where f ′ is defined in the sense of distributions. For periodic signals, one must
add |f (1) − f (0)| to this integral, to incorporate the jump at the border. The total
variation measures the amplitude of all oscillations, and f may include sharp
transitions such as discontinuities. Discrete samples are obtained with a local
averaging of f :

θ[n] = 〈f,φ(t − n/N)〉 =
∫ +∞
−∞

f (t)φ(t − n/N)dt,
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where φ(t) depends upon N . If φ(t) = N1/2O(1 + (Nt)−2) then a standard
calculation shows that there exists a constant B such that the discrete total variation
satisfies

‖θ‖tv =
N−1∑
n=0

|θ[n] − θ[n − 1]| ≤ B‖f ‖tv.(4.10)

If f has a total variation bounded by a constant, then for any N its discretization
θ[n] has a uniformly bounded discrete total variation. We shall therefore consider
models of discrete signals corresponding to bounded discrete total variation

�tv =
{
θ :‖θ‖tv =

N−1∑
n=0

|θ[n] − θ[n − 1]| ≤ C

}
.(4.11)

4.2. Wavelet bases for deconvolution. The properties of wavelet bases are
briefly reviewed. Thresholding estimators in wavelet bases are a priori well
adapted to estimate bounded variation signals because �tv is nearly orthosym-
metric in a wavelet basis. Donoho [8] also showed that power law convolution
operators are nearly diagonalized in such wavelet bases and thus lead to nearly
minimax thresholding estimators. However, this is not the case for hyperbolic de-
convolution problems.

A wavelet basis of L2(R) is constructed from a single analog wavelet ψa(t)

whose translations and dilations{
ψa

j,m(t) = 1√
2j

ψa

(
t − 2jm

2j

)}
(j,m)∈Z2

(4.12)

define an orthonormal basis of L2(R). The wavelet ψa(t) is obtained with a pair
of conjugate mirror filters ha[n] and ga[n] = (−1)1−nha[1 − n] with |h̃a(ω)|2 +
|h̃a(ω + π)|2 = 1:

ψ̃a(ω) = g̃a

(
ω

2

)
φ̃a

(
ω

2

)
with φ̃a(ω) =

+∞∏
p=1

h̃a(2−pω).(4.13)

The wavelet ψa has q vanishing moments, meaning that∫ +∞
−∞

tkψa(t) dt = 0 for any 0 ≤ k < q,

if and only if h̃a(ω + π) = O(|ω|q). It has a compact support if and only if ha[n]
has a compact support [5]. We shall also suppose that |h̃a(ω)| ≥ 1/2 for |ω| ≤ π/2
and that ‖ψa‖tv < +∞. Daubechies wavelets [5] are examples of such wavelets.

Let ψ
per
j,m(t) = ∑+∞

k=−∞ ψa
j,m(t + k) be a wavelet of period 1, and ψ

per
1,0(t) = 1.

One can also prove [21] that

{ψp
j,m(t)}−∞<j≤1,0≤m<2−j(4.14)
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is an orthonormal basis of L2[0,1]. The corresponding discrete wavelet basis
in C

N is obtained with an N periodic filter h[n] = ∑+∞
p=−∞ ha[n + pN ] whose

discrete Fourier transform is h̃[k] = h̃(2πk/N) and with g[n] = (−1)1−nh[1 − n]
[20]. Let L = − log2 N . We write ψj [n] for the N periodic discrete wavelet and
φj [n] for the scaling signal whose discrete Fourier transforms are

ψ̃j [k] = g̃[2j−L−1k]φ̃j−1[k] with φ̃j [k] =
j−L−1∏

l=0

h̃[2lk] for j > L,(4.15)

and φ̃L[k] = 1. The Fourier transform ψ̃j [k] is mostly nonnegligible in the
frequency band |k| ∈ [2−j−1,2−j ], as illustrated in Figure 1. The wavelet ψj is
translated: ψj,m[n] = ψj [n−2j−Lm]. A constant vector ψ1,0[n] = N−1/2 is added
to this family. The resulting family

{ψj,m}L<j≤1,0≤m<2−j(4.16)

is an orthonormal basis of CN . The decomposition of θ ∈ CN in this basis is
calculated with O(N) operations, with a fast filter bank algorithm using the filters
h and g [20]. Let φa

L(t) = 2−L/2φa(2−Lt) defined from (4.13). One can also verify
that

ψ
per
j (t) =

+∞∑
n=−∞

ψj [n]φa
L(t − n/N).(4.17)

When the dimension N increases to +∞ the discrete wavelet basis converges to
the periodized wavelet basis of L2[0,1] and

lim
N→+∞

ψj,m[n]
N−1/2ψ

per
j,m(N−1n)

= 1.(4.18)

The properties of ψa(t) thus specify the asymptotic properties of the discrete
wavelet basis as N increases.

Wavelet thresholding estimators have been applied by Donoho [8] to deconvo-
lution problems

Y [n] = θ � u[n] + ν[n].
If θ belongs to a set that is nearly orthosymmetric in a wavelet basis and if this basis
nearly diagonalizes the covariance (4.8) of the deconvolved noise then Theorem 1
shows that the resulting thresholding estimator has a nearly minimax risk.

An upper bound and a lower bound of a total variation norm can be calculated
from the absolute value of wavelet coefficients. This result is proved by Meyer [21]
for functions decomposed in a wavelet basis of L2[0,1]. The following proposition
states this results for discrete signals and Appendix C adapts the proof of Meyer.



THRESHOLDING FOR INVERSE PROBLEMS 73

FIG. 1. In a mirror wavelet basis, standard wavelets ψj,m have a Fourier transform ψ̃j,m that
covers the lower frequencies and mirror wavelets ψ̃j,m are in the upper half frequency interval.
The power spectrum σ 2

k of the noise has a hyperbolic growth but varies by a bounded factor on
the interval where the energy of each mirror wavelet is mostly concentrated. There exists a cut-off
frequency kc above which the variance σ 2

k of the noise is too high and the thresholding sets all
coefficients to zero.

PROPOSITION 1. There exist A,B > 0 such that for all N > 0,

B−1‖θ‖tv ≤
1∑

j=L+1

2−j−1∑
m=0

2(L−j)/2|〈θ,ψj,m〉|(4.19)

and

A−1‖θ‖tv ≥ sup
L<j≤1

( 2−j−1∑
m=0

2(L−j)/2|〈θ,ψj,m〉|
)
.(4.20)

This proposition provides an embedding of the bounded variation signal set
�tv = {θ :‖θ‖tv ≤ C}, in two orthosymmetric sets defined by

�1 =
{
θ :B

1∑
j=L+1

2−j−1∑
m=0

2(L−j)/2|〈θ,ψj,m〉| ≤ C

}

and

�2 =
{
θ :A sup

j≤1

( 2−j−1∑
m=0

2(L−j)/2|〈θ,ψj,m〉|
)

≤ C

}
.

The sets �1 and �2 are clearly orthosymmetric in the wavelet basis and we derive
from (4.19) and (4.20) that �1 ⊂ �tv ⊂ �2.

The thresholds in a wavelet basis are chosen depending upon the variance of the
deconvolved noise coefficients according to (3.16). As a consequence of (3.5) we
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have σ 2
j,m = 〈Kψj,m,ψj,m〉. Since the covariance K of the deconvolved noise is

diagonal in the Fourier basis with a power spectrum σ 2|ũ[k]|−2 we get

σ 2
j,m = σ 2

N

N/2∑
k=−N/2+1

|ũ[k]|−2|ψ̃j,m[k]|2

(4.21)

= σ 2

N

N/2∑
k=−N/2+1

|ũ[k]|−2|ψ̃j [k]|2 = σ 2
j .

This variance is independent of the position index m of the wavelet.
Using the asymptotic equivalence symbol ∼ defined at the end of the

Introduction, for a power-law deconvolution problem we have |ũ[k]|−1 ∼ N−1|k|β
and since ψ̃j [k] is mostly nonzero in the frequency band |k| ∈ [2−j−1,2−j ] we get
σ 2

j ∼ N−22−2jβ . Donoho [8] as well as Abramovich and Silverman [1] prove that
in this case thresholding estimators are nearly minimax for the discretization of
functions in Besov spaces or having a bounded variation, because the covariance K

is nearly diagonalized in a wavelet basis. Intuitively, the reason is that the
power spectrum σ 2|ũ[k]|−2 varies by at most a constant factor over the interval
[2−j−1,2−j ] where ψ̃j [k] is mostly nonzero. Johnstone and Silverman [14] also
give a thresholding strategy to remove such power-law deconvolved noise, which
has a long range dependence.

For hyperbolic deconvolutions where ũ[k] satisfies (4.9) the power spectrum is

σ 2|ũ[k]|−2 ∼ σ 2
∣∣∣∣2|k|

N
− 1

∣∣∣∣−2p

.

If 2j > 2L+1 then this spectrum varies by a bounded factor for k ∈ [2−j−1,2−j ]
which indicates that the wavelets ψj,m can be approximate eigenvectors of K , as
illustrated by Figure 1. At the finest scale 2j = 2L+1, |ψ̃L+1[k]| has an energy
spread over the higher frequency band [N/4,N/2] where the spectrum varies by
a huge factor of the order of N2p . Appendix D proves that as a result a wavelet
thresholding estimator has a larger risk and there exists a constant B > 0 such that
for all C, N and σ with C2/σ 2 ≤ N2p+1,

rt (�tv) ≥ BC2.(4.22)

We shall see that in this case even a linear estimator can outperform this wavelet
thresholding estimator.

4.3. Mirror wavelet basis. For a hyperbolic deconvolution, to construct a
basis of approximate eigenvectors of K , the finest scale wavelets ψL+1,m must
be replaced by vectors that have a Fourier transform concentrated in smaller
subintervals of [N/4,N/2], where the spectrum σ 2

k varies by a factor that does
not grow with N . Let WL+1 be the space generated by {ψL+1,m}0≤m<N/2. One
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must define a new basis of WL+1 whose vectors have a Fourier transform whose
energy is mostly concentrated in intervals of the form [N/2 − 2−j ,N/2 − 2−j−1]
for 0 ≥ j > L+ 1, where σ 2

k ∼ σ 2|2|k|/N − 1|−2p varies by a bounded factor. We
do not want to further reduce the size of these frequency intervals because it would
increase the total variation of the basis vectors and thus represent less efficiently
signals having a bounded total variation.

Mirror wavelets are defined with a cascade of convolution of the same conjugate
mirror filters h[n] and g[n] used to construct the wavelets ψj in (4.15) but in
a different order. Let L = − log2 N . The discrete Fourier transform of a mirror
wavelet ψ̃j [k] is

ψ̃j [k] = g̃[k]
(j−L−2∏

l=1

h̃∗[2lk]
)
g̃∗[2j−L−1k](4.23)

where h̃∗[n] and g̃∗[n] are Fourier transforms of h∗[n] = h[−n] and g∗[n] =
g[−n]. Since g[n] = (−1)1−nh[1 − n] one can verify that

ψj,m[n] = (−1)n−1ψj,m[1 − n](4.24)

and ∣∣ψ̃j,m[k]∣∣ = |ψ̃j,m[N/2 − k]|.
The energy of ψ̃j,m[k] is thus mostly concentrated in [N/2 − 2−j ,N/2 − 2−j−1]
as illustrated in Figure 1.

The mirror wavelets (4.23) are obtained with a cascade of convolutions of
conjugate mirror filters, beginning with the filter g, and therefore correspond to
a particular family of wavelet packets [4], which generate the same space WL+1.
From general properties of wavelet packets, we derive that{

ψj,m[n] = (−1)n−1ψj,m[1 − n]}L+2≤j≤1,0≤m<2−j

is an orthonormal basis of WL+1. Hence

B = {ψj,m,ψj,m}0≤m<2−j ,L+1<j≤1

is an orthonormal basis of CN , called a mirror wavelet basis. Computing the
decomposition coefficients of a signal in this basis is performed with a wavelet
packet filter bank described in [17], which requires O(N) operations. When
N varies, a discrete wavelet basis can be interpreted as a discretization of a single
wavelet basis of L2[0,1] with a resolution that varies. On the contrary, mirror
wavelet bases for different N are totally different bases.

To prove that the covariance K is “almost diagonalized” in the mirror wavelet
basis B with a diagonal preconditioning factor that does not grow with N ,
one must control the asymptotic behavior of this basis as N increases. We
explained that the discrete wavelet basis converges to a periodic basis of L2[0,1]



76 J. KALIFA AND S. MALLAT

defined from a mother wavelet ψa(t) ∈ L2(R). The following theorem proves
that if ψa has enough vanishing moments and is sufficiently regular then the
preconditioning factor is bounded by a factor independent of N . The theorem proof
is in Appendix E.

THEOREM 2. Suppose that ψa has a compact support, is Cq+1 and has
q vanishing moments. For a hyperbolic deconvolution of order p < q , there
exists λ such that for all N > 0 the covariance K in the mirror wavelet basis B
satisfies

‖K1/2
d K−1K

1/2
d ‖s ≤ λ.(4.25)

The theorem proves that the lower frequency wavelets {ψj,m}0≤m<2−j ,L+1<j≤1
are nearly eigenvectors of K because over this range of frequency the eigen-
values of K remain of the same order. The high frequency mirror wavelets
{ψj,m}0≤m<2−j ,L+1<j≤1 are also nearly eigenvectors of K because they are suffi-
ciently well localized in frequency. The mirror wavelet basis is different from the
wavelet packet basis initially proposed by Rougé [24], but it follows his idea to use
wavelet packets to refine the frequency resolution of the basis vectors.

4.4. Thresholding estimation with mirror wavelets. The implementation of a
thresholding estimator in a mirror wavelet basis is described and it is proved that
the resulting risk is equivalent to the nonlinear minimax risk for bounded variation
signals.

Let us first consider a subset � of CN which is orthosymmetric in the mirror
wavelet basis. Suppose that soft thresholding is performed with thresholds com-
puted according to (3.16), which depend upon the variances of the deconvolved
noise in the direction of the different wavelets and mirror wavelets. These variances
do not depend upon the position index m. The proof of Theorem 2 shows in (E.5)
that for L + 2 ≤ j ≤ 1 and for the 2−j wavelets corresponding to 0 ≤ m < 2−j

σ 2
j = 〈Kψj,m,ψj,m〉 = 1

N

N/2∑
k=−N/2+1

σ 2
k

∣∣ψ̃j [k]∣∣2 ∼ σ 2.(4.26)

For the 2−j mirror wavelets corresponding to 0 ≤ m < 2−j , (E.15) proves that

σ 2
j = 〈Kψj,m,ψj,m〉 = 1

N

N/2−1∑
k=−N/2+1

σ 2
k

∣∣ψ̃j [k]∣∣2 ∼ σ 222p(j−L).(4.27)

For a hyperbolic deconvolution, the preconditioning result (4.25) together with
(3.28) yields

1

1.25λ
rinf,d(�) ≤ rinf,d(�) ≤ rn(�) ≤ rt (�) ≤ (4 loge N + 4)rinf,d(�).(4.28)
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This proves that for an orthosymmetric set �, a thresholding in a mirror wavelet
basis reaches the minimax risk up to a factor proportional to loge N .

To prove that a thresholding estimator is nearly minimax optimal in a set
of bounded variation signals �tv, it remains to prove that �tv is “nearly”
orthosymmetric in this basis. For this purpose, the following proposition computes
an upper bound and a lower bound of ‖θ‖tv from the absolute value of mirror
wavelet coefficients, from which Appendix G derives an embedding of �tv in two
sets that are orthosymmetric in the mirror wavelet basis.

PROPOSITION 2. There exist A,B > 0 such that for all N > 0

B−1‖θ‖tv ≤
1∑

j=L+2

2(L−j)/2
2−j−1∑
m=0

|〈θ,ψj,m〉|
(4.29)

+
1∑

j=L+2

2(j−L)/2
2−j−1∑
m=0

|〈θ,ψj,m〉|

and

A−1‖θ‖tv ≥ sup
1≥j≥L+2

(
2(L−j)/2

2−j−1∑
m=0

|〈θ,ψj,m〉|,

(4.30)

2(j−L)/2
2−j −1∑
m=0

|〈θ,ψj,m〉|
)
.

The proof is in Appendix F. To avoid having a thresholding risk which is
above the minimax risk by a loge N factor, the thresholds are chosen according
to (3.19). We saw in (4.26) that the deconvolved noise has a variance σj ∼ σ for
the N/2 lower frequency wavelets ψj,m at scales 2j > 2L+1. For each scale 2j the
corresponding threshold is therefore

Tj = σ 2
j

√
2 loge(N/2).(4.31)

In (4.27), the noise variance σj ∼ σ 222p(j−L) is the same for the 2−j mirror
wavelets {ψ̃j,m}0≤m<2−j but it varies greatly with the scale 2j . The threshold
corresponding to a mirror wavelet ψj,m is therefore

T j =
{

σ j

√
2 loge 2−j , if σ j

√
2 loge 2−j ≤ sj ,

∞, otherwise,
(4.32)
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with sj = supθ∈�tv
|〈θ,ψj,m〉|, where θ ∈ �tv if ‖θ‖tv ≤ C. Proposition 2 implies

that sj ∼ C2(L−j)/2. The thresholding estimation can thus be decomposed in two
parts. Over the lower frequency wavelets, it is equivalent to an estimation in the
presence of nearly white noise whereas the unstable component is carried by the
thresholding of the high frequency mirror wavelets. The problem is studied in
the range of noise where C/σ ≥ N1/2 to guarantee that the estimation risk is not
dominated by the lower frequency noise as opposed to the attenuation of the signal
high frequencies. We also impose that C/σ ≤ Np+1/2 otherwise σ is so small that
the inverse problem is not truly unstable. The hypothesis N1/2 ≤ C/σ ≤ Np+1/2

thus corresponds to the range of the signal-to-noise ratio where the estimation risk
is dominated by the degradations of the signal high frequencies, while the noise is
nonnegligible.

Let 2c be the critical scale defined as the smallest scale such that T j = ∞ for
all 2j > 2c. This corresponds to mirror wavelets ψj,m whose Fourier transform
has an energy concentrated at high frequencies |k| ≥ kc = N/2 − 2−c, illustrated
in Figure 1. The thresholding estimator does not recover the signal projection
over these higher frequencies. The following theorem proves that over �tv the
thresholding risk and the nonlinear minimax risk are dominated by the risk in the
direction of the mirror wavelets {ψc,m}0≤m<2−c at the critical scale 2c. The linear
minimax risk is also computed.

THEOREM 3. Let B be a mirror wavelet basis corresponding to a compactly
supported wavelet ψa(t) that is Cq+1 with q vanishing moments. For a hyperbolic
deconvolution of order p < q with p ≥ 1, if N1/2 ≤ C/σ ≤ Np+1/2 then

rl(�tv) ∼ C2
(

σ 2N

C2

)1/2p

(4.33)

and

rt (�tv) ∼ rn(�tv) ∼ C2
(

σ 2

C2 log2
σNp+1/2

C

)1/(2p+1)

.(4.34)

The proof is in Appendix G. This theorem proves that a thresholding estimator
in a mirror wavelet basis yields a quasi minimax deconvolution estimator for
bounded variation signals. The equivalence ∼ means that there exist A,B > 0
such that for all C, σ and N ,

Arn(�tv) ≤ rt (�tv) ≤ Brn(�tv).

As opposed to the result (4.28) there is no loss of a logN factor between the
thresholding and the nonlinear minimax risk. If N2σ 2 = o(C2) then the linear
minimax risk (4.33) is much smaller than the lower bound (4.22) obtained for a
thresholding estimator in a wavelet basis.
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Observe that the set �tv is translation invariant in the sense that if θ[n] ∈ �tv

then θ[n − p] ∈ �tv for any p ∈ Z. Since z is a circular stationary process, the
estimation of θ ∈ �tv from X = θ +z is a translation invariant estimation problem.
As a result, one can prove [20] that the minimax linear estimator is reached by
translation invariant operators and hence by convolution operators. The cut-off
frequency of the convolution operator that reaches the minimax risk is smaller
than the cut-off frequency of a thresholding estimator, which explains why rt (�tv)

is much smaller than the linear minimax risk rl(�tv). If C2 ∼ Nσ 2 then

rl(�tv) ∼ C2 and rt (�tv) ∼ C2
(

loge N

N

)1/(2p+1)

.(4.35)

The existence of cut-off frequencies for linear and thresholding estimators implies
that the pseudo-inverse kernel u−1 defined in (4.7) can be replaced by a truncated
kernel so that the calculation of X = Y � u−1 is numerically stable:

ũ−1[k] =
{

1/ũ[k], for |k| ≤ kc,
0, for |k| > kc.

The thresholding estimator in a mirror wavelet basis is not translation invariant
because the basis is not translation invariant. It can however be made translation in-
variant with the shifting procedure of Coifman and Donoho [3]. The degraded data
is translated Xl[n] = X[n− l] for 0 ≤ l < N , and the translation-invariant estimate
obtained by computing a thresholding estimator θ̂l in a mirror wavelet basis from
each Xl and averaging the θ̂l[n + l] over l. In wavelet and wavelet packet bases,
which are partially translation invariant, Coifman and Donoho give a translation-
invariant filter bank algorithm which requires O(N logN) operations. Numerical
experiments [3] show that this translation invariant procedure reduces the risk of
thresholding estimators, although there is no satisfying theoretical explanation.
This improvement also appeared clearly in all our numerical experiments.

Figure 2 shows the risk of the restoration of a piecewise regular signal as a
function of log2 N for the deconvolution of this same signal, while maintaining
C2 and Nσ 2 constant. The computations are done with two convolution operators
whose transfer functions ũ[k] have respectively p = 1 and p = 2 zeros at
k = ±N/2. For p = 1 and p = 2 the value of Nσ 2 is set, respectively, to
10 and 10−1, with N ≥ 103 and C = 3103. As expected from (4.35) the risk
of the linear estimator remains nearly constant. For a thresholding estimator in
a mirror wavelet basis, (4.35) shows that log2(rt (�tv)) decreases when log2 N

increases, with a slope equal to −1/(2p + 1). The piecewise regular signal that
is used has a discontinuity so it behaves like a worst case in �tv. The measured
slope is approximately −0.32 for p = 1 whereas −1/(2p + 1) � −0.33, and this
slope is approximately −0.18 for p = 2 whereas −1/(2p + 1) = −0.2. Numerical
results are thus close to theoretical predictions.
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FIG. 2. When C2 and Nσ 2 are constant, the risk of a linear estimation remains nearly constant,
whereas log2 rt (θ) decays linearly for a thresholding deconvolution in a mirror wavelet basis, with
a slope that depends on the order p of the deconvolution.

5. Deconvolution of images. Nearly optimal deconvolution of bounded
variation images can be calculated with a separable extension of the deconvolution
estimator in a mirror wavelet basis. Such a restoration algorithm is now used by
the French spatial agency (CNES) for the production of satellite images [25]. In a
satellite observation, the exposition time of the photoreceptors cannot be reduced
too much because the light intensity reaching the satellite is small and must not
be dominated by electronic noise. The satellite movement thus produces a blur
and the optics of the satellite camera introduce another blur. The electronics of
the photoreceptors adds a Gaussian white noise. When the satellite is in orbit,
a calibration procedure measures the impulse response u of the blur and the noise
variance σ 2. The image in Figure 3(b) is a simulated satellite image provided by
the CNES, which is calculated from an airplane image shown in Figure 3(a). The
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FIG. 3. (a) Zoom on the original airplane image. (b) Simulation of a satellite image provided by
the CNES (SNR = 31.1 db). (c) Deconvolution with a translation invariant thresholding in a mirror
wavelet basis (SNR = 34.3 db). (d) Deconvolution calculated with a circular convolution, which
yields a nearly minimax linear risk for bounded variation images (SNR = 32.7 db).

impulse response is a separable low-pass filter

Uθ[n1, n2] = θ � u[n1, n2] with u[n1, n2] = u1[n1]u2[n2].
For square images of N × N pixels, the discrete Fourier transforms of u1 and u2
have respectively a zero of order p1 and p2 at ±N/2,

ũ1[k1] ∼
∣∣∣∣2|k1|

N
− 1

∣∣∣∣p1

and ũ2[k2] ∼
∣∣∣∣2|k2|

N
− 1

∣∣∣∣p2

.

We shall study the deconvolution of images with such separable kernels.
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The deconvolved noise has a covariance K that is diagonalized in a two-
dimensional discrete Fourier basis. The eigenvalues (power spectrum) are

σ 2
k1,k2

= σ 2

|ũ1[k1]|2|ũ2[k2]|2 ∼ σ 2
∣∣∣∣2|k1|

N
− 1

∣∣∣∣−2p1∣∣∣∣2|k2|
N

− 1
∣∣∣∣−2p2

.(5.1)

Observe that the hyperbolic growth of the eigenvalues at high frequencies depends
upon the direction where we move in the frequency plane (k1, k2). If we move
along the horizontal line (k1, k2) = (k,0), when |k| increases the exponent of the
hyperbolic growth is 2p1. Along the vertical line (k1, k2) = (0, k), this exponent is
2p2 and it is 2(p1 + p2) along the diagonal line (k1, k2) = (k, k). The estimation
risk thus has a strong dependency upon the directional properties of the two-
dimensional signals.

In image processing, a major difficulty is to find relevant image models. For
complex images such as satellite images, it is very difficult to find a stochastic
model which is consistent with the observed data. This would not be true for more
specialized images such as certain types of textures. As a result, it is difficult to
compute a Bayes risk for complex images such as satellite images. Recently, the
minimax approach has been quite successful to obtain analytical computations
of the risk of thresholding estimators which is consistent with numerical results
on real images. For image estimation in the presence of white noise, bounded
variation image models have been used because they allow the presence of
discontinuities, which is the case in most images. Yet, we shall see that this model
needs to be refined for deconvolution problems.

5.1. Separable mirror wavelet basis. As in one-dimension, it is tempting to
use a wavelet basis to implement a thresholding estimator because large classes
of images can be modeled as elements of a set � that is nearly orthosymmetric
in a wavelet basis. This is the case for bounded variation images. However,
a thresholding algorithm in a wavelet basis gives poor results for a hyperbolic
deconvolution because the covariance of the noise is not nearly diagonalized in
this basis. We thus modify this basis at high frequencies with separable mirror
wavelets.

A separable wavelet basis of CN2
is constructed from the one-dimensional

discrete wavelets ψj and scaling signals φj defined in (4.15). Let L = − log2 N .
At each scale 2L < 2j ≤ 1 there are three wavelets defined by

ψ1
j [n1, n2] = φj [n1]ψj [n2], ψ2

j [n1, n2] = ψj [n1]φj [n2],
(5.2)

ψ3
j [n1, n2] = ψj [n1]ψj [n2].

These wavelets are uniformly translated to define ψα
j,m1,m2

[n1, n2] = ψα
j [n1 −

2j−Lm1, n2 − 2j−Lm2] for α = 1,2,3. The constant wavelet ψ0
0 [n1, n2] = 1/N

is included so that the separable wavelet family{
ψ0

1 ,ψ1
j,m1,m2

,ψ2
j,m1,m2

,ψ3
j,m1,m2

}
L<j≤0,0≤m1,m2<2−j
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is an orthonormal basis of CN2
. Fast wavelet decomposition and reconstruction

algorithms are implemented with O(N2) operations, with a separable filter bank
algorithm [20]. The asymptotic properties of this wavelet basis for N large depends
upon the asymptotic properties of the corresponding one-dimensional wavelet
basis, which is governed by the analog wavelet ψa(t) ∈ L2(R).

To nearly diagonalize the noise covariance K , each vector of the basis should
have a Fourier transform whose energy is concentrated in a frequency domain
where the eigenvalues

σ 2
k1,k2

∼ σ 2
∣∣∣∣2|k1|

N
− 1

∣∣∣∣−2p1∣∣∣∣2|k2|
N

− 1
∣∣∣∣−2p2

vary at most by a constant factor. At low frequencies (|k1|, |k2|) ∈ [0,N/4]2 the
variance is nearly constant σ 2

k1,k2
∼ σ 2. At scales 2j > 2L+1, the lower frequency

wavelets of the family

B0 = {
ψ0

1 ,ψ1
j,m1,m2

,ψ2
j,m1,m2

,ψ3
j,m1,m2

}
L+1<j≤0,0≤m1,m2<2−j(5.3)

have a Fourier transform mostly concentrated in the lower frequency square
[−N/4,N/4]2 and hence are approximate eigenvectors of K . However, this is
not the case for the 3N2/4 finer scale wavelets{

ψ1
L+1,m1,m2

,ψ2
L+1,m1,m2

,ψ3
L+1,m1,m2

}
0≤m1,m2<N/2(5.4)

whose Fourier transform has energy concentrated over high frequency squares
where either |k1| ∈ [N/4,N/2] or |k2| ∈ [N/4,N/2]. In these domains σ 2

k1,k2

varies by a huge factor. Observe that σ 2
k1,k2

= σ 2
k1

σ 2
k2

with

σ 2
k1

= σ

∣∣∣∣ |2k1|
N

− 1
∣∣∣∣−2p1

and σ 2
k2

= σ

∣∣∣∣2|k2|
N

− 1
∣∣∣∣−2p1

.

This suggests constructing a separable basis which segments the horizontal and
vertical frequency axes into intervals where both σk1 and σk2 vary by a bounded
factor. This is precisely obtained with one-dimensional mirror wavelets. The one-
dimensional results of Section 4.3 imply that the space WL+1 generated by the
3N2/4 fine scale wavelets (5.4) also admits a separable basis of mirror wavelets

B1 = {
ψj1,m1

[n1]ψj2,m2
[n2]}

L+1≤j1,j2≤1,(j1,j2)=(L+1,L+1),

0≤m1<2−j1 ,0≤m2<2−j2

,(5.5)

where ψj,m[n] is the one-dimensional mirror wavelet defined in (4.24). The union
B = B0 ∪ B1 of low frequency wavelets and high frequency mirror wavelets
is therefore an orthonormal basis of C

N2
. This two-dimensional mirror wavelet

basis segments the Fourier plane into rectangles illustrated in Figure 4. It is an
anisotropic wavelet packet basis as defined in [28], because these mirror wavelets
have a rectangular support that is generally not square. The decomposition
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FIG. 4. The separable mirror wavelet basis segments the frequency plane (k1, k2) into rectangles
over which the noise variance σ 2

k1,k2
= σ 2

k1
σ 2
k2

varies by a bounded factor. The lower frequencies
are covered by separable wavelets ψα

j , and the higher frequencies are covered by separable mirror

wavelets ψ̃j1 ψ̃j2 . The grey rectangles correspond to critical scales beyond which the thresholding
sets all coefficients to zero.

of images in a separable mirror wavelet basis is computed with a filter bank
algorithm described in [17], which requires O(N2) operations. The following
theorem formally proves that the covariance K of the deconvolved noise is
“nearly” diagonalized in this separable mirror wavelet basis if the analog wavelet
ψa(t) is sufficiently regular and has enough vanishing moments. The proof is in
Appendix H.

THEOREM 4. Suppose that ψa is a compactly supported Cq+1 wavelet with
q vanishing moments, and that q > max(p1,p2). There exists λ such that for all
N > 0, the covariance K in the separable mirror wavelet basis B satisfies

‖K1/2
d K−1K

1/2
d ‖s ≤ λ.

5.2. Thresholding estimation of bounded variation images. The co-area for-
mula [29] proves that a bounded function f has a bounded total variation

‖f ‖tv =
∫ 1

0

∫ 1

0
| �∇f (x1, x2)|dx1 dx2(5.6)

if and only if the average length of its level set is finite. This class includes
functions that are discontinuous along curves of finite length. As a result, image
models with a bounded total variation have been used in image processing [2].
As in one dimension, the discretization of a bounded variation function f (x1, x2)
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leads to a bounded variation discrete image θ[n1, n2], where θ[n1, n2] is a
local average of f in the neighborhood of (n1/N,n2/N). A Riemann sum
approximation of the integral (5.6) and a finite difference approximation of partial
derivatives leads to the following definition of the discrete total variation:

‖θ‖tv = 1

N

N−1∑
n1,n2=0

(|θ[n1, n2] − θ[n1 − 1, n2]|2

(5.7)
+ |θ[n1, n2] − θ[n1, n2 − 1]|2)1/2

.

To incorporate the fact that images have a bounded amplitude, the following set
can be used as an image model:

�tv = {θ :‖θ‖tv ≤ C1,‖θ‖∞ ≤ C2}.
Such models have been used to compute the risk of estimators in the presence of
white noise.

A bounded variation image model was proposed in [16] for a hyperbolic
deconvolution, but this model leads to a minimax risk which is much too large
compared to what is obtained with typical images. Consider images whose total
variation is concentrated along a single row or column, with high frequency
oscillations. A typical example is θε[n1,N/2] = εC(−1)n1 with ε = ±1 and
θε[n1, n2] = 0 if n2 = N/2. Clearly θε ∈ �tv. However, Uθε = 0 so one can
verify that the minimax risk to estimate θε ∈ {θ1, θ−1} ⊂ �tv from Y = Uθε + ν

is ‖θε‖2 = CN2. As a result rn(�tv) ≥ CN2. In fact, one can verify [15] that
rn(�tv) ∼ CN2.

The two-dimensional total variation norm (5.7) is equivalent to averaging the
one-dimensional total variation of the image along its rows and columns.
The images θε have their total variation concentrated along a single column. This
is not the case for natural images or satellite images, which have a total variation
that is nearly uniformly spread across all lines and columns. To incorporate this
information, a more precise model is defined with an upper bound of the one-
dimensional total variation along each row and column. The resulting directional
total variation is defined by

‖θ‖dv = sup
0≤n1,n2<N

(
N−1∑
p=0

|θ[n1,p]− θ[n1,p − 1]|,
N−1∑
p=0

|θ[p,n2]− θ[p − 1, n2]|
)
.

Satellite images as well as piece-wise regular images have a bounded directional
total variation norm. We thus study the minimax deconvolution over the image set

�dv = {
f ∈ C

N2
:‖θ‖dv ≤ C

}
.

For a thresholding estimator in a separable mirror wavelet basis, the thresholds
are chosen according to (3.19). The variance of the noise in the direction of the
low frequency wavelet coefficients satisfies

σ 2
j,α = 〈

Kψα
j,m1,m2

,ψα
j,m1,m2

〉 ∼ σ 2.(5.8)
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Since the noise variance is nearly constant for these N2/4 wavelet coefficients, the
thresholds are chosen to be

Tj,α = σj,α

√
2 loge(N

2/4).(5.9)

In the direction of the high frequency mirror wavelets, the noise has a variance

σ 2
j1,j2

= 〈
Kψj1,m1

ψj2,m2
,ψj1,m1

ψj2,m2

〉 ∼ σ 222p1(j1−L)22p2(j2−L).(5.10)

It remains constant for the 2−j1−j2 mirror wavelets{
ψj1,m1

ψj2,m2

}
0≤m1<2−j1 ,0≤m2<2−j2 ,

but it varies greatly with the scales 2j1 and 2j2 . The thresholds also depend upon
the maximum amplitude of mirror wavelet coefficients in �dv:

sj1,j2 = sup
θ∈�tv

∣∣〈θ,ψj1,m1
ψj2,m2

〉∣∣.
According to (3.19) the thresholds are defined by

T j1,j2 =
{

σ j1,j2

√
2 loge 2−j1−j2, if σj1,j2

√
2 loge 2−j1−j2 ≤ sj1,j2 ,

∞, otherwise.
(5.11)

For each scale 2j1 we define a critical scale 2c2 which is the smallest scale
such that if 2j2 > 2c2 then T j1,j2 = ∞. Similarly, for each scale 2j2 we define a
critical scale 2c1 which is the smallest scale such that if 2j1 > 2c1 then T j1,j2 = ∞.
These critical scales, illustrated in Figure 4, correspond to cut-off frequencies
beyond which the thresholding estimator sets all coefficients to zero. The following
theorem proves that the resulting maximum thresholding risk rt (�dv) is equivalent
to the nonlinear minimax risk and is smaller than the linear minimax risk. The
proof is in Appendix I. As in one dimension, the range of noise N1/2 ≤ C/σ ≤
Np1+p2 is chosen so that the risk is not dominated by the noise at low frequencies
but so that there is enough noise to insure that the problem is indeed unstable.

THEOREM 5. Suppose that ψa is a compactly supported Cq+1 wavelet with
q vanishing moments, and that q > max(p1,p2). If min(p1,p2) ≥ 1 and N1/2 ≤
C/σ ≤ Np1+p2 then

rl(�dv) ∼ NC2
(

σ 2N

C2

)1/(2p1+2p2−1)

(5.12)

and

rt (�dv) ∼ rn(�dv) ∼ C2N

(
σ 2

C2 log2
Np1+p2σ

C

)1/(2p1+2p2)

.(5.13)
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Observe that the computed risk rl(�dv) and rn(�dv) is much smaller than
the minimax risk rn(�tv) ≥ CN2 over a bounded variation set which has no
directional condition. As in one dimension, since �dv is translation invariant,
the linear minimax risk is achieved with translation invariant operators, hence
convolutions. A translation invariant thresholding algorithm is also implemented
with a straightforward extension of the algorithm described in Section 4.4. With
the fast filter bank algorithm, the thresholding estimation requires O(N2 log2 N)

operations.
Figure 3(a) shows a small part of an airplane image, selected by the CNES for its

tests because it includes edges, oscillatory structures and regions with a uniform
grey level. The simulated satellite image is in Figure 3(b). It was calculated by
the CNES with a low-pass filter having a zero of order p1 = p2 = 1 in both
horizontal and vertical directions. The level of electronic noise in the satellite
camera corresponds to 1 ≤ σ ≤ 2 for image grey levels between 0 and 255.
Figure 3(c) gives the results of a deconvolution estimator calculated with a
thresholding in the mirror wavelet basis. This can be compared with the linear
estimation in Figure 3(d), calculated with a circular convolution estimator, and
optimized to minimize the risk over satellite images. This type of algorithm was
benchmarked as superior to all competing algorithms by photo-interpreters of the
French spatial agency (CNES) for the deconvolution of satellite images.

APPENDIX A

Proof of Theorem 1. The proof considers first the particular case where K is
diagonal. If K is diagonal in B then the coefficients zB[m] are independent
Gaussian random variables of variance σ 2

m. Estimating θ ∈ � from X = θ + z

is equivalent to estimating θ0 from X0 = f 0 + z0 where

z0 =
N−1∑
m=0

zB[m]
σm

gm, X0 =
N−1∑
m=0

XB[m]
σm

gm,

(A.1)

f 0 =
N−1∑
m=0

θB[m]
σm

gm.

The signal θ0 belongs to an orthosymmetric set �0 and the renormalized noise z0

is a Gaussian white noise of variance 1. The oracle risk associated with the
estimation problem X0 = f 0 + z0 is

r0
inf,d(θ) = ∑

n

|θ0
B[m]|2

1 + |θ0
B[m]|2 .

Since �0 is orthosymmetric in B , and the noise is Gaussian white, Donoho, Liu
and Gibbon [11] prove that

r0
n(�) ≥ 1

1.25
r0

inf,d(�) and r0
l (�) = r0

inf,d(QH[�0]).(A.2)
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Since rinf,d (θ) = ∑
m

|θB [m]|2σ 2
m

σ 2
m+|θB [m]|2 , from (A.1) and (A.2), we derive with a rescaling

that

rn(�) ≥ 1

1.25
rinf,d(�) and rl(�) = rinf,d(QH[�]).(A.3)

The general case is proved using inequalities over symmetric matrices. If
A and B are two symmetric matrices, we write A ≥ B if the eigenvalues of A − B

are positive, which means that 〈Af,f 〉 ≥ 〈Bf,f 〉 for all θ ∈ CN . Since λB is the
largest eigenvalue of K

1/2
d K−1K

1/2
d , the inverse λ−1

B is the smallest eigenvalue of

the inverse K
−1/2
d KK

−1/2
d . It follows that 〈K−1/2

d KK
−1/2
d f, f 〉 ≥ λ−1

B 〈θ, f 〉. By

setting g = K
−1/2
d θ , we get 〈Kg,g〉 ≥ λ−1

B 〈K1/2
d g,K

1/2
d g〉. Since this is valid for

all g ∈ CN , we derive that

K ≥ λ−1
B Kd.(A.4)

Observe that λB ≥ 1 because 〈Kgm,gm〉 = 〈Kdgm,gm〉. Lower bounds for the
minimax risks are proved as a consequence of the following lemma.

LEMMA 1 (Noise augmentation). Consider the two estimation problems Xi =
θ + zi for i = 1,2, where Ki is the covariance of the Gaussian noise zi . We denote
by ri,n(�) and ri,l(�) the nonlinear and linear minimax risks for each estimation
problem i = 1,2. If K1 ≥ K2 then

r1,n(�) ≥ r2,n(�) and r1,l(�) ≥ r2,l(�).(A.5)

Since K1 ≥ K2 one can write z1 = z2 + z3 where z2 and z3 are two independent
Gaussian random vectors and the covariance of z3 is K3 = K1 − K2 ≥ 0. Both
estimation problems may thus be written X = θ + z2 + z3 where z3 is known,
and equal to zero, if i = 2. The decision rule takes the form θ̂1 = δ(X) and
θ̂2 = δ(X, z3). The set of decision rules for i = 1 is a subset of the set of decision
rules for i = 2 and hence the minimax risk cannot be smaller.

Since K ≥ λ−1
B Kd , Lemma 1 proves that the estimation problem with the noise z

of covariance K has a minimax risk that is larger than the minimax risk of the
estimation problem with a noise of covariance λ−1

B Kd . But since this covariance
is diagonal we can apply (A.3). The definition of rinf,d (�) is the same for a noise
of covariance K and for a noise of covariance Kd because σ 2

m = 〈Kgm,gm〉 =
〈Kdgm,gm〉. When multiplying Kd by a constant λ−1

B ≤ 1, the value rinf,d(�) that
appears in (A.3) is modified into r ′

inf,d(�) with r ′
inf,d(�) ≥ λ−1

B rinf,d(�). We thus
derive (3.25) and (3.26).
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APPENDIX B

Proof of (4.2) and (4.5). The Fourier transform of b[n] = Gf (n/N) = f �

g(n/N) is

b̃(ω) = N

+∞∑
p=−∞

g̃(Nω + 2pNπ)f̃ (Nω + 2pNπ)

(B.1)

= ṽ(ω)

+∞∑
p=−∞

φ̃∗(Nω + 2pNπ)f̃ (Nω + 2pNπ)

with ṽ(ω) 2π periodic which satisfies

|̃v(ω)|2 =
+∞∑

p=−∞
|g̃(Nω + 2pNπ)|2

and

φ̃(ω) = g̃∗(ω)

N−1ṽ∗(N−1ω)
.

We verify that ṽ ∈ L2[0,2π ] because g ∈ L2(R) and hence g̃ ∈ L2(R), so
v ∈ l2(Z). Since

N

+∞∑
p=−∞

|φ̃(ω + 2pNπ)|2 = 1,

one can derive [20] that {φ(t − n/N)}n∈Z is an orthonormal family. Computing
the inverse Fourier transform or (B.1) proves (4.2).

If θ[n] is N periodic then

θ � v[n] =
+∞∑

p=−∞
θ[p]v[n − p] =

N−1∑
p=0

θ[p]u[n − p],

where u[n] = ∑+∞
p=−∞ v[n − pN ] is N periodic. Inserting this in (4.4) proves

ũ[k] = ṽ(2kπ
N

) which implies (4.5).

APPENDIX C

Proof of Proposition 1. Since θ = ∑
j,m〈θ,ψj,m〉ψj,m we have

‖θ‖tv ≤
1∑

j=L+1

2−j−1∑
m=0

|〈θ,ψj,m〉|‖ψj,m‖tv.
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When N increases, we saw in (4.18) that ψj,m[n] converges to 2L/2ψ
per
j (t − 2jm)

evaluated at t = n/N so one can derive that there exists B1 such that ‖ψj,m‖tv ≤
B12L/2‖ψper

j ‖tv. But ψ
per
j (t) = ∑+∞

k=−∞ ψa
j (t + k) so

∫ 1
0 |ψper

j (t)|′ dt ≤∫ +∞
−∞ |ψa

j (t)|dt = ‖ψa
j ‖tv. Moreover, ψa

j (t) = 2−j/2ψa(2−j t) so ‖ψa
j ‖tv =

2−j/2‖ψa‖tv. Hence, for any N > 0 and for all j ‖ψj,m‖tv ≤B1‖ψa‖tv2(L−j)/2,
from which we derive (4.19).

To prove (4.20) we write b[n] = θ[n] − θ[n − 1]. Since ψj [n] has at least one
vanishing moment it can be rewritten ψj,m[n] = φj,m[n] − φj,m[n + 1]. Using the
periodicity of θ and of ψj,m[n] = ψj [n − 2L−jm] we get 〈θ,ψj,m〉 = 〈b,φj,m〉.
Hence

2−j−1∑
m=0

|〈θ,ψj,m〉| =
2−j−1∑
m=0

|〈b,φj,m〉| ≤
N−1∑
n=0

|b[n]| sup
0≤n<N

∣∣∣∣∣
2−j−1∑
m=0

|φj,m[n]|
∣∣∣∣∣.

Since ψj,m has a support of size A12j−L and is bounded by A22(L−j)/2, it follows
that

sup
n

|φj,m[n]| ≤ ‖ψj,m‖1 = ∑
n

|ψj,m[n]|
(C.1)

≤ A12j−LA22(L−j)/2 = B22(j−L)/2.

But φj,m also has a support of size A12j−L and ‖θ‖tv = ∑N−1
n=0 |b[n]|, hence for

all j

2−j−1∑
m=0

|〈θ,ψj,m〉| ≤ ‖θ‖tvA1A22(j−L)/2,

which proves (4.20).

APPENDIX D

Proof of (4.22). Since |ũ[k]| ∼ |2|k|/N − 1|p , we derive from (4.21) that

σ 2
L+1,m = σ 2

L+1 ∼ σ 2N2p+1

because |ψ̃L+1[N/2]| = √
2 and

√
2 ≥ |ψ̃L+1[k]| ≥ 1 for |k| ∈ [N/4,N/2].

If θ ∈ �tv then (4.20) proves that

A−1C ≥
2−L−1−1∑

m=0

2−1/2|〈θ,ψL+1,m〉|

so |〈θ,ψL+1,m〉| ≤ C21/2A−1. If C/σ 2 ≤ N2p+1 then for N large the maximum
amplitude of wavelet coefficients |〈θ,ψL+1,m〉| is below σL+1

√
2 logN so

according to (3.16) the thresholding sets all coefficients to zero. The deconvolution
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thus does not recover any high frequency data. The discrete total variation of
the finest scale wavelet ‖ψL+1‖tv = β is a constant independent of N . Hence
θ = (C/β)ψL+1 ∈ �tv and since the thresholding estimator sets to zero all finest
scale coefficients the resulting thresholding risk satisfies

rt (�tv) ≥ rt (θ) ≥ C2

β2

which proves (4.22) for B = 1/β2.

APPENDIX E

Proof of Theorem 2. The operator K = σ 2U
−1∗

U
−1

is a circular convolution
whose eigenvalues are σ 2|̃u−1[k]|2 ∼ σ 2|2|k|/N − 1|−2p . We study separately
the restriction of K over the space VL+1 generated by the N/2 lower frequency
wavelets {ψj,m}j>L+1,m and over the orthogonal complement WL+1 generated by
the N/2 higher frequency mirror wavelets {ψj,m}j>L+1,m.

Over VL+1 we show that there exists λ1 > 0 and λ2 such that

λ1σ
2Id ≤ K ≤ λ2σ

2Id.(E.1)

There exists λ1 > 0 such that the eigenvalues of K are above λ1σ
2 which

proves the first inequality. The second inequality means that over VL+1 the norm
of K satisfies ‖K‖s = O(σ 2). The theorem supposes that the asymptotic wavelet
ψa(t) which defines the discrete wavelet basis has q > p vanishing moments.
So h̃a(ω + π) = O(|ω|q) and hence h̃[k] = h̃a(2πk/N) = O(|2|k|/N − 1|q). It
results that |h̃[k]̃u−1[k]| = O(1). For j > L + 1 we derive from (4.15) that

ψ̃j [k] = h̃[k]ξ̃j [k](E.2)

with

ξ̃j [k] = g̃[2j−L−1k]
j−L−1∏

l=1

h̃[2lk].(E.3)

If ξj,m[n] = ξj [n − 2j−Lm] then ξj,m[n] = ψj,m � h[n]. From (E.3) and the fact
that h[n] and g[n] are conjugate mirror filters, we know that {ξj,m}j,m is an
orthonormal family [20]. Let R be the convolution operator defined by Rθ =
Kθ � h � h∗ with h∗[n] = h[−n]. Its eigenvalues are σ 2|̃u−1[k]h̃[k]|2 = O(σ 2)

so ‖R‖s = O(σ 2). Moreover,

〈Rξj,m, ξj ′,m′ 〉 = 〈Kψj,m,ψj ′,m′ 〉(E.4)

so the norm of K over the space VL+1 generated by {ψj,m}j>L+1,m is equal to the
norm of R over the space generated by {ξj,m}j>L+1,m and it is therefore O(σ 2).
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This proves that there exists λ2 such that λ1σ
2Id ≤ K ≤ λ2σ

2Id over VL+1. As a
result, for any j > L + 1 the diagonal entries of K satisfy

〈Kψj,m,ψj,m〉 ∼ σ 2,(E.5)

and there exists λ3 such that ‖K1/2
d K−1K

1/2
d ‖s ≤ λ3 over VL+1.

Over the space WL+1 generated by the high frequency mirror wavelets
{ψj,m}j>L+1,m, the proof proceeds in two steps. It first shows that the matrix
of K−1 in the mirror wavelet basis of WL+1 is identical to the matrix of a
circular convolution operator K1 over low frequency wavelets in CN . To obtain
an asymptotic result as N increases, this matrix is related to the restriction in an
N -dimensional space of a homogeneous convolution operator K2 in L2(R).

Let us first verify that for all 0 ≥ j > L + 1 and 0 ≤ m < 2−j

〈K−1ψj,m,ψj ′,m′ 〉 = 〈K1ψj,m,ψj ′,m′ 〉,(E.6)

where

K1θ[n] = θ � c1[n] with c̃1[k] = σ−2|ũ[k + N/2]|2.(E.7)

To verify (E.6), we use the relation (4.24) between wavelets and mirror wavelets

ψj,m[n] = (−1)n−1ψj,m[1 − n].
The operator K−1 is a convolution with a real and symmetric kernel c−1[n]
so 〈K−1ψj,m,ψj ′,m′ 〉 is not modified if ψj,m and ψj ′,m′ are transformed by a
symmetry and a translation. Multiplying these vectors by (−1)n translates their
discrete Fourier transform by N/2. This is compensated by translating the Fourier
transform c̃−1[k] = σ−2|ũ[k]|2 of c−1[n] by N/2, which proves (E.7). Since
|ũ[k]| ∼ |1 − 2|k|/N |p it implies that |̃c1[k]| ∼ σ−2|2k/N |2p.

We are now going to relate K1 to a continuous variable convolution operator K2
defined by K2f (t) = f � c2(t) with c̃2(ω) = |ω|2p. Since ψa is a compactly
supported wavelet which is Cq+1 and which has q > p vanishing moments, we
know that K2 is preconditioned by its diagonal in the wavelet basis of L2(R)

generated by ψa , and this result remains valid in the corresponding periodic
wavelet basis of L2[0,1]. Let K

−1/2
2,d be the diagonal operator in the periodic

wavelet basis, whose diagonal entries are the inverse square roots of the non-
zero diagonal entries of K2 and are equal to zero otherwise. This means that there
exists λ4 such that over L2[0,1]

‖K−1/2
2,d K2K

−1/2
2,d ‖s ≤ λ4.(E.8)

Moreover, the diagonal entries satisfy for j ≤ 0 [21],〈
K2ψ

per
j,m,ψ

per
j,m

〉 ∼ 2−2pj .(E.9)

Let us show that the matrix of K2 on the subspace Vper
L+1 of L2[0,1] generated by

the periodic wavelets {ψper
j,m}0≥j>L+1,0≤m<2−j is equal to the matrix of a discrete
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circular convolution operator in the discrete wavelet basis {ψj,m}0≥j>L+1,0≤m<2−j

of VL+1. The discrete circular convolution operator is computed in two steps. First,
we find the corresponding discrete convolution operator and then its periodized
version.

We saw in (4.17) that

ψ
per
j (t) =

+∞∑
n=−∞

ψj [n]φa
L(t − n/N).(E.10)

Let c3[n] be the discrete kernel obtained by sampling the continuous variable
convolutions:

c3[n] = c2 � φa
L � φa∗

L (n/N)(E.11)

with φa∗
L (t) = φa∗

L (−t). Let K3θ[n] = c3 � θ[n] be the corresponding discrete
convolution operator. One can derive from (E.10) that for all j, j ′,m,m′,〈

K2ψ
per
j,m,ψ

per
j ′,m′

〉 = 〈K3ψj,m,ψj ′,m′ 〉.(E.12)

Moreover, (E.11) shows that Fourier transform of c3 is

c̃3(ω) = N

+∞∑
l=−∞

c̃2(Nω + 2Nlπ)
∣∣φ̃a

L(Nω + 2Nlπ)
∣∣2.

Since φa
L(t) = N1/2φa(Nt), we have φ̃a

L(ω) = N−1/2φ̃a(N−1ω) and since
c̃2(ω) = |ω|2p ,

c̃3(ω) = N2p
+∞∑

l=−∞
(ω + 2lπ)2p

∣∣φ̃a(ω + 2lπ)
∣∣2.(E.13)

Because ψa is a Cq+1 compactly supported function with q vanishing moments,
we know [5] that for any l = 0,

∀ω ∈ [−π,π ], |φa(ω + 2lπ)| = O(|ω|q)O(|l|−q−1).

Since |h̃a(ω)| ≥ 1/2 for |ω| ≤ π/2 there exists η > 0 such that 1 ≥ |φa(ω)|2 ≥ η

for |ω| < π . Since q > p, (E.13) gives

∀ω ∈ [−π,π ], |̃c3(ω)| ∼ N2p|ω|2p.

Let us now consider the circular convolution operator K4θ[n] = c4 � θ[n] where
c4[n] = ∑+∞

l=−∞ c3[n + lN ]. If θ is N periodic then K3θ = K4θ so (E.12) implies
that 〈

K2ψ
per
j,m,ψ

per
j ′,m′

〉 = 〈K4ψj,m,ψj ′,m′ 〉.(E.14)

The discrete Fourier transform of c4 is

c̃4[k] = c̃3(2kπ/N) ∼ |k|2p ∼ σ 2N2pc̃1[k].
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This means that there exists a convolution operator K5 with constants A > 0
and B such that AId ≤ K5 ≤ BId such that K5K1 = σ−2N−2pK4. Since all
convolution operators commute, (E.9) and (E.14) imply that

〈K1ψj,m,ψj,m〉 ∼ σ−2N−2p2−2pj = σ−222p(L−j).

With (E.6) it yields

〈K−1ψj,m,ψj ′,m′ 〉 ∼ σ−222p(L−j).(E.15)

Moreover, (E.14) proves that the operator σ 2N2pK5K1 is represented by a matrix
in a discrete wavelet basis of VL+1 which is the same as the matrix of K2 in the
continuous variable periodic wavelet basis of Vper

L+1. We thus derive from (E.8) that
over VL+1

‖K−1/2
1,d K1K

−1/2
1,d ‖s ≤ λ4

B

A
.

Finally, (E.6) shows that K−1 is represented by a matrix in a mirror wavelet basis
of WL+1 which is the same as the matrix of K1 in a wavelet basis of VL+1 so
over WL+1,

‖K1/2
d K−1K

1/2
d ‖s ≤ λ4

B

A
,

which finishes the proof.

APPENDIX F

Proof of Proposition 2. Proposition 2 is proved by verifying that there exist
A2,B2 > 0 such that

2−L−1−1∑
m=0

|〈θ,ψL+1,m〉| ≤ B2

1∑
j=L+2

2(j−L)/2
2−j−1∑
m=0

|〈θ,ψj,m〉|(F.1)

and

2−L−1−1∑
m=0

|〈θ,ψL+1,m〉| ≥ A2 sup
1≥j≥L+2

(
2(j−L)/2

2−j−1∑
m=0

|〈θ,ψj,m〉|
)
.(F.2)

Inserting these inequalities in Proposition 1 implies (4.29) and (4.30). These
inequalities are derived from upper and lower bounds for the l1 norm ‖θ‖1 =∑N−1

n=0 |θ[n]| provided by the following lemma.

LEMMA 2. There exist A1,B1 > 0 such that

‖θ‖1 ≤ B1

1∑
j=L+1

2(j−L)/2
2−j −1∑
m=0

|〈θ,ψj,m〉|(F.3)
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and

‖θ‖1 ≥ A1 sup
1≥j≥L+1

(
2(j−L)/2

2−j−1∑
m=0

|〈θ,ψj,m〉|
)
.(F.4)

This lemma is proved with similar calculations as in the proof of Proposition 1,
by using the fact that ‖ψj,m‖1 = O(2(j−L)/2) which is proved in (C.1). Let us now
consider b[p] = 〈θ,ψL+1,p〉 and ψ∗

j,m[n] = ψj,m[−n]. As a consequence of the
Fourier transform expressions (4.15) and (4.23) we verify that

ψj,m[n] =
N/2−1∑
p=0

ψ∗
j−1,m[p]ψL+1[n − 2p].

It follows that

∀L + 2 ≤ j ≤ 1, 〈θ,ψj,m〉 = 〈b,ψ∗
j−1,m〉 = 〈b∗,ψj−1,m〉

with b∗[n] = b[−n]. Lemma 2 applied to b∗ gives (F.1) and (F.2), which finishes
the proof.

APPENDIX G

Proof of Theorem 3. The proof constructs two sets �1 and �2 that are
orthosymmetric in the mirror wavelet basis and such that �1 ⊂ �tv ⊂ �2. Clearly

rn(�1) ≤ rn(�tv) ≤ rt (�tv) ≤ rt (�2)(G.1)

and (3.27) together with Theorem 2 proves that there exists λ > 0 such that

1

λ
rinf,d(QH[�1]) ≤ rl(�1) ≤ rl(�tv) ≤ rl(�2) ≤ rinf,d(QH[�2]).(G.2)

The set �2 is derived from Proposition 2. If θ ∈ �tv then ‖θ‖tv ≤ C and (4.30)
proves that it belongs to the set �2 of all θ such that for 1 ≥ j > L + 1

2−j−1∑
m=0

|〈θ,ψj,m〉| ≤ A−1C2(j−L)/2(G.3)

and

2−j−1∑
m=0

|〈θ,ψj,m〉| ≤ A−1C2(L−j)/2.(G.4)

So �tv ⊂ �2 and �2 is orthosymmetric in the mirror wavelet basis.
Let us now compute an upper bound for rinf,d(QH[�2]). The quadratic envelope

of an l1 ball of sequences a[m] such that
∑M−1

m=0 |a[m]| ≤ B is the l2 ball defined
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by
∑M−1

m=0 |a[m]|2 ≤ B2. It follows from (G.3) and (G.4) that QH[�2] is the set
of θ such that

2−j −1∑
m=0

|〈θ,ψj,m〉|2 ≤ A−2C22j−L(G.5)

and
2−j−1∑
m=0

|〈θ,ψj,m〉|2 ≤ A−2C22L−j .(G.6)

Let us compute rinf,d(QH[�2]). The general expression of rinf,d(θ) in a basis B
is given in (3.7). Using the fact that ab/(a + b) ≤ min(a, b) for a, b > 0, in the
mirror wavelet basis we get

rinf,d(QH[�2]) ≤ sup
θ∈QH[�2]

1∑
j=L+2

2−j−1∑
m=0

min(|〈θ,ψj,m〉|2, σ 2
j )

+ sup
θ∈QH[�2]

1∑
j=L+2

2−j−1∑
m=0

min(|〈θ,ψj,m〉|2, σ 2
j ) = I + II.

Since σj ∼ σ ,

I ∼ sup
θ∈QH[�2]

1∑
j=L+2

2−j−1∑
m=0

min(|〈θ,ψj,m〉|2, σ 2).(G.7)

For a fixed σ 2 the function min(a, σ 2) is a concave function of a. Using this
concavity we verify that

sup∑M−1
m=0 |a[m]|2≤B2

M−1∑
m=0

min(|a[m]|2, σ 2) = min(B2,Mσ 2).(G.8)

Applying (G.8) to (G.7) for B2 = A−2C22j−L gives

I ∼
1∑

j=L+2

min(A−2C22j−L,2−jσ 2).

Since C/σ ≥ N1/2 it follows that I ∼ Nσ 2. The second sum is computed similarly,
with σ j ∼ σ2p(j−L):

II ∼ sup
θ∈QH[�2]

1∑
j=L+2

2−j−1∑
m=0

min
(|〈θ,ψj,m〉|2, σ 222p(j−L)

)
(G.9)

∼
1∑

j=L+2

min(C22L−j ,2−j22p(j−L)σ 2).(G.10)
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Let 2l be the critical scale of this linear estimation, where l is the closest integer
to y such that

C22L−y = 2−y22p(y−L)σ 2.(G.11)

Since N1/2 ≤ C/σ ≤ Np+1/2, we verify that 1 ≥ 2l ≥ 2L. A direct calculation
shows that

II ∼ C22L−l ∼ C2
(

σN1/2

C

)1/p

.

Since C/σ ≥ N1/2, the sum I is smaller than II and hence

rinf,d(QH[�2]) ∼ C2
(

σN1/2

C

)1/p

.(G.12)

To compute a lower bound of rl(�tv) we now construct an orthosymmetric set
�1 ⊂ �tv. Let Wl be the space generated by the mirror wavelets {ψl,m}0≤m<2−l at

the critical scale 2l defined by (G.11). We define �1 as the set of all θ ∈ Wl such
that

2−l−1∑
m=0

|〈θ,ψl,m〉| ≤ B−1C2(L−l)/2.

Since �1 ⊂ Wl if θ ∈ �1 then 〈θ,ψj,m〉 = 0 if j = l. Proposition 2 proves
in (4.29) that there exists an appropriate B such that �1 ⊂ �tv. The quadratic
envelope QH[�1] is the set of all θ ∈ Wl such that

2−l−1∑
m=0

|〈θ,ψl,m〉|2 ≤ B−2C22L−l

and

rinf,d(QH[�1]) ∼ sup
θ∈QH[�1]

2−l−1∑
m=0

min
(|〈θ,ψj,m〉|2, σ 222p(l−L)

)
(G.13)

∼ min
(
C22L−l ,2−l22p(l−L)σ 2) ∼ C2

(
σN1/2

C

)1/p

.(G.14)

It follows from (G.2) and (G.12) that rl(�tv) ∼ C2((σN1/2)/C)1/p , which
proves (4.33).

Let us now compute the thresholding risk rt (�2). The thresholds Tj for the
wavelets ψj,m and T j for the mirror wavelets ψj,m are defined by (4.31) and
(4.32). We derive from (4.30) in Proposition 2 that

sj = sup
θ∈�tv

|〈θ,ψj,m〉| ∼ C2(L−j)/2.
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Let 2c be the critical scale which is the smallest scale such that T j = ∞ and hence

σ j

√
2 loge 2−j > sj for 2j > 2c. Since sj ∼ C2(L−j)/2 which decreases when 2j

increases whereas σj

√
2 loge 2−j ∼ σ2p(j−L)

√
2 loge 2−j which increases when

2j increases, it follows that

σc

√
2 loge 2−c ∼ sc(G.15)

and hence

C2(L−c)/2 ∼ σ2p(c−L)
√

loge 2−c,(G.16)

which implies that

2L−c ∼
(

σ

C

)1/(p+1/2)(
log2

σNp+1/2

C

)1/(2p+1)

.(G.17)

We have 2L ≤ 2c ≤ 1 because N1/2 ≤ C/σ ≤ Np+1/2. An upper bound of rt (�2)

is calculated with (3.21):

rt (�2) ≤ 2 loge(N/2) sup
L+2≤j≤1

σ 2
j +

c∑
j=L+2

(1 + 2 loge 2−j )σ 2
j(G.18)

+ sup
θ∈�2

( 1∑
j=L+2

2−j−1∑
m=0

min
(|〈θ,ψj,m〉|2, σ 2

j (2 loge N + 1)
))

(G.19)

+ sup
θ∈�2

(
c∑

j=L+2

2−j−1∑
m=0

min
(|〈θ,ψj,m〉|2, σ 2

j (2 loge 2−j + 1)
))

(G.20)

+ sup
θ∈�2

( 1∑
j=c+1

2−j−1∑
m=0

|〈θ,ψj,m〉|2
)
,(G.21)

which we write rt (�2) ≤ I + II + III + IV . Since σj ∼ σ and σ j ∼ σ2p(j−L), the
calculation of I in (G.18) gives

I ∼ 2 loge Nσ 2 + |c|σ 222p(c−L) ∼ |c|σ 222p(c−L)

(G.22)

∼ C2
(

σ 2

C2 log2
σNp+1/2

C

)1/(2p+1)

.

The second sum in (G.19) satisfies

II ∼ sup
θ∈�2

( 1∑
j=L+2

2−j−1∑
m=0

min(|〈θ,ψj,m〉|2, loge Nσ 2)

)
(G.23)
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and we saw in (G.3) that θ ∈ �2 if

∀L + 2 ≤ j ≤ 1,

2−j−1∑
m=0

|〈θ,ψj,m〉| ≤ A−1C2(j−L)/2.(G.24)

One can verify that

sup∑M−1
m=0 |am|≤A

M−1∑
m=0

min(|am|2, β2) ∼ min(Mβ2,Aβ,A2).(G.25)

Applying (G.25) to each scale 2j of (G.23) for M = 2−j , am = 〈θ,ψj,m〉, A =
C2(j−L)/2 and β2 = σ 2 loge N , and using the fact that C/σ ≥ 1, we get

II ∼
1∑

j=L+2

min
(
2−jσ 2 loge N,C2(j−L)/2σ

√
logeN

)

∼ σ 2 loge N

1∑
j=L+2

min
(

2−j ,
CN1/22j/2

σ
√

loge N

)
.

Setting a = CN1/2/(σ
√

loge N), we get

II

σ 2 loge N
∼ max

j≤1
min(2−j , a2j/2) ∼ a3/2

and hence

II ∼ loge Nσ 2
(

C2N

σ 2 loge N

)1/3

= C2
(

σ 4(loge N)2N

C4

)1/3

.(G.26)

The third sum in (G.20) satisfies

III ∼ sup
θ∈�2

(
c∑

j=L+2

2−j−1∑
m=0

min
(|〈θ,ψj,m〉|2,22p(j−L)|j |σ 2))

and we saw in (G.3) that θ ∈ �2 if

∀L + 2 ≤ j ≤ 1,

2−j −1∑
m=0

|〈θ,ψj,m〉| ≤ A−1C2(L−j)/2.

Let us apply (G.25) to each scale 2j for M = 2−j , am = 〈θ,ψj,m〉, A = C2(L−j)/2

and β2 = σ 2|j |22p(j−L). The property (G.16) of the critical scale 2c implies that
if L + 2 ≤ j ≤ c then A multiplied by a constant factor is larger than β so
min(Mβ2,Aβ,A2) ∼ min(Mβ2,Aβ). At the critical 2c we have A ∼ β . Writing
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the sum we obtain a geometric series whose value is dominated by the final term
at j = c where β ∼ A ∼ C2(L−c)/2. It follows that

III ∼ C22L−c ∼ C2
(

σ

C

)1/(p+1/2)(
log2

σNp+1/2

C

)1/(2p+1)

.(G.27)

Finally we compute the upper bound

IV ∼ sup
θ∈�2

1∑
j=c+1

2−j−1∑
m=0

|〈θ,ψj,m〉|2 ≤ A−1
1∑

j=c+1

C22L−j ≤ A−1C22L−c.(G.28)

Moreover, (G.4) shows that the signal proportional to the mirror wavelet θ =
2(L−c−1)/2A−1Cψc+1,0 belongs to �2. Hence

IV ∼ sup
θ∈�2

1∑
j=c+1

2−j−1∑
m=0

|〈θ,ψj,m〉|2 ≥ 2−2A−1C22L−c

so IV ∼ C22L−c.
Since p ≥ 1 and C/σ ≥ N1/2, (G.26) and (G.27) imply that II is smaller

than III and hence that

rt (�2) ≤ I + II + III + IV ∼ C2
(

σ 2

C2 log2
σNp+1/2

C

)1/(2p+1)

.(G.29)

We now compute a lower bound of rn(�tv) by finding an appropriate
orthosymmetric set �1 ⊂ �tv and by computing rn(�1). Let Wc be the space
generated by the 2−c mirror wavelets {ψc,m}0≤m<2−c at the critical scale 2c which
satisfies (G.17). We define �1 as the set of all signals θ ∈ Wc such that

2−c−1∑
m=0

|〈θ,ψc,m〉| ≤ B−1C2(L−c)/2.(G.30)

Since �1 ⊂ Wc if θ ∈ �1 then 〈θ,ψj,m〉 = 0 if j = c. The upper bound (4.29)
in Proposition 2 proves that there exists a constant B such that �1 ⊂ �tv. We
need a lower bound of the minimax risk rn(�1) when estimating θ ∈ �1 from
X = θ + z.

Theorem 2 proves that there exists λ such that over Wc the covariance K of z

satisfies K ≥ λσ 2
cId. Since �1 ⊂ Wc, the noise augmentation Lemma 1 implies

that rn(�1) ≥ r0
n(�1) where r0

n(�1) is the minimax risk to estimate θ ∈ �1 from
X = θ + z0, where z0 is a Gaussian white noise of variance λσ 2

c in the space Wc.
Let δ[m] be a discrete Dirac. A lower bound of this minimax risk is calculated
from the Bayes risk corresponding to a random vector F ∈ Wc such that

〈F,ψc,m〉 = AC2(L−c)/2δ[m − P ](G.31)

where P is a random variable uniformly distributed over {0, . . . ,2−c − 1}. The
following lemma proved by Donoho, Johnstone, Kerkyacharian and Picard [10]
computes a lower bound of the Bayes risk r(π) to estimate F from X = F + z0.
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LEMMA 3. Let P be a random variable uniformly distributed over {0, . . . ,

M − 1} and G[m] = Kδ[m − P ] for 0 ≤ m < M . Let ν[m] be a Gaussian
white noise of variance β2. If K ≤ β

√
loge M then the Bayes estimator Ĝ of G

calculated from Y = G + ν has a risk which satisfies for M ≥ 4,

r(π) = ∃{‖G − Ĝ‖2} ≥ K2/2.(G.32)

This lemma is applied to the process F with A ≤ B−1 sufficiently small so that

A2C22L−c ≤ λ2σ c loge 2−c.

The lower bound (G.32) proves that

rn(�1) ≥ r0
n(�1) ≥ r(π) ≥ A2C22L−c−1

∼ C2
(

σ 2

C2
log2

σNp+1/2

C

)1/(2p+1)

.

(G.33)

Since

rn(�1) ≤ rn(�tv) ≤ rt (�tv) ≤ rt (�2),

(G.29) and (G.33) imply that

rn(�tv) ∼ rt (�tv) ∼ C2
(

σ 2

C2
log2

σNp+1/2

C

)1/(2p+1)

,

which completes the proof.

APPENDIX H

Proof of Theorem 4. Theorem 4 is a separable extension of Theorem 2. In
two dimensions, the covariance operator K of z is a circular convolution

Kθ[n1, n2] = θ � c[n1, n2]
with a separable kernel c[n1, n2] = c1[n1]c2[n2]. The Fourier transforms satisfy
|̃c1[k]| ∼ |1−2|k|/N |−2p1 and |̃c2[k]| ∼ |1−2|k|/N |−2p2 . Let K1θ[n] = θ �c1[n]
and K2θ[n] = θ � c2[n]. As in the proof of Theorem E in Appendix E the
preconditioning of K by its diagonal is separated into two parts. We consider
the space VL+1 generated by the lower frequency wavelets B0 in (5.3) and its
orthogonal complement WL+1 in CN2

generated by the higher frequency mirror
wavelets B1 in (5.5).

There exists λ1 such that all eigenvalues of K are above λ1σ
2 and hence

K ≥ λ1σ
2Id. We must prove that there exists λ2 > 0 such that over VL+1

‖K‖s = O(σ 2). Although B0 is not a separable product of two one-dimensional
wavelet bases, we saw in (5.2) that each of the wavelets of B0 can be separated
as a product of one-dimensional wavelets ψj and scaling signals φj . Moreover, as
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in (E.2) we verify that ψj = h � ξj and φj = h � γj . Let h2[n1, n2] = h[n1]h[n2].
Let Rθ = θ �c �h2. As in Appendix E we verify that ‖R‖s = O(σ 2). Let B2 be the
family constructed like B0 from translated separable vectors obtained by replacing
ψj and φj respectively by ξj and γj . The properties of conjugate mirror filters
imply that B2 is still an orthonormal family and the matrix of K in the basis B0
of VL+1 is the same as the matrix of R in B2. Since ‖R‖s = O(σ 2) we derive
that ‖K‖s = O(σ 2) over VL+1.

Over WL+1 the family of two-dimensional mirror wavelets B1 in (5.5) is a
separable product of two one-dimensional mirror wavelet families. The operator
norm of K in this space can thus be written as a product of the operator norms for
K1 and K2 in one-dimensional mirror wavelet bases:

‖K1/2
d K−1K

1/2
d ‖s = ‖K1/2

1,d K−1
1 K

1/2
1,d ‖s‖K1/2

2,d K−1
2 K

1/2
2,d ‖s .

Theorem 2 proves that there exist lower bounds λ1 > 0 and λ2 > 0 of the two
norms on the right and hence that ‖K1/2

d K−1K
1/2
d ‖s > λ1λ2.

APPENDIX I

Proof of Theorem 5. The proof proceeds like that of Theorem 3, by finding
two appropriate sets �1 and �2 that are orthosymmetric in the separable mirror
wavelet basis B and such that �1 ⊂ �dv ⊂ �2. It follows from Theorem 1 and
Theorem 4 that there exists λ > 0 such that

1

λ
rinf,d(QH[�1]) ≤ rl(�dv) ≤ rinf,d(QH[�2])(I.1)

and

rn(�1) ≤ rn(�dv) ≤ rt (�dv) ≤ rt (�2).(I.2)

The set �2 is defined with the following lemma.

LEMMA 4. There exists A > 0 such that if N > 0 and θ ∈ CN2
then for all

L ≤ j, j1, j2 ≤ 1 and 1 ≤ α ≤ 3,

A−1‖θ‖dv ≥ sup
0≤m<2−j

(
2L−j

2−j−1∑
m1=0

∣∣〈θ,ψα
j,m1,m

〉∣∣,2L−j
2−j −1∑
m2=0

∣∣〈θ,ψα
j,m,m2

〉∣∣)

≥ sup
0≤m<2−j2

(
2(j1−j2)/2

2−j1−1∑
m1=0

∣∣〈θ,ψj1,m1
ψj2,m

〉∣∣)(I.3)

≥ sup
0≤m<2−j1

(
2(j2−j1)/2

2−j2−1∑
m2=0

∣∣〈θ,ψj1,m
ψj2,m2

〉∣∣).
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Since ‖θ‖dv is computed from the one-dimensional total variation of the rows
and columns of θ , these inequalities are derived from (4.30), using the fact that
two-dimensional wavelets (5.2) are separable and the l1 norm of one-dimensional
wavelets and mirror wavelets satisfies ‖ψj,m‖1 ∼ ‖ψj,m‖1 ∼ 2(j−L)/2.

Since �dv = {θ :‖θ‖dv ≤ C}, �2 is defined as the set of all θ such that

A−1C ≥ sup
0≤m<2−j

(
2L−j

2−j−1∑
m1=0

∣∣〈θ,ψα
j,m1,m

〉∣∣,2L−j
2−j−1∑
m2=0

∣∣〈θ,ψα
j,m,m2

〉∣∣)

≥ sup
0≤m<2−j2

(
2(j1−j2)/2

2−j1−1∑
m1=0

∣∣〈θ,ψj1,m1
ψj2,m

〉∣∣)

≥ sup
0≤m<2−j1

(
2(j2−j1)/2

2−j2−1∑
m2=0

∣∣〈θ,ψj1,m
ψj2,m2

〉∣∣).

Lemma 4 implies that �dv ⊂ �2, and �2 is clearly orthosymmetric in the
separable mirror wavelet basis.

Let us first compute rinf,d(QH[�2]) to obtain an upper bound of rl(�dv). The
quadratic envelope of an l1 ball of sequences a[m] such that

∑M−1
m=0 |a[m]| ≤ B is

the l2 ball defined by
∑M−1

m=0 |a[m]|2 ≤ B2. Hence QH[�2] is the set of all θ such
that

A−2C2 ≥ sup
0≤m<2−j

(
22(L−j)

2−j−1∑
m1=0

∣∣〈θ,ψα
j,m1,m

〉∣∣2,22(L−j)
2−j −1∑
m2=0

∣∣〈θ,ψα
j,m,m2

〉∣∣2)

≥ sup
0≤m<2−j2

(
2j1−j2

2−j1−1∑
m1=0

∣∣〈θ,ψj1,m1
ψj2,m

〉∣∣2)

≥ sup
0≤m<2−j1

(
2j2−j1

2−j2−1∑
m2=0

∣∣〈θ,ψj1,m
ψj2,m2

〉∣∣2)
.

Since 1/2 min(a, b) ≤ ab/(a+b) ≤ min (a, b), we rewrite rinf,d(QH[�2]) ∼ I + II
with

I = sup
θ∈QH[�2]

1∑
j=L+2

3∑
α=1

2−j−1∑
m1,m2=0

min
(∣∣〈θ,ψα

j,m1,m2
〉∣∣2, σ 2)

and

II = sup
θ∈QH[�2]

1∑
j1,j2=L+1

(j1,j2)=(L+1,L+1)

∑
0≤m1<2−j1

0≤m2<2−j2

min
(∣∣〈θ,ψj1,m1

ψj2,m2
〉∣∣2,

σ 222p2(j2−L)22p1(j1−L)
)
.
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These two sums are computed by applying (G.8):

II ∼
1∑

j2=L+1

1∑
j1=j2

min
(
C22−j1,2−j1−j2σ 222p2(j2−L)22p1(j1−L)

)

+
1∑

j1=L+1

1∑
j2=j1+1

min
(
C22−j2,2−j1−j2σ 222p2(j2−L)22p1(j1−L)

)
.

A dominating term appears in II at a critical scale 2l = 2j1 = 2j2 where l is the
closest integer to y such that

C22−y = 2−2yσ 222p2(y−L)22p1(y−L)

and hence

2l ∼ 2y = 2L

(
C

σ2−L/2

)1/(p1+p2−1/2)

.

We verify that II ∼ C22−l . Since N1/2 ≤ C/σ ≤ Np1+p2 we are guaranteed that
2L ≤ 2l ≤ 1. A direct calculation shows that I is smaller than II so that

rinf,d(QH[�2]) ∼ NC2
(

σN1/2

C

)1/(p1+p2−1/2)

.(I.4)

We now compute a lower bound of rn(�dv) by finding an appropriate
orthosymmetric set �1 ⊂ �dv and computing rinf,d (QH[�1]). Let Wl be the space
generated by the 2−2l mirror wavelets {ψl,m1

ψl,m2
}0≤m1,m2<2−l at the critical

scale 2l . We define �1 as the set of all signals θ ∈ Wl such that

|〈θ,ψl,m1
ψl,m2

〉∣∣ ≤ B−1C(I.5)

and for any m1 there is at most one m2 for which 〈θ,ψl,m1
ψl,m2

〉 = 0 and for
any m2 there is at most one m1 for which 〈θ,ψl,m1

ψl,m2
〉 = 0. Since �1 ⊂ Wl if

θ ∈ �1 then 〈θ,ψj,m1
ψj ′,m2

〉 = 0 if j = l or j ′ = l. This set is orthosymmetric and
�1 ⊂ �dv for an appropriate B , because ‖ψl,m1

ψl,m2
‖dv ∼ 1 and the coefficients

are distributed so that the total variation does not add up along each row and
column. The quadratic convex envelope QH[�1] is the set of all θ such that

2−l−1∑
m1,m2=0

∣∣〈θ,ψl,m1
ψl,m2

〉∣∣2 ≤ B−2C22−l .

Over Wl the noise z has a variance σ 2
l ∼ C22−l so a direct calculation shows that

rinf,d(QH[�1]) ∼ C22−l . We saw in (I.4) that rinf,d(QH[�2]) ∼ C22−l and (I.1)
thus implies that

rl(�dv) ∼ C22−l ∼ NC2
(

σN1/2

C

)1/(p1+p2−1/2)

,

which proves (5.12).
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Let us now concentrate on the nonlinear thresholding and minimax risks
over �dv. The thresholds Tj,α and T j1,j2 are chosen according to (5.9) and (5.11).
Two critical scales 2c2(j1) and 2c1(j2) are respectively defined as the smallest scales
such that T j1,j2 = ∞ if j1 > c1(j2) or j2 > c2(j1). They satisfy

σ c1,j2

√
2 loge 2−c1−j2 ∼ sc1,j2(I.6)

and

σ j1,c2

√
2 loge 2−j1−c2 ∼ sj1,c2 .(I.7)

The diagonal critical scale 2c is defined as the smallest scale such that T j1,j2 = ∞
if j1 > c and j2 > c and thus satisfies

σ c,c

√
2 loge 2−2c ∼ sc,c.(I.8)

If 2j1 ≥ 2c and 2j2 ≥ 2c then T j1,j2 = ∞. Using (I.4) one can verify that sc,c ∼ C

and since σ c,c ∼ σ2p1(c−L)2p2(c−L) we get

σ2(p1+p2)(c−L)|c|1/2 ∼ C

and hence

2−c ∼ N

(
σ 2

C2
log2

Np1+p2σ

C

)1/(2p1+2p2)

.(I.9)

An upper bound of the thresholding risk rt (�2) is computed with (3.21):

rt (�2) ≤ I + II + III1 + III2 + IV

with

I ∼ loge(N
2/4)σ 2 +

c∑
j1=L+1

c2(j1)∑
j2=j1

loge 2−j1−j2σ 222p1(j1−L)22p2(j2−L)

+
c∑

j2=L+1

c1(j2)∑
j1=j2

loge 2−j1−j2σ 222p1(j1−L)22p2(j2−L),

II ∼ sup
θ∈�2

( 3∑
α=1

1∑
j=L+1

2−j −1∑
m1,m2=0

min
(∣∣〈θ,ψα

j,m1,m2
〉∣∣2, σ 2 loge N

))
,

III1 ∼ sup
θ∈�2

(
c∑

j1=L+1

2−j1−1∑
m1=0

(
c2(j1)∑
j2=j1

2−j2−1∑
m2=0

min
(∣∣〈θ,ψj1,m1

ψj2,m2
〉∣∣2,

loge 2−j1−j2σ 222p1(j1−L)22p2(j2−L))
+

1∑
j2=c2(j1)+1

2−j2−1∑
m2=0

∣∣〈θ,ψj1,m1
ψj2,m2

〉∣∣2))
,
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III2 ∼ sup
θ∈�2

(
c∑

j2=L+1

2−j2−1∑
m2=0

( c1(j2)∑
j1=j2+1

2−j1−1∑
m1=0

min
(∣∣〈θ,ψj1,m1

ψj2,m2
〉∣∣2,

loge 2−j1−j2σ 222p1(j1−L)22p2(j2−L)
)

+
1∑

j1=c1(j2)+1

2−j1−1∑
m1=0

∣∣〈θ,ψj1,m1
ψj2,m2

〉∣∣2))

and

IV ∼ sup
θ∈�2

∑
j1>c

j2>c

2−j2−1∑
m2=0

2−j1−1∑
m1=0

∣∣〈θ,ψj1,m1
ψj2,m2

〉∣∣2.
The sum I is a geometrical series which is of the order of the dominating term for
j1 = j2 = c,

I ∼ loge 2−2cσ 222(p1+p2)(c−L) ∼ C2.

The sum II is calculated with (G.25),

II ∼
1∑

j=L+1

2−j min(2−jσ 2 loge N,C2j−Lσ
√

loge N) ∼ log2 N
√

loge NNCσ.

The sum III1 is also computed with (G.25):

III1 ∼
c∑

j1=L+1

2−j1

(
c2(j1)∑
j2=j1

min
(
C22j1−j2,

C2(j1−j2)/2 loge 2−j1−j2σ2p1(j1−L)2p2(j2−L))
+

1∑
j2=c2(j1)+1

C22j1−j2

)
.

Again the dominating term corresponds to j1 = j2 = c and hence III1 ∼ C22−c.
We verify similarly that III2 ∼ C22−c. The sum IV also satisfies

IV ∼ ∑
j1>c

j2>c

C22−max(j1,j2) ∼ C22−c.

Inserting (I.9) gives

rt (�2) ≤ I + II + III1 + III2 + IV
(I.10)

∼ C2N

(
σ 2

C2
log2

Np1+p2σ

C

)1/(2p1+2p2)

.
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We now compute a lower bound of rn(�dv) with an appropriate orthosymmetric
set �1 ⊂ �dv. Let Wc be the space generated by the 2−2c mirror wavelets
{ψc,m1

ψc,m2
}0≤m1,m2<2−c . The set �1 is defined as in the linear case as the set

of all signals θ ∈ Wc such that∣∣〈θ,ψc,m1
ψc,m2

〉∣∣ ≤ B−1C(I.11)

and for any m1 there is at most one m2 for which 〈θ,ψc,m1
ψc,m2

〉 = 0 and for
any m2 there is at most one m1 for which 〈θ,ψl,m1

ψl,m2
〉 = 0. Since �1 ⊂ Wc if

θ ∈ �1 then 〈θ,ψj,m1
ψj ′,m2

〉 = 0 if j = c or j ′ = c. We have �1 ⊂ �dv for an
appropriate B > 0.

Let us compute a lower bound of the minimax risk rn(�1) to estimate θ ∈ �1
from X = θ + z. Theorem 4 proves that there exists λ such that over Wc the
covariance K of z satisfies for all N > 0

K ≥ λσ c,cId.

Since �1 ⊂ Wc, the noise augmentation Lemma 1 implies that rn(�1) ≥ r0
n(�1)

where r0
n(�1) is the minimax risk to estimate θ ∈ �1 from X = θ + z0, with a

Gaussian white noise z0 of variance β2 = λσ 2
c,c in the space Wc. Let δ[m] be

a discrete Dirac. A lower bound of r0
n(�1) is obtained by calculating the Bayes

risk for a random process F ∈ Wc defined by

〈F,ψl,m1
ψl,m2

〉 =
{

ACδ[m1 − P [m2]], for 0 ≤ m2 < 2−c−1,
0, for 2−c−1 ≤ m2 < 2−c.

To make sure that F ∈ �1, two nonzero coefficients should not be on the same
row. This is done by letting P [0] be a random variable uniformly distributed over
{0, . . . ,M − 1} and the probability distribution of P [m2] given P [k] for k < m2
is uniformly distributed over {0, . . . ,M − 1} − {P [k]}0≤k<m2 . If A ≤ B−1 then
F ∈ �1. The constant A is chosen small enough so that

AC ≤ λσ c,c

√
loge 2−c−1.

Using Lemma 3 we verify that the Bayes risk r(π) to estimate F from X = F + z0

satisfies

r(π) ≥
2−c−1−1∑
m2=0

A2C2/2 ∼ C22−c.(I.12)

Since rn(�1) ≥ r0
n(�1) ≥ r(π) and

rn(�1) ≤ rn(�dv) ≤ rt (�dv) ≤ rt (�2)

we derive from (I.10) and (I.12) that

rn(�dv) ∼ rt (�dv) ∼ C2N

(
σ 2

C2 log2
σNp1+p2

C

)1/(2p1+2p2)

,

which completes the proof.
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