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ON THE MINIMISATION OF L p ERROR
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We show that, for L p convergence of the mode of a nonparametric
density estimator to the mode of an unknown probability density, finite-
ness of the pth moment of the underlying distribution is both necessary
and sufficient. The basic requirement of existence of finite variance has
been overlooked by statisticians, who have earlier considered mean square
convergence of nonparametric mode estimators; they have focussed on
mean squared error of the asymptotic distribution, rather than on asymp-
totic mean squared error. The effect of bandwidth choice on the rate of L p

convergence is analysed, and smoothed bootstrap methods are used to
develop an empirical approximation to the L p measure of error. The
resulting bootstrap estimator of L p error may be minimised with respect
to the bandwidth of the nonparametric density estimator, and in this way
an empirical rule may be developed for selecting the bandwidth for mode
estimation. Particular attention is devoted to the problem of selecting the
appropriate amount of smoothing in the bootstrap algorithm.

1. Introduction. The study of nonparametric mode estimation is now
Ž .three decades old, having its roots in Parzen’s 1962 article on kernel density

Ž .estimation. Romano 1988a has surveyed subsequent work, including that of
Ž . Ž .Eddy 1980, 1982 on kernel estimation and of Grenander 1965 on alterna-

Ž . Ž .tive approaches. See also Tsybakov 1990 . Romano 1988b has discussed
bootstrap methods in the context of mode estimation. Recent work on esti-

Ž .mating peaks nonparametrically includes that of Muller 1989 , in the con-¨
Ž .text of nonparametric regression. Mammen, Marron and Fisher 1992 and

Ž .Fisher, Mammen and Marron 1994 have discussed nonparametric estima-
tion of the number of modes in a multimodal distribution. It is well-known
that the asymptotically optimal bandwidth for mode estimation is an order of
magnitude larger than that which is appropriate for point estimation of a
probability density.

In the special case where asymptotic mean squared error is used to
describe performance of the mode estimator, the optimal bandwidth could, in
principle, be estimated empirically using plug-in methods. These would re-
quire pilot estimators to be developed for a number of quantities in the
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formula for the optimal bandwidth, including the mode itself, the value of the
density at the mode and the value of a high-order derivative at the mode.
However, this is a very complex procedure, and that unattractiveness is
undoubtedly an important reason for the lack of information which exists
about its theoretical and numerical properties.

In the present paper we propose a much simpler approach to bandwidth
selection. We suggest a bootstrap method for estimating the mean squared
error of the mode estimator, and propose selecting the bandwidth by minimis-
ing this estimator.

The simplicity of our procedure enables us to treat L p measures of error in
mode estimation, not just mean squared error. Therefore, we introduce our
techniques in this general context. We show in Section 2 that if the underly-
ing distribution is smooth, a necessary and sufficient condition for L p conver-
gence of the mode estimator is the existence of finite pth absolute moment of
the underlying distribution. A reader who is familiar with classical L2 theory
for mode estimation may doubt the correctness of this claim, since the
assumption of finite variance is never imposed in that work. However, one
should remember that classical L2 theory is concerned only with asymptotic
mean squared error}that is, with mean squared error of the asymptotic
distribution of the mode estimator. By way of contrast, we study the actual
mean L p error, for finite n and for general p G 1. Hitherto, not even the
problem of mean square convergence has been treated with the degree of
explicitness and detail offered in the present paper.

Section 3 describes a smoothed bootstrap estimator of mean L p error.
Curiously, that approach requires only finite « th moment for some « ) 0; it
does not need finite pth moment. The apparent contradiction arises because
extreme values from a bootstrap resample have properties quite unlike that
of extremes from the actual population. The requirement of finite pth mo-
ment in Section 2 arises because of properties of extreme values.

Bootstrap methods have been used before to estimate mean squared error
Ž .in the context of curve estimation. See, for example, Taylor 1989 , Faraway

Ž . Ž . Ž .and Jhun 1990 , Hall 1990 and Hall, Marron and Park 1992 . Unlike Hall
Ž . Ž .1990 , but like Faraway and Jhun 1990 , we use a resample size that is
identical to sample size. One of our aims is to solve, at least theoretically, the
difficult problem of selecting the correct bandwidth for the resampling part of
the bootstrap algorithm. This problem is not addressed by Faraway and Jhun
Ž .1990 , and requires significantly more detailed results about convergence
rates than are available from classical literature on mode estimation. The
new results are derived in Section 2, in the general context of mean L p error,
and in Section 3 for our smoothed bootstrap method. By combining the

wresulting formulae we show in Section 3 that if an r th order kernel as
Ž .xdefined at 2.5 is employed when estimating the mode and a second-order

˜kernel estimator f is used in the resampling operation, then the bandwidth
˜ y1rŽ2 rq7.for f should be taken to be of size n if our aim is to develop an

ˆempirical approximation to the optimal bandwidth for f. This size is very
˜much larger than that required for optimal point estimation using f. Hence,
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the bootstrap algorithm should involve substantial oversmoothing when re-
sampling. The results of a simulation study, illustrating these conclusions,
are summarised in Section 4.

� 4By way of notation, XX s X , . . . , X represents a random sample from a1 n
population with density f , which we assume has a unique largest mode m.
Write X for a generic X . Given a continuous kernel function K and ai
bandwidth h satisfying 0 - h F 1, define the kernel estimator

n
y1f̂ x s nh K x y X rh .� 4Ž . Ž . Ž .Ý i

is1

Let m denote any quantity with the propertyˆ
ˆ ˆf m s sup f x .Ž . Ž .ˆ

y`-x-`

Section 2 will discuss the issue of ties for m. We assume throughout thatˆ
Ž .kernel functions are supported on the interval y1, 1 . This condition is

imposed to simplify technical arguments, and may be removed at the expense
of longer proofs. In particular, all our results are valid if we take all kernels
to equal the standard normal density, but the present proofs would need
modification. Versions of our results may be derived for estimators other than
those based on kernels, although it seems particularly difficult to obtain the
detail of our second-order theory for estimators based, for example, on log
splines and penalized log-likelihood methods.

2. Convergence in probability, and in L p, of the mode estimator.
In the sense of large deviations, m converges to m at a geometrically fastˆ
rate, as our first result shows.

THEOREM 2.1. Assume that f is bounded, continuous at a point m and
satisfies
2.1 sup f x - f mŽ . Ž . Ž .

< <x : xym )h1

Ž .for all h ) 0. Assume that K is of bounded variation, is supported on y1, 1 ,1
Ž .is continuous and satisfies HK s 1, and that for some h ) 0, 1 G h s h n ª2

0,
y1 2qh2sup nh log n - `.Ž . Ž .

nG0

Then for each h , l ) 0,3

< < ylP m y m ) h s O nŽ .ˆŽ .3

as n ª `.

Ž . Ž .Condition 2.1 defines f m as the ‘‘unique largest peak’’ of f.
Theorem 2.1 implies that, under the assumptions there, m ª m in proba-ˆ

bility. However, without additional regularity conditions on the tails of the
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sampling distribution, there can be no guarantee that m will converge to mˆ
in any L p metric. In part, this problem is caused by ambiguities in how m̂

ˆ ˆshould be defined when f has two or more modes at which f achieves the
same height. While this is, in a sense, a pathological issue, the matter of
whether m converges to m in L p is fraught with difficulties caused byˆ
pathological arrangements of the data.

To appreciate this point, let us order the data values as X F ??? F XŽ1. Žn.
and let x - ??? - x denote real numbers such that x y x y 4 ) 0,1 n i iy1

� Ž .4x ) 2 and P X g x y 1, x q 1 ) 0 for each i. Numbers x with thesen i i i
properties exist if the distribution of X is unbounded to the right. Consider

Ž .the event EE that X g x y 1, x q 1 for 1 F i F n y 1 and X ) x y 1.n Ž i. i i Žn. n
ˆSince for large n the bandwidth h employed to construct f is taken to be no

Ž .greater than 1, and since K vanishes outside y1, 1 , then when EE prevails,n
ˆthe kernel estimator f is simply a string of n nonoverlapping ‘‘humps,’’ each

Ž .y1 Ž .with the shape of nh K ?rh and centered at respective values X , . . . , X .1 n
ˆSuppose that in such cases, when there is a tie for the mode of f , we agree to

take as our mode estimator that candidate which is furthest to the right.
Then,

pp p< < < <E m G E m I EE G E X y 1 I EEŽ . Ž .� 4ˆ ˆ Ž .½ 5n Žn. n

ny1
pG E X y 1 I X ) x y 1 P X g x y 1, x q 1 .� 4Ž . Ž . Ž .� 4 Łn i i

is1

Ž q. pThe right-hand side is infinite if E X s `. Arguing thus, the condition
Ž q. p < < pE X - ` is seen to be necessary for E m - `. Similarly, if we chooseˆ

< < prandomly among tied modes, then E X - ` is a necessary condition. The
latter constraint is also sufficient for convergence in L p, as Theorem 2.2 will
point out.

Of course, our proof of the necessity of finite pth moments relies on a
highly unusual, indeed pathological case. We are not claiming that such
pathologies arise with significant frequency, only that they have positive
probability of occurring. Our argument shows, in effect, that the limit of the
pth moment of the mode equals the pth moment of the limit of the mode if
and only if the sampling distribution has finite pth moment. In that context
our first-order limit theory has been anticipated by earlier workers. However,
note that unlike those earlier contributors, we address the limiting properties
of moments, rather than moments of the limiting distribution. In order to be
technically correct in the former setting one must ask that the underlying
distribution have finite pth moments. The case of kernels with unbounded
support}for example, when K is the standard normal density}may be
treated similarly. The proof is longer there, but ties never arise and moment
conditions are still necessary for L p convergence of the mode.

The spirit of our proof is reminiscent of work of Mammen, Marron and
Ž .Fisher 1992 , which describes how the number of modes of a kernel density

wŽ . xestimator depends on bandwidth, and of Devroye 1985 , page 248 , which
addresses the number of isolated bumps in a kernel density estimator.
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THEOREM 2.2. Assume the conditions of Theorem 2.1. If there are two or
ˆmore modes of f with the same height, select among them randomly when

defining m. Let p G 1. Thenˆ

< < pE m y m ª 0ˆ

< < p < < pif and only if E X - `. Furthermore, if E X - `, then for each h, l ) 0,

< < p < < yl2.2 E m y m I m y m ) h s O n .Ž . Ž .� 4Ž .ˆ ˆ

Our final result in this section describes an asymptotic formula for
< < pE m y m . We assume that any tie for the mode estimator is broken at ran-ˆ

Ž .dom. Let N , N , N denote a trivariate normal random vector with the1 2 3
X̂ Ŷ Y ẐŽ Ž . Ž . Ž . Ž .same mean vector and covariance matrix as f m , f m y f m , f m y

Z X̂ Ŷ YŽ .. < Ž . < < Ž . Ž . < Ž .f m , and put a s Ef m , b s Ef m y f m , g x , x ; f, m s x y1 1 2 1
YŽ .y1 2 YŽ .y2 Ž . Ž .x x f m q x x f m and g x , x , x ; f , m s g x , x ; f , m1 2 1 2 2 1 2 3 1 1 2

1 Z Y 1 Y2 y2 2 y2Ž . Ž . Ž .q x f m f m q x x f m .1 1 32 2

THEOREM 2.3. Assume that f has a ‘‘unique largest peak ’’ at m, that f Z

YŽ .exists in a neighbourhood of m and is continuous at m, that f m / 0, that
< < p Ž .E X - ` and that K is supported on y1, 1 , has four bounded derivatives

Ž . Ž .and satisfies HK s 1 and HyK y dy s 0. Suppose too that h s h n ª 0 and
Ž 7.y1 Ž .that nh s O 1 . Then for each p G 1,

1rpp< <E m y mŽ .ˆ
1rpp y1Y< < < <s E g N , N ; f , m f m� 4Ž . Ž .1 1 2

y1r23q O nh q aŽ .½ 52.3Ž .

y1r2 y3r2 23 5 3= nh q nh q a q b log n .Ž . Ž . Ž .½ 5
If, in addition, f Ž4. exists and is bounded in a neighbourhood of m, and K has
five derivatives, then for each p G 1,

1rpp< <E m y mŽ .ˆ
1rpp y1Y< < < <s E g N , N , N ; f , m f m� 4Ž . Ž .2 1 2 3

y1r23q O nh q aŽ .½ 5ž2.4Ž .

y1 y3r2 y1r2 23 5 2 9 3= nh q nh q a 1 q nh q b log nŽ . Ž . Ž . Ž .½ 5 /
as n ª `.
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If K is an r th-order kernel, meaning that

1, if j s 0,¡
j ~0, if 1 F j F r y 1,2.5 y K y dy sŽ . Ž .H

r¢ y1 r !k / 0, if j s r ,Ž .

and if f has sufficiently many continuous derivatives, then the mean and
Žrqj.Ž . r X Ž .Ž 2 jq1.y1variance of N are asymptotic to k f m h and k f m nh , respec-j j

tively, where k X s HK Ž j.2
. In particular this implies that a and b are both ofj

r Ž .size h and, by 2.3 , writing N for a standard normal random variable, that

1rpy1r21rpp p y1Y3 r< < < < < <2.6 E m y m ; E c nh N q c h f m ,Ž . Ž . Ž . Ž .ˆ ½ 51 2

2 X Ž . < Žrq1.Ž . < Ž .where c s k f m and c s k f m . The longer expansion at 2.4 is1 1 2
needed to derive second-order terms in such approximations when r s 2.

Ž .Surprisingly, the simpler result 2.3 is adequate when r G 3. It follows from
Ž . Ž . � < < p41r p2.6 that the bandwidth h that minimises A h ' E m y m , overˆ0 1
values of h in the range prescribed by Theorem 2.3, satisfies h ;0
u ny1rŽ2 rq3., where u minimises0 0

< y3r2 r < p2.7 G u s E c u N q c u ,Ž . Ž . 1 2

and that for this choice of h,

< < p yprrŽ2 rq3. < Y <ypE m y m ; n G u f m .Ž . Ž .ˆ 0

Ž . Ž .The form of the remainder terms in 2.3 and 2.4 is carefully chosen so as
to capture as much as possible of the effect of bootstrap estimation of mean
L p error. This point will be elucidated in Section 3. For that purpose we
provide now a high-order approximation to h .0

LEMMA 2.1. Assume the conditions of Theorem 2.3 and let K be symmetric.
Then, for r G 2,

2.8 h s u ny1rŽ2 rq3. 1 q o ny2rŽ2 rq7. .� 4Ž . Ž .0 0

Ž .PROOF. We show 2.8 for even r G 4. For symmetric K, the distribution
Ž . Y y1rŽ2 rq3.of N , N may be elucidated relatively easily. Put h s u n . We1 2 0 0

X Ž . � < YŽ .y1claim that the quantity h that minimises A h ' E N y N N f m q0 2 1 1 2
2 YŽ .y2 < p41r p X Y Ž y2rŽ2 rq3.. Ž y2rŽ2 rq7..N N f m satisfies h rh s 1 q O n s 1 q o n .1 2 0 0

To appreciate why, observe first that when p s 2, a simple Taylor expansion
Ž .2 � 2 r Ž 3.y14� Ž 2 .4gives A h s C h q C nh 1 q O h , where C , C ) 0. This pro-2 1 2 1 2

X Y � Ž Y 2 .4duces h s h 1 q O h , as required. The case of general p may be treated0 0 0
Ž .similarly, after expansion of the covariance of N , N .1 2

X Y Ž .Define d by h s h 1 q d . By the usual quadratic Taylor expansion in1 0 0 1
the neighbourhood of a minimum,

2.9 A hY rA hX s 1 q O d 2 s 1 q o ny4rŽ2 rq7. .Ž . Ž . Ž . Ž .Ž .2 0 2 0 1
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X Ž .Define d by h s h 1 q d . By the same Taylor expansion argument,2 0 0 2

2.10 A hX rA h s 1 q Cd 2 q o d 2 ,Ž . Ž . Ž . Ž .1 0 1 0 2 2

where C ) 0. In the next step of the proof, suppose first that r G 3. When h
y1rŽ2 rq3. Ž 3.y1r2 Ž 5.y3r2 3is of size n , the quantity nh q nh q a q b appearing

Ž . yr rŽ2 rq3. y3Žry1.rŽ2 rq3. Ž yr rŽ2 rq3..in 2.3 is of size n q n s O n . By this fact and
Ž . Ž X . Ž X . � yr rŽ2 rq3.Ž .24 Ž y4rŽ2 rq7..2.3 , A h rA h s 1 q O n log n s 1 q o n , the last1 0 2 0

Ž . Ž X . Ž Y . Ž y4rŽ2 rq7..identity requiring r G 3. Hence, by 2.9 , A h rA h s 1 q o n ,1 0 2 0
Ž . Ž . Ž Y . 2 Ž y4rŽ2 rq7..which in view of 2.10 implies A h rA h s 1 y Cd q o n .1 0 2 0 2

Since the left-hand side is minimised with d s 0, the right-hand side must2
Ž y2rŽ2 rq7.. Ž .be too, which entails d s o n . This proves 2.8 . The argument is2

Ž . Ž .the same when r s 2, except that 2.4 is used instead of 2.3 to bound the
difference between A rA and 1. I1 2

We conclude this section by outlining proofs of Theorems 2.1 and 2.2. That
of Theorem 2.3 is based on a relatively intricate Taylor expansion argument
and is deferred to the Appendix.

PROOF OF THEOREM 2.1. Observe that

< <P m y m ) hŽ .ˆ

ˆ ˆs P sup f x F sup f xŽ . Ž .½ 5
< < < <x : xym Fh x : xym )h

ˆ ˆ ˆ< <F P sup Ef x y sup f x y Ef xŽ . Ž . Ž .½
< < < <x : xym Fh x : xym Fh

ˆ ˆ ˆ< <F sup Ef x q sup f x y Ef xŽ . Ž . Ž . 5
< < < <x : xym )h x : xym )h

2.11Ž .

ˆ ˆ< <F P 2 sup f x y Ef xŽ . Ž .½
y`-x-`

ˆ ˆ) sup Ef x y sup Ef x .Ž . Ž . 5
< < < <x : xym Fh x : xym )h

For each h ) 0 there exists hX ) 0 such that

ˆ ˆ X2.12 sup Ef x y sup Ef x G hŽ . Ž . Ž .
< < < <x : xym Fh x : xym )h

for all sufficiently large n. Therefore, it suffices to prove that for all h, l ) 0,

ˆ ˆ yl< <P sup f x y Ef x ) h s O n .Ž . Ž . Ž .½ 5
y`-x-`

This may be achieved by applying the so-called Hungarian embedding
w Ž .xKomlos, Major and Tusnady 1975 , and modifying arguments of Silverman´ ´
Ž .1978 , as follows. There exist constants C , C , C ) 0 and a Brownian1 2 3
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bridge W 0 such that, with F denoting the distribution function correspond-
ing to f and with

Z x s yny1r2hy1 W 0 F t d K hy1 x y t� 4 � 4Ž . Ž . Ž .H1 t

ˆ ˆŽ . Ž . Ž . Ž .and Z x s f x y Ef x y Z x , we have for each n and each y ) 1rC ,2 1 2

y1 < <P n log n sup Z x ) C q y F C exp yC y .Ž . Ž . Ž .2 1 3 2½ 5
y`-x-`

1 yl� < Ž . < 4 Ž .Hence, P sup Z x ) h s O n for all l ) 0. Let V denote the modu-x 2 2

lus of continuity of W 0. Then there exists another constant C ) 0 such that4

1r2 0 0< <n h sup Z x s sup W F x y ht y W F x dK t� 4 � 4Ž . Ž . Ž . Ž .H1
y`-x-` y`-x-`

< < < 0 0 <F dK sup W F x y ht y W F x� 4 � 4Ž . Ž .Hž /
< <x : t F1

F V C h .Ž .4

Ž . Ž y1 .1r2 Ž 2 . w Ž .xNow, V u F C u log u V , where E exp V - ` Garsia 1970 , and5 0 0
X Ž 1r2 .so with h s hr 3C C and n large,4 5

1r2X1 y1< <P sup Z x ) h F P V ) h nhr log hŽ . � 4Ž .½ 51 02
y`-x-`

X2 y1s O exp yh nh r log hŽ .� 4Ž .
s O nylŽ .

for all l ) 0. I

PROOF OF THEOREM 2.2. We may assume without loss of generality that
m s 0. The proof of ‘‘necessity’’ was outlined earlier. It is enough to show that

< < p Ž .E X - ` is sufficient for 2.2 . To this end, observe that for any a , h, l ) 0
and sufficiently large n,

< < p < < py1 a p < < py1 < < p < < aE m I m ) h F 2 n P m ) h q 2 E m I m ) n� 4Ž .� 4Ž . Ž .ˆ ˆ ˆ ˆ ˆ
yl py1 < < p < < as O n q 2 E m I m ) n ,� 4Ž . Ž .ˆ ˆ

the last identity following from Theorem 2.1. Let Y denote the second-largestn
< <value of X and note that for the large n and b s a y 1,i

yp < < p a < <2 E m I n - m F Y q 1� 4ˆ ˆŽ .n

pyp aF 2 E Y q 1 I Y q 1 ) nŽ . Ž .� 4n n

ny22 p < < < < < <F n x P X F x P X ) x dP X F xŽ . Ž . Ž .H
bx)n

2 p yp < < p < <F n x x E X dP X F xŽ . Ž .H
bx)n

2p p2 b 2ypb yl< < < < < <s n E X P X ) n F n E X s O n ,Ž . Ž .Ž .
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�Ž . 4provided a ) l q 2 rp q 1. It remains only to show that for all l ) 0,

< < p < < ylt ' E m I m ) Y q 1 s O n .Ž .� 4ˆ ˆŽ .n n

Let X , . . . , X be independent, and independent of X , . . . , X ,y1 y, ny1 1 n
Ž . < <with the conditional distribution of X given that X F y, and put Z sn

< <max X ,iF n i

ny1

HH s sup K x y X rh F sup K .� 4Ž .Ýy , n y , i½ 5y`-x-` is1

< <Since m F Z q 1, thenˆ n

`
p< <t F P HH E m Z s y dP Z F yŽ .ˆŽ . Ž .Hn y , n n n

0

` pF P HH y q 1 dP Z F y .Ž . Ž .Ž .H y , n n
0

The methods used to prove Theorem 2.1 may be employed to show that for all
l ) 0,

sup P HH s O nyl .Ž .Ž .y , n
y)0

Hence,
pylt s O n E Z q 1Ž . Ž .� 4n n

pyl ylq1< <F O n nE X q 1 s O n ,Ž . Ž . Ž .� 4
as had to be shown. I

3. Bootstrap estimation of mean L error. In Section 2 we discussedp
the convergence to zero of

< < pm s m h s E m y m .Ž . ˆp p

We showed that if K is an r th-order kernel, then this quantity is asymptoti-
cally minimised by taking h s u ny1rŽ2 rq3. in the definition of m. Here, uˆ0 0

Ž . Ž .minimises the function G u , u ) 0, which depends on the unknown f m
Žrq1.Ž .and f m . Both these quantities are unknown, and so this prescription

for selecting h is not really practical. In the present section we show that
Ž .bootstrap methods may be employed to estimate m h , and thus to empiri-p

cally select a bandwidth for estimating m.
ˆLet K, used in the construction of f , denote a compactly supported

Ž .r th-order kernel; see 2.5 for a definition of the ‘‘r th-order’’ property. Let L
be a compactly supported, symmetric density with r q 1 derivatives. Define

n
y1f̃ x s nh L x y X rh .� 4Ž . Ž . Ž .Ý1 i 1

is1
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Our bootstrap sampling will be from the distribution that has this density.
The assumption that L is a density, in particular, that it is nonnegative, is
necessary if the sampling part of the operation is to be feasible, since we
cannot easily sample from a ‘‘distribution’’ whose density takes negative

˜w Ž .xvalues although, see Hall and Murison 1991 . The quantity f is, in a sense,
a pilot estimator of f , with its own bandwidth h . We shall discuss choice of1
h later in this section.1

� 4 � U U4Conditional on the sample XX s X , . . . , X , draw a sample X , . . . , X1 n 1 n
˜ U Xfrom the distribution with density f. We may take X s X q h Y , wherei i 1 i

X X , . . . , X X are drawn randomly, with replacement, from XX , Y , . . . , Y are1 n 1 n
independent and identically distributed with density L and, conditional on XX ,
the variables X X , . . . , X X , Y , . . . , Y are stochastically independent. Put1 n 1 n

n
y1U Uf̂ x s nh K x y X rh .� 4Ž . Ž . Ž .Ý i

is1

U Û ˜Let m and m denote the modes of f and f , respectively, defined byˆ ˜
breaking ties randomly when necessary, and set

X < U < pm s m h s E m y m ,Ž .ˆ ˆ ˆ ˜p p

where here and below, EX denotes expectation conditional on XX . Note particu-
larly that m, not m, is employed in the definition of m .˜ ˆ ˆp

Our main result in this section follows. It provides bootstrap versions
of portions of Theorem 2.2 and 2.3. Note particularly that, in terms of mo-

< < «ment conditions, we assume only that E X - ` for some « ) 0, not that
< < pE X - `.

Ž X X X .Conditional on XX , let N , N , N denote a trivariate normal random1 2 3
vector with the same conditional mean and conditional variance matrix

ÛX ÛY Ỹ ÛZ Z̃ X X ÛX XŽ Ž . Ž . Ž . Ž . Ž .. < Ž . <as f m , f m y f m , f m y f m . Put a s E f m , b s˜ ˜ ˜ ˜ ˜ ˜
X ÛY Ỹ X X X< Ž . Ž . < Ž .E f m y f m . The conditional means and variances of N , N , N are˜ ˜ 1 2 3

Ž .asymptotic to the unconditional means and variances of N , N , N , dis-1 2 3
cussed in the paragraph following Theorem 2.3.

THEOREM 3.1. Assume that f has a ‘‘unique largest peak ’’ at m, that f is
Ž . Zuniformly continuous on y`, ` and f exists and is continuous in a neigh-

YŽ . < < «bourhood of m, that f m / 0, that E X - ` for some « ) 0, that HK s 1,
that L is a symmetric probability density and that K, L are of bounded

Ž .variation, are supported on y1, 1 and have three derivatives. Suppose too
Ž 7.y1 Ž .that 0 - h, h F 1, h q h ª 0, nh s O 1 and for some h ) 0,1 1 1

Ž 7 .y1Ž .1qh1sup nh log n - `. Let p G 1. Then for each h , l ) 0,nG1 1 2

X < U < p < U < yl3.1 E m y m I m y m ) h s O nŽ . Ž .ˆ ˜ ˆ ˜� 4Ž .2
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with probability 1, and for r G 3,

1rppX U< <E m y mŽ .ˆ ˜
1rpp

y1X X X X Y˜ ˜< <s E g N , N ; f , m f mŽ .˜ ˜ž /½ 51 1 2
3.2Ž .

y1r2 X3q O nh q aŽ .½ 5
y1r2 y3r2 2X X33 5= nh q nh q a q b log nŽ . Ž . Ž .½ 5

with probability 1. For r G 2,

1rppX U< <E m y mŽ .ˆ ˜
1rpp

y1X X X X Y˜ ˜< <s E g N , N , N ; f , m f mŽ .˜ ˜ž /½ 52 1 2 3

y1r2 X3q O nh q aŽ .½ 5ž3.3Ž .
y1 y3r23 5= nh q nhŽ . Ž .

y1 2X2 X39qa 1 q nh q b log nŽ . Ž .½ 5 /
with probability 1.

Our proof of Theorem 3.1 remains valid if we take h to be a function of the
data, XX . In this case, the conditions imposed on h in the statement of
Theorem 3.1 should be interpreted as asking that O - h F 1, h ª 0 with

Ž 5.y1Ž .1qhprobability 1 and sup nh log n - ` with probability 1.
Ž .The principal application of the bootstrap estimator m h is to calculateˆp
Ž .an empirical version of the bandwidth h that minimises m h . We discussed0 p

wh briefly in Section 2, where we showed that if K is an r th-order kernel see0
Ž . x2.5 for a definition of kernel order and if f has r q 1 derivatives, then

3.4 h s u ny1rŽ2 rq3. 1 q o ny2rŽ2 rq7. .� 4Ž . Ž .0 0

Ž .In this formula, u is defined to be that quantity which minimises G u ,0
Ž . Ž . Ž .defined at 2.7 . An almost identical argument, based on 3.2 and 3.3 rather

ˆŽ . Ž . Ž .than 2.3 and 2.4 , shows that the bandwidth h which minimises m h isˆ0 p
given by

ˆ y1rŽ2 rq3. y2rŽ2 rq7.3.5 h s u n 1 q o n ,� 4Ž . Ž .ˆ0 0

ˆ X y3r2 X r pŽ . < <with probability 1, where u minimises G u s E c u N q c u , u ) 0,ˆ ˆ ˆ0 1 2
˜ X 2 1r2 Ž̃rq1. X� Ž . Ž . 4 < Ž . <and c s f m H K , c s k f m . In this formula we take N to beˆ ˜ ˆ ˜1 2

a standard normal random variable independent of XX . A formal derivation of
Ž̃rq1. Žrq1.this result requires f to be strongly consistent for f in a neighbour-

Ž 2 rq3.y1Ž .1qhhood of m, and for that we ask that sup nh log n - ` for some1
h ) 0.
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Ž . Ž .We claim the following consequences of 3.4 and 3.5 : if we choose the
˜bandwidth h , employed to construct f, such that it minimises the relative1

ˆ y1rŽ2 rq7.Ž .error h y h rh , then h is asymptotic to a constant multiple of n0 0 0 1
and the relative error is of size ny2rŽ2 rq7.. Now, the value of the best constant

y1rŽ2 rq7. Ž j.Ž .in the formula h , const ? n depends on the unknowns f m for1
ˆŽ .j F 2r q 3 and also on the metric in which the error h y h rh is mea-0 0 0

Žsured e.g., whether it is asymptotic mean squared error or some other
q .asymptotic L metric . Hence, there seems to be little point in being more

specific about the constant, and so we shall not pursue that matter further
here. However, knowing that the optimal size is ny1rŽ2 rq7. does indicate that

˜the bandwidth for constructing f for our present purpose should be substan-
wtially larger than that for point estimation of f. As is well known see, e.g.,

Ž . x y1r5Silverman 1986 , Chapter 3 , the latter is of size n .
˜ Ž̃rq1. Žrq1.To verify our claim, observe that the quantities f y f, f y f and

Ž .y1r2 2 Ž 2 rq3.y1r2 2m y m are, respectively, of size nh q h , nh q h and˜ 1 1 1 1
Ž 3.y1r2 2 Ž 3.y1r2 2nh q h . Therefore, c y c and c y c are of sizes nh q hˆ ˆ1 1 1 1 2 2 1 1

2 rq3 y1r2 2 ˆŽ .and nh q h , respectively. Comparing the formulae for G and G we1 1
see that u y u is of the same size as c y c and that the size of this errorˆ ˆ0 0 2 2
is minimised at ny2rŽ2 rq7. by selecting h to be of size ny1rŽ2 rq7.. For1
example, when p s 2 we have

y1 y1Žrq1. Žrq1. Žrq1.˜u y u ; y f m y f m 4r3 r 2r q 3 u f m ,Ž . Ž . Ž . Ž . Ž .� 4ˆ0 0 0

so that the asymptotically optimal bandwidth h is that which minimises the1
Ž̃rq1.Ž .mean squared error of f m .

Ž .We conclude this section with a derivation of 3.1 in Theorem 3.1. Proofs of
Ž . Ž .3.2 and 3.3 are similar to that of Theorem 2.3 and so are not given here.

Ž .PROOF OF 3.1 . The conditions imposed on K, L, f , h and h are1
wsufficient to enable us to prove, via the ‘‘Hungarian embedding’’ see Komlos,´

Ž . Ž .xMajor and Tusnady 1975 and Silverman 1978 that for each h, l ) 0,´

˜ yl< <3.6 P sup f x y f x ) h s O n ,Ž . Ž . Ž . Ž .½ 5
y`-x-`

X Û X Û yl< <3.7 P sup f x y E f x ) h s O n ,Ž . Ž . Ž . Ž .½ 5
y`-x-`

where PX denotes probability conditional on XX , and the latter identity is
Ž .interpreted as holding with probability 1. From 3.6 it follows, via the

Borel]Cantelli lemma, that

˜< <sup f x y f x ª 0Ž . Ž .
y`-x-`

with probability 1. Therefore,

X Û ˆ ˜< < < < < <sup E f x y Ef x F K sup f x y f x ª 0Ž . Ž . Ž . Ž .Hž /
y`-x-` y`-x-`
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ˆ ˜Ž . Ž .with probability 1. Replacing K, h, f by L, h , f in Theorem 2.1, we1
deduce that m ª m with probability 1. Noting the remark that contains˜
Ž . X2.12 , we conclude that for each h ) 0 there exists h ) 0 such that with
probability 1, for all sufficiently large n,

X Û X Û Xsup E f x y sup E f x G h .Ž . Ž .
< < < <x : xym Fh x : xym )h˜ ˜

Ž .Arguing as at 2.11 , we may now deduce that with probability 1 and for all
sufficiently large n,

X U X Û X Û< < < <P m y m ) h F P 2 sup f x y E f xŽ . Ž .ˆ ˜Ž . ½
y`-x-`

X Û X Û) sup E f x y sup E f xŽ . Ž . 5
< < < <x : xym Fh x : xym )h˜ ˜

X U X U 1 Xˆ ˆ< <F P sup f x y E f x ) hŽ . Ž . 2½ 5
y`-x-`

s O nyl ,Ž .

Ž .the last line following from 3.7 .
Ž .Observe that since h, h F 1 and K, L vanish outside y1, 1 ,1

< U < < < < <m , m F max X q 2.ˆ ˜ i
1FiFn

XŽ < U < . Ž yl .Therefore, if a ) 0, l ) a q 1 and P m y m ) h s O n ,ˆ ˜
`

pX U Ua < < < <n E m y m I m y m ) h� 4ˆ ˜ ˆ ˜Ž .Ý
is1

` p
X Ua < < < <F n 2 max X q 4 P m y m ) hˆ ˜Ž .Ý ž /i

1FiFnis1

` n `
p payl aylq1< < < <s O n X s O n X ,Ý Ý Ýi nž / ž /

is1 is1 is1

< < « < < 2r «with probability 1. Since E X - `, then with probability 1, X F n forn
Ž .all sufficiently large n. Therefore, if l ) a q 2 pr« q 2,

`
pX U Ua < < < <n E m y m I m y m ) h - `� 4ˆ ˜ ˆ ˜Ž .Ý

is1

with probability 1. It follows that

X < U < p < U < yaE m y m I m y m ) h s O n .Ž .� 4ˆ ˜ ˆ ˜Ž .
Ž .Since a ) 0 may be chosen arbitrarily large, then 3.1 is proved. I
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4. Numerical results. We applied the methods in Section 3 to three
Ž 2 .different distributions, denoted by D , D and D . With D a , m, s repre-1 2 3

Ž 2 . Ž . Ž 2 .senting the normal mixture aN ym, s q 1 y a N m, s , the three dis-
Ž . Ž 2 .tributions were the standard normal D s D 1, 0, 1 , D s D 0.4, 1, s and1 2 2

Ž 2 .D s D 0.4, 0.75, s . In each case, we computed the bootstrap estimators3 3
Ž .m h on a grid of h-values and minimised over h. We chose s s 0.6 andˆp 2

s s 0.8, which are the unique values such that D and D have unit3 2 3
variance. With this selection D is markedly bimodal, with the unique2
largest peak being on the right at 0.98, and D is unimodal and skewed to3
the right, with a relatively flat top and the mode at 0.49. For the sake of
brevity we focus on describing the distance of m from m. Alternative topicsˆ

ˆŽ . Ž .would include the distance of m h from m h , of h from h and ofˆ pp 0 0
p ˆ< < Ž . ŽE m y m from the minimum of m h with h employed to construct thisˆ p 0

. < <particular m . However, we regard m y m as the most informative measureˆ ˆ
of the quality of the mode estimator.

We took n s 50, 100 or 200 for all three distributions. The bootstrap
procedure from Section 3 was implemented with the oversmoothing band-
width h s cny1rŽ2 rq7., for a variety of values of c. We used the standard1
normal kernel, so that r s 2.

From the point of view of mode estimation, the distributions D , D and1 2
D are increasingly sensitive to choice of the value of c in the oversmoothing3
bandwidth, and the modes are increasingly difficult to estimate. These fea-
tures are reflected in our simulation study.

We found that the amount of oversmoothing which gives good performance
for D is significantly more than is appropriate for either D or D . In1 2 3
particular, in the case of D , mean squared error decreases monotonically1
with increasing oversmoothing, over quite a wide range. The value c s 2.5 or
3 provides performance close to the best obtainable. The favourable effect of
strong oversmoothing can be explained by D being symmetric and unimodal;1
mode and median coincide.

For skewed andror multimodal distributions, such as D and D , the2 3
choice of c is much more delicate. Strong oversmoothing may shift the mode
of the resampling distribution away from the true mode. Another effect, even
more severe, showed in the simulations for distribution D . If we smooth too2
much, then the heights of the two peaks in the empirical study are quite close
to each other, and the positions of the highest and the lowest peaks in the
bootstrap resamples may occasionally interchange, leading to a serious degra-
dation of performance of the mode estimator. The distribution D is even3
more sensitive to smoothing, owing to its ‘‘flat top’’ characteristic. Even a
small degree of smoothing can result in changing the estimated mode location
by a significant amount. In the case of D and D , the optimum value of c is2 3
near 1 or 1.5, much lower than for D . Values larger than 2.5 lead to a1
dramatic increase in the mean squared error.

Even with careful choice of c, the mean squared error of the mode
estimator increases steadily as we pass from D to D and then to D . These1 2 3
properties are apparent from Table 1 and Figure 1, which summarise our
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TABLE 1
Standard deviations, biases and mean squared errors of mode estimators. Within each box the
first row gives Monte Carlo approximations to standard deviation, bias and mean squared error;

Ž .and the second row gives approximations in parentheses to the standard errors of quantities in
the first row. Distributions D , D and D are defined in the text. Each Monte Carlo approxima-1 2 3
tion was computed by averaging over M independently simulated samples, where M s 1000 when
n s 50 and M s 500 for n s 100 and 200. Throughout, B s 50 bootstrap simulations were used

( )i Distribution D1

c s 2.5 c s 3

n sd bias mse sd bias mse

y3 y2 y3 y250 0.155 1.72 = 10 2.40 = 10 0.153 y6.16 = 10 2.35 = 10
y3 y3 y3 y3Ž . Ž . Ž . Ž . Ž . Ž .0.004 4.90 = 10 1.2 = 10 0.004 4.84 = 10 1.2 = 10

y4 y2 y3 y2100 0.127 3.20 = 10 1.62 = 10 0.119 y4.16 = 10 1.41 = 10
y3 y3 y3 y4Ž . Ž . Ž . Ž . Ž . Ž .0.005 5.70 = 10 1.2 = 10 0.004 5.30 = 10 9.0 = 10

y2 y3 y3 y2 y3 y3200 8.87 = 10 y4.16 = 10 7.88 = 10 8.80 = 10 y3.76 = 10 7.77 = 10
y3 y3 y4 y2 y3 y4Ž . Ž . Ž . Ž . Ž . Ž .2.9 = 10 3.97 = 10 5.0 = 10 3.23 = 10 3.94 = 10 6.0 = 10

( )ii Distribution D2

c s 1 c s 1.5

n sd bias mse sd bias mse

y250 0.377 y7.38 = 10 0.147 0.299 y0.227 0.141
y2Ž . Ž . Ž . Ž . Ž . Ž .0.021 1.19 = 10 0.017 0.009 0.009 0.008

y2 y2 y2 y2100 0.294 y1.86 = 10 8.65 = 10 0.225 y9.44 = 10 5.95 = 10
y2 y2 y2 y3Ž . Ž . Ž . Ž . Ž . Ž .0.029 1.31 = 10 1.71 = 10 0.007 1.01 = 10 4.1 = 10

y2 y2 y3 y2200 0.247 1.71 = 10 6.13 = 10 0.160 y5.76 = 10 2.56 = 10
y2 y2 y3 y3Ž . Ž . Ž . Ž . Ž . Ž .0.029 1.10 = 10 1.39 = 10 0.006 7.14 = 10 1.8 = 10

( )iii Distribution D3

c s 1 c s 1.5

n sd bias mse sd bias mse

50 0.393 y0.187 0.190 0.264 y0.220 0.118
Ž . Ž . Ž . Ž . Ž . Ž .0.009 0.012 0.008 0.007 0.008 0.005

100 0.352 y0.149 0.146 0.243 y0.220 0.107
Ž . Ž . Ž . Ž . Ž . Ž .0.012 0.016 0.009 0.009 0.011 0.006

y2 y2200 0.286 y0.119 9.63 = 10 0.196 y0.183 7.49 = 10
y3 y3Ž . Ž . Ž . Ž . Ž . Ž .0.009 0.013 5.7 = 10 0.010 0.009 3.3 = 10

main numerical results. To clearly define the quantities appearing in the
table, let m , 1 F l F M, denote the value of the mode estimator computedˆ l
from the lth sample XX drawn from a given distribution with mode m and setl
ms My1Ý m . We took B s 50 bootstrap resamples throughout and eitherˆ ˆ? l l

Ž . Ž .M s 1000 when n s 50 or M s 500 when n s 100 or 200 . Each box in the
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Ž . Ž .FIG. 1. Density of m. Panels a and b depict estimated densities of m under the distributionsˆ ˆ
D and D , respectively. The densities were estimated by the kernel method, based on the same2 3
simulated values for m as Table 1. The underlying densities D and D are shown as solid lines.ˆ 2 3
The dotted vertical lines indicate the positions of the true global modes.

table gives the values of

sd bias mse0 0 0

e e e ,Ž . Ž . Ž .1 2 3

� y1 Ž .241r2 Ž .2where sd s M Ý m y m , bias s m y m and mse s sd qˆ ˆ ˆ0 l l ? 0 ? 0 0
Ž .2bias are Monte Carlo approximations to the true standard deviation, bias0
and mean squared error and e , e and e are Monte Carlo approximations to1 2 3
the standard errors of sd , bias and mse , respectively.0 0 0

To provide further information about the distribution of bootstrap mode
estimates, Figure 1 illustrates the density of m for the distribution of Dˆ 2
w Ž .x w Ž .xpanel a and D panel b and all three sample sizes. The densities were3
estimated by the kernel method and were based on the same simulated data
values m , 1 F l F M, as Table 1. The figure illustrates properties noted twoˆ l

Ž .paragraphs earlier. In panel a , the distribution of the mode estimator is
skewed toward the secondary mode, with noticeable shoulders for lower

Ž .sample sizes. In panel b , even the peak of the mode estimator distribution is
shifted toward the shoulder of the underlying distribution. The reason is not
a possibly poor choice of h , since variance and squared bias appear to be1
balanced. However, it indicates particular difficulties in estimating modes of
densities with flat tops.
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For the sake of comparison with the theory we also calculated first-order
asymptotic values of sd , bias and mse , using the formulae0 0 0

y1 y1r2 1r2 y1Y1r4 3 < <sd s 2p nh f m f m ,Ž . Ž . Ž .Ž .as 1

1 Z Y y12 < <bias s h f m f m andŽ . Ž .as 12

2 2mse s sd q bias .Ž . Ž .as as as

Agreement with the ‘‘true’’ values derived by Monte Carlo simulation was not
high, being in error by several fold in some instances. The closest agreement
of mean squared error was in the case of the distribution D , where true and3
theoretical values differed by only 10% when c s 1. Overall, the difficulty in
obtaining good agreement between theory and ‘‘practice’’ for the parameter
settings treated here confirms our belief that particularly large sample sizes
are required for accurate and reliable estimation of a mode.

APPENDIX

Before passing to a proof of Theorem 2.3, we note the following lemma. The
first and last parts of the lemma may be derived using methods employed to
establish Theorem 2.1. The second part follows via Bernstein’s inequality.

Ž .LEMMA A.1. Assume the conditions of Theorem 2.3, preceding 2.3 . Then
Ž .for h ) 0 sufficiently small and each l ) 0, we may choose j s j l ) 0 so

large that

Ẑ Ẑ yl< <P sup f x y Ef x ) j log n s O n ,Ž . Ž . Ž .½ 5
< <x : xym Fh

and for j s 1, 2 and all j ) 0,

Ž̂ j. Ž̂ j. yl< <P f m y Ef m ) j s O n .Ž . Ž . Ž .� 4
Ž . Ž .Additionally, under the conditions preceding 2.4 , we may choose j s j l so

large that

y1r2Ž4. Ž4. 9 ylˆ ˆ< <P sup f x y Ef x ) j nh log n s O n .Ž . Ž . Ž . Ž .½ 5
< <x : xym Fh

PROOF OF THEOREM 2.3. By Taylor expansion
2X X Y Z1ˆ ˆ ˆ ˆ0 s f m s f m q m y m f m q m y m f m q u m y m ,� 4Ž . Ž . Ž . Ž . Ž . Ž .ˆ ˆ ˆ ˆ12

< <where 0 F u F 1. From this formula we may conclude that if m y m F hˆ1
and, for a constant C ) 0,1

Ẑ< <sup f x F C log n andŽ . 1
< <x : xym FhA.1Ž .

y2 y1X Yˆ ˆ< <f m f m F 20C log n ,Ž . Ž . Ž .1



MODE ESTIMATION 2281

Ẑ� Ž .4 < <then with T s f m q u m y m , which satisfies T F C log n,ˆ1 1

1r2y2Y X Y y1ˆ ˆ ˆm y m s f m 1 y 2 f m f m T y 1 TŽ . Ž . Ž .� 4ˆ
y1 2 y3X Y X Y1ˆ ˆ ˆ ˆs yf m f m y f m T f m q R ,Ž . Ž . Ž . Ž . 12

where
y2 3 y1Y X Yˆ ˆ ˆ< < < < < < < <R F f m f m f m T T .Ž . Ž . Ž .1

Y Y Y 1 YˆŽ . < Ž . Ž . < < Ž . <Hence, if f m / 0 and f m y f m F f m , then2

y1 y2X Y X Y Y Yˆ ˆ ˆm y m s yf m f m q f m f m y f m f mŽ . Ž . Ž . Ž . Ž . Ž .� 4ˆ
2 y3X Y Y Yˆ ˆy f m f m y f m f mŽ . Ž . Ž . Ž .� 4

A.2Ž .
2 y3X Z Y1 ˆy f m f m f mŽ . Ž . Ž .2

2 y3X Z Y1 ˆy f m T y f m f m q R ,� 4Ž . Ž . Ž . 22

where
23 3X X Y Yˆ ˆ ˆ< < < < < < < <R F C f m q f m f m y f m log nŽ . Ž . Ž . Ž . Ž .� 42 2

< Ž j.Ž . <and C depends only on C and f m , j s 2, 3.2 1
Ž .First we derive 2.3 . In view of Lemma A.1, if C is sufficiently large and h1

sufficiently small, then for all l ) 0,

y2 y1Z X Yˆ ˆ ˆ< < < <P sup f x ) C log n q P f m f m ) 20C log nŽ . Ž . Ž . Ž .� 41 1½ 5
< <x : xym Fh

Y Y 1 Y ylˆ< < < <q P f m y f m ) f m s O n .Ž . Ž . Ž . Ž .� 42

Therefore,

1rpp< < < <E m y m I m y m F h� 4Ž .ˆ ˆ

y1 y2X Y X Y Y Yˆ ˆ ˆy E f m f m y f m f m y f m f mŽ . Ž . Ž . Ž . Ž . Ž .� 4
2 y3X Y Y Yˆ ˆqf m f m y f m f mŽ . Ž . Ž . Ž .� 4

1rpp
2 y3X Z Y1 ˆ < <y f m f m f m I m y m F hŽ . Ž . Ž . Ž .ˆ2

1rp2 pX̂< <s O E f m log nŽ .� 4
A.3Ž .

Ž .1r 2 p 22 p 6 pX Y Yˆ ˆ< < < <q E f m E f m y f m log nŽ . Ž . Ž . Ž .� 4
y13 2s O nh q a log nŽ .½ 5

1r2 3r2y1 y1 23 2 5 2q nh q a nh q b log nŽ . Ž . Ž .½ 5 ½ 5



B. GRUND AND P. HALL2282

y1r23s O nh q aŽ .½ 5
y1r2 y3r2 23 5 3= nh q nh q a q b log n .Ž . Ž . Ž .½ 5

Ž̂ j. q< Ž . <In view of Theorem 2.2, and the fact that for j F 3 and q G 1, E f m is
bounded in n, the indicator function may be dropped throughout the left-hand
side above. Therefore,

1rp y1 y2p X Y X Y Y Yˆ ˆ ˆ< <E m y m y E f m f m y f m f m y f m f mŽ . Ž . Ž . Ž . Ž . Ž . Ž .� 4ˆ
2 y3X Y Y Yˆ ˆqf m f m y f m f mŽ . Ž . Ž . Ž .� 4

1rpp
2 y3X Z Y1 ˆy f m f m f mŽ . Ž . Ž .2

y1r2 y1r2 y3r2 23 3 5 3s O nh q a nh q nh q a q b log n .Ž . Ž . Ž . Ž .½ 5 ½ 5
Ž .The proof of 2.3 may be completed by applying a result on the rate

of convergence of moments in the bivariate central limit theorem; see
wŽ . xBhattacharya and Rao 1976 , Theorem 15.1, page 145 .

Ž .Next we derive 2.4 . The argument is similar to that above, except that
1 X Z Y2 y2ˆŽ . � Ž .4 Ž . Ž .in treating the term f m T y f m f m in A.2 we divide it into2

1 X Z Z Y 1 X2 y2 2ˆ ˆ ˆŽ . � Ž . Ž .4 Ž . Ž . �two parts: S s f m f m y f m f m and S s f m T y1 22 2
Ẑ Y 2Ž .4 Ž .f m f m . The second of these goes into the remainder, and for the

Ž .purpose of treating it, we add to the sequence of events at A.1 the require-
ment that

y1r2Ž4. Ž4. 9ˆ ˆ< <sup f x y Ef x F nh log n.Ž . Ž . Ž .
< <x : xym Fh

In view of the last part of Lemma A.1, this inequality holds with probability
Ž yl .1 y O n for all l ) 0. When it is valid,

< < < <S I m y m F hŽ .ˆ2

y1r22X 9ˆ< < < < < <F C f m 1 q nh log n m y m I m y m F h .Ž . Ž . Ž .ˆ ˆ½ 53

Ž .Arguing thus we may deduce instead of A.3 that

1rpp< < < <E m y m I m y m F h� 4Ž .ˆ ˆ

y1 y2X Y X Y Y Yˆ ˆ ˆy E f m f m y f m f m y f m f mŽ . Ž . Ž . Ž . Ž . Ž .� 4
2 y3 2 y3X Y Y Y X Z Y1ˆ ˆ ˆqf m f m y f m f m y f m f m f mŽ . Ž . Ž . Ž . Ž . Ž . Ž .� 4 2

1rpp
2 y3X Z Z Y1 ˆ ˆ < <y f m f m y f m f m I m y m F hŽ . Ž . Ž . Ž .� 4 Ž .ˆ2
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Ž .1r 2 p1rp 23 p 2 p 6 pX X Y Yˆ ˆ ˆ< < < < < <s O E f m q E f m E f m y f m log nŽ . Ž . Ž . Ž . Ž .� 4 � 4
Ž .1r 2 p4 p 2 pX̂< < < < < <q E f m E m y m I m y m F hŽ . Ž .ˆ ˆ� 4

y1r29= 1 q nh log nŽ .½ 5
1r2 3r2y3r2 y1 y1 23 3 3 2 5 2s O nh q a q nh q a nh q b log nŽ . Ž . Ž . Ž .½ 5 ½ 5

y3r2 y1r23 3 9q nh q a 1 q nh log nŽ . Ž .½ 5 ½ 5
y1r23s O nh q aŽ .½ 5ž

y1 y3r2 y1r2 23 5 2 9 3= nh q nh q a 1 q nh q b log n .Ž . Ž . Ž . Ž .½ 5 /
Ž . Ž .Result 2.4 follows from this formula in the same way that 2.3 did from

Ž .A.3 . I
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