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Wu and Hamada recommend selecting resolution IV designs with the
maximum number of clear two-factor interactions (2FIs), called MaxC2 de-
signs. In this paper, we develop a method by using graphical representations,
combinatorial and group-theoretic arguments to prove if a given design is a
MaxC2 design. In particular, we show that all known minimum aberration de-
signs with resolution IV are MaxC2 designs (except in six cases) and that the
second 29−4, 213−7, 216−10 and 217−11 designs given in Wu and Hamada
are MaxC2 designs. The method also enables us to identify new MaxC2 de-
signs that are too large to be verified by computer search.

1. Introduction. The minimum aberration (MA) criterion is commonly used
for selecting optimal 2k−p fractional factorial designs. In some situations, however,
other criteria can lead to better designs. A two-factor interaction (2FI) is called
clear if it is not aliased with any main effects or other 2FIs. This is explained in
Wu and Hamada [(2000), Chapter 4]. They proposed a general rule for selecting
2k−p designs with maximum resolution IV. That is, among resolution IV designs
with given k and p, those with the maximum number of clear 2FIs (MaxC2)
are the best. Such designs will be called MaxC2 designs. Note that MA designs
are not necessarily good according to this criterion. For example, the MA 215−9

design given in Wu and Hamada [(2000), page 197] contains no clear 2FIs, but
another 215−9 design of resolution IV given there has 27 clear 2FIs. In this paper,
an approach is developed to prove if a given design is a MaxC2 design. The main
tools (given in Sections 2 and 4) are a graph representation and classification of
length-4 words and some useful identities and bounds on the number of clear 2FIs.
These tools can reduce the search for designs to a much smaller set. Together with
other combinatorial and group-theoretic arguments, they are effective in proving
known and new designs to be MaxC2 designs. A summary of techniques in the
proposed approach and concluding remarks are given in Section 5.

A regular 2k−p fractional factorial design is determined by its defining contrast
subgroup, which consists of 2p − 1 defining words. The vector W = (A1, . . . ,Ak)

is called the word-length pattern, where Ai denotes the number of words of length i

in the defining contrast subgroup. The resolution of a design is defined as the
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smallest j with Aj ≥ 1. To discriminate designs of the same resolution, Fries
and Hunter (1980) proposed the following criterion. For two designs d1 and d2

with s being the smallest value such that As(d1) �= As(d2), d1 is said to have less
aberration than d2 if As(d1) < As(d2). If there is no design with less aberration
than d1, then d1 has minimum aberration (MA).

It is well known that there exist no designs with resolution at least IV if
k > 2k−p−1 [see Bose (1947)]. For 2k−p−2 + 1 < k ≤ 2k−p−1, the maximum
resolution of a 2k−p design is IV, but in this case, Chen and Hedayat (1998)
showed that no resolution IV designs can have any clear 2FIs. Let kmax(q) denote
the maximum value of k for which there exists a 2k−(k−q) design with resolution
at least V. Then for kmax(k − p) < k ≤ 2k−p−2 + 1, there exist no designs with
resolution at least V, but there exist resolution IV designs with clear 2FIs [see
Chen and Hedayat (1998)]. This is the case to which the previous rule of Wu and
Hamada should apply. Throughout this paper, we will focus on this case. As we
will see later, MA designs can be MaxC2 designs in this case, especially when
the number of length-4 words is small. However, when k is close to 2k−p−2 + 1,
MA designs may have no clear 2FIs while MaxC2 designs can have a large number
of clear 2FIs.

For kmax(k−p) < k ≤ 2k−p−2 + 1, MA designs for 32 and 64 runs and for 128
runs with 12 ≤ k ≤ 14 have been obtained, either through theoretical derivations
or via computer search; see the tables in Wu and Hamada [(2000), Chapter 4]. In
Section 3, we use the proposed method to show that, these MA designs are also
MaxC2 designs, except for 29−4, 213−7, 214−8, 215−9, 216−10 and 217−11 designs.
We also show in Section 4 that the second 29−4, 213−7, 216−10 and 217−11 designs
given in Wu and Hamada [(2000), pages 195 and 197] are MaxC2 designs. These
designs are obtained by Chen, Sun and Wu (1993) via computer search. The cases
of 214−8 and 215−9 designs are still under investigation. The method also enables
us to prove that a class of designs due to Tang, Ma, Ingram and Wang (2002) are
MaxC2 designs, which cannot be done by computer search.

As the work of Chen (1998) indicated, even for 128-run designs with k = 13
and 14, finding MA designs via computer search is not an easy task. For 128-run
designs with 15 ≤ k ≤ 33, little work has been done for finding either MA or
MaxC2 designs. This is in part because there is no complete catalog of 128-run
designs. Since in these cases, MaxC2 designs are the best according to the Wu–
Hamada rule, it is of particular interest to find designs that have many clear 2FIs.
The results in this paper reveal some intrinsic structures of the MaxC2 designs that
can potentially be used to construct designs with many clear 2FIs for large run
size and to provide useful information for finding MaxC2 designs via computer
search. For example, we are able to find a new MaxC2 215−8 design by employing
the proposed method to reduce the search to a very small set of designs and use
computer enumeration to finish the job.



1498 H. WU AND C. F. J. WU

2. A graphical representation of length-4 words. Let d be a 2k−p
IV design,

where the subscript IV indicates that d is of resolution IV. Let A4(d) be the number
of its length-4 words, L4 the set of its length-4 words, C(d) the number of clear
2FIs and

U(d)= k(k − 1)/2 −C(d)(2.1)

the number of unclear 2FIs. Consider a graph consisting of vertices and lines,
where each vertex represents an independent word in L4, and a line connects two
vertices if their product is a length-4 word. If the product of three or four vertices is
a length-4 word, they are indicated by unfilled circles or boxes, respectively. Such
a graph can be used to show relationships among some or all length-4 words.

Let G(w1, . . . ,wm) denote the set generated by m independent length-4
words w1, . . . ,wm. Here, “generated” means taking products of w1, . . . ,wm of
various lengths. For example, G(w1,w2,w3) = {w1,w2,w3,w1w2,w1w3,w2w3,

w1w2w3}. Then

Gm =G(w1, . . . ,wm)=L4 ∩ G(w1, . . . ,wm)(2.2)

is called the subset of L4 generated by m independent length-4 words w1, . . . ,wm.
A graph is called the graph of d if it represents L4, and a subgraph of d if it rep-
resents Gm for some independent length-4 words w1, . . . ,wm. Figures 1(a)–(h)
and 2(a)–(n) give all possible subgraphs of d (i.e., graphs for Gm) for m ≤ 4.
Detailed constructions of these graphs are given below. Let l be the number of
length-4 words in Gm. Clearly, m ≤ l ≤ 2m − 1. Throughout this section, all
length-4 words under consideration are in Gm.

It is obvious that the subgraph of d for m = 1 is Figure 1(a). (The only length-4
word w1 is represented by a vertex.) For m = 2, l = 2 or 3. If l = 2, w1 and w2
do not share two common letters, and are represented by two separate vertices
in Figure 1(b). For l = 3, w1w2 is a length-4 word, and any two of w1, w2 and
w1w2 share two common letters and their product gives the third length-4 word.

FIG. 1. Graphs of length-4 words: (a) m = l = 1, (b) m = l = 2, (c) m = 2, l = 3, (d) m = l = 3,
(e) m = 3, l = 4, (f) m = 3, l = 5, (g) m = 3, l = 6, and (h) m = 3, l = 7.
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We call these three words a tri-word group. They can be written as ABCD, ABEF
and CDEF, and represented by two vertices connected by a line, as shown in
Figure 1(c). For m= 3 and 4, the following lemma will be used.

LEMMA 2.1. (i) Suppose that v1, v2, v3, u = v1v2v3 ∈ Gm. Then at least one
of v1v2, v1v3 and v2v3 is a length-4 word. Thus, u is the product of two length-4
words u1 and uu1 in Gm, where u1 is one of v1, v2 and v3.

(ii) If m = 4, l = 5 and v = w1w2w3w4 ∈ G4, any two of w1, . . . ,w4 share a
common letter and any three of them do not.

(iii) If m = 4 and l ≥ 6, there exist l − 4 different tri-word groups.
(iv) Any two different tri-word groups share at most one common word.

PROOF. (i) Let ai be the number of letters that occur i times in v1, v2 and v3.
Since v1, v2 and v3 are length-4 words, a1 + 2a2 + 3a3 = 12. Since u = v1v2v3 is
a length-4 word, a1 + a3 = 4. Thus, a2 + a3 = {(a1 + 2a2 + 3a3)− (a1 + a3)}/2 =
(12 − 4)/2 = 4; that is, four letters occur at least twice in v1, v2 and v3. This
implies that at least one of the three pairs (v1, v2), (v1, v3) and (v2, v3) shares two
common letters, say v1 = ABCD and v2 = ABEF. Then v1v2 is a length-4 word
and u= (v1v2)v3 is the product of two length-4 words v3 and uv3 = v1v2 in Gm.

(ii) Let ai be the number of letters that occur i times in w1, . . . ,w4. Since
w1, . . . ,w4 are length-4 words, a1 + 2a2 + 3a3 + 4a4 = 16. Since v =w1w2w3w4
is a length-4 word, a1 + a3 = 4. Thus,

a2 + a3 + 2a4 = {(a1 + 2a2 + 3a3 + 4a4)− (a1 + a3)}/2

= (16 − 4)/2 = 6.
(2.3)

Since l = 5 and v is a length-4 word, none of the six pairs (wi,wj ) (1 ≤ i < j ≤ 4)
share two common letters. Because no pair can share three common letters, any
pair can share only one or no letter in common. This implies a4 = 0 or 1. If a4 = 1,
a2 = a3 = 0, which contradicts (2.3). If a4 = 0 and three of w1, . . . ,w4 (say w1,w2
and w3) share a common letter, a3 = 1 and w1,w2 and w3 can be represented by
ABCD, AEFG and AHJK, respectively. Then w1w2w3 is of length 10, and hence
no matter how w4 ∈ G4 is chosen, w1w2w3w4 ∈ G4 cannot be satisfied. Thus
a4 = 0 and a3 = 0, which implies a2 = 6 via (2.3), completing the proof.

(iii) Let S1 = {w1, . . . ,w4}, S = G4 \ S1, S2 = S ∩ {wiwj : 1 ≤ i < j ≤ 4} and
S3 = S ∩ {wiwjwk : 1 ≤ i < j < k ≤ 4}. For wiwj ∈ S2, there is a tri-word group
{wi,wj ,wiwj }. For u ∈ S3, by part (i), there exists u1 ∈ S1 such that uu1 ∈ S2.
This gives a tri-word group {u1, uu1, u}. We show that these tri-word groups
are different from each other. Otherwise, suppose two of them, obtained from
u2, u3 ∈ S2 ∪ S3, equal T0. Then u2, u3 ∈ T0, implying that T0 = {u2, u3, u2u3}.
For any w ∈ S2, its tri-word group T1 contains two words in S1. Thus T1 �= T0,
implying that u2, u3 /∈ S2. Then u2, u3 ∈ T0 ∩ S3. This is a contradiction since any
of the above tri-word groups contains at most one word in S3.
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If v = w1w2w3w4 ∈ G4, since l ≥ 6, there exists a length-4 word w ∈ S2 ∪ S3.
If w ∈ S2, say, w = w1w2, v is the product of three length-4 words w, w3 and w4.
By part (i), v is also the product of two length-4 words v0 and vv0. If w ∈ S3,
v0 = wv ∈ S1 and vv0 = w ∈ S3. Again v is the product of two length-4 words
v0 and vv0. Thus there is a tri-word group {v0, vv0, v}, which is different from
the above tri-word groups obtained from words in S2 ∪ S3, since none of them
contain v. In summary, we have obtained l − 4 different tri-word groups, one for
each length-4 word in S.

(iv) If two tri-word groups share two common words u1 and u2, they must equal
{u1, u2, u1u2}, contradicting the assumption that they are different. �

PROPOSITION 2.1. For any 2k−p
IV design d , all the possible subgraphs of d

for m = 3 and 4 are given by Figures 1(d)–(h) and 2(a)–(n), respectively.

REMARK. The condition m ≤ 4 is not as restrictive as it may appear
because these results can apply to designs whose graphs contain more than four
independent length-4 words. Working on the subgraphs of these designs for m= 4
can often reduce the search for MaxC2 designs to a much smaller set; see, for
example, the MaxC2 212−6 and 215−8 designs given in Sections 3 and 4.

PROOF OF PROPOSITION 2.1. For m = 3, if none of w1w2,w1w3 and w2w3
are length-4 words, it follows from Lemma 2.1(i) that w1w2w3 is not a length-4
word. Thus l = 3 and w1, w2 and w3 are represented by three separate vertices,
as in Figure 1(d). If at least one of w1w2, w1w3 and w2w3 is a length-4 word,
say w1w2 ∈ G3, w1 and w2 share two common letters and can be written as
w1 = ABCD and w2 = ABEF. Thus w1w2 = CDEF. Suppose w3 contains t letters
from A, . . . ,F . For t = 0 or 1, w3 does not share two common letters with any of
w1, w2 or w1w2, as represented by Figure 1(e), with vertices w1, w2 and w3. For
t = 2, since the pairs AB, CD and EF are symmetric and two letters within each
pair are symmetric, it suffices to consider w3 = ABGH or ACGH. If w3 = ACGH,
we have Figure 1(f), with vertices ABCD, ABEF and ACGH. If w3 = ABGH,
we have Figure 1(g), with vertices ABCD, ABEF and ABGH, which generate six
length-4 words, called a six-word loop. For t ≥ 3, any of AB, CD or EF cannot
occur in w3. Otherwise, say AB and C occur in w3, then w3ABCD would be a
length-2 word, contradicting the assumption that d is of resolution IV. Thus it
suffices to consider w3 = ACEG, since two letters within each pair AB, CD or
EF are symmetric. Then we have Figure 1(h), with vertices ABCD, ABEF and
ACEG, which generate seven length-4 words, called a seven-word group. Note
that the vertices are unfilled circles, indicating that the product of three vertices is
a length-4 word.

For m= 4, many more cases need to be considered. Clearly, for l = 4, we have
Figure 2(a). For l = 5, if one of wiwj (1 ≤ i < j ≤ 4) is a length-4 word, we
have Figure 2(c), with vertices w1, . . . ,w4. If none of wiwj (1 ≤ i < j ≤ 4) are
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FIG. 2. Graphs of length-4 words for m = 4: (a) l = 4, (b) l = 5 (without a line), (c) l = 5 (with a
line), (d), (e) l = 6, (f), (g) l = 7 (without a six-word loop), (h) l = 7 (with a six-word loop), (i) l = 8
(with a six-word loop), (j) l = 8 (with a seven-word group), (k) l = 9, (l), (m) l = 10, (n) l = 14.

length-4 words, it follows from Lemma 2.1(i) that none of wiwjwk (1 ≤ i < j <

k ≤ 4) are length-4 words. Hence w1w2w3w4 ∈ G4 and we have Figure 2(b).
By Lemma 2.1(ii), the four vertices can be written as ABCD, AEFG, BEHJ
and CFHK. Since the product of the four vertices is a length-4 word, they are
represented by unfilled boxes.

For l = 6, by Lemma 2.1(iii) and (iv), there exist two different tri-word groups
with at most one common word. If they share no common word, they must contain
four independent length-4 words and we have Figure 2(d). (If they contain only
three independent length-4 words, m = 3 and one of the graphs in Figure 1 would
contain two disjoint tri-word groups, which is not the case.) Otherwise, their
common word is represented by a vertex with two lines connected to it and another
independent length-4 word not in the groups is represented by a separate vertex, as
in Figure 2(e). For l = 7, by Lemma 2.1(iii) and (iv), there exist three different tri-
word groups with at most one common word between any two of them. If the three
groups share one common word, it can be represented by a vertex with three lines
connected to it, as in Figure 2(g). If two of the three groups do not share a common
word, they contain six length-4 words. Since l = 7, the third group contains only
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one word not in the two groups and thus has a common word with each of them.
This can be represented by Figure 2(f). If any two groups share a common word not
in the third group, the three groups contain a six-word loop, which is generated by
the three common words. Thus there is another independent length-4 word. This
can be represented by Figure 2(h). It remains to consider m = 4 and l ≥ 8.

Suppose first that G4 does not contain any six-word loop or seven-word
group. Then Figure 1(f) is a subgraph of d and its three vertices can be
written as w1 = ABCD, w2 = ABEF and w3 = ACGH. Hence w1w2 = CDEF,
w1w3 = BDGH, w2w3 = BCEFGH and w1w2w3 = ADEFGH. Suppose another
independent length-4 word w4 contains t letters from A, . . . ,H . Since l ≥ 8,
t ≥ 2. [Otherwise, the graph for G4 would be Figure 2(e) and then l = 6.] If
t = 2, w2w3w4 and w1w2w3w4 cannot be length-4 words. Since l ≥ 8, there are
two more length-4 words of the form w4u and w4v, where u and v belong to
{w1,w2,w3,w1w2,w1w3}. Denote the two letters in w4 that are from A, . . . ,H

by x and y. Then both u and v contain x and y. Since u and v cannot share
three letters in common, they must share two letters in common. Then w4, u and
v would lead to a six-word loop, contradicting the assumption that G4 does not
contain any six-word loop. Thus t ≥ 3. If w4 contains EF (or GH) for which d is
of resolution IV, w4, w2 and w1w2 (or w4, w3 and w1w3) would lead to a six-
word loop, again a contradiction. If w4 contains three of A, . . . ,F (or three of
A,B,C,D,G and H ) for which d is of resolution IV, w4,w1 and w2 (or w4,w1
and w3) would lead to a seven-word group, contradicting the assumption that G4
does not contain any seven-word group. In summary, w4 contains exactly one letter
from each of ABCD, EF and GH. Thus w4 can be written as AEGJ since two
letters within each pair EF or GH are symmetric. (It is easy to verify that choosing
w4 to be AEGJ, BEGJ, CEGJ or DEGJ leads to the same graph.) Then w2w4,
w3w4 and w1w2w3w4 are also length-4 words. Hence l = 9 and the graph for G4
can be represented by Figure 2(k).

Suppose now that G4 contains no seven-word group, but it has a six-word
loop, which can be written as ABCD, ABEF, ABGH, CDEF, CDGH and EFGH.
Suppose another independent length-4 word w contains t letters from A, . . . ,H .
Since l ≥ 8, t ≥ 2. [Otherwise, the graph for G4 would be Figure 2(h) and then
l = 7.] If t ≥ 3, any of AB, CD, EF or GH cannot occur in w. Otherwise, say
AB and C occur in w, then wABCD would be a length-2 word, contradicting the
assumption that d is of resolution IV. Since the pairs AB, CD, EF and GH are
symmetric and two letters within each pair are symmetric, we only need to consider
w = ACEG or ACEJ. Then ABCD, ABEF and w would lead to a seven-word group,
contradicting the assumption that G4 contains no seven-word group. Thus t = 2.
If w contains one of AB, CD, EF and GH, say, AB, we have Figure 2(m), and the
four vertices can be chosen as ABCD, ABEF, ABGH and ABJK. If w contains one
of the other 24 2FIs consisting of A, . . . ,H , say, AC, we have Figure 2(i).

Finally, suppose that G4 contains a seven-word group, which can be written
as ABCD, ABEF, ACEG, CDEF, BDEG, BCFG and ADFG. Since all two-letter
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combinations of A, . . . ,G occur twice in the group, if another length-4 word w

contains, for example, AB, w cannot contain any of C, . . . ,F . Thus, w can have
only t ≤ 3 letters from A, . . . ,G. If t = 0 or 1, we have Figure 2(j). If t = 2, we
have Figure 2(l), with four vertices ABCD, ABEF, ACEG and ABHJ. If t = 3, we
have Figure 2(n), with vertices ABCD, ABEF, ACEG and BCEH. �

From the above graphs, it is easy to obtain the number of unclear 2FIs, U(d),
when Gm = L4 and d has m ≤ 4 independent length-4 words. In this case,
l = A4(d). If a graph does not contain any three-vertex loop (a six-word loop
or a seven-word group) or unfilled boxes, U(d) = 6m + 3(l − m) = 3(m + l),
where m is the number of vertices and l −m is the number of lines. This includes
Figures 1(a)–(f), 2(a) and 2(c)–(g). If a graph contains only one three-filled-
vertex loop (a six-word loop), U(d) = 6m + 3(l − m) + 1 = 3(m + l) + 1. This
includes Figures 1(g), 2(h) and 2(i), and correspondingly, U(d) = 28,34 and 37.
Figures 1(h), 2(n), 2(k) and 2(m) contain 7, 8, 9 and 10 letters, respectively.
Since any 2FIs involving these letters are unclear, then correspondingly, U(d) =
21,28,36 and 45. Finally, by the above descriptions of Figures 2(b), (j) and (l), we
have U(d)= 30,27 and 34, respectively.

3. MA and MaxC2 designs. Based on the graphs constructed in the last
section, the following propositions are established. They identify some cases in
which an MA 2k−p design denoted as dMA = dMA(k,p) is also a MaxC2 design.

PROPOSITION 3.1. If A4(dMA) = 1 or 2, dMA is a MaxC2 design and its
number of clear 2FIs is k(k − 1)/2 − 6A4(dMA).

PROOF. Clearly the proposition holds for A4(dMA) = 1. For A4(dMA) = 2,
dMA has 12 unclear 2FIs. For any 2k−p

IV design d , A4(d) ≥ A4(dMA) = 2. Thus
either Figure 1(b) or 1(c) is a subgraph of d , which has at least 12 unclear 2FIs.
This proves the proposition. �

PROPOSITION 3.2. Let d be a 2k−p
IV design. If A4(d) ≥ 3, d has at least

15 unclear 2FIs. If A4(d)≥ 4, d has at least 21 unclear 2FIs.

PROOF. For A4(d) ≥ 3, either Figure 1(c) or 1(d) is a subgraph of d , which
has 15 or 18 unclear 2FIs, respectively. For A4(d) ≥ 4, if any two length-4 words
do not share two common letters, Figure 2(a) or 2(b) is a subgraph of d and hence
U(d) ≥ 24. Otherwise, there exist three independent length-4 words with at least
two of them sharing two common letters. In this case, one of Figures 1(e)–(h) is a
subgraph of d , and correspondingly, U(d)≥ 21,24,28 or 21. �

COROLLARY 3.1. For A4(dMA) = 3 or 4, if there exist two length-4 words
with two common letters, dMA is a MaxC2 design and its number of clear 2FIs is
k(k − 1)/2 − 6A4(dMA)+ 3.
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PROOF. In this case, the graph of dMA is Figure 1(c) or 1(e), and thus
U(dMA)= 15 or 21, respectively. The corollary then follows from Proposition 3.2.

�
PROPOSITION 3.3. If A4(dMA) = 3 and A4(dMA(k − 1,p − 1)) = 2, dMA is

a MaxC2 design and its number of clear 2FIs is k(k − 1)/2 − 18.

PROOF. It suffices to show that U(d) ≥ 18 for any 2k−p
IV design d . Note that

A4(d)≥ A4(dMA) = 3. If A4(d)≥ 4, by Proposition 3.2, U(d)≥ 21. If A4(d)= 3,
it suffices to show that any two length-4 words of d do not share any common
letter, say A. Otherwise, all the words of d that do not contain letter A would form
the defining contrast subgroup of a 2(k−1)−(p−1)

IV design d1 with A4(d1) ≤ 1. This
would imply that A4(dMA(k − 1,p − 1)) ≤ 1, which contradicts the assumption.
Thus, each of the three length-4 words of d has 6 unclear 2FIs and none of them
overlap, implying that U(d)= 18. �

Recall that, for kmax(k−p) < k ≤ 2k−p−2 +1, there exist resolution IV designs
with clear 2FIs. So far, MA designs with kmax(k − p) < k ≤ 2k−p−2 + 1 have
been obtained only for 15 cases: 32- and 64-run designs, and 128-run designs with
k = 12, 13 and 14. These are given in Tables 4A.3, 4A.5 and 4A.7 of Wu and
Hamada (2000). It follows from the above results that the following MA designs
are also MaxC2 designs: 27−2, 29−3, 210−4, 212−5, 213−6 (by Proposition 3.1);
28−3, 211−5 (by Corollary 3.1); and 214−7 (by Proposition 3.3). Proposition 3.4
below shows that the MA 212−6 design is also a MaxC2 design. None of the other
six MA designs (for 29−4, 213−7, 214−8, 215−9, 216−10 and 217−11) are MaxC2
designs. First we prove the following lemmas.

LEMMA 3.1. (i) For any 212−6
IV design d , if a letter, say A, occurs in a length-4

word, there are at least four length-4 words that do not contain letter A.
(ii) For any 212−6

IV design d , we have A4(d)≥ 6.

PROOF. (i) All the words of d that do not contain letter A form the defining
contrast subgroup of a 211−5

IV design d1. Since A4(d1) ≥ A4(dMA(11,5)) = 4 [see
Chen (1992)], d1 has at least four length-4 words, which are also the length-4
words of d that do not contain letter A.

(ii) By part (i), A4(d) ≥ 5. Since d has 12 factors (letters), then at least two
length-4 words share a common letter, say A. By part (i), there are at least four
length-4 words without letter A. Hence A4(d)≥ 6. �

LEMMA 3.2. Figure 2(j) cannot be the graph of any 212−6
IV design d .

PROOF. Suppose otherwise that the graph of a 212−6
IV design d is Figure 2(j),

which has three connected vertices w1 = ABCD, w2 = ABEF and w3 = ACEG.
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Then w4 =w1w2 = CDEF, w5 = w1w3 = BDEG, w6 =w2w3 = BCFG and w7 =
w1w2w3 = ADFG. If the isolated vertex w8 contains any letter from A, . . . ,G,
say, A, only three length-4 words (w4,w5 and w6) do not contain letter A,
contradicting Lemma 3.1(i). Thus w8 must contain four letters from H , J , K ,
L, M , say w8 = HJKL. Since p = 6, there are two other independent words,
w9 and w10, at least one of which (say w9) does not contain letter M . (Otherwise,
we can replace w9 by w9w10.) Furthermore, we can assume w9 contains at most
two letters from H , J , K , L. (Otherwise, we can replace w9 by w8w9.)

Let S1 = {w1, . . . ,w7}, S2 = {w9,w9w1, . . . ,w9w7} and S = S1 ∪ S2. Note
that A, . . . ,G occur 7 × 8 = 56 times in S and 7 × 4 = 28 times in S1. Thus
they occur 56 − 28 = 28 times in S2. Then there exists w∗ ∈ S2 that contains
at most three letters from A, . . . ,G. (Otherwise, A, . . . ,G would occur at least
8 × 4 = 32 times in S2.) Since all words in S2 contain at most two letters from
H, J, K, L and w∗ has length at least 5, w∗ must contain three letters from
A, . . . ,G and two letters from H, J, K, L. If w∗ contains any of the 28 three-
letter combinations of A, . . . ,G other than ABG, ACF, BCE, ADE, BDF, CDG
and EFG, multiplying w∗ with one of w1, . . . ,w7 reduces the length of w∗ by 2,
leading to a length-3 word. This contradicts the assumption that d is of resolution
IV. Thus w∗ can be written as ABGHJ. Then S3 = {w∗,w1w∗, . . . ,w7w∗} \
{w4w∗} = {ABGHJ,CDGHJ,EFGHJ,BCEHJ,ADEHJ,ACFHJ,BDFHJ}.

Consider another independent word w10 with t letters from A, . . . ,G. Note that
all 21 two-letter combinations of A, . . . ,G occur in S3. If t ≥ 2, multiplying w10
with one of the words in S3 gives a word w∗

10 which reduces t by at least 1. Thus we
only need to consider t ≤ 1. Furthermore, w10 contains at most three letters from
H,J,K,L,M . (Otherwise, we can replace w10 by w8w10.) Then w10 is of length
at most 4, which contradicts the assumptions that d is of resolution IV and there
are only four independent length-4 words (w1,w2,w3 and w8). Thus Figure 2(j)
cannot be the graph of any 212−6

IV design d . �

PROPOSITION 3.4. The MA 212−6 design dMA = dMA(12,6) [see page 197 in
Wu and Hamada (2000)] is a MaxC2 design and its number of clear 2FIs is 36.

PROOF. First we show that any 212−6
IV design d has at least four independent

defining words of length 4. Otherwise, since A4(d) ≥ 6 by Lemma 3.1(ii), the
graph of d is Figure 1(g) or 1(h). Let ABCD be a length-4 word of d . Then from
the description of these two graphs in Section 2, it can be shown that only three
length-4 words of d do not contain letter A. This contradicts Lemma 3.1(i).

Noting that U(d) = 66 − C(d), we need to prove U(d) ≥ 30 for any 212−6
IV

design d . Suppose that L4 contains s different tri-word groups. If s = 0, U(d) =
6A4(d)≥ 6 × 6 = 36. If s = 1, U(d)= 6A4(d)−3 ≥ 6 × 6 −3 = 33. If s ≥ 2, one
of Figures 2(d)–(n) is a subgraph of d . If one of Figures 2(d)–(i) and 2(k)–(m) is a
subgraph of d , by the discussion in the last paragraph of Section 2, U(d)≥ 30.
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If Figure 2(n) is a subgraph of d , the four vertices can be denoted by ABCD,
ABEF, ACEG and BCEH. Denote the 12 factors by A, . . . ,H, J,K,L,M. Since
p = 6, there are two other independent defining words, w9 and w10, one of which
(say w9) contains at most two letters from J , K , L, M . (Otherwise, we can replace
w9 by w9w10.) Since all 56 three-letter combinations of A, . . . ,H occur in the 14
length-4 words of the subgraph, a product of w9 and some of these words can
always lead to a word w′ with at most two letters from A, . . . ,H . Then w′ is a
length-4 word with two letters from J , K , L, M , say w′ = ABJK (since d is a
resolution IV design). This leads to JK = AB = CD = EF = GH, which implies
that any 2FIs consisting of A, . . . ,H,J,K are unclear. Thus U(d)≥ 45.

It remains to consider Figure 2(j) being a subgraph of d , which has a seven-word
group w1, . . .w7, as written in the proof of Lemma 3.2. This gives 21 unclear
2FIs consisting of A, . . . ,G. By Lemma 3.2, d has two other length-4 words,
v1 and v2 (in addition to w1, . . . ,w7). If v1 or v2 shares two common letters with
any of w1, . . . ,w7, since Figure 2(j) is a subgraph of d , the graph of d contains
Figure 2(l) or 2(n) and a separate vertex, whose U(d)≥ 34+6 = 40 or 28+6 = 34
as shown in Section 2. Otherwise, the 21 2FIs and the 12 2FIs for v1 and v2 (or
15 2FIs for v1, v2 and v1v2 if v1v2 is a length-4 word) do not overlap, and thus
U(d)≥ 21 + 12 = 33. �

4. MaxC2 designs. The graph representation and classification of length-4
words developed in Section 2 allows us to obtain bounds for the number of clear
2FIs and to reduce the search for designs to a much smaller set. The reduction
is usually substantial enough to identify a large MaxC2 design with a complete
computer search over the much smaller set. An example is the search for and proof
of a MaxC2 215−8 design given below. In this section, we will also develop some
useful combinatorial identities and inequalities and group-theoretic arguments to
reduce the number of candidate designs.

LEMMA 4.1. (i) For any 214−7
IV design d1, A4(d1)≥ 3. If A4(d1)= 3, any two

of the three length-4 words of d1 cannot share a common letter.
(ii) For any 215−8

IV design d , we have A4(d)≥ 5.
(iii) Any 215−8

IV design d has at least four independent defining words of
length-4.

Part (i) follows from Chen [(1998), page 1269] and is used to prove parts (ii)
and (iii). Their proofs are based on the same methods for proving Lemma 3.1 and
the first statement in the proof of Proposition 3.4 and are thus omitted.

LEMMA 4.2. Figure 2(c) cannot be the graph of any 215−8
IV design d .

PROOF. For design d , let 1, . . . ,7 denote the seven independent columns and
let A, . . . ,H denote the other eight columns. Assume that Figure 2(c) is the graph
of d . Then A4(d)= 5 and the tri-word group in the graph can be written as 123A,
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124B and 34AB. Let w1 and w2 denote the other two length-4 words. All the
words of d that do not contain letter A form the defining contrast subgroup of
a 214−7

IV design d1, which contains three length-4 words: 124B , w1 and w2. By
Lemma 4.1(i), w1 and w2 do not share a common letter and neither of them
contains any of 1,2,4,B . Similarly, we can show that none of 1,2,3,A occurs
in w1 or w2. Thus, the five length-4 words of d can be written as 123A, 124B ,
34AB, 567C and EFGH. Thus A = 123, B = 124, C = 567 and H = EFG, and
we only need to look for the other 4 columns D, E, F and G. The only feasible
columns that can be used to define D, E, F or G are those consisting of (1) two
of 1, 2, 3, 4 and two of 5, 6, 7; (2) one of 134 and 234 and at least one of 5, 6, 7
and (3) 1234 and two of 5,6,7. We thus end up with choosing 4 out of only 35
columns. This makes a complete computer search an easy task. A program written
for this purpose verified that none of the choices can lead to a resolution IV design
with the graph of Figure 2(c). �

LEMMA 4.3. Figure 2(j) cannot be the graph of any 215−8
IV design d .

The proof of Lemma 4.3 is similar to that of Lemma 4.2 (and also with the help
of a computer search) and is thus omitted.

PROPOSITION 4.1. The 215−8
IV design with A = 123, B = 124, C = 134,

D = 234, E = 1256, F = 1357, G = 1467 and H = 1234567 is a MaxC2 design
with 77 clear 2FIs.

PROOF. For any 215−8
IV design d , by Lemma 4.1, A4(d)≥ 5 and d has at least

four independent length-4 words. By Lemmas 4.2 and 4.3, neither Figure 2(c) or
2(j) can be the graph of d . Thus one of Figures 2(b), 2(d)–2(i) and 2(k)–2(n) is
a subgraph of d . By the discussion in the last paragraph of Section 2, U(d) ≥ 28.
Note that U(d)= 28 if and only if Figure 2(n) is the graph of d . The design given
in the proposition is a 215−8

IV design with 28 unclear 2FIs and is thus a MaxC2
design. [It is obtained by first assuming that Figure 2(n) is the graph of a 215−8

IV
design and going through the same process as for Figures 2(c) and 2(j). The design
given above is then obtained.] �

We now develop some useful combinatorial identities and inequalities. These
results, together with some group-theoretic arguments, are used to show that a class
of designs due to Tang, Ma, Ingram and Wang (2002) and the second 29−4, 213−7,
216−10 and 217−11 designs given in Wu and Hamada [(2000), pages 195 and 197]
are MaxC2 designs. Some notation from Cheng, Steinberg and Sun (1999) will be
used. For a 2k−p

IV design d , let f = 2k−p − 1 − k and mj(d) be the number of 2FIs
in the j th alias set not containing main effects, where j = 1, . . . , f . Furthermore,
we define Ni = #{1 ≤ j ≤ f :mj(d)= i} for i ≥ 0. Then Ni (i ≥ 1) is the number
of alias sets that contain i 2FIs and N1 = C(d) is the number of clear 2FIs. Let
I (d) denote the number of 2FIs of d . Then U(d)= I (d)−C(d).
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Note that any 2FIs in the same alias set do not share a common letter. Thus
mj(d)≤ k/2 and Ni = 0 for i > r , where r is the integral part of k/2. Then

I (d)= k(k − 1)/2 =
r∑

i=1

iNi =C(d)+
r∑

i=2

iNi(4.1)

and

f = 2k−p − k − 1 =
r∑

i=0

Ni = N0 +C(d)+
r∑

i=2

Ni.(4.2)

It follows from Cheng, Steinberg and Sun (1999) that

A4(d)= 1
6

[ f∑
j=1

mj(d){mj(d)− 1}
]

= 1
6

{
r∑

i=2

i(i − 1)Ni

}
.(4.3)

We have the following lemmas.

LEMMA 4.4. If Ni = 0 for i > 4, N2 is a multiple of 3.

PROOF. If Ni = 0 for i > 4, it follows from (4.3) that

A4(d)= 1
6 (2N2 + 6N3 + 12N4)= 1

3N2 +N3 + 2N4.

Thus N2 = 3{A4(d)−N3 − 2N4}, implying that N2 is a multiple of 3. �

LEMMA 4.5. If Ni > 0 for some i, where 2 ≤ i ≤ r , U(d)≥ i(2i − 1).

PROOF. If Ni > 0, there exists an alias set with i 2FIs. These 2FIs contain 2i
letters, any two of which form an unclear 2FI. Thus U(d)≥ (2i

2

) = i(2i − 1). �

LEMMA 4.6. (i) If Ni = 0 for i = j + 1, . . . , r , where 2 < j < r , then

C(d)≤ {(j − 1)f +Nj − I (d)}/(j − 2).

(ii) If Ni = 0 for i = j, . . . , r , where 2 < j ≤ r , then

C(d)≤ {(j − 1)f − I (d)}/(j − 2).

PROOF. It follows from (4.1) and (4.2) that

I (d)= C(d)+ jNj +
j−1∑
i=2

iNi

≤ C(d)+ jNj + (j − 1)
j−1∑
i=2

Ni

= C(d)+ jNj + (j − 1){f −N0 −C(d)−Nj }
= C(d)+Nj + (j − 1){f −N0 −C(d)}
≤ C(d)+Nj + (j − 1){f −C(d)}.

(4.4)
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Thus, C(d)≤ {(j−1)f +Nj −I (d)}/(j−2). This proves part (i). Part (ii) follows
from part (i) by noting that Nj = 0. �

PROPOSITION 4.2. For any 2k−p
IV design d with k = 2k−p−2 + 1, we have

C(d)≤ 2k − 3. If C(d)= 2k − 3, Nr−1 = k − 2 and Ni = 0 for i �= 1, r − 1.

PROOF. Note that r = (k − 1)/2 > 2 and f = 2k−p − 1 − k = 3k − 5. If
Nr > 0, by Lemma 4.5, U(d) ≥ r(2r − 1) = (k − 1)(k − 2)/2. Thus C(d) =
I (d)−U(d)= k(k − 1)/2 −U(d)≤ k − 1. If Nr = 0, by Lemma 4.6(ii),

C(d) ≤ (r − 1)f − I (d)

r − 2
= {(k − 1)/2 − 1}(3k − 5)− k(k − 1)/2

(k − 1)/2 − 2

= 2k − 3 > k − 1.

That is, C(d) ≤ 2k − 3. If C(d)= 2k− 3, C(d)= {(r − 1)f − I (d)}/(r − 2), and
hence I (d) = C(d) + (r − 1){f − C(d)}. Together with the inequalities in (4.4)
(with j = r), this implies that Nr−1 = k − 2 and Ni = 0 for i �= 1, r − 1. �

COROLLARY 4.1. The second 29−4
IV and 217−11

IV designs given in Wu and
Hamada [(2000), pages 195 and 197] are MaxC2 designs.

PROOF. These two designs have 15 and 31 clear 2FIs (see the tables there),
respectively. The corollary then follows from Proposition 4.2, which implies that,
for any 29−4

IV design d1 and 217−11
IV design d2, C(d1) ≤ 2 × 9 − 3 = 15 and

C(d2)≤ 2 × 17 − 3 = 31. �

COROLLARY 4.2. The 2k−p
IV designs d with k = 2k−p−2 + 1 given by Tang,

Ma, Ingram and Wang (2002) are MaxC2 designs.

PROOF. It follows from Proposition 4.2 by noting that these designs have
C(d)= 2k − 3 as shown by their authors. �

PROPOSITION 4.3. The second 213−7
IV design given in Wu and Hamada

[(2000), page 197] is a MaxC2 design with 36 clear 2FIs.

To save space, the proof of Proposition 4.3 is omitted here. A detailed proof is
given in Wu and Wu (2000).

LEMMA 4.7. For any 2k−p
IV design d , if there exist two alias sets with six 2FIs

containing the same 12 letters, there are exactly three alias sets with six 2FIs with
these 12 letters.
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PROOF. Denote an alias set with six 2FIs by AB = CD = EF = GH = JK =
LM. It gives 30 additional pairs of aliased 2FIs, that is, AC = BD, AD = BC, . . . ,
JL = KM, JM = KL. Another alias set with six 2FIs containing these 12 letters
must consist of three of these pairs, say, AC = BD = EG = FH = JL = KM. Then
there are seven independent length-4 defining words (ABCD, ABEF, ABGH,
ABJK, ABLM, ACEG and ACJL) with the 12 letters, which represent 12 columns
of d . Since d is of resolution IV, four independent columns (1,2,3 and 4) can
define at most four other columns (123, 124, 134 and 234), which gives at most
eight columns of d . Thus, at least five of the 12 letters correspond to independent
columns of d , implying that there are at most seven independent length-4 defining
words with the 12 letters. Hence there is no other independent length-4 word with
four of the 12 letters. In this case, it can be verified (by writing out all alias patterns
generated by the seven length-4 defining words) that there are exactly three alias
sets with six 2FIs containing the 12 letters. �

PROPOSITION 4.4. The second 216−10
IV design given in Wu and Hamada

[(2000), page 197] is a MaxC2 design with 29 clear 2FIs.

PROOF. Consider any 216−10
IV design d . Then f = 47, I (d) = 120 and r = 8.

It suffices to show that C(d) ≤ 29 or U(d) ≥ 91. If N8 > 0, by Lemma 4.5,
U(d) ≥ 120. If N8 = 0 and N7 > 0, again by Lemma 4.5, U(d) ≥ 91. If N8 =
N7 = 0, by Lemma 4.6(i), C(d)≤ {5f +N6 −I (d)}/4 = (5×47+N6−120)/4 =
29.75 + (N6 − 4)/4. Thus C(d)≤ 29 for N6 ≤ 4.

It remains to consider the case in which N8 = N7 = 0 and N6 ≥ 5. Denote
an alias set with six 2FIs by AB = CD = EF = GH = JK = LM. Since N6 ≥ 5,
by Lemma 4.7, there exists another alias set with six 2FIs and t ≥ 2 new letters
(other than A, . . . ,H,J,K,L,M). (It cannot contain only one new letter since the
60 additional aliased 2FIs, AC = BD, AD = BC, . . . , JL = KM, JM = KL, occur
pairwise in an alias set.) If t ≥ 3, U(d) ≥ 66 + t (t − 1)/2 + t (12 − t) ≥ 96.
Otherwise, without loss of generality, we have AC = BD = EG = FH = JP = LQ.
(Choosing JP = KQ gives AB = CD = EF = GH = JK = LM = PQ, contradicting
the assumption that N8 = N7 = 0.) Then KM = JL = PQ and the 91 2FIs
consisting of A, . . . ,H,J,K,L,M,P,Q are unclear. Thus U(d) ≥ 91, proving
the proposition. �

5. Summary and concluding remarks. Proving whether a design is a
MaxC2 design is technically challenging. Unlike the MA criterion which is defined
in terms of the word-length pattern, the number of clear 2FIs is a complicated
mathematical function of the defining contrast subgroup. This technical difficulty
may explain why there has been no general method for tackling the problem.
In this paper, we give a method for proving whether a resolution IV design is
a MaxC2 design. First we develop a graph representation and classification of
length-4 words. This representation of designs allows us to obtain bounds for the
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number of clear 2FIs and to reduce the search for designs to a much smaller set.
We also develop some useful combinatorial identities and inequalities (as given in
Section 4) and group-theoretic arguments (as used in Sections 3 and 4) to reduce
the number of candidate designs. If theoretical arguments alone cannot do the job,
the reduction is usually substantial enough for computer search to finish the job.
An example is the search for and proof of a MaxC2 215−8 design in Section 4.

In addition to proving the MaxC2 property of many existing designs, we are able
to find new MaxC2 designs such as a class of designs due to Tang, Ma, Ingram and
Wang (2002) and the 215−8 design mentioned above. It demonstrates that the tools
can be effectively used to find new MaxC2 designs. We have given lengthy proofs
for several designs (known to be MaxC2 designs by computer search) in order to
show how the approach can be implemented. Only through the demonstration in
these proofs will the potential users be able to use and improve the tools to find
designs for new situations such as 128- and 256-run designs, three-level designs,
two-level designs in blocks or with control and noise factors for parameter design
application. It is our hope that this work is a modest start of a new direction of
research in fractional factorial designs.
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