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A REPRESENTATION OF PARTIALLY
ORDERED PREFERENCES1

BY TEDDY SEIDENFELD, MARK J. SCHERVISH AND JOSEPH B. KADANE

Carnegie Mellon University

This essay considers decision-theoretic foundations for robust
Bayesian statistics. We modify the approach of Ramsey, de Finetti, Savage
and Anscombe and Aumann in giving axioms for a theory of robust
preferences. We establish that preferences which satisfy axioms for robust
preferences can be represented by a set of expected utilities. In the
presence of two axioms relating to state-independent utility, robust prefer-
ences are represented by a set of probabilityrutility pairs, where the

Ž .utilities are almost state-independent in a sense which we make precise .
Our goal is to focus on preference alone and to extract whatever probabil-
ity andror utility information is contained in the preference relation when
that is merely a partial order. This is in contrast with the usual approach
to Bayesian robustness that begins with a class of ‘‘priors’’ or ‘‘likelihoods,’’
and a single loss function, in order to derive preferences from these
probabilityrutility assumptions.

1. Introduction and overview.

1.1. Robust Bayesian preferences. This essay is about decision-theoretic
foundations for robust Bayesian statistics. The fruitful tradition of Ramsey
Ž . Ž . Ž . Ž .1931 , de Finetti 1937 , Savage 1954 and Anscombe and Aumann 1963
seeks to ground Bayesian inference on a normative theory of rational choice.
Rather than accept the traditional probability models and loss functions as
given, Savage is explicit about the foundations. He axiomatizes a theory of
preference using a binary relation over acts, A Q A , ‘‘act A is not pre-1 2 1
ferred to act A .’’ Then, he shows that Q is represented by a unique2

Ž .personal probability state-independent utility pair according to subjective
Ž .expected utility. That is, he shows there exists exactly one pair p, U such

w x w xthat, for all acts A and A , A Q A if and only if E A F E A .1 2 1 2 p, U 1 p, U 2
wMore precisely, in Savage’s theory what is needed to justify the assertion
that p is the agent’s personal probability is the added assumption that each
consequence has a constant value in each state. Unfortunately this is ineffa-
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wble in Savage’s language of preference over acts. See Schervish, Seidenfeld
Ž .xand Kadane 1990 . We discuss this in Section 4, below.

wIn recent years, either under the headings of Bayesian robustness Berger
Ž . Ž . Ž .x1985 , Section 4.7; Hartigan 1983 , Chapter 12; Kadane 1984 or sensitiv-

w Ž .xity analysis Rios Insua 1990 it has become an increasingly important issue
to show how to arrive at Bayesian conclusions from logically weaker assump-
tions than are required by the traditional Bayesian theory. Given data and a
particular likelihood from a statistical model, for example, how large a class
of prior probabilities leads to a class of posterior probabilities that are in
agreement about some event of interest? Our work differs from the common
trend in Bayesian robustness in much the same way that Savage’s work
differs from the traditional use of probability models and loss functions in
Bayesian decision theory. Our goal is to axiomatize robust preferences di-
rectly, rather than to robustify given statistical models. Results in this theory
are strikingly different from those obtained in the existing Bayesian robust-
ness literature.

For an illustration of the difference, suppose two Bayesian agents each
Ž .rank the desirability of Anscombe]Aumann ‘‘horse lottery’’ acts according

Žto hisrher subjective expected utility. ‘‘Horse lotteries’’ are defined in Sec-
. Ž . Ž .tion 2. Let p , U and p , U be the probabilityrutility pairs representing1 1 2 2

these two decision makers and assume they have different beliefs and values:
that is, assume p / p and U / U . Denote by $ and $ their respec-1 2 1 2 1 2

Ž .tive strict preference relations, each a weak order over acts. Suppose now
Ž .our goal is to find those coherent Anscombe]Aumann preference relations

Ž .Q corresponding to probabilityrutility pairs p, U such that the following
Pareto condition applies:

w x w x w x w x w xIf E A - E A and E A - E A , then E A -p , U 1 p , U 2 p , U 1 p , U 2 p, U 11 1 1 1 2 2 2 2w xE A . In words, when both agents strictly prefer act A to act A , thenp, U 2 2 1
this shared preference is robust for all efficient, cooperative Bayesian deci-

wsions that the pair make together. We assume that though the two Bayesian
agents may discuss their individual preferences, nonetheless, some differ-
ences remain in their beliefs and in their values even after such conversa-

Ž . xtions. See DeGroot 1974 for a rival model. We have the following theorem.

w Ž .xTHEOREM 1 Seidenfeld, Kadane and Schervish 1989 . Assume there
� 4exists a pair of prizes r#, r* which the two agents rank in the same order:

Ž .r# $ r* i s 1, 2 . Then the set of probabilityrutility pairs, each of whichi
satisfies the Anscombe]Aumann theory and each of which agrees with the
strict preferences shared by these two decision makers, consists exactly of the

�Ž . Ž .4two pairs themselves p , U , p , U . There are no other coherent, Pareto1 1 2 2
wcompromises. There is no coherent weak order meeting the strong Pareto

Ž .condition, which requires that A $ A if A ) A i s 1, 2 and at least one1 2 1 i 2
xof these two preferences is strict.

Thus, with respect to Pareto-robust preferences, the set of probabilityr
utility pairs for the problem of two distinct Bayesians is not connected and
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therefore not convex. Hence, a common method of proof}separating hyper-
Ž .planes used to develop expected utility representations }is not available in

our investigation. This is just one way in which our methods differ from the
usual robust Bayesian analysis. We want the strict preferences held in
common by two Bayesians to be a special case of robust preferences. Applied
to a class of weak orders, the Pareto condition creates a strict partial order
$ : to wit, the binary relation $ is irreflexive and transitive.

Ž .Our view of robustness is that sometimes a person does not have a strict
preference for act A over act A nor for A over act A nor are they1 2 2 1
indifferent options. Assume that strict preference is a transitive relation.
Then such a person’s preferences are modeled by a partial order. We ask,
under what assumptions on this partial order is there a set of
probabilityrutility pairs agreeing with it according to expected utility theory,
a set which characterizes that partial order? In this we are exploring the

wŽ . xpossibility pointed out by Savage 1954 , page 21 .
The general form of our inquiry is as follows. Axiomatize coherent prefer-

ence $ as a partial order and establish a representation for it in terms of a
set of probabilityrutility pairs. That is, we characterize each coherent, par-

� 4tially ordered preference $ in terms of the set of coherent weak orders )
that extend it. We rely on the usual expected utility theory to depict each

Ž .coherent weak order ) by one probabilityrutility pair p, U . Thus, we
model $ by a set of probabilityrutility pairs.

In contrast with Savage’s theory, which uses only personal probability, our
approach is based on Anscombe]Aumann’s ‘‘horse lottery’’ theory. Prefer-
ences over ‘‘horse lotteries’’ accommodate both personal and extraneous
Ž .agent-invariant probabilities. Also, by characterizing strict preference in
terms of a set of probabilityrutility pairs, we improve so-called one-way

wŽ . xrepresentations of, for example, Fishburn 1982 , Section 11 , as we show
more than existence of an agreeing probabilityrutility pair.

1.2. Overview. In outline, our approach is as follows: In Section 2 we
introduce axioms for a partial order over Anscombe]Aumann horse lotteries
Ž .HL . Anscombe]Aumann theory contains three substantive axioms that

Ž .incorporate the von Neumann]Morgenstern theory of cardinal utility for
simple acts:

Ž .1. A postulate that preference ) is a weak order}analogous to Savage’s
P1.

2. The independence postulate}analogous to Savage’s P2, ‘‘sure thing.’’
3. An Archimedean condition, which plays an analogous role to Savage’s P6.

Our replacement axioms for these are:

Ž .HL AXIOM 1. A postulate that strict preference $ is a strict partial
order.
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HL AXIOM 2. The independence postulate.

Ž .HL AXIOM 3. A modified Archimedean axiom for discrete not just simple
lotteries.

To avoid triviality, a commonplace assumption of expected utility theory is
that not all acts are indifferent, for example, there exist two acts, W and B

Ž .that do not satisfy B ) W. Let $ obey our three preference axioms on a
Ž .domain of horse-lottery acts H . We show Theorem 2 how to extend $ to aR

Ž .preference $9 over a larger domain that includes two new acts B best and
Ž .W worst where

; H , H g H B $9 H $9 W & H $ H if and only if H $9 H .Ž . Ž . Ž .1 2 R 1 1 2 1 2

Ž .Then we establish three related theorems Theorems 3, 4 and 5 : $ is
Ž . � Ž .4represented by a nonempty maximal and convex set VVVVV s V: H ª 0, 1 ofR

Ž .bounded, real-valued cardinal utilities V ? defined for acts. Each V g VVVVV
induces a weak order ) that agrees with $ on the domain of simple actsV

Ž .and almost agrees Definition 10b with $ on all acts. Moreover, given a set
Ž . Ž .ZZ of bounded, real-valued cardinal so-called ‘‘linear’’ utilities, Z ? defined

on H , the partial order formed using the Pareto condition with the set ZZR
satisfies our three axioms for preference.

In the light of the surprising ‘‘shape’’ that the family of agreeing subjec-
Ž .tive expected utilities can have Theorem 1 , we employ a modification

Ž .of Szpilrajn’s 1930 transfinite induction for extending a partial order. We
show how to extend a partial order while preserving the other preference
axioms. The proofs of all results appear in the Appendix. Also, we number
definitions, lemmas, and corollaries to coincide with their logical order in our
arguments, regardless of whether they appear for the first time in the body of
the text or in the Appendix.

In Section 4 we turn our attention to the representation of VVVVV as a set of
subjective expected utilities. We discuss when a linear utility V over acts also

Ž .is a subjective expected utility for a probabilityrutility pair p, U . Corollary
4.1 gives a representation of VVVVV in terms of sets of probabilityrstate-

Ž � 4. Ž .dependent utility pairs p, U : j s 1, . . . , n , where the utility U L of aj j
Ž .von Neumann]Morgenstern lottery L may depend upon the accompanying

Žstate s . This follows up the issue raised in the first paragraph in Sectionj
. Ž .1.1. In Section 4.3 we introduce two axioms HL Axioms 4 and 5 that

Žparallel the fourth Anscombe]Aumann postulate. That postulate and our
. Ž .replacements for it permits a representation of preference using a nearly

Ž .state-independent utility: where with high personal probability the value of
Ž .a lottery L does not depend by more than amount « ) 0 upon the state in

which it is awarded. In Section 4.3 we lean heavily on the proof technique of
Section 3 in order to find a representation for the partial order $ in terms of

Ž .a set of agreeing pairs of probabilities and nearly state-independent utili-
ties, Lemma 4.3 and Theorem 6.
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ŽSection 5 is about conditional preference. Two theorems Theorems 7 and
. Ž .8 relate conditional called-off partially ordered preferences and Bayesian

updating of the family of unconditional personal probabilities that agree with
an unconditional partially ordered preference. We provide an example involv-
ing conditional probability that highlights the nonconvexity of the agreeing
sets. In Section 6 we conclude with a review of several features that distin-
guish our results.

2. The formal theory.

2.1. The act space: a domain for the preference relation. We provide a
Ž .representation for a partially ordered strict preference relation over discrete

Ž .Anscombe]Aumann 1963 horse lotteries}acts that generalize von
Ž .Neumann]Morgenstern 1947 lotteries to allow for uncertainty over states of

nature.
Let R be a set of rewards. We develop our theory for countable sets R.

Ž .DEFINITION 1. A simple von Neumann]Morgenstern lottery is a simple
probability distribution P over R, that is, a distribution with finite support. A

Ždiscrete lottery is a countably additive probability over R with a countable
.support . Denote a lottery by L and its distribution by P.

Horse lotteries are defined with respect to a finite partition of states. Let p
be a finite partition of the sure event S into n disjoint, mutually exhaustive

Ž . � Ž .nonempty sets of states, p s s , . . . , s : s l s s B iff i / j and D s1 n i j jF n j
4s S . Strictly speaking, elements of p are subsets of S. We take this

approach rather than supposing S is finite, for example, rather than assum-
� 4ing S s s , . . . , s . Then our analysis allows for elaborations of a given1 n

Ž .preference relation in a larger domain of acts defined over finite refinements
of the partition p . Having made this point, we allow ourselves the familiar
convention of equating the set state s with its elements. That is, forj
notational convenience, often we shall use s when we intend ‘‘members ofj
s .’’j

Ž .DEFINITION 2. A simple or discrete horse lottery is a function from states
Ž .to simple or to discrete lotteries. Denote a horse lottery by H and denote the
Ž .space of discrete horse lotteries on the reward set R by H .R

In the tradition where acts are functions from states to outcomes, a horse
lottery is an act with a lottery outcome. For example, the act that yields a
50]50 chance at $10 and $20 provided the Republicans win the next Presi-
dential election, and which yields a 0.25 chance at $5 and a 0.75 chance at
$10 if the Republicans do not win, is a horse lottery over a binary partition
with two states: Republicans win and Republicans do not win. Thus, a
constant horse lottery is just a von Neumann]Morgenstern lottery, and a
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proper subset of these are the constant von Neumann]Morgenstern lotteries,
that is, the acts which yield a specific reward for certain.

Next, we define the operation of convex combination of two horse lotteries,
‘‘q’’, as the state-by-state mixture of their respective v.N-M lottery outcomes.
Thus:

Ž . � Ž .DEFINITION 3. xH q 1 y x H s H s xL q 1 y x L : j s 1, . . . , n;1 2 3 1 j 2 j
40 F x F 1 .

Ž .The mixture of two lotteries is a lottery xL q 1 y x L s L , where1 2 3
Ž . Ž . Ž . Ž .P r s xP r q 1 y x P r . For the special cases where each H is a3 1 2

‘‘constant’’ act, that is, if H is the lottery L and H is L , Definition 31 1 2 2
coincides with the von Neumann]Morgenstern operation of ‘‘q’’ for lotteries.

2.2. The axioms for order and independence. The von Neumann]
Ž .Morgenstern theory of preference over simple lotteries is encapsulated by

three axioms:

1. The assumption that preference ) is a weak order relation.
Ž .2. The independence postulate formulated below .

Ž .3. An Archimedean condition discussed below .

These axioms may be applied to horse lotteries also. Then the three axioms
Ž . Ž .guarantee that i preference is represented by a cardinal utility V over acts
Ž .with a property ii that utility distributes over convex combinations. To wit,

given these three axioms:

Ž .i There exists a real-value V defined on acts, unique up to positive linear
Ž . Ž .transformations, where V H F V H if and only if H ) H ; and1 2 1 2

Ž . w Ž . x Ž . Ž . Ž .ii V xH q 1 y x H s xV H q 1 y x V H .1 2 1 2

Ž . Ž .DEFINITION 4. When a preference relation over acts satisfies i and ii we
Ž .say it has the expected or linear utility property and we call V an agreeing

Ž .expected or, linear utility for ) .

Anscombe]Aumann theory requires a fourth postulate ensuring the exis-
tence of a unique decomposition of V as a subjective expected, state-indepen-
dent utility. That is, subject to a fourth postulate for preference, there exists
Ž .a unique personal probability p defined on states and a utility U defined on

Ž .lotteries independent of states so that:
n

iii V H s p s U L .Ž . Ž . Ž . Ž .Ý j j
js1

w Ž . xRecall the notation H s s L . Key, here, is that U is a state-independentj j
utility, defined on lotteries independent of the state in which they occur. To
be precise, let H be the constant horse lottery that yields lottery L in eachL

Ž .state, H s s L.L j
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� 4DEFINITION 5. The utility U : j s 1, . . . , n is state-independent when, forj
each lottery L and pair of states s and s ,j j9

U L s U L s U L .Ž . Ž . Ž .j j9

wFor our purposes, and following the usual practice, the condition of
Definition 5 is required only for states s and s that are not ‘‘null,’’ i.e., onlyj j9

Ž .when p s / 0 is it worth restricting U in a decomposition of a linear utilityj j
xV. If the utility is state-independent, for convenience, we drop the subscript

Ž . Ž .for states and abbreviate it U. When iii obtains for a state-independent
Ž . Ž .utility U, V H s U L .L

Ž . Ž .DEFINITION 6. When a preference relation over acts satisfies i ] iii we
Ž .say it has the subjective expected state-independent utility property and we

Ž .say the pair p, U agrees with ) .

Ž . Ž .In contrast to iii , a decomposition of V by a subjective possibly state-
dependent utility allows

n

iii* V H s p s U L .Ž . Ž . Ž . Ž .Ý j j j
js1

We examine such state-dependent decompositions in Section 4.1.
Next, we propose versions of the first two Anscombe]Aumann axioms to

accommodate our theory of preference as a partial order. We postpone our
discussion of the Archimedean axiom to Section 2.4 to allow for a timely
account of ‘‘indifference’’ in Section 2.3.

In this paper, a partial order $ identifies a strict preference relation.

HL AXIOM 1. $ is a strict partial order. It is a transitive and irreflexive
relation on H = H .R R

DEFINITION 7. When neither H $ H nor H $ H , we say the two1 2 2 1
lotteries are incomparable by preference, which we denote as H ; H . When1 2
; is transitive}corresponding to a weak order}then the relation )
Ž .standing for ‘‘$ or ; ’’ identifies a weak preference relation. Hereafter, we
shall mean by ‘‘preference’’ the strict preference relation.

Ž . Ž .HL AXIOM 2 Independence . ; H , H and H and for each 0 - x F 1,1 2 3

xH q 1 y x H $ xH q 1 y x H if and only if H $ H .Ž . Ž .1 3 2 3 1 2

This version of independence may be used, also, as the second axiom in the
Anscombe]Aumann theory or in the von Neumann]Morgenstern theory.

Ž . Ž .2.3. Indifference f . Next, we define a transitive relation of indiffer-
ence, f, based on $, which will play a central role in our extension of $ to

w Ž .a weak order. See Fishburn 1979 , Exercises 9.1 and 9.4, pages 126]127, for
xadditional discussion.
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Ž . Ž .DEFINITION 8 Indifference . H f H iff ; H , H 0 - x F 1 ,1 2 3 4

xH q 1 y x H ; H iff xH q 1 y x H ; H .Ž . Ž .1 3 4 2 3 4

We establish several useful corollaries of the HL Axioms 1 and 2 about
indifference.

COROLLARY 2.1. ; H , H , if H f H , then H ; H .1 2 1 2 1 2

That is, when two acts are indifferent, neither is preferred to the other.

COROLLARY 2.2. f is an equivalence relation.

COROLLARY 2.3. H f H if and only if ; H , H , and 0 - x F 1,1 2 3 4

xH q 1 y x H $ % H iff xH q 1 y x H $ % H .Ž . Ž . Ž . Ž .1 3 4 2 3 4

COROLLARY 2.4.

; 0 - x F 1, H , H f H iff xH q 1 y x H f xH q 1 y x H .Ž . Ž .1 2 1 2

Corollaries 2.3 and 2.4 establish important substitution properties for
elements of the same indifference equivalence class.

2.4. The Archimedean axiom: continuity of preference. First, define con-
� 4vergence for acts. Let H be a denumerable sequence of horse lotteries.n

� 4 � 4DEFINITION 9. H converges to a lottery H*, denoted by H « H*, justn n
� nŽ .4 Žin case the respective discrete lottery distributions P ? converge point-j

. U Ž .wise to the lottery distribution P ? .j

Ž .The third Archimedean axiom precludes infinitesimal degrees of prefer-
ence. As we show in Theorem 4, it suffices for representing preferences by
sets of agreeing real-valued utilities.

� 4 � 4HL AXIOM 3. Let H « H and M « M.n n

Ž . Ž . Ž . Ž .a If ; n H $ M and M $ N , then H $ N .n n
Ž . Ž . Ž . Ž .b If ; n H $ M and J $ H , then J $ M .n n

ŽThe familiar Archimedean condition from Anscombe]Aumann theory also
.from von Neumann]Morgenstern theory , denoted here as Axiom 3*, is this:

Ž . Ž .AXIOM 3*. Whenever H $ H $ H , ' 0 - x, y - 1 , yH q 1 y y H $1 2 3 1 3
Ž .H $ xH q 1 y x H .2 1 3

However, Axiom 3* is overly restrictive for our purposes, as a simple
example shows.
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� 4EXAMPLE 2.1. Consider a set of three rewards R s r , r*, r and aw b
� 4minimal, one element partition comprising the single sure state p s s . Then

ŽH is the set of von Neumann]Morgenstern lotteries on R. Denote by r theR
. � 4 Ž .horse lottery with constant prize r. Let VVVVV s V : 0 - x - 1 be a convex setx

Ž . Ž . Ž .of linear utilities, where V r s 0, V r* s x and V r s 1. Figure 1x w x x b
graphs these utilities.

Let $ be the partial order on lotteries generated by this set of utilitiesVVVVV
Ž .according to the weak Pareto condition. That is, L $ L iff ; V g VVVVV1 VVVVV 2

w x w x Ž .E L - E L . By Theorem 4 below , $ satisfies HL Axioms 1 and 2.V 1 V 2 VVVVV
Ž .However, it fails Axiom 3*. Specifically, r $ r* $ r , but ; 0 - y - 1 ,w VVVVV VVVVV b

Ž . Ž .yr q 1 y y r ; r*. Of course, $ is represented by the convex set ofw b VVVVV VVVVV
Ž .agreeing real-valued utilities VVVVV .

Next, we provide a connection between the Archimedean condition HL
Axiom 3 and f-indifference.

� 4 � X 4 � 4 � X 4 ŽCOROLLARY 2.5. Let H , H « H; M , M « M. If ; n H $ Mn n n n n n
X X .and M $ H , then H f M.n n

We conclude this discussion of HL Axiom 3 by showing that the familiar
Archimedean axiom, Axiom 3*, follows from our replacement HL Axiom 3
when preference over lotteries is a weak order.

LEMMA 2.1. If ) is a weak order over discrete horse lotteries meeting
conditions HL Axioms 2 and 3, then ) satisfies Axiom 3*.

2.5. Utility for discrete lotteries. The theory of von Neumann and Morgen-
stern addresses preference over simple lotteries, that is, those with finite
support. These constitute the subdomain of constant, simple horse lotteries.
However, there are weakly ordered preferences over lotteries which satisfy

Ž .the expected utility hypothesis Definition 4 for simple lotteries, that is,
which are represented by a cardinal, linear utility V over the domain of
simple lotteries, but which fail the expected utility hypothesis over the larger

w Ž .domain of discrete lotteries. See Fishburn’s 1979 , Section 10, discussion;

FIG. 1.
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Ž .also Fishburn 1982 , Section 11.3. A similar problem arises in Savage’s
Ž . Ž .1954 theory, as shown by Seidenfeld and Schervish 1983 . In a related

Ž .matter, Aumann’s 1962, 1964 argument about a utility for a partially
ordered preference does not apply when the set of rewards is denumerable

Ž .rather than finite, even though all lotteries are simple. Kannai 1963 showed
that, and strengthened Aumann’s Archimedean condition to remedy the

xproblem. We address this problem with an extended dominance condition.
Let r denote the simple horse lottery with constant prize r. Recall that HL

denotes the constant horse lottery that yields L in each state. Consider the
following dominance principle:

Ž . Ž .DOMINANCE. ; r, H if for each r g supp L , r $ r, then it is not theL n n
Ž . w Ž .xcase that r $ H or, alternatively, if universally, r $ r , then not H $ r .L n L

This weak dominance condition contrasts each reward r with the lottery L
Ž .through the countably many constant horse lotteries r taken from L’sn

support. The condition precludes a preference for L over r if it occurs for r
over each r .n

Our first three axioms yield dominance, as the next lemma establishes.

LEMMA 2.2. HL Axioms 1]3 entail dominance.

wŽ . xBased on Lemma 2.2, we may apply Fishburn’s 1979 , page 139 Theorem
Ž .10.5 to argue that a weakly ordered preference ) over discrete horse

lotteries which satisfies our HL Axioms 2 and 3 has the expected utility
Ž .property. See Remark 1. The import for our representation theorems is

given in terms of agreeing and almost agreeing utilities for a partial order:

w xDEFINITION 10a. A utility V agrees with a partial order $ iff V H -1
w x Ž .V H whenever H $ H .2 1 2

DEFINITION 10b. A utility V almost agrees with a partial order $ iff
w x w x Ž .V H F V H whenever H $ H .1 2 1 2

Thus, when our strategy for extending a partial order $ to a weak order
) succeeds, it induces a linear utility V that agrees with $ for discrete
horse lotteries, not just for simple ones.

Unfortunately, our argument for extending a partial order $ produces a
� 4set of expected utilities V each of which agrees with $ for simple acts, and

only almost agree with it for discrete acts. Of course, by itself the condition of
‘‘almost agreeing’’ is quite weak. A utility V that makes all options indifferent
almost agrees with every partially ordered preference. The point, however, is
that we consider an almost agreeing utility for a partial order $ only in the

wcase in which it agrees with $ on all simple acts. This idea parallels a
Ž .similar distinction between a qualitative probability a weak order on events

and a quantitative probability that agrees or almost agrees with it. See
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Ž . xSavage 1954 , Section 3.3. Through Corollary 3.2, we provide a sufficient
Ž .condition for the existence of a convex set of utilities that agree with $ on

all of H .R

REMARK 1. Fishburn’s Theorem 10.5 uses the traditional Archimedean
axiom Axiom 3*. However, by Lemma 2.2, Axiom 3* follows from the assump-
tions that ) is a weak order satisfying HL Axioms 2 and 3. Also, dominance

wŽ xis equivalent to Fishburn’s 1979, page 138 Axiom 4c, given the other three
axioms and our structural assumptions about the domain of lotteries.

2.6. Bounded preferences. Next in our discussion of the axioms, we settle
the question whether a partial order $ satisfying HL Axioms 1]3 admits an
unbounded utility that agrees with it or agrees with it on simple lotteries. It
is well known that utilities for von Neumann]Morgenstern lotteries are
finite. In light of our assumption that all discrete lotteries are acts, utilities
that agree with $ are bounded as well.

COROLLARY 2.6. Let $ satisfy HL Axioms 1 and 2. If V agrees with $ , it
is bounded. Hence, all utilities that agree with $ are bounded.

As noted above, we sometimes construct a utility V that agrees with a
Ž .partial order $ for all simple lotteries but merely almost agrees with $

for discrete lotteries. Thus, as V may fail to agree with $ on nonsimple acts,
Ž .it is worthwhile to show appealing only to simple acts that each utility V we

construct is bounded. For this purpose we formalize a condition that a
partially ordered preference is bounded, and establish it as a corollary of two
of our axioms, HL Axioms 1 and 3. From the fact that a partial order $ is
bounded, we show that a utility V agreeing with it on simple acts also is
bounded.

Ž . �Call a countable finite or denumerably infinite sequence of lotteries H :n
4 Ž . Ž .n s 1, . . . an increasing decreasing chain if H $ H H $ H wheneveri j j i

i - j. The following concepts deal with chains of strict preference.

DEFINITION 11a. Say $ is bounded above if, for each increasing chain
� 4H ,n

lim sup x : H $ xH q 1 y x H - 1.� 4Ž .Ž .2 1 n
nª`

DEFINITION 11b. Say $ is bounded below if, for each decreasing chain
� 4H ,n

lim sup x : xH q 1 y x H $ H - 1.� 4Ž .Ž .1 n 2
nª`

DEFINITION 11c. Call $ bounded if it is bounded both above and below.
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LEMMA 2.3. If $ satisfies HL Axioms 1 and 3, then $ is bounded, that
is, all $-chains are bounded.

Also, Lemma 2.3 yields the following claim about utilities for rewards:

Ž .COROLLARY 2.7. Let W be a real-valued utility and assume that, in the
domain of simple lotteries, its strict order $ satisfies HL Axioms 1 and 3.W

< Ž . <Then sup W r - `.R

Recall that a linear utility V is defined only up to a positive linear
transformation. We use the facts reported by Corollaries 2.6 and 2.7 to

Ž .standardize the units 0 and 1 for each V in a set of agreeing utilities VVVVV
Ž .agreeing with $ on simple acts, at least .

� 4DEFINITION 11d. A set VVVVV s V of utilities is bounded if, for some stan-
dardization of its elements,

< <sup V H - `.Ž .
VVVVV , H R

The problem we face is this. Though each V g VVVVV is bounded, there exist
what are for our purposes undesirable standardizations of the V ’s which fail
to satisfy Definition 11d. For an illustration, recall Example 2.1. There, the

Ž . � 4domain of simple lotteries H is generated by three rewards R s r , r*, rR w b
Ž .using a partition of one sure state. That is, Example 2.1 is about preferences

over von Neumann]Morgenstern lotteries. A partially ordered preference $VVVVV
Ž .over H arises by the Pareto rule from the convex set of utilities VVVVV sR

� 4 Ž . Ž . Ž .V : 0 - x - 1 , where V r s 0, V r* s x and V r s 1. That is, H $x x w x x b L1 VVVVV
Ž . Ž .H iff V H - V H for each V g VVVVV .L2 L1 L2

Ž .Obviously, the two constant acts the rewards r and r bound the partialw b
order $ , that is, for each act H different from r and r , r $ H $ r .VVVVV L w b w VVVVV VVVVV b

< Ž . <Moreover, in this standardization of VVVVV , sup V H s 1. Hence, it is aVVVVV , H R

bounded set of utilities. However, we may standardize the elements of VVVVV so
that it fails the condition in question. Rewrite each V , instead, so thatX

Ž . Ž . Ž . Ž .V r s 0, V r* s 1 and V r s 1rX. Then lim V r s `.X w X X b X ª 0 X b
To ensure a simple standardization which establishes our VVVVV s are, indeed,

Ž .bounded sets of utilities, we verify that without loss of generality we may
Ž .introduce two rewards W and B analogous to r and r in Example 2.1 thatw b

serve to bound the preferences for all other acts: Theorem 2. Then, the sets VVVVV
Ž .are bounded sets of utilities since we standardize all V g VVVVV with V W s 0

Ž .and V B s 1.

2.7. Standardizing $-preferences with ‘‘best ’’ and ‘‘worst ’’ acts. In this
section we show how to extend the domain of a partially ordered preference
by bounding it with ‘‘worst’’ and ‘‘best’’ acts. First, however, we review two
concepts of ‘‘null’’ events.
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Ž .DEFINITION 12. An event e is the set of states in a subset T of p : ; e '
Ž . w xT ; p , e s D s .sg T

Ž .DEFINITION 13. Call H and H a pair of e-called-off acts when H s s1 2 1
Ž .H s if s f e.2

Distinguish two senses of ‘‘null’’ events.

DEFINITION 14a. An event e is potentially null iff for each pair of e-called-
off acts H and H , H ; H .1 2 1 2

DEFINITION 14b. Event e is essentially null iff for each pair of e-called-off
acts H and H , H f H .1 2 1 2

It is evident that when event e is essentially null, so too is each state that
comprises it. Denote by n the union of the essentially null states. It follows
Ž .as is proven next that the union of essentially null states is an essentially
null event. Hence, n is the maximal essentially null event.

COROLLARY 2.8. Let N ; p be the subset of all essentially null states
� 4 Ž .N s s , . . . , s , with n s D s . Then n is essentially null.j j sg N1 k

ŽTHEOREM 2. Assume $ is a partially ordered preference satisfying HL
.Axioms 1]3 over a set of discrete horse lotteries H , defined on the partitionR

n � 4 � 4p s s : j s 1, . . . , n . Let R9 s R j W, B , where neither W nor B is anj
element of R. Then we may extend $ to a partially ordered preference $9
over H , so that:R

1. $9rH s$. That is, $9 restricted to H is just $.R R
Ž .2. ; H g H , W $9H $9 B.R

3. $9 satisfies HL Axioms 1]3.

Ž . wSince n s S iff $ is trivial, that is, iff ; H , H , H f H also, iff ;1 2 1 2
Ž . xH , H , H ; H , without loss of generality, by Theorem 2, assume prefer-1 2 1 2

Žence is not trivial by including rewards W and B. This proposition, war-
.ranted by Theorem 2, is the counterpart in our theory to Savage’s P5.

3. Extending strict partial orders: the inductive argument.

� 4 Ž3.1. An overview. Let R s r , r , . . . be a countable finite or denumer-1 2
.able set of rewards and let $ be a preference over H satisfying HL AxiomsR

1]3. Based on Theorem 2, without loss of generality, assume the existence of
two distinguished rewards not in R: reward W, where W is the worst act, and
reward B, where B is the best act. Acts W and B are to serve as the common

Ž .0 and 1 in a convex set VVVVV of bounded utility functions V that agree with $.
Hence for all H g H , W $ H $ B.R

Let us highlight the major results in this section of our essay.
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Our strategy is to use a transfinite induction to extend the preference $
Ž .a partial order to a weak order ) over simple horse lotteries in H . Let $R
Ž .s$ serve as the basis for the induction. The induction at the ith stage0

˜ ˜Ž .extension of $, $ , obtains by assigning a utility v to act H , V H s v , soi i i i i
˜ Ž . Žthat H f v B q 1 y v W. The quantity v is chosen in accord with Defi-i i i i i

. Ž .nitions 20 and 25 in the Appendix from a convex set of target utilities for
˜ ˜ ˜Ž . � 4 Ž .H , TTTTT H . The sequence H is chosen see Definition 26 in the Appendix soi i i i

that the limit stage $ is a weak order over H . We use W and B as the 0v R
and 1 of our utility, as follows.

� 4 Ž .Assume H « H and H g H . The general target sets TTTTT H are de-n n R i
fined through endpoints that bound the candidate utilities:

U Ž .DEFINITION 17. Let v H be the lim inf of the quantities x for whichi n
Ž .H $ x B q 1 y x W.n iy1 n n

Ž .DEFINITION 18. Let v # H be the lim sup of the quantities x for whichi n
Ž .x B q 1 y x W $ H .n n iy1 n

w Ž . Ž .The ‘‘utility’’ bounds v# H and v* H do not depend upon which se-
� 4 xquence H « H is used, as explained in the Appendix. Next, define then

Ž .closed target set of utilities for an act H g H :R

Ž . � Ž . Ž .4DEFINITION 19. TTTTT H s v: v# H F v F v* H .

Ž .We report two key properties of TTTTT H with the following lemma.

LEMMA 3.1. Assume $ satisfies the three axioms. Then:

Ž . Ž . Ž .i v# H F v* H ; and
Ž . Ž . Ž . Ž .ii v# H s v* H s v iff H f v B q 1 y v W.H H H

Our plan succeeds because $ extends $ , it satisfies the three HLi iy1
axioms and it preserves the f -indifference relations. Each weak orderiy1

Ž .) s) corresponding to the limit stage relation ‘‘$ or f ’’ is definedV v v v
˜by inequalities in expected V-utility, based on the utilities v for each act Hi i

Ž . Žin a finite or denumerable class HHHHH ; H . As explained below, HHHHH is finite orR
.denumerable depending upon whether R is. We choose HHHHH to form a basis for

) , that is, each H g H is a limit point of simple acts and each simple actV R
has its utility fixed by some finite stage of the transfinite induction. Then, )V
extends $ on simple acts in H . Also, the utility V almost agrees with $R
over the discrete lotteries H . That is, if H $ H , then H ) H . InR 1 2 1 V 2
Corollary 3.1, we provide sufficient conditions under which ) extends $V

Ž .for all the acts in H . See Remark 2.R
Ž .We show in Theorem 4 that each set ZZ of bounded, standardized

real-valued utility functions over R induces a partial order, $ , according toZZ

the Pareto preference relation, and $ satisfies our axioms. Of course, eachZZ
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utility Z g ZZ agrees with $ . That is, ZZ is a subset of the set of all utilitiesZZ
w Ž . xagreeing with $ . However Seidenfeld, Schervish and Kadane 1990 , E.3 ,ZZ

distinct convex sets of bounded utilities may induce the same strict partial
order. Thus, our representation of the partial order $ is in terms of the
largest convex set of agreeing linear utilities}the union of all sets of utilities
where each set induces $ according to the Pareto condition.

SS Ž .Assume $ satisfies our axioms and let ZZ be the nonempty convex set
of bounded utilities that agree with $ for simple acts. That is, ZZ SS is the set
of all bounded utilities with the property that, for simple acts H and H ,1 2
H $ H only if for each utility Z in ZZ SS, the expected Z-utility of H is1 2 2

Ž .greater than that of H . Let VVVVV be the nonempty convex set of utilities1
Ž .created for $ by our method of induction in Theorem 3. Theorem 5 asserts

SS Žf / VVVVV s ZZ . Last, when the conditions of Corollary 3.1 apply, then Corollary
.3.2 VVVVV is the nonempty set of all utilities that agree with $.

REMARK 2. If the Archimedean axiom is ignored and only simple lotteries
Žare considered, the induction for extending $ to a weak order in fact, to a

.total order ) over H is elementary and applies without a cardinalityR
restriction on the reward set R and without need of the special acts W and B.

Ž .See the Appendix to Schervish and Kadane 1990 . There, we show the
Ž .following: Let k be the cardinality of R. Using Hausner’s 1954 result, the

Ž .order ) s$ is a lexicographic expected utility.k

3.2. The central theorem.

THEOREM 3. Let $ be a nontrivial partial order over H satisfying HLR
Axioms 1]3. Then:

Ž .i For simple lotteries in H , $ can be extended to a weak orderR
) s))))) satisfying HL Axioms 2 and 3. That is, ) is uniquely representedv

Ž .by a bounded real-valued utility V over R which agrees with $ for simple
Ž . Ž . w xacts. In symbols, ; simple H , H g H , if H $ H , then E H -1 2 R 1 2 V 1

w x Ž . w x w xE H , and if H f H , then E H s E H .V 2 1 2 V 1 V 2
Ž . Ž . Ž . w xii V almost agrees with $. ; H , H g H , if H $ H , then E H1 2 R 1 2 V 1

w xF E H .V 2

It is instructive to illustrate how ) may fail to agree with $ for somev

nonsimple lotteries in H . The example motivates a condition on $ whichR
proves sufficient for $ to extend $.v

� 4EXAMPLE 3.1. Let WWWWW s W : j s 1, . . . be a countable set of utilities onj
� 4 Ž .R s r : i s 1, . . . with the two properties that W r s 0.25 if m / 2 j,i j m

Ž . Ž . Ž .while W r s 0.5. According to Theorem 4 below , under the weak Paretoj 2 j
rule, WWWWW induces a partial order $ which satisfies our three horse lotteryWWWWW

� Ž .axioms. Define the constant, nonsimple acts H and H by H s P r sa b a i
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m Ž . 4 � Ž . m1r2 if i s 2m y 1, P r s 0 otherwise and H s P r s 1r2 if i s 2m,i b i
Ž . 4 Ž .P r s 0 otherwise . Then, evidently H $ H . However, at the kth stagei a WWWWW b

$ in the extension of $ , we may arrange our choices of utilities fork WWWWW
Ž . Ž .rewards so that V r s 0.25 k s 1, . . . . However, then ) does not extendk v

$ as H f H .WWWWW a v b

DEFINITION 28. Given two subsets of $-preferences QQQQQ and RRRRR, say that QQQQQ
Ž . Žis a basis for RRRRR if every preference, H - H g RRRRR, is a consequence under1 2

.HL Axioms 1]3 of preferences in QQQQQ.

COROLLARY 3.1. If there exists a countable basis BBBBB for $, then there
Ž .exists a bounded real-valued utility V and corresponding weak order )

Žthat agrees with $ on all of H . Thus, a sufficient condition for theR
.existence of an agreeing ) is that $ is a separable partial order.

Next, we show that our axioms are not overly restrictive for representing a
Ž .partial order by a convex set of agreeing utilities. We investigate relation-

Žships between a partial order $ formed by the Pareto rule with a set ZZ ofZZ
.utilities and the set VVVVV of utilities created by induction on $ . Let ZZ be aZZ

set of bounded utilities on R, standardized so that for Z g ZZ and H g H ,R
Ž . Ž . Ž .0 s Z W - Z H - Z B s 1. Define the relation $ on H by the ParetoZZ R

condition:

Ž . Ž . Ž .DEFINITION 29. H $ H iff ; Z g ZZ, Z H - Z H .1 ZZ 2 1 2

THEOREM 4. $ satisfies HL Axioms 1]3.ZZ

Next, let VVVVV be the set of utilities that can be generated from the partial
order $ according to our induction. Let ZZ SS be the set of all bounded
utilities Z that agree with $ on simple lotteries.

THEOREM 5. f / VVVVV s ZZ SS.

Last, assume $ satisfies our axioms, let ZZ be the set of all utilities that
Ž .agree with $ and let VVVVV be the set of utilities created by our induction in

Theorem 3. We state three immediate corollaries of Theorem 5:

COROLLARY 3.2. When $ satisfies the separability condition of Corollary
3.1, then f / VVVVV s ZZ.

COROLLARY 3.3. The set VVVVV does not depend upon the ordering of HHHHH.

COROLLARY 3.4. The set VVVVV is convex.
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4. A representation of $ in terms of probabilities and state-
dependent utilities.

4.1. The underdetermination of personal probability by HL Axioms 1]3.
Ž .Let VVVVV be the set of utilities V, each of which by Theorem 5 corresponds to a

limit stage ) in our inductive extensions of the partial order $. AccordingV
to Theorem 5, VVVVV is the set of all and only utilities that agree with $ on
simple acts. According to Corollary 3.2, when $ is separable, VVVVV is the set of
utilities that agree with $. We examine decompositions of V g VVVVV as a

Ž .subjective expected state-dependent utility.
Ž .Let ) be a weak order over the discrete horse lotteries H . Let p ? be aR

Ž . Ž .personal probability defined on states in p , with P n s 0 for the set of
Ž . Ž .)-null states n. Finally, let U ? be a possibly state-dependent utility onj

the discrete v.N-M lotteries L , defined for the )-nonnull states s . That is,R j
Žfor each )-nonnull state, s f n, U is a v.N-M utility. For completeness, wej j

.may take U to be a constant function when s g n.j j

ŽDEFINITION 30. Say that ) represented as a subjective expected state-
. Ž � 4.dependent utility by the pair p, U : j s 1, . . . , n , wheneverj

4.1 H ) H iff p s U L F p s U L .Ž . Ž . Ž .Ž . Ž .Ý Ý1 2 j j 1 j j j 2 j
j j

Ž .For convenience, abbreviate the probabilityr state-dependent utility pairs as
Ž .p, U .j

wŽ . xWe rely on a result due to Fishburn 1979 , Theorem 13.1 to show that
each ) , V g VVVVV , bears the subjective expected utility property for a largeV

Ž . Ž .class of p, U pairs. In fact, for each such ) , the p, U pairs range overj V j
all mutually absolutely continuous probabilities defined on the ) -nonnullV
states. Specifically:

Ž .LEMMA 4.1. Let ) be a nontrivial weak order on H satisfying HLR
Ž . Ž .Axioms 2 and 3. For each probability p ? with support the nonempty set of

Ž . Ž .)-nonnull states, there is a possibly state-dependent utility U ? on discretej
Ž . Ž .lotteries for which ) has property 4.1 under p, U .j

Putting Theorem 5 and Lemma 4.1 together, we have the following corol-
lary:

�Ž Ž . Ž ..4COROLLARY 4.1. There exists a set of pairs p ? , U ? , with p a personalj
probability defined on the set of ) -nonnull states in p and U a state -V j

Ž . Ž .dependent utility over the discrete lotteries, where ; H g H , V H sR
Ž . Ž .Ý p s = U L .j j j j

wBeing linear utilities, the U have the expected utility property for lotter-j
Ž Ž . . Ž . Ž .ies. That is, U xL q 1 y x L s xU L q 1 y x U L . Moreover, for eachj 1 2 j 1 j 2

�V g VVVVV , the set of personal probabilities p: ' U with ) represented byj V
Ž .x xp,U is closed under the relation of mutual absolute continuity.j
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4.2. State-independent utilities and a counterexample. Anscombe and Au-
mann’s theory of horse lotteries introduces a fourth axiom which suffices for a

Ž .unique expected utility representation of a weak order ) by a pair p, U ,
with p a personal probability over states and U a state-independent utility
over rewards.

Recall Definition 5, when U is state-independent, a lottery L has the same
Ž . w Ž .utility independent of the nonnull state s . Hence as in Savage’s 1954j

x Ž .theory , U assigns a constant utility across nonnull states to each ‘‘constant’’
Ž .act. In Anscombe and Aumann’s theory, then 4.1 is strengthened to read:

4.2 H ) H iff p s U L F p s U LŽ . Ž . Ž .Ž . Ž .Ý Ý1 2 j 1 j j 2 j
j j

Ž .and each ) is so represented by a unique p, U pair.
The existence of a state-independent utility for ) is assured through a

Ž .contrast between unconditional preferences over constant horse lotteries
and preferences over s -called-off horse lotteries: pairs of acts that differ onlyj

Ž .in one state. Specifically, let H i s 1, 2 be two constant horse lotteries thatL i
Ž .award, respectively, the v.N-M lottery L in all states. Let H i s 1, 2 be twoi i

Ž . w Ž . Ž . xs -called-off horse lotteries with H s s L and H s s H s for s / s .j i j i 1 2 j
Ž .The Anscombe]Aumann AA axiom for state-independent utility reads:

AA AXIOM 4. Provided s f n, for each such quadruple of acts, H ) Hj L L1 2

iff H ) H .1 2

ŽRecall, their Axiom 1 stipulates that preferences are weakly ordered, );
hence, in their theory there is no difference between ‘‘potentially null’’ and

.‘‘essentially null’’ states.
ŽThis axiom requires that )-preferences over ‘‘constant’’ acts such as the

. Ž .H are reproduced by called-off choices the H given each nonnull s . TheL i ji
Žunconditional preference for v.N-M lotteries is their conditional that is,

. Žcalled-off preference, given a nonnull state. We discuss conditional partially
.ordered preferences in Section 5.

It is significant to understand that AA Axiom 4, though sufficient to create
state-independent utilities when preference satisfies the usual ordering, inde-
pendence and Archimedean conditions, does not preclude alternative ex-
pected utility representations by state-dependent utilities. Lemma 4.1 contin-
ues to apply, even in the presence of the extra axiom for state-independent
utilities. Weak orderings that satisfy the independence, Archimedean and
state-independent utility axioms admit a continuum of different probabil-

Ž .ityrutility representations, each in accord with 4.1 .
What the Anscombe]Aumann fourth axiom achieves, however, is to guar-

antee that precisely one probabilityrutility pair, among the set of all pairs
�Ž .4p, U indicated by Lemma 4.1, satisfies the more restrictive condition,j
Ž .4.2 . In Anscombe and Aumann’s theory, as in Savage’s theory, this probabil-

Ž .ityrutility pair p, U is given priority over the others. That is, these theories
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Ž .select the one and only one expected state-independent utility representa-
Ž .tion of preference, in accordance with 4.2 and, thereby, fix a personal

probability uniquely from )-preferences.
We are not satisfied with a conventional resolution of the representation

problem indicated by Lemma 4.1. If state-dependent utilities are plausible
candidates for an agent’s values, and we think sometimes they are, then the
measurement question remains open despite the fourth axiom. What justifi-
cation is there for a convention which gives priority to state-independent

w Ž .xvalues? In two essays Schervish, Seidenfeld and Kadane 1990, 1991 , we
examine the case of weakly ordered preferences without the extra axiom for
‘‘state-independent’’ utility. Here, instead, we adopt the strategy of imposing
a modified Axiom 4 and asking which probabilityrstate-independent utility
pairs agree with the partial order $. Unlike the Anscombe]Aumann or

ŽSavage theories, ours does not assert that these pairs of probabilityr state-
.independent utility functions identify the agent’s degrees of beliefs and

values.
We adapt Anscombe and Aumann’s final axiom to our construction by

restricting it to states which are not potentially null. This produces the
following axiom:

HL AXIOM 4. If s is not $-potentially null, then for each quadruple ofk
Ž .acts H , H i s 1, 2 as described above, H $ H iff H $ H .L i L L 1 2i 1 2

Suppose, $ is a preference on horse lotteries subject to HL Axioms 1]4.
Surprisingly, there may not exist a probability and state-independent utility

w Ž .xagreeing with $ according to 4.2 , even for simple acts. Moreover, the
problem has nothing to do with existence of potentially null states. That is,

Ž .even if no state is potentially null, the fourth axiom HL Axiom 4 is
insufficient for the existence of a probabilityrstate-independent utility pair
agreeing with $.

� 4EXAMPLE 4.1. Let R s r#, r, r* be three rewards and consider the set
� 4H of horse lotteries defined on the binary partition s , s . Next, considerR 1 2

Ž i i. Ž . iŽ . iŽ .two probabilityrutility pairs p , U i s 1, 2 , where U r# s 0, U r* s 1,
1Ž . 2Ž . 1Ž . 2Ž .U r s 0.1 and U r s 0.4; also, p s s 0.1 and p s s 0.3. Define1 1

iŽ . iŽ . iŽ . iŽ . iŽ . iŽ .H $ H iff p s U L q p s U L - p s U L q1 2 1 1, 1 2 1, 2 1 2, 1
iŽ . iŽ . Ž .p s U L i s 1, 2 . Then, by Theorem 4, $ satisfies HL Axioms 1]3,2 2, 2

and we claim it satisfies HL Axiom 4 as well. Moreover neither state is
potentially null under $.

The proof that $ satisfies HL Axiom 4 is straightforward. We observe the
Ž .following expected utility bounds on $-preferences for the constant horse
Ž . Ž . Ž . Ž .lottery r. ; 0.1 ) « ) 0 , 0.9 q « r# q 0.1 y « r* $ r $ 0.6 y « r# q

Ž . i0.4 q « r*. However, the utilities U are state-independent and neither state
i Ž . Žis null for either p i s 1, 2 . That is, using conditional preference see

Ž . Ž . Ž . ŽDefinition 34, ; 0.1 ) « ) 0 0.9 q « r# q 0.1 y « r* $s , r $s 0.6 yj j
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. Ž . Ž .« r# q 0.4 q « r* j s 1, 2 . The utility bounds for r reproduce in both
families of s -called-off acts. Hence, $ satisfies HL Axiom 4.j

Ž i i.According to Theorem 1, the two pairs p , U are the sole state-indepen-
w Ž .xdent expected utilities agreeing with $ according to 4.2 . Next, we assert

that $ may be extended to a strict partial order $0, also satisfying HL
Axioms 2]4, but where $0 narrows the expected utility bounds for r, as
follows: 0.9r# q 0.1r* $0 r $0 0.6r# q 0.4r*.

We outline a general result for extending $ by forcing a new strict
preference H $9H , when H ; H . This contrasts with the extension cre-1 2 1 2
ated through Definition 20, which, instead, forces a new indifference relation.

Ž . Ž .Suppose H and H are elements of H that satisfy 1 H ; H and 21 2 R 1 2
� 4 Ž . Ž .there do not exist two sequences H « H i s 1, 2 , where ; n s 1, . . . ,i, n i

H $ H . Create an extension $9 of $ as follows:2, n 1, n

Ž . Ž .DEFINITION $9 . ; H , H g H , H $9H if and only if either:a b R a b

Ž . Ž .i H $ H so $9 extends $a b
or

Ž . � 4 � 4 � 4 � 4ii ' H « H and ' H « H and ' x with lim x / 1,a, n a b, n b n nª` n

x H q 1 y x H $ x H q 1 y x H .Ž . Ž .n a , n n 2 n b , n n 1

CLAIM. $9 satisfies HL Axioms 1]3, provided $ does. Also, H $9H .1 2

We omit the proof which follows along similar lines for the demonstration
of Lemma 3.3. Regarding HL Axiom 4, it suffices that $9 is formed by

Žextending $ using a target set endpoint, for example, let H s v#B q 1 y1
. Ž . w xv# W, where TTTTT H s v#, v* and this interval has interior, that is, v# - v*.2

Then $9 satisfies HL Axiom 4 too.

Last, for Example 4.1, apply the claim, twice over, first to force 0.9r# q
0.1r* $9 r, then to force r $0 0.6r# q 0.4r*.

Consider the convex sets VVVVV and VVVVV 0 of agreeing utilities for $ and $0
Ž .provided by Corollary 3.2. These utilities agree since R is finite. Because

$0 extends $ , then VVVVV 0 ; VVVVV . A fortiori, each agreeing expected state-
independent utility model for $0 also is one for $ . However, by Theorem 1,
there does not exist an agreeing expected state-independent utility model for

Ž .V 0 g VVVVV 0, since VVVVV 0 excludes all that is, both expected state-independent
utility models for $. Nonetheless, $0 satisfies HL Axioms 1]4. This ends
our discussion of Example 4.1.

Ž .4.3. Representation of $ in terms of nearly state-independent utilities.
The four axioms HL Axioms 1]4 are insufficient for the existence of an
agreeing state-independent utility. However, with the addition of a fifth
axiom to regulate state-dependence for potentially null states, the resulting
theory is sufficient for an agreeing ‘‘almost’’ state-independent utility. First,
we make precise the notion of an ‘‘almost’’ state-independent utility.
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�Ž .4Consider a set of probabilityrstate-dependent utility pairs p, U , eachj
Ž .pair agreeing with the partial order $ for simple acts, according to 4.1 .

DEFINITION 31. Say that $ admits almost state-independent utilities for
� 4 Ž .a set of n-rewards r , . . . , r if, for each « ) 0, there exists a pair p, U that1 n j

Ž .agrees with $ on simple acts and almost agrees, otherwise , where for a set
a � 4 Ž a.of states S s s , . . . , s , p S G 1 y « ,j1 jk

< <max U r y U r F « .Ž . Ž .j i j9 i
as , s gSj j9

1FiFn

Say $ admits almost state-independent utilities if it does so for each set of
n-rewards, n s 1, . . . .

Ž .Obviously, if p, U agrees with $ and U is state-independent, then $
admits almost state-independent utilities.

There are two problems created by state-dependent utilities. First, given
the partial order $, we would like to indicate probability bounds for an

Ž .event E by $-preferences between a constant act of the form H s s xB qx
Ž . Ž . Ž .1 y x W and the act H s s B if s g E, and H s s W if s f E. That is,E E

Ž . �in general, we want the upper probability bound p* E to be the l.u.b. x:
4 Ž . Ž .H $ H or 1, if H ; B , and we want the lower bound, p# E , to equalE x E
� 4 Ž .the g.l.b. x: H $ H or 0, if H ; W . However, if such preferences are tox E E

indicate probability bounds, then we require that the rewards B and W carry
state-independent utilities 1 and 0, respectively. Thus the first problem.

Second, if a state s is potentially null under $, then there are noj
$-preferences among pairs of acts called-off in case s does not obtain. Letj
Hs be the family of s -called-off acts that yield outcome W for all s f s .j j j

Ž .When s is a potentially null state, ; H , H g Hs , H ; H . Suppose )j 1 2 j 1 2 V
Ž . Ž . �Ž .4V g VVVVV extends $ on simple acts and let p, U be the set of probabil-j

Ž .ityr possibly state-dependent utilities which represent ) according toV
Ž .4.1 . Then, if state s is potentially null under $, unfortunately, HL Axiomsj

Ž1]4 impose too few restrictions on U the state-dependent utility, given statej
. Ž . Ž . Ž .s even when p s ) 0. In particular, it may be that V r ) V r , yet forj j 1 2

Ž . Ž .all the U , U r F U r .j 1 1 1 2
To resolve both these problems, we impose a fifth axiom}a requirement of

‘‘stochastic dominance’’ among lotteries. For each state s and each v.N-Mj
� a a Ž . Ž ym . Ž ym .lottery L , define the set of acts H : H s s 1 y 2 W q 2 L , ifa j, m j, m a

a Ž . 4 Ž . Ž .s f s ; H s s L for state s m s 1, . . . . Observe that, ; jj j, m j a j
� a 4 Ž .lim H s H g Hs . Moreover, H s s L . Then, we require themª` j, m j, a j j, a j a

following axiom:

Ž . Ž .HL AXIOM 5. For each two ‘‘constant’’ acts H s s L and H s s L ,La a Lb b

a b; j, m H $ H iff H $ H j s 1, . . . , n; m s 1, . . . .Ž . Ž .La Lb j , m j , m
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Ž .Thus, exactly when L is $-preferred to L as constant acts , HL Axiomb a

Ž a b .5 imposes a $-preference on sequences of pairs of lotteries, H , Hj, m j, m
Ž .which converge to the s -called-off pair H ; H . Thus, we obtain thej j, a j, b

Ž . Ž .constraint Definition 21 of the Appendix ‘‘! H $ H .’’j, b j, a

LEMMA 4.2. Suppose $ satisfies HL Axioms 1]5. Then, for each V g VVVVV
Ž . Ž . Ž V V .of Theorem 3.1 we may select exactly one pair p , U from the set ofj

�Ž .4pairs p, U provided by Corollary 4.1}where each pair represents ) inj V
Ž .accord with 4.1 }so that acts W and B have constant value and bound the

state-dependent utilities of other rewards. In symbols,

; s ; L , L g L , H $ HŽ . Ž .j i k R-�W , B4 L Li k

iff 0 s U V W F U V L F U V L F U V B s 1,Ž . Ž . Ž . Ž .j j i j k j

Ž .with at least one outside inequality strict for each s such that p s ) 0, andj j
all inequalities strict for each s that is not $-potentially null.j

Ž V V .DEFINITION 32. We call p , U the standard representation of V.j

Ž .Thus, HL Axiom 5 via HL Axiom 3 constrains state-dependent utilities of
the rewards W and B in potentially null states, as desired. In the course of

Ž .the proof of Theorem 6 below , we explain how HL Axiom 5 also regulates
the $ -potentially null, state-dependent utilities of all v.N-M lotteries.

Of course, HL Axioms 1]5 are insufficient for guaranteeing existence of a
state-independent utility agreeing with $. Counterexample 4.1 applies, that

Ž .is, $9 satisfies all five axioms since no states are $9-potentially null .
However, as we show next, these axioms suffice for an almost state indepen-
dent utility.

THEOREM 6. Assume that $ satisfies HL Axioms 1]5.

Ž .i Then $ admits almost state-independent utilities.
Ž . Ž .ii If $ has a countable basis BBBBB, each p, U pair in Definition 31j

agrees with $.

There is a sufficient condition for the existence of a state-independent
� 4 Žutility over the finite set W, B, r , . . . , r , . . . , r , using closure at one end-1 i n

. Ž .point, at least of the target sets TTTTT r defined in Definition 19.i i

Ž . Ž .LEMMA 4.3. If the target sets TTTTT r i s 1, . . . , n are not open intervals,i i
Žthere exists a subset VVVVV 9 ; VVVVV of expected utilities for $ agreeing on simple

.acts , where each V 9 g VVVVV 9 is standardly represented by the set of pairs
�Ž X .4 Ž . XŽ . Žp9, U according to 4.1 and where U r is state-independent i sj j i

.1, . . . , n .
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Note: VVVVV 9 may fail to be convex. Also, results similar to Lemma 4.3, using
Ž .different assumptions, appear in Rios Insua 1992 . Related ideas appear in

Ž .Nau 1992 .

5. Conditional preference and conditional probabilities. Let e be
Ž .an event. Recall, we equate the set state s with its elements. Let H andj 1

H be a pair of e-called-off acts. Suppose $ satisfies HL Axioms 1 and 2.2

LEMMA 5.1. Let H X and H X be another pair of e-called-off acts which agree1 2
Ž . Ž . w XŽ . X Ž .xwith H and H respectively on e, that is, ; s f e , H s s H s and ;1 2 1 2

Ž . w Ž . XŽ . Ž . X Ž .x Ž . X Xs g e , H s s H s and H s s H s : i H $ H iff H $ H and1 1 2 2 1 2 1 2
Ž . X Xii H f H iff H f H .1 2 1 2

Ž .Therefore, a $-preference or f-indifference among two e-called-off acts
Ždoes not depend upon how they are called-off, that is, the preference or

.indifference does not depend upon how the acts agree with each other when
wŽ . xe fails. This replicates the core of Savage’s 1954 , page 23 ‘‘sure thing’’

postulate, P2, as that applies to our concept of a partially ordered preference.
Ž .Consider a maximal subset of H , denoted by H , where every twoR e

elements of H form an e-called-off pair. Obviously, each such family H ofe e
e-called-off acts is closed under convex combinations.

DEFINITION 33. Define $ s$rH , the restriction of $ to the family ofe e
e-called-off acts in H . We call $ the conditional $-preference relation,e e

Žgiven e. The preceding lemma insures this relation is well defined, that is, it
.depends on e but not on how acts are called-off.

Note: The event ec is essentially null with respect to the conditional
preference $ .e

DEFINITION 34. Also, for each pair of horse lotteries H and H , say that1 2
H is $-preferred to H given e, provided that, for some pair H X and H X

2 1 1 2
Ž .and by Lemma 5.1, provided for all pairs of e-called-off acts agreeing
Ž . X Xrespectively with H and H on e, H $ H .1 2 1 e 2

Ž .In light of Lemma 5.1 i and because H is a subset of H , the followinge R
result is immediate.

Ž . Ž .THEOREM 7. If $ over H satisfies a subset of HL Axioms 1]5, thenR
Ž .$ over H also satisfies the same horse lottery axioms, at least.e e

Theorem 7 prompts an interesting question: What is the relation between
Ž . � Ž < . 4i the set of conditional probabilityrutility pairs p e , U , given e, thatjg e

Ž .arise from the representation of $ over the family of acts H and ii the setR
� 4of probabilityrutility pairs p , U that represent the conditional prefer-e e, jg e

ence $ over the restricted family of acts H ?e e
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The following discussion of conditional indifference tells some of the
answer.

DEFINITION 35. Let f be the conditional f-indifference relation, givene
e, defined by restricting f to acts in the family H . Then, say that horsee
lotteries H and H are f-indifferent, given e, provided that for some pair1 2

X X Ž .H and H and by Lemma 5.1, provided for all such pairs of e-called-off acts1 2
Ž . X Xagreeing respectively with H and H on e, H f H .1 2 1 e 2

It is important, however, to see that f is not always the same as thee
Ž .f-indifference relation defined by Definition 8 induced by $ over actse

solely in H .e

DEFINITION 36. Denote by f the f-indifference relation over ele-H e

ments of H , induced by $ .e e

Of course f -indifference entails f -indifference, but not conversely. He H 1e

and H may be two e-called-off acts from a family H which satisfies2 e
H f H , but where, nevertheless, H ¥ H , that is, H ¥ H . We illus-1 H 2 1 2 1 e 2e

trate this phenomenon using a potentially null state which is not essentially
null.

� 4EXAMPLE 5.1. Consider a binary partition S s s , s and horse lotteries1 2
� 4defined over a binary reward set R s W, B . Suppose $ is created by the

Pareto principle applied to expected utility inequalities from the following set
Ž . �Ž . Ž .of probabilityr state-independent utility pairs: S s p, U : 1 G p s G 0.5;1

Ž . Ž .4U B ) U W . Then, s is potentially null: acts are ;-incomparable when-2
w Ž .ever they belong to a common H family. With p s s 1, all elements ofS 12xH have equal expected utility. Hence, $ is vacuous. So, based on $S S S2 2 2

Ž .restricted to a family H , all pairs of e-called-off acts are f -indifferent.S H2 S2

Ž . Ž . Ž .However, the pair of s -called-off acts H , H , defined by H s s H s s2 1 2 1 1 2 1
Ž . Ž .W, H s s W and H s s B, though ; -incomparable are not f-1 2 2 2

indifferent: H ; H and H ¥ H . This is shown as follows. Consider the act1 2 1 2
Ž . Ž .H defined by H s s B and H s s W. Observe that 0.5H q 0.5H ;3 3 1 3 2 1 3

0.7W q 0.3B, whereas 0.7W q 0.3B $ 0.5W q 0.5B s 0.5H q 0.5H . This2 3
shows that H ¥ H .1 2

Returning to the question, above, we state our central result about condi-
tional probabilities and conditional preferences.

Ž . Ž .THEOREM 8. i If p, U belongs to the set of probabilityrutility pairsj
Ž Ž < . .representing $, then the pair p e , U belongs to the set that representjg e

the conditional preference $ .e
Ž . Ž .ii Suppose that the pair p , U belongs to the set representing thee e, jg e

conditional preference $ with respect to the family H . Then for some paire e
Ž . Ž < .p, U in the set that represents $, p e s p and U s U , providedj e jg e e, jg e

Ž . Žtwo conditions obtain: 1 The event e is not potentially null with respect
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. Ž . Ž . Ž .to $ and 2 the expected utility V with arguments from H , corre-e e
Ž .sponding to the pair p , U , does not use $-precluded target endpoints,e e, jg e

Ž .as regulated by Definition 21 of the Appendix .

Next, we offer an example of Theorem 8, relating Bayes’ updating to
conditional preferences.

� 4EXAMPLE 5.2. Consider a partition into three states s , s , s and acts1 2 3
involving the three rewards, W, r and B. Let r denote the constant act, with

Ž .outcome r in each state. For j s 1, 2 and 3, define the three acts H s s B,j j
Ž . Ž . Ž . Ž .H s s W j / k and also the three acts H s s r and H s s Wj k j, r j j, r k

Ž .j / k . Apart from the strict preferences that follow because W and B are,
respectively, the ‘‘worst’’ and ‘‘best’’ acts, suppose also the agent reports these
preferences:

0.5W q 0.5H $ H $ H $ H $ H $ r $ 0.5H q 0.5r.3, r 1 3, r 2 3 3

We investigate the standardized, state-independent utility representations
Ž . Ž . Ž .for these preferences. That is, with U W s 0, U B s 1, let u s U r ,

independent of the state s . If we denote by p the probability of state s , thenj j j
the preferences above are modeled by each probabilityrutility pair
Ž .p , p , p ; u satisfying 0 - 0.5p u - p - p u - p - u - 0.5p q 0.5.1 2 3 3 1 3 2 3

Ž .For each 0 - u - 1, it is possible to determine the set PPPPP u of all
Ž . Ž .p , p , p that satisfy these inequalities. For example, the set PPPPP 0.5 is1 2 3

Ž . � 4 Ž .shown in Figure 2. The union of all sets PPPPP u = u such that PPPPP u / B is
the set of all probabilityrutility pairs that agree with the strict preferences
above. From this set, one can determine other preferences not listed above
which must also hold if the axioms do. For example, it is required, though not

wobvious from the reported preferences, that 0.4B q 0.6W $ r. By contrast, it
Ž . Ž . xis obvious from the preferences above that 1r3 B q 2r3 W $ r.

� 4If we were to learn that, say, the event E s s , s occurred, we can1 2
determine which preferences are implied in the conditional problem. The set

Ž .of all pairs q , u , where q is a conditional probability of s given E, is1 1 1
shown in Figure 3. Observe that, as provided by Theorem 8, the set of
conditional probabilities from Figure 2 is exactly the set represented by the

Ž .vertical line at u s 0.5 in Figure 3. However, the set shown in Figure 3
Ž . Ž .is not convex since it contains the points 0.415, 0.293 and 0.455, 0.379 ,

Ž . Ž .but does not contain the point 0.435, 0.336 s 0.5 0.415, 0.293 q
Ž .0.5 0.455, 0.379 .

6. Concluding remarks. There is a burgeoning literature dealing with
applications of sets of probabilities. Separate from work on robust Bayesian
statistical analysis, they occur also in the following settings: as a rival
account to strict Bayesian theory for representing uncertainty, such as in

Ž . Ž .Levi’s 1974, 1980 theory for Ellsberg’s 1961 ‘‘paradox’’; relating to indeter-
Ž .minate degrees of belief, as in Smith’s 1961 theory of ‘‘medial odds’’ devel-

Ž . Ž . Ž .oped by Williams 1976 , Giron and Rios 1980 , Walley 1991 and Nau
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Ž .FIG. 2. The set P 0.5 in Example 5.2.

Ž . w1993 ; and as a method for capturing multiple ‘‘expert’’ opinions Kadane and
Ž . Ž .xSedransk 1980 ; Kadane 1986 . In addition, sets of probabilities arise from

incomplete elicitations, where some but not all of an agent’s opinions are
formalized by inequalities in probabilities and the question is what decisions
are fixed by these partially reported degrees of belief; see Moskowitz, Wong

Ž . Ž .and Chu 1988 and White 1986 . Dual to sets of probabilities, the articles by
Ž . Ž . Ž .Aumann 1962 and Kannai 1963 explore the existence of ‘‘linear’’ utilities

for von Neumann]Morgenstern lotteries when probabilities are completely
specified.

However, these efforts rely on convexity of the spaces of probabilities and
utilities to arrive at their conclusions. From our point of view, this mathemat-
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FIG. 3. The set of conditional probabilities and utilities.

ical convenience is justified under an assumption, for example, that at least
one of the agent’s probability and utility is fully determinate. For instance,
in light of Corollary 3.4, convexity is appropriate for Bayesian robustness
when a loss function is specified but probability is left indeterminate. Like-
wise, our theory endorses the use of a convex set of utilities given a

Ž .determinate probability, as in Aumann’s 1962 result concerning existence
of a utility agreeing with a partially ordered preference over simple
von Neumann]Morgenstern lotteries. However, as shown by Theorem 1,
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Ž .partially ordered preferences that obey a weak Pareto condition may not
Ž .admit a convex or even connected set of agreeing probabilityrutility pairs.

One way to require convexity of the agreeing sets, then, is to restrict the
w Ž .xscope of the Pareto condition see Levi 1990 , but that is a move we are not

willing to make.
Corollary 3.4 prompts a serious question, we think, about the extent to

which our proof technique for extending a partially ordered preference is
useful for the representation theorems of this essay. To wit, since the set VVVVV
of agreeing ‘‘linear’’ utilities in Theorem 5 is convex, why bother with the
elaborate inductive argument only to arrive at what ‘‘separating hyperplanes’’
yields directly? The answer has two parts.

As a first reason, Theorem 5 applies without additional topological as-
sumptions about the relation $. Specifically, to the best of our knowledge, all
the existing theorems that appeal to ‘‘separating hyperplanes’’ in order to
provide necessary and sufficient conditions for representing a partially or-
dered strict preference relation $ by a convex set of ‘‘linear’’ utilities or by a
convex set of probabilities, make assumptions regarding the boundaries of
$. Otherwise, for results that are based on a partially ordered weak prefer-
ence relation ), whether preference at the boundary of VVVVV is strict or not, is
not determined by such an approach.

wŽ .For an illustration of the former approach, Walley 1991 , Section 3.7.8,
xcondition R8 requires that strict preference over gambles be ‘‘open’’ so that

so-called strong separation leads to a representation in terms of sets of
probabilities ‘‘closed’’ with respect to infimums. By avoiding ‘‘separating
hyperplanes,’’ we are able to sidestep this artifice. Surfaces of the set VVVVV need
not have a simple topological character.

Ž .For an illustration of the latter approach, Giron and Rios 1980 use a
Ž .reflexive, partial quasi-Bayesian preference relation, denoted in their paper

by ), which they represent with a closed, convex set of probabilities. They
w Ž . xnote Giron and Rios 1980 , footnote 3, page 20 that their method generates

the same ‘‘quasi-Bayesian preorder’’ whether the so-called uncertainty set of
Ž . Ž .probabilities which they denote by K* or its closure K* is used. To explain

our assertion about the loss of information at the boundary of VVVVV , consider
the following example involving preferences over acts using only two prizes,
W and B.

Ž . Ž .EXAMPLE 6.1. Define act H as H s s B for s g E, and H s s WE E E
otherwise.

Ž .Case 1. The agent reports the strict preferences xB q 1 y x W $ H forE
Ž .0 - x F 0.6 and noncomparability xB q 1 y x W ; H for 0.6 - x F 1.E

Ž .Case 2. The agent reports the strict preferences xB q 1 y x W $ H forE
Ž .0 - x - 0.6 and noncomparability xB q 1 y x W ; H for 0.6 F x F 1.E

Ž .The closed target set of utilities for H is the same in both cases:E
Ž . w xTTTTT H s 0.6, 1 . However, in the first case the lower bound is not a ‘‘candi-E

Ž .date utility’’ Definition 24 , whereas in the second case it is. Therefore, by
our construction, the representation for the agent’s strict preferences in Case
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� Ž . 41 is the set PPPPP s P: 0.6 - P E F 1 and in the second case it is the closed
� Ž . 4set PPPPP s P: 0.6 F P E F 1 .

Ž .By contrast, the Giron and Rios 1980 theory uses only a weak preference
relation, ). In both Cases 1 and 2 their theory entails

xB q 1 y x W ) H for 0 - x F 0.6 andŽ . E

xB q 1 y x W ; H for 0.6 - x F 1.Ž . E

wThe weak preferences of Case 2 result from applying Giron and Rios’ Axiom
Ž .A5 continuity . In particular, that axiom yields the conclusion 0.6B q

Ž . Ž . x0.4W ) H from the premise xB q 1 y x W ) H 0 - x - 0.6 . In theirE E
notation, the weak-preference relation does not distinguish between these

� Ž . 4. � Ž . 4two cases: where K* s p: 0.6 - p E F 1 and K* s p: 0.6 F p E F 1 ,
though our strict-preference does.

As a second reason for bypassing proof techniques using ‘‘separating
hyperplanes,’’ though the set VVVVV is convex, not so for the set of ‘‘linear’’

Ž .utilities that admit a decomposition as subjective almost state-independent
utilities. We do not see how to show the existence of the set of agreeing

Ž .probabilityr almost state-independent utility pairs, corresponding to Theo-
rem 6, without exploring details about the surface of VVVVV . In light of Theorem
5, we have no right to assume those surfaces are closed. By contrast, when VVVVV
has sufficiently many closed faces, Lemma 4.3 gives a representation of $ in
terms of sets of probabilityrstate-independent utility pairs. Thus, we feel
justified in our choice of an ‘‘inductive’’ proof technique by the increased
content to the theorems reached.

APPENDIX

Proofs of selected results.

A. Results from Section 2. Corollaries 2.1, 2.2 and 2.3 have elementary
proofs.

PROOF OF COROLLARY 2.4. From left to right, argue indirectly and apply
Corollary 2.3 for a contradiction. In the other direction, assume that xH1
Ž . Ž .q 1 y x H f xH q 1 y x H for some 1 G x ) 0 and some lottery H. Also,2

Ž . Ž .assume yH q 1 y y H $ % H , with 1 G y ) 0. Then by HL Axiom 2,1 3 4
Ž . Ž Ž . . Ž . Ž . Ž .; 1 G z ) 0 , z yH q 1 y y H q 1 y z H $ % zH q 1 y z H. Let1 3 4
Ž . Žz sxr x q y y xy ) 0 and then 1 ) z unless x s y s 1, in which case we are
. Ž .done . Last, define the term w s yr x q y y xy and we know that 0 - w - 1.

Ž Ž . . Ž . Ž . Ž .Thus, we have w xH q 1 y x H q 1 y w H $ % zH q 1 y z H. Since1 3 4
Ž Ž . . Ž Ž . .xH q 1 y x H f xH q 1 y x H , by Corollary 2.3 also we have1 2
Ž Ž . . Ž . Ž . Ž .w xH q 1 y x H q 1 y w H $ % zH q 1 y z H. Again by HL Axiom2 3 4

Ž .2, we may cancel the common factor 1 y z H from both sides, to yield
Ž . Ž .yH q 1 y y H $ % H . By Corollary 2.3, H f H . I2 3 4 1 2
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PROOF OF COROLLARY 2.5. Assume the premises and, by Corollary 2.3,
Ž . Žshow using HL Axiom 3 that ; 0 - x F 1, H , H whenever xM q 1 ya b

. Ž . Ž . Ž .x H $ % H , then xH q 1 y x H $ % H . Ia b a b

Lemma 2.1 has a straightforward proof.

PROOF OF LEMMA 2.2. Without loss of generality, as L is discrete, write L
� Ž . Ž . Ž . 4as P r : P r G P r for i F j . Letn i j

n

x s P rŽ .Ýn i
is1

�Ž . Ž . 4 � 4and define the simple lotteries L s 1rx P r : i s 1, . . . , n . Then Hn n i Ln
Ž .« H . If for each r g supp L , r $ r, then by HL Axioms 1 and 2, H $ rL n n Ln

Ž .or, if r $ r , then r $ H . Thus, we have the desired conclusion: notn Ln
Ž . w Ž .xr $ H or, alternatively, not H $ r . For if not, by HL Axiom 3 andL L

Ž .transitivity of $, H $ H . IL L

PROOF OF COROLLARY 2.6. On the contrary, if a utility V for acts is
unbounded, then there are acts with infinite utility.

Ž . Ž yi .Just consider the discrete horse lottery H , where H s s Ý 2 P for` ` j i i, j
Ž . i Ž .a sequence of acts H such that V H G 2 i s 1, . . . . Then, by the expectedi i

Ž .utility property, V H s `. The existence of such acts leads to a contradic-`

tion with the first two axioms, just as in the St. Petersburg paradox. Assume
for convenience that H $ H . By axiom HL Axiom 2, 0.5H q 0.5H $ 0.5H1 2 1 ` 2

Ž . Ž . Ž .q 0.5H . However, V 0.5H q 0.5H s V 0.5H q 0.5H s V H s `,` 1 ` 2 ` `

which, if V agrees with $, entails the contrary result that 0.5H q 0.5H ;1 `

0.5H q 0.5H . I2 `

PROOF OF LEMMA 2.3. The proof is indirect. Most of the work is done by
HL Axiom 3. We present the argument for the case in which $ fails to be

Ž . Ž .bounded above, using Axiom 3 b . By similar reasoning using Axiom 3 a
instead, the result obtains when $ fails to be bounded below.

� 4Let H : n s 1, . . . be an increasing chain and suppose it is not boundedn
� Ž Ž . .4above, that is, lim sup x: H $ xH q 1 y x H s 1. Choose a subse-nª` 2 1 n

� 4quence, also denoted by H , so that x G 1 y 1rn and so that H $ x H qn n 2 n 1
Ž . � Ž . 41 y x H . However, x H q 1 y x H « H . Trivially, the constant se-n n n 1 n n 1

� 4 Ž .quence H « H . Also, H $ H by assumption. Then by HL Axiom 3 b ,2 2 1 2
H $ H , contradicting HL Axiom 1. I1 1

PROOF OF COROLLARY 2.7. If not, then there is an unbounded increasing
Ž .or decreasing $ -chain of preferences amongst the set of rewards R. ByW
Lemma 2.3, $ does not satisfy both Axioms 1 and 3. IW

PROOF OF COROLLARY 2.8. Let H and H be a pair of acts which are1 2
Ž . Ž . Ž .‘‘called-off’’ in case n does not obtain, that is, ; s f n , H s s H s .1 2
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Ž .Properties of ‘‘called-off’’ acts are examined in Section 5. Define k pairs of
Ž .acts ‘‘called-off’’ in case s obtains, H and H i s 1, . . . , k as follows: Let lj 1 2i i i

Ž . w Ž . Ž . Ž . Ž .x Žbe a lottery. ; s g s , H s s H s and H s s H s ; ; s g n & s fj 1 1 2 2i i i
. w Ž . Ž . x Ž . w Ž . Ž . Ž . Ž .xs , H s s H s s L ; ; s f n , H s s H s s H s s H s . Byj 1 2 1 2 1 2i i i i i

assumption, each s g n is essentially null. Therefore, by iteration of Corol-ji
Ž . X X X k Ž .lary 2.4 and transitivity of f H f H , where H s Ý 1rk H and1 2 1 is1 1 iX k Ž . X Ž . Ž .H s Ý 1rk H . However, H s 1rk H q k y 1rk H and, likewise,2 is1 2 1 1iX Ž . Ž . Ž . w Ž . xH s 1rk H q k y 1rk H for act H defined by ; s g n , H s s L and2 2

Ž . w Ž . Ž . Ž .x; s f n H s s H s s H s . Then, by Corollary 2.4, the desired result1 2
obtains, H f H . I1 2

B. Proof of Theorem 2. The extension from $ to $9 is given in steps, by
adding the two new rewards one at a time. First, extend $ to a partial order
$* on H , where W is left ;*-incomparable with elements of H . TheR j �W 4 R
definition of $* is introduced by a lemma that shows the extension is
minimal.

LEMMA 2.4. Suppose H , H , H X and H X g H and are related as follows:1 2 1 2 R
Ž . Ž . Ž . Ž . XŽ .H s s x L q 1 y x L and H s s x L q 1 y x L , while H s s1 j j j j 1, j 2 j j j j 2, j 1 j

X Ž . X Ž . X Ž . Xx L q 1 y x L and H s s x L q 1 y x L . Then H $ H iff H $j j j 1, j 2 j j j j 2, j 1 2 1
H X .2

PROOF. The lemma is immediate by HL Axiom 2 and the identity 0.5H q1
0.5H X s 0.5H q 0.5H X . I2 2 1

Ž . Ž .Now, let H g H be written H s s x W q 1 y x L , wherei R j �W 4 i j i, j i, j i, j
L g H is well defined if and only if x - 1. Choose a reward r g R andi, j R i, j
let H a g H be the act that results by substituting r for W in H . Thus,i R i

aŽ . Ž .H s s x r q 1 y x L . Lemma 2.4 shows this choice is arbitrary and,i j i, j i, j i, j
if $* is to extend $ , it must satisfy the following:

Ž .DEFINITION 15 $* . Given H , H g H , as expressed above, define1 2 R j �W 4
Ž .the preference $* from $ by H $* H iff x s x for all s f n and1 2 1, j 2, j j

H a $ H a.1 2

LEMMA 2.5. The order $* is identical with $ on H and satisfies HLR
Axioms 1]3.

PROOF. If H , H g H , then x s x s 0, H s H a, H s H a and1 2 R 1, j 2, j 1 1 2 2
thus H $* H iff H $ H . Next, we show that $* satisfies the axioms.1 2 1 2
Consider all H g H .i R j �W 4

Ž .HL Axiom 1 irreflexivity . If, on the contrary, for some H , H $* H , then1 1 1
H a $ H a, contradicting the irreflexivity of $ .1 1

Transitivity holds because if H $* H and H $* H , then the corre-1 2 2 3
a Ž . Ž . Ž .sponding three H acts i s 1, 2, 3 can be written x r q 1 y x L . Sincei j j i, j

$ is transitive, H a $ H a; thus, H $* H .1 3 1 3
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Ž . Ž .HL Axiom 2 independence . ; 0 - y F 1 , ; H g H H $* H iffR j �W 4 1 2
a a Ž . Ž .x s x and H $ H iff yx q 1 y y x s yx q 1 y y x and1, j 2, j 1 2 1, j 3, j 2, j 3, j

a Ž . a a Ž . a Ž .yH q 1 y y H $ yH q 1 y y H iff yH q 1 y y H $* yH q1 3 2 3 1 3 2
Ž .1 y y H .3

� 4HL Axiom 3. Let H $* H be an infinite sequence of $*-preferences1n 2 n
� 4 � 4 a awhere H « H , H « H and assume H $* H . Thus H $ H ,1n 1 2 n 2 2 3 1n 2 n
� a 4 a � a 4 a a awhere H « H and H « H . Since H $*H , then H $ H . By1n 1 2 n 2 2 3 2 3

applying HL Axiom 3 to these $-preferences, we obtain H a $ H a. We1 3
derive x s x from the equalities x n s x n and x s x . Therefore,1, j 3, j 1, j 2, j 2, j 3, j

Ž .H $* H . The argument for HL Axiom 3 b is similar. I1 3

� 4Lemma 2.5 shows, also, that if $9 is defined on R j W , extends $ and
satisfies the axioms, then it extends $*. That is, $* is a minimal extension

� 4of $ to the domain R j W . Next, we extend $* to a preference $ inW
Ž . Žwhich W serves as a least preferred worst act. The reader is alerted to the

fact that, though the partial order $ makes W a least preferred act withW
respect to elements of H , it does not guarantee that W is, state by state, aR
least favorable reward. This feature is addressed in Section 4.1, where we

.consider state-dependent utilities for partial orders.

Ž . Ž . Ž .DEFINITION 16 $ . ; H , H g H , H $ H iff either aW 1 2 R j �W 4 1 W 2
Ž . � 4 � 4 � 4 ŽH $*H or b ' H g H , ' H « H , ' H « H and ' q :1 2 n R 1n 1 2 n 2 n

. � 4 Ž0.5 F q - 1 with lim q s q, q - 1, such that ; n, q H q 1 yn nª` n n 1n
. Ž . Ž .q H $* or f* q H q 1 y q W.n n n 2 n n

Ž .LEMMA 2.6. 1 The partial order $ agrees with $ on H .W R
Ž . Ž .2 W bounds $* from below; that is, ; H g H , W $ H.R W
Ž .3 $ satisfies HL Axioms 1]3.W

Ž .PROOF. 1 Let H and H belong to H . If H $ H , then by Lemma1 2 R 1 2
Ž .2.4, H $* H , and by clause a in Definition 16, H $ H . For the1 2 1 W 2

Ž . Ž .converse, if H $ H , then it is not by clause b , since ; H g H and for1 W 2 n R
Ž . Ž .all sufficiently large n, as 1 ) q G 0.5, q H q 1 y q H ;* and ¥*n 1n n n

Ž . Ž .q H q 1 y q W. Hence, it must be that clause a obtains. So, H $* Hn 2 n n 1 2
and H $ H .1 2

Ž .2 For each H g H , recall that 0.5H q 0.5W f* 0.5W q 0.5H. Then, inR
Ž . � 4 � 4Definition 16 b , set H s H s W, H s H s H, H s H and q s 0.5.1 1n 2 2 n n n

Thus, W $ H.W
Ž .3 We verify the axioms individually:

Ž .HL Axiom 1 irreflexivity . On the contrary, suppose that H $ H . There1 W 1
Ž .are two cases to consider. If this $ -relation results by Definition 16 a , thenW

H $* H , contradicting Lemma 2.4. If we hypothesize that H $ H1 1 1 W 1
Ž .results by Definitions 16 b , then we derive a contradiction as follows. Let

X Ž . X Ž .H s q H q 1 y q H and H s q H q 1 y q W. A necessary con-1n n 1n n n 2 n n 2 n n
X Ž . X

X Xdition for the relation H $* or f* H to obtain is that x s x1n 2 n H H1 n 2 n
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Ž . � 4 � 4except on essentially null states . However, as both H « H and H «1n 1 2 n
H , while lim q s q - 1, this is impossible. That is, lim x X s1 nª` n nª` H1 n

Ž .Xlim q x s 0, while x G 1 y q ; hence, for all sufficiently large n,nª` n H H n1 n 2 n

x X - x X .H H1n 2 n

Ž .HL Axiom 1 transitivity . Suppose both H $ H and H $ H obtain.1 W 2 2 W 3
There are four cases to consider depending upon which clause in Definition
16 is used for each $ -preference. The argument is most complicated whenW

Ž .Definition 16 b is used twice; hence, we give the details for this case only.
Thus, assume there are two sequences of *-relations:

B1 H X $* or f* H X and HY $* or f* H X ,Ž . Ž . Ž .1n 2 n 2 n 3n

where

H X s q H q 1 y q H , H X s q H q 1 y q W,Ž . Ž .1n n 1n n n 2 n n 2 n n

Y X ˆ X X X X XH s q H q 1 y q H , H s q H q 1 y q WŽ . Ž .2 n n 2 n n n 3n n 3n n

ˆ� 4 � 4 � 4 � 4and where H « H , H « H , H « H , H « H and1n 1 2 n 2 2 n 2 3n 3
� 4 � X 4 Ž .lim q s q, lim q s q9, with 0.5 F q, q9 - 1. Then ; 0 - r - 1 ,nª` n nª` n n

X Ž . Y Ž . X Ž . Xr H q 1 y r H $* or f* r H q 1 y r H . This is an $*-n 1n n 2 n n 2 n n 3n
Ž .preference, unless both equations of B1 are f*-indifferences. Choose r son

X ˆŽ . � 4 � 4that r q s 1 y r q . Since H and H both converge to H , by HLn n n n 2 n 2 n 2
X Y ŽAxiom 2, cancel the common acts in H and H also common with acts in2 n 2 n

. Ž .H . Then apply clause Definition 16 b to obtain H $ H .2 1 W 3
Ž .HL Axiom 2 independence . ; H g H , ; 0 - x F 1:R j �W4

Ž . Ž . Ž .Case a . H $* H iff xH q 1 y x H $* xH q 1 y x H iff xH q1 2 1 2 1
Ž . Ž .1 y x H $ xH q 1 y x H.W 2

Ž . Ž . Ž . Ž . Ž .Case b ] i . If q H q 1 y q H $* or f* q H q 1 y q W, thenn 1n n n n 2 n n
w Ž . x Ž . Ž . w Ž . xr q H q 1 y q H q 1 y r H $* or f* r q H q 1 y q W qn n 1n n n n n n 2 n n

Ž . Ž Ž . . Ž .1 y r H. Write r s xr q q 1 y q x . Then xH q 1 y x H $ xH qn n n n 1 W 2
Ž . Ž .1 y x H by Definition 16 b .

Ž . Ž . Ž . Ž . � 4Case b ] ii . Suppose xH q 1 y x H $ xH q 1 y x H. Let H «1 W 2 3n
Ž . � 4 Ž . Ž .xH q 1 y x H and H « xH q 1 y x H. Assume q H q 1 y q H1 4 n 2 n 3n n n

Ž . Ž .$* or f* q H q 1 y q W. Apply HL Axiom 2 to cancel acts in H andn 4 n n 3n
H common with H. Regroup the remainders to yield a $*-relation of the4 n

Ž . X Ž X . Ž . Xdesired form for Definition 16 b : q H q 1 y q H $* or f* q H qn 1n n n n 2 n
Ž X . � 4 � 4 Ž1 y q W, where H « H and H « H . A simple calculation showsn 1n 1 2 n 2

� X 4 .that lim q s q9 G 0.5. Thus H $* H .nª` n 1 2
Ž . w Ž . xNext, we give the details for HL Axiom 3 a Axiom 3 b follows similarly.

Ž . Ž .HL Axiom 3 a Archimedes . Assume H $ M and M $ N, wheren W n W
� 4 � 4H « H and M « M. We are to show that H $ N. Again, there aren n W

Ž .four cases to consider, depending upon how infinitely many of the first and
the second $ -preferences arise through Definition 16. The argument isW

Ž .most complicated in case clause 16 b is used throughout.
� 4 � X 4 � X 4 � Y4 � X4That is, assume ' R , S g H , ' H , ' M , ' M and ' Nn n R n n n nm m m

� X 4 � X 4such that, ; n, as m ª `, H « H and M « M , while as n ª `,n n n nm m
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� Y4 � X4 � 4 � 4M « M and N « N. Also assume ' q , s G 0.5 , so ; n, lim qn n n n mª` nm m
� 4s q - 1 and lim s s s - 1. By Definition 16,n nª` n

q H X q 1 y q R $* or f* q M X q 1 y q W,Ž .Ž . Ž .n n n n n n nm m m m m m m

s MY q 1 y s S $* or f* s N X q 1 y s W.Ž . Ž . Ž .n n n n n n n

B2Ž .

� 4 � 4 Ž Ž ..Since H « H and M « M, ; n, ' m* s m n so that, as n ª `, bothn n
� X 4 � X 4 Ž .H « H and M « M. Moreover, we may choose a subsequence ofn nm* m*

� 4these m* so that lim q s q, 0.5 F q - 1. Thus we havenª` nm*

B3 q H X q 1 y q R $* or f* q M X q 1 y q W.Ž . Ž .Ž . Ž .n n n n n n nm* m* m* m* m* m* m*

Ž . Ž .An application of the first two axioms to B2 and B3 yields

B4 x left side B2 q 1 y x left side B3Ž . Ž . Ž . Ž .n n

$* or f* x right side B2 q 1 y x right side B3 .Ž . Ž . Ž . Ž .n n

Ž . � X 4 � Y4Let x s s r s q q . Then as both M « M and M « M, we mayn n n n n nm* m*

Ž . Y Ž .cancel acts common to M on both sides of B4 to yield z H q 1 y z T $*n n n n
Ž . X Ž . � Y4 Ž Y .or f* z N q 1 y z W, where H « H, N « N, T g H andn n n n n n R

� 4 Ž .lim z s z s sqr s q q y sq . Last, 0.5 F z - 1 because 0.5 F s, q - 1.nª` n
Ž .Therefore, by Definition 16 b , H $ N as required. IW

Finally, Theorem 2 is concluded by repeating this construction in a dual-
ized form: extend the preference $ to $9 by introducing the act B andW
making it most preferred in H . IR j �W4

Ž . Ž .C. Proof of Theorem 3. We show by induction how to extend $ s$0
while preserving Axioms 2 and 3 over simple lotteries until the desired weak
order is achieved. At stage i of the induction, the strategy is to identify a

˜ Ž . Ž .utility v for act H g HHHHH, where v is chosen arbitrarily from a convex set ofi i i
˜ ˜Ž .target utilities for H , TTTTT H . We create the partially ordered preference $i i i i

˜ Ž .so that H f v B q 1 y v W.i i i i
Begin with a function TTTTT which provides a set of target ‘‘utilities’’ for all

elements of H . We use W and B as the 0 and 1 of our utility. AssumeR
� 4 U Ž .H « H and H g H . For i s 1, by Definitions 17 and 18, v H is then n R 1

Ž . Ž .lim inf of the quantities x for which H $ x B q 1 y x W and v # H isn n n n 1
Ž .the lim sup of the quantities x for which x B q 1 y x W $ H . The twon n n n

Ž . Ž .‘‘utility’’ bounds, v# H and v* H , do not depend upon which sequence
� 4 Ž . Ž .H « H is used. We show this for v# H . The argument for v* H is then
obvious dual.

� 4 � X 4 Ž .CLAIM 1. Let H « H and H « H. Then v# H is the same for bothn n
sequences.

Ž . � Ž . 4PROOF. Suppose v# H s lim sup x : x B q 1 y x W $ H . Then wen n n n
Ž . � Ž . X 4show that v# H F lim sup x : x B q 1 y x W $ H . This suffices, sincen n n n

� X 4 X Ž . � Ž . X 4by symmetry with H , when v # H s lim sup x : x B q 1 y x W $ H ,n n n n n
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X Ž . � Ž . 4 Ž . X Ž .then v # H F lim sup x : x B q 1 y x W $ H ; hence, v# H s v # H .n n n n
� 4 � X 4Since both sequences H and H converge to act H, we can write each pairn n

Ž X . Ž Ž . Ž . X .H , H as the pair y K q 1 y y M , y K q 1 y y M , wheren n n n n n n n n n
lim y s 1. Assume all but finitely many y - 1; else we are finished.nª` n n
Acts M and M X belong to H because H and H X do. Of course, neither ofn n R n n

� 4 � X 4 � 4the two sequences of acts M and M need be convergent, but K « H.n n n
Ž . � 4For each n, define the act N s y K q 1 y y W. Clearly, N « H. Itn n n n n

follows from the preference W $ M that N $ H and from the preferencen n n
X X � 4W $ M that N $ H . By hypothesis, there exists a sequence x such thatn n n n
Ž . � 4 Ž .x B q 1 y x W $ H and lim x s v# H . Let a be the maximum ofn n n nª` n n
Ž . Ž . Ž .0 and x q y y 1 . Since x B q 1 y x W $ y K q 1 y y B, then a Bn n n n n n n n

Ž . Ž .q 1 y a W $ y K q 1 y y W s N . Transitivity of $ yields a B qn n n n n n
Ž . X � 4 � 4 Ž .1 y a W $ H . However, as lim y s 1 and lim x s v# H , thenn n nª` n nª` n

� 4 Ž . Ž . � Ž . X 4lim a s v# H . Thus, v# H F lim sup x : x B q 1 y x W $ H .nª` n n n n n
I

Ž . Ž .Observe that if v* H - v# H , then H $ H , by Axiom 3 and the fact1 2 1 2
that W $ B. However, these ‘‘utility’’ bounds are merely sufficient, not neces-
sary, for the $-preference H $ H .1 2

Ž . Ž .PROOF OF LEMMA 3.1. Note that xB q 1 y x W $ yB q 1 y y W when-
ever x - y.

Ž . Ž . Ž .i Suppose, on the contrary, that v* H - v# H . Then by Corollary 2.5
Ž . Ž Ž .. Ž . Žapplied twice over, v* H B q 1 y v* H W f H f v# H B q 1 y

Ž .. Ž . Ž . Ž . Ž Ž .. Ž .v# H W. Since v* H - v# H , also v* H B q 1 y v* H W $ v# H B q
Ž Ž ..1 y v# H W, contradicting the f-relation between them, as just derived.

Ž .ii This is immediate, by similar reasoning. I

Next, we show that $ may be extended to $ , a strict partial orderH
Ž .satisfying HL Axioms 2 and 3, in which H f v B q 1 y v W and whereH H H

Ž .the utility v may be any value in the interior of the closed target set TTTTT H .H
Ž .We resolve when an endpoint of the closed target set may be a utility

afterward.

Ž . w Ž .DEFINITION 20. For H g H , let v g int TTTTT H . When TTTTT H has noR
Ž . Ž . Ž . Žinterior, when v# H s v* H s v, then by Lemma 3.1 ii , H f vB q 1 y

.v W. Thus it is appropriate that Definition 20 creates no extension of $.
xThen act H already has its ‘‘utility’’ fixed by $. Define $ byH

H $ H iff ' 0 - x - 1 ' G , G9 ,Ž . Ž . Ž .1 H 2

xH q 1 y x G $ xH q 1 y x G9,Ž . Ž .1 2

Ž .where G and G9 are symmetric mixtures of H and vB q 1 y v W.

Ž .w Ž . x wSpecifically, ' y with G s yH q 1 y y vB q 1 y v W and G9 s y vB q
Ž . x Ž .1 y v W q 1 y y H.
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LEMMA 3.2. $ extends $.H

PROOF. Assume H $ H . Choose y s 0.5 in Definition 20, so G s G9. By1 2
Ž . Ž . Ž .Axiom 2, xH q 1 y x G $ xH q 1 y x G9, so that H $ H . I1 2 1 H 2

LEMMA 3.3. % satisfies HL Axioms 1]3.H

PROOF. We establish Axioms 1]3 separately.
Ž . Ž . Ž .HL Axiom 1 irreflexivity . Assume not H $ H . Then xH q 1 y x G1 H 1 1

Ž .$ xH q 1 y x G9, which by Axiom 2 yields G $ G9. By Definition 20 and1
Ž .another application of Axiom 2, either H $ vB q 1 y v W or else vB q

Ž . Ž .1 y v W $ H. Either contradicts the relation H ; vB q 1 y v W. That fol-
lows from the assumption v# - v - v*.

Ž . Ž . Ž .HL Axiom 1 transitivity . Assume H $ H and H $ H . Then we1 H 2 2 H 3
have

xH q 1 y x G $ xH q 1 y x G9 andŽ . Ž .1 2

wH q 1 y w J $ wH q 1 y w J9,Ž . Ž .2 3

Ž . Ž .where both pairs G, G9 and J, J9 satisfy Definition 20. These equations
Ž Ž . . Ž .Žmay be combined to create ; z, z xH q 1 y x G q 1 y z wH q1 2

Ž . . Ž Ž . . Ž .Ž Ž . . Ž1 y w J $ z xH q 1 y x G9 q 1 y z wH q 1 y w J9 . Choose zr 12 3
. w Žy z s wrx. By HL Axiom 2, we may cancel the common term zxH s 1 y2

. x Ž . Ž .z wH from both sides and recombine the pairs G, J and G9, J9 to yield2
Ž . Ž .uH q 1 y u K $ uH q 1 y u K 9. Thus, H $ H .1 3 1 H 3

Ž . Ž .HL Axiom 2. Argue that H $ H iff yH q 1 y y G $ yH q 1 y y G91 H 2 1 2
Ž . Ž Ž . . Ž . Ž Ž . .iff ; 0 - z - 1 , z yH q 1 y y G q 1 y z H $ z yH q 1 y y G9 q1 3 2

Ž . Ž . Ž Ž . . Ž . Ž Ž . .1 y z H iff ' w w xH q 1 y x H q 1 y w G $ w xH q 1 y x H3 1 3 2 3
Ž . Ž . Ž . Ž .q 1 y w G9 choose w s zyrx iff xH q 1 y x H $ xH q 1 y x H .1 3 H 2 3

Ž . Ž . Ž .HL Axiom 3 a . Assume ; n M $ N , and N $ O . Then shown H n H
Ž .M $ O .H

Ž . Ž Ž . . Ž Ž . X . Ž . Ž1. Thus a x M q 1 y x G $ x N q 1 y x G and also b yN qn n n n n n n n
Ž . . Ž Ž . .1 y y J $ yO q 1 y y J9 .

Ž X . Ž . ŽAs Definition 20 applies to the pairs G , G , J, J9 , we may cancel byn n
.Axiom 2 common terms to create:

Ž . Ž . Ž .Ž Ž . . Ž .2. Either a u M q 1 y u H $ u N q 1 y u vB q 1 y v W or bn n n n n n
Ž .Ž Ž . . Ž .u M q 1 y u vB q 1 y v W $ u N q 1 y u H.n n n n n n

Ž . Ž . Ž .Ž3. Also, in addition, either a wN q 1 y w H $ wO q 1 y w vB q
Ž . . Ž . Ž .Ž Ž . . Ž .1 y v W or b wN q 1 y w vB q 1 y v W $ wO q 1 y w H, where
u G x and w G y.n n

Ž . Ž .At least one of 2 a or 2 b occurs infinitely often. Without loss of generality,
Ž . Ž . Ž . � 4assume 2 a does. Since v# H - v - v* H , then lim inf u s u ) 0, in thisn

winfinite subsequence. Only here do we use the fact that v is an interior point
Ž . xof TTTTT H . See Lemma 3.5 for additional remarks.
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Thus, we are justified in considering a convergent sequence of the form
Ž .2 a , also indexed by n, with coefficients converging to u ) 0. We argue by

Ž .cases: Assume 3 a obtains. Using Axiom 2, we mix in the act H to both sides
Ž . Ž Ž . . Ž .of 2 a and the act vB q 1 y v W to both sides of 3 a , yielding:

Ž . w Ž . x Ž . w Ž .Ž Ž . .x4 a x u M q 1yu H q 1yx H $ x u N q 1yu vBq 1yv Wn n n n n n
Ž .q 1 y x H.

Ž . w Ž . x Ž .Ž Ž . . w Ž .4 b z wN q 1 y w H q 1 y z vB q 1 y v W $ z wO q 1 y w
Ž Ž . .x Ž .Ž Ž . .= vB q 1 y v W q 1 y z vB q 1 y v W .

Ž . Ž .Choose xu s zw s q / 0, 1 y x s z 1 y w . Note all of the following occur:
Ž . Ž Ž . . Ž .the l.h.s. of 4 a converges to the act qM q 1 y q H ; the r.h.s. of 4 b is the

Ž Ž .Ž Ž . .. Ž .act qO q 1 y q vB q 1 y v W ; the r.h.s. of 4 a converges to the l.h.s.
Ž . Ž . Ž Ž . . Ž Ž .Žof 4 b . Then by HL Axiom 3 a , qM q 1 y q H $ qO q 1 y q vB q

Ž . ..1 y v W , so by Definition 20, M $ O.H
Ž .In case 3 b obtains, instead, we modify this argument by mixing the term

Ž Ž . . Ž . Ž .vB q 1 y v W into 2 a in case u - w or into 3 b in case w - u, so that
Ž . Ž . Ž .as above the r.h.s. of 4 a converges to the l.h.s. of 4 b and so forth.

Ž . Ž .HL Axiom 3 b . This is verified just as HL Axiom 3 a is.
Thus, $ satisfies the axioms. IH

Ž .To complete our discussion of TTTTT H , we explain when $ may be createdH
using an endpoint of the target set. To motivate our analysis, consider when a
partial order $ precludes an extension by a particular new preference or
indifference.

DEFINITION 21. Say that a preference for act H over act H is precludeda b
Ž .by the partial order $, denoted as ! H $ H , if there exist two convergentb a

� 4 � 4 Ž .sequences of acts H « H and H « H , where ; n H $ H .a, n a b, n b a, n b, n
w Ž . xNote: H f H or H $ H implies the condition ! H $ H .a b a b b a

DEFINITION 22. Say that indifference between acts H and H is pre-a b
Ž .cluded by the partial order $ , denoted as ! H f H , if assuming theb a

Ž .relation H f H , the three axioms and the preferences $ all yield aa b
preference precluded by $.

Ž .EXAMPLE 3.2. We illustrate ! H f H . Suppose $ satisfies the axiomsb a
and the following obtain. Let H ; H . However, there exist two convergenta b

� 4 � 4 �sequences of acts M « M and N « N and coefficients x : x ) 0,n n n n
4 Ž . Ž .lim x s 0 , where x M q 1 y x H $ x N q 1 y x H . However,nª` n n n n a n n n b

Ž . Ž .for some y ) 0, yN q 1 y y H $ yM q 1 y y H . Thus,a b
Ž .H f H entails M $ N and N $ M. By Axiom 3, then M $ M, which is aa b n n
$-precluded preference since M f M obtains whenever $ satisfies the
axioms.

w Ž .We sketch a model for these $-preferences. Let H s v#B q 1 y v# Wa
� Ž .and H s H. Suppose VVVVV is a set of utilities V : 1 ) d ) 0; V H s v# q db d d

Ž . Ž . 0.54 Ž . w xand V M y V N s d . Consider $ , when TTTTT H s v#, v* yet H $d d VVVVV a VVVVV
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Ž Ž . .H . Let $ be as $ except that H ; H is forced. V xM q 1 y x v# Fb VVVVV a b d
Ž Ž . . Ž . 0.5V xN q 1 y x H entails that xr 1 y x F d . Since d assumes eachd

Ž .value in 0.1 , x s 0 is a necessary condition for the preferences of Example
x3.2.

Ž . Ž .CLAIM 2. If both ! H $ H and ! H $ H , then H f H .a b b a a b

Ž . Ž .PROOF. When ! H $ H and ! H $ H , then there exist pairs ofa b b a
� 4 � X 4 � 4 � X 4 Ž .convergent acts H , H « H and H , H « H , where ; na, n a, n a b, n b, n b

H $ H and H X $ H X . Then by Corollary 2.5, H f H . Ia, n b, n b, n a, n a b

Example 3.2 illustrates that our axioms are not strong enough to ensure
Ž . Ž .the preference H $ H when, for example ! H $ H and ! H f H . Ita b b a a b
Ž . Ž .so happens that when both the conditions ! H $ H and ! H f Hb a a b

obtain and these two acts do not involve the distinguished rewards W and B,
Žthen each extension $* of $ which fixes ‘‘utilities’’ for H and H anda b

.where $* arises by iteration of Definition 20 has the desired relation H $*a
H . Our specific problem, however, is with the case when one of these twob

Ž . Ž .acts is a utility endpoint of the closed target set TTTTT H , for example, let
Ž .H s v#B q 1 y v# W and H s H, as in the model for the $ -preferencesa b

sketched in Example 3.2. We require an extra consideration, then, to de-
Ž .termine whether, though v#B q 1 y v# W ; H, a combination of $-

preferences arises which prohibits an extension $ of $ that assigns theH
‘‘utility’’ v# for H.

Our solution is to show how to extend the partial order $ to a partial
order $q that includes all the so-called missing preferences H $ H .a b

DEFINITION 23. Define $q from $ by H $q H iff H $ H or, botha b a b
Ž . Ž .! H $ H and ! H f H .b a a b

Ž .The next lemma establishes very weak conditions under which the
$q-closure of a partial order $ satisfies all three axioms. In particular, it is

w Ž .not necessary that $ satisfies HL Axiom 3. The condition ! H $ H isb a
well defined according to Definition 23 even though $ is known only to
satisfy HL Axioms 1 and 2. Specifically, the indifference relation f is well
defined and satisfies all those properties, e.g., Corollary 2.4, which depend on

xHL Axioms 1 and 2 alone.

LEMMA 3.4. The partial order $q satisfies all three axioms provided $
satisfies the first two axioms, HL Axioms 1 and 2, and provided closure of $
under all three axioms does not produce a $-precluded preference.

PROOF. We verify the axioms separately.
Ž .HL Axiom 1 irreflexivity . Since H f H obtains and $ yields no $-

Ž . qprecluded preference under the three axioms , no act H satisfies H $ H.
That is, H f H is not $-precluded.
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Ž . q qHL Axiom 1 transitivity . Assume H $ H and H $ H . Each of thesea b b c
$q-preferences may arise two ways, according to Definition 23. We examine a

Ž . Ž . Ž . Ž .general case: ! H $ H , ! H $ H , ! H f H and ! H f H . Web a c b a b b c
Ž . Ž . Ž . Ž .show that i ! H $ H and ii ! H f H .c a a c

Ž . Ž . Ž .i From the two assumptions ! H $ H and ! H $ H , we concludeb a c b
� 4 � 4 � X 4that there exist convergent sequences H « H , H and H « Ha, n a b, n b, n b

� 4 Ž . Xand H « H , with ; n H $ H and H $ H . Thus, by Axioms 1c, n c a, n b, n b, n c, n
and 2, 0.5H q 0.5H X $ 0.5H q 0.5H . Using HL Axiom 2 to cancela, n b, n b, n c, n
common terms in H and H X , we obtain $-preferences of the formb, n b, n

X X � X 4 � X 4 Ž .H $ H , where H « H and H « H . Thus, ! H $ H .a, n c, n a, n a c, n c c a
Ž .ii Assume H f H . Because H $ H we may construct new conver-a c a, n b, n

� X 4 � Y 4 X Ygent sequences H « H and H « H , where H $ H .c, n c b, n b c, n b, n
This exercise is done as follows. From the indifference H f H concludea c

Ž . Žw x . Ž . Žw x .1rn W q n y 1 rn H $ 1rn B q n y 1 rn H . Then 0.5H qc a a, n
wŽ . Žw x . x wŽ . Žw x . x0.5 1rn W q n y 1 rn H $ 0.5H q 0.5 1rn B q n y 1 rn H . Usec b, n a

Axiom 2 to cancel common terms involving act H .a
We already have assumed H X $ H . Then, since we are entitled to useb, n c, n

HL Axiom 3 in determining the consequences of adopting H f H , bya c
Ž .Corollary 2.5, from H f H we derive H f H . ! H f H means thata c b c b c

adding the f-indifference H f H yields a $-precluded preference. Thus,b c
adding H f H to $ yields the same $-precluded preference. Hence,a c
Ž .! H f H .a c

Ž .HL Axiom 2 independence . This axiom is easy to verify, since $ satisfies
HL Axioms 1 and 2. We illustrate the argument from right to left. Suppose

Ž . q Ž . Ž . Ž .xH q 1 y x H $ xH q 1 y x H. We are to show that i ! H $ Ha b b a
Ž . Ž .and ii ! H f H .a b

Ž . Ž Ž . Ž . .i We know that both ! xH q 1 y x H $ xH q 1 y x H andb a
Ž Ž . Ž . .! xH q 1 y x H f xH q 1 y x H . As in previous cases, we may assumea b

� 4 Ž . . � 4existence of convergent sequences H « xH q 1 y x H and H1, n a 2, n
Ž . .« xH q 1 y x H , where H $ H . Use HL Axiom 2 to cancel commonb 1, n 2, n

Ž .terms involving act H in each pair H and H . The results are $-1, n 2, n
� 4 � 4preferences of the form H $ H , with H « H and H « H .a, n b, n a, n a b, n b

Ž .Thus, ! H $ H .b a
Ž .ii By Corollary 2.4, from the assumption H f H it follows that xH qa b a

Ž . Ž .1 y x H f xH q 1 y x H, which yields a $-precluded preference asb
Ž Ž . Ž . .! xH q 1 y x H f xH q 1 y x H .a b

Ž . q q � 4HL Axiom 3 a . Assume M $ N and N $ O, where M « M andn n n
� 4 Ž . Ž . Ž . Ž .N « N. We need to show that a ! O $ M and b ! M f O .n

Ž . Ž . Ž . Ž . Ž .a Thus ! N $ M , ! M f N , ! O $ N and ! N f O . As inn n n n
previous cases, assume each of these $-precluded preferences arises from
corresponding sequences of $-preferences. That is, for each n there is a pair

� 4 � 4of convergent sequences lim M « M and N « N , where M $jª` n, j n n, j n n, j
� X4 � 4N . Also, there is a pair of convergent sequences N « N and O « O,n, j n n

X � 4 � 4where N $ O . Since M « M and N « N, for each n we may choose an n n n
� 4 � 4value j so that lim M « M and N « N. Of course, M $ N .n nª` n, j n, j n, j n, jn n n n
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Then, 0.5M q 0.5N X $ 0.5N q 0.5O . Use HL Axiom 2 to cancel termsn, j n n, j nn n
Ž .common to act N, yielding $-preferences sufficient for ! O $ M .

Ž . Ž .b If we assume M f O, then because M $ N there are sequencesn, j n, jn n
� X 4 � Y4 X Y XO « O and N « N, with O $ N . Since N $ O , using Axiom 3, byn n n n n n

Ž .Corollary 2.5, then N f O. However, ! N f O . Hence, assuming M f O
Ž . Ž .entails some $-precluded preference. Therefore, ! M f O . HL Axiom 3 b

is demonstrated in the identical fashion. I

In the next definition, based on Lemma 3.4, we indicate whether either
Ž .endpoint of TTTTT H is eligible as a utility for H when extending $ to form

$ .H

Ž .DEFINITION 24. Say that v# H is a candidate utility for H if v#B q
Ž . q Ž . q1 y v# W ; H. Likewise, v* H is a candidate utility for H if H ;

Ž .v *B q 1 y v* W.

We conclude our discussion of the extension $ for the special case whenH
it is generated by a target set endpoint provided, of course, the endpoint is a
candidate utility for H. The idea behind the extension, is that as it stands,
Definition 20 fails with v s v# or v s v* only because the resulting partial

Ž .order is incomplete with respect to Axiom 3. See Lemma 3.5, below. Then, in
Ž .light of Lemma 3.4, the q-closure using Definition 23 corrects the omis-

Ž .sions. See Lemma 3.6.
When extending $ with a candidate utility, v s v# or v s v*, that is,

Ž .using an endpoint of TTTTT H , we define the extension $ in two steps, asH
follows: Analogous with Definition 20, let G and G9 be symmetric mixtures of

Ž .H and vB q 1 y v W.

Ž . Ž .DEFINITION 25. Define H $ H iff ' 0 - x - 1 ' G, G9 , xH q1 a 2 1
Ž . Ž .1 y x G $ xH q 1 y x G9, and let $ result by closing $ using Defini-2 H a

tion 23, that is, $ s$q .H a

LEMMA 3.5. The partial order $ extends $ and satisfies axioms HLa

Axioms 1 and 2.

Ž .PROOF. Since v is a candidate utility, vB q 1 y v W ; H. Then, as
Definition 25 duplicates Definition 20, the proofs from Lemmas 3.2 and 3.3
apply to show that $ extends $ and satisfies the first two axioms. Ia

LEMMA 3.6. The partial order $q extends $ and satisfies all threea

axioms.

PROOF. In light of Lemma 3.5, the result follows by Lemma 3.4 once we
show that $ may be closed under the axioms without generating a $ -a a

precluded preference. Note that $ extends $ by some, but not necessarilya
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Ž .all, preferences entailed by the three axioms from the f-indifference
Ž .H f vB q 1 y v W. Then, since v is a candidate utility, closing $ undera

the three axioms does not lead to a $-precluded preference. We claim, next,
that it does not lead to a $ -precluded preference either. Suppose, on thea

contrary, it does. Suppose, for example, closing $ with the axioms resultsa

Ž .in a relation H $ H , where also ! H $ H . The former means thatb a a b a a
Ž . Žadding H f vB q 1 y v W to the set of $-preferences entails by the

.axioms that H $ H . The latter requires that, for two convergent sequencesb a
� 4 � 4 Ž . Ž .H and H , H $ H . Thus, adding H f vB q 1 y v W to thea, n b, n a, n a b, n

Ž . Ž .set of $-preferences entails by the axioms that H $ H . By HLa, n b, n
Ž .Axiom 3, these lead to a $-precluded preference H $ H . Then v is not ab b

candidate utility for H with respect to $, a contradiction. I

Thus, with Definition 20, we have indicated how to extend $ to $ ,H
Ž .where act H is assigned a utility v from the interior of its target set TTTTT H ,

and with Definition 25, how to extend to $ using a candidate utilityH
endpoint.

We interject two simple, but useful results about f -indifferences. TheH
first confirms that the extension $ preserves f-indifferences. The secondH
shows that the extension $ makes act H f -indifferent with its assignedH H
utility v.

LEMMA 3.7. If M f N, then M f N.H

Ž .PROOF. Suppose M f N and that xM q 1 y x H $ H . We are to3 H 4
Ž . w Ž Ž . .show that xN q 1 y x H $ H . By Definition 23, y xM q 1 y x H q3 H 4 3

Ž . x w Ž . x1 y y G $ yH q 1 y y G9 . After rearranging terms, by Corollary 23,4
w Ž Ž . . Ž . x w Ž . xy xN q 1 y x H q 1 y y G $ yH q 1 y y G9 , so that xN q3 4
Ž .1 y x H $ H . I3 H 4

Ž .LEMMA 3.8. H f vB q 1 y v W.H

PROOF. Since W $ B, we have the following:

1rn W q n y 1 rn 0.5H q 0.5 vB q 1 y v WŽ . Ž . Ž .Ž .
$ 1rn B q n y 1 rn 0.5H q 0.5 vB q 1 y v W .Ž . Ž . Ž .Ž .

Ž .Ž Ž . .This equation may be written as x H q 1 y x vB q 1 y v W $n n n
Ž . � 4 � 4 � 4 Žx M q 1 y x H, where x ª 0.5, H « H and M « vB qn n n n n n

Ž . . X1 y v W . By Definition 20, H $ M . Similarly, it may be written x M qn H n n n
Ž .Ž . X Ž .Ž Ž . . � 4 � X 41 y x H $ x H q 1 y x vB q 1 y v W , where x ª 0.5, H « Hn n n n n n

� X 4 Ž Ž . . X Xand M « vB q 1 y v W . By Definition 20, M $ H . Then, by Corol-n n H n
Ž .lary 2.5, H f vB q 1 y v W. IH

Ž .We iterate Definition 20 or Definition 25 in a denumerable sequence of
extensions of $ .
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˜k ˜k� Ž .DEFINITION 26. Define the set HHHHH s H : H s s r if j / k, andi i j 1
˜kŽ . 4H s s r . Let r denote the constant act that yields reward r in eachi k i 1 1

state, so that r g HHHHH.1

LEMMA 3.9. HHHHH is countable and finite if R is finite.

The proof is obvious.
w HHHHH remains countable even when p is a denumerable partition. Then it

follows from HL Axiom 3 that personal probabilities over p are s-additive.
� 4 � 4That is, HL Axiom 3 entails ‘‘continuity’’: lim p F E s p lim F E .nª` n nª` n

Ž .In the light of Fishburn’s 1979 , page 139, result Theorem 10.5, we conjec-
ture that our central theorems, e.g., Theorems 3 and 6, carry over to count-
ably infinite partitions. However, this is not evident, e.g., our proof of Claim 1
Ž .for Theorem 3 does not apply when p is infinite. Our use of finite partitions

xavoids mandating s-additivity of personal probability.

Hereafter, we enumerate HHHHH with a single subscript i. At stage i of the
˜induction, $ is obtained by choosing a target utility v for act H g HHHHH,i i i

˜ ˜Ž . Ž . Ž .denoted V H s v . Here v g TTTTT H and TTTTT ? identifies sets of target utili-i i i i i i
ties, based on $ . By Lemma 3.7, extensions preserve utilities alreadyiy1
assigned, so that all utilities fixed by stage i are well defined over stages
j G i. Next, we show that each simple act has its ‘‘utility’’ V determined by a
finite subset of HHHHH.

Ž .LEMMA 3.10. If H g H is a simple act, then there is a finite stage $R m
Ž .such that TTTTT H is a unit set, that is, by stage $ , H is assigned a precisem m

Ž .utility V H .

PROOF. First we verify that V has the expected utility property over
˜ ˜elements of HHHHH. Consider H , H g HHHHH. Without loss of generality, let b sa b

˜ ˜� 4max a, b . Both H and H have their respective utilities by stage $ . Thata b b
˜ ˜Ž . Ž .is, H f v B q 1 y v W and H f v B q 1 y v W. By Corollary 2.4,a b a a b b b b

˜ ˜Ž . Ž Ž . . Ž .Ž Ž . .xH q 1 y x H f x v B q 1 y v W q 1 y x v B q 1 y v W .a b b a a b b
˜ ˜ ˜ ˜Ž Ž . . Ž . Ž . Ž .Hence, V xH q 1 y x H s xV H q 1 y x V H .a b a b

Ž . k j Ž . XŽ . Ž .Next, write H s s Ý P r . Define the act H s s H s if s s s ;j is1 j i j j
Ž . Xotherwise H9 s s r . Since H is simple, each H is a finite combination1 j

˜ X k j ˜ j ˜ jŽ . Ž .of H g HHHHH. Specifically, H s Ý P H , where H s s r if s s s andi j is1 j i i i j
˜ j XŽ . Ž . Ž . Ž .H s s r otherwise. Observe that 1rn H q n y 1rn r s S 1rn H .i 1 1 j

Ž . Ž . Ž X.Thus the utility V H is determined once V r and the n values V H are1 j
fixed, all of which occurs after finitely many elements of HHHHH are assigned their
utilities. I

Ž .We create a weak order ) from the partial orders $ i s 1, . . . usingv i
the fact that each H g H is a limit point of simple horse lotteries. ForR

� 4H g H consider a sequence H « H, where H is a simple act. LetR n n
Ž . Ž .V H s lim V H . Then:nª` n
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Ž .LEMMA 3.11. V H is well defined.

� 4 Ž .PROOF. We show that if H « H, then lim V H exists and isn nª` n
� 4 � X 4unique. Assume H « H and H « H, where all these acts belong to H .n n R

Without loss of generality, since the simple acts form a dense subset of HR
under the topology of pointwise convergence, suppose that each of H , H X isn n

Ž . X Ž . Xsimple. Then write H as y K q 1 y y M and H as y K q 1 y y M ,n n n n n n n n n n
where lim y s 1 and each of K , M and M X is a simple act innª` n n n n

Ž . Ž X . Ž .w Ž . Ž X .xH . By Lemma 3.10, V H y V H s 1 y y V M y V M . SinceR n n n n n
w x Ž . Ž X .lim y s 1 and V is in the unit interval 0, 1 , lim V H y V H s 0.nª` n nª` n n

I

The next lemma establishes that V has the expected utility property for all
H g H .R

Ž Ž . . Ž .LEMMA 3.12. If H , H g H , then V xH q 1 y x H s xV H qa b R a b a
Ž . Ž .1 y x V H .b

� 4 � 4PROOF. Consider two sequences H « H and H « H , wherea, n a b, n a
each of H and H is simple and belongs to H . Then, for each n, the acta, n b, n R
Ž . Ž .x H q 1 y x H is simple and belongs to H . It is evident thata, n b, n R

� Ž . Ž . 4 Ž . Žx H q 1 y x H « xH q 1 y x H . By Lemma 3.10, V xH qa, n b, n a b a, n
Ž . . Ž . Ž . Ž . Ž1 y x H s xV H q 1 y x V H . Then by Lemma 3.11, V xH qb, n a, n b, n a
Ž . . Ž . Ž . Ž .1 y x H s xV H q 1 y x V H . Ib a b

Last, define the weak order ) for H g H using the utilities fixed by V:v R

Ž . Ž . Ž .DEFINITION 27. H ) H iff V H F V H .1 v 2 1 2

We complete the proof of Theorem 3:
Ž .i That ) is a weak order over elements of H follows simply by notingv R

that V is real-valued. By Lemma 3.12, it satisfies the independence axiom.
The Archimedean axiom also is a simple consequence of Lemmas 3.10 and

� 4 � 4 Ž . Ž .3.11, that is, if M « M, N « N and M $ N , then V M F V N .n n n v n
Next, let H and H be simple, that is, each with finite support. Supposea b
Ž . Ž . Ž .H $ H . According to Lemma 3.10, the utilities V H and V H area b a b
determined by some stage k of the induction, where k is the maximum index

Ž .of the finitely many elements of HHHHH in the combined supports of H and H .a b
Ž .Lemma 3.2 establishes that $ extends $. Then L $ L and thusk 1 k 2

Ž . Ž .V H - V H . Therefore, ) extends $ for simple lotteries.a b v

Ž . Ž .ii We argue that V almost agrees with $, that is, if H $ H , then1 2
Ž .H ) H . Here is a simple lemma about the changing endpoints of target1 V 2
sets which completes the theorem.

Ž . Ž .LEMMA 3.13. For every act H g H and stage j s 2, . . . , i v # H FR jy1
Ž . U Ž . U Ž . Ž . Ž . U Ž . Ž .v # H F v H F v H and ii lim v # H s v H s V H .j j jy1 jª` j j



PARTIALLY ORDERED PREFERENCES 2211

Ž .PROOF. i Since $ extends $ , any sequence of j y 1 stage prefer-j jy1

Ž .ences H $ x B q 1 y x W also obtain at stage j. Thus, by Definitionsn jy1 n n
Ž . Ž . Ž . U Ž . U Ž .20 and 25 and Lemma 3.2 i , v # H F v # H F v H F v H .jy1 j j jy1

˜ ˜ U ˜ ˜Ž . Ž . Ž . Ž . Ž .ii For each act H g HHHHH, ; j ) i , v # H s v H s V H s v . Hence,i j i j i i i
Ž .ii is obvious for all simple lotteries. Assume H is not simple. It is easy

� 4to find a convergent sequence of simple acts in H , K « H, whereR n
Ž . U Ž . Ž . Ž .v # K s v K s V K and H s y K q 1 y y M . The sequence ofn n n n n n n n n

acts M , though elements of H , need not converge. Since H is not simple,n R
Ž . Ž . Ž .y - 1. Then, y K q 1 y y W $ y K q 1 y y M $ y K q 1 y y B.n n n n n n n n n n n

Ž . Ž . U Ž . Ž .As each $ extends $, we have y V K - v # H F v H - y V K qn n n n n n n
Ž . Ž . Ž .1 y y . However, lim y s 1 and, by Lemma 3.8, lim V K s V H .n nª` n nª` n

Ž . U Ž . Ž .Thus, lim v # H s lim v H s V H . Ijª` j jª` j

Ž .Finally, if H $ H , since for each n, $ extends $, we have that1 2 n
Ž . U Ž . Ž . Ž .v # H F v H . Then by Lemma 3.13, V H F V H . In 1 n 2 1 2

D. Other results from Section 3.

PROOF OF COROLLARY 3.1. The extensions $ created in Theorem 3 relyi
˜Ž .on the existence at stage i y 1 of a nonempty target set TTTTT H , only for thei i

˜ Ž .acts H g HHHHH. However, TTTTT ? is defined on all of H , including the nonsimplei i R
acts. Hence, we can amend the sequence of extensions of $ to fix utilities for
any countable set of acts, in addition to fixing utilities for each element of HHHHH.
Just modify the argument of Theorem 3 to assign utilities to the countable set
HHHHH j BBBBB. I

In connection with Example 3.1, for instance, we can introduce acts Ha
˜ ˜ ˜� 4and H into a well ordering of HHHHH, for example, H , H , H , H , H , . . . , sob 1 a 2 b 3

Ž . Ž .that by stage 4 of the sequence of extensions, k s V H - V H s k ,1 a b 2
Ž . Ž .which precludes the undesired limit stage in which V r s 0.25 i s 1, . . . .i

Theorem 4 is easily demonstrated.

SS Ž .PROOF OF THEOREM 5. That f / VVVVV : ZZ is part i of Theorem 4. For the
SS ˜converse, argue indirectly. If Z g ZZ rVVVVV then let H be the first element of HHHHHk

˜ ˜Ž . Ž . Ž .that is, let k be the least integer for which Z H f TTTTT H , even thoughk k k
˜ ˜ ˜ ˜Ž . Ž .v s Z H , . . . , v s Z H for acts H , . . . , H . Then Z agrees with1 1 ky1 ky1 1 ky1

˜$ , since $ is the result of extending $ by the conditions H fky1 ky1 i
Ž . Ž .v B q 1 y v W i s 1, . . . , k y 1 . That is, expand each $ -preferencei i ky1

into a $-preference. The former follows from the latter by adding a set of
˜� Ž . Ž .4k y 1 assumptions H f v B q 1 y v W: i s 1, . . . , k y 1 to $. But thesei i i

k y 1 conditions are satisfied under Z, and Z agrees with $ on simple acts.
˜ ˜ ˜Ž . Ž . Ž .Hence, it must be that either Z H s v s v # H and TTTTT H is open atk k k k k k

˜ U ˜ ˜Ž . Ž . Ž .the lower end or else Z H s v s v H and TTTTT H is open at the upperk k k k k k
˜Ž .end. However, if the target set is open and if an endpoint v of TTTTT H is not ak k k
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˜ ˜ Ž .candidate utility for H , then adding H f v B q 1 y v W to $k k k k ky1
p roduces a $ -precluded preference. Since Z agrees with $ , Z doesky1 ky1

˜not agree with any $ -precluded preference. Thus, Z cannot assign act Hky1 k
˜Ž .the utility v , which contradicts the assumption Z H s v . Ik k k

E. Results from Section 4. The proof of Lemma 4.1 is immediate after
Ž .Theorem 13.1 of Fishburn 1979 .

PROOF OF LEMMA 4.2. Recall the strict preferences W $ H $ B, whenever
Ž . Ž .W, B f supp H . Hence, for each V, we may standardize the expected

Ž .utility of act W as 0 and the expected utility of act B as 1, where all other
Ž . Ž .acts not involving W and B have expected cardinal utilities in the open

Ž . � 4interval 0, 1 . Next, define a set of simple, called-off acts H g Hs , whichi, j j
yield the lottery outcome L g L in state s and outcome W in all otheri R-�W , B4 j
states. In keeping with this notation, let H s W and let H be the HsW , j B, j j

� i 4act with outcome B in state s . Recall, for each j, lim H « H andj mª` m , j i, j
W Ž . iH s H s W. Then, whenever H - H by HL Axiom 5 , W $ H $m , j W , j L L m , ji kk B Ž .H $ H . Hence, by the Archimedean HL Axiom 3 as in Lemma 2.3 , wem , j m , j

Ž .have the restriction ! H $ H $ H $ W . Moreover, this constraintB, j k , j i, j
obtains also for each extension of $, including all the limit extensions )V
since these $-preferences involve simple acts. Then, for each V, W )V
H ) H ) H . Trivially, either W f H or else W $ H . Thek , j V i, j V B, j V B, j V B, j
upshot is that, for each V, one of two circumstances obtains:

Ž .Case 1. If W f H , H f H and s is null under ) , so p s s 0.V B, j a , j V b , j j V j
Case 2. If W $ H , then s is V-nonnull and for each representation ofV B, j j

w Ž .xV as an expected, state-dependent utility in accord with condition 4.1 ,
Ž . Ž . Ž . Ž .U W F U L F U L F U B , with at least one of the outside inequali-j j i j k j

ties strict. However, since the U are defined only up to a similarity transfor-j
Ž . Ž .mation, without loss of generality choose U W s 0 and U B s 1 andj j

rescale p accordingly. I

Ž .PROOF OF LEMMA 4.3. Without loss of generality Corollary 3.3 , let the
˜� 4denumerable sequence HHHHH s H of simple horse lotteries, used to create thei

� 4set VVVVV of extensions for $, take H , . . . , H as its initial segment: ther r1 n
Ž .constant acts that award r in each state. Suppose the interval TTTTT r is noti 1 1

Ž . w U .open, for example, TTTTT r s v #, v . Then 0 - v #. Extend $ according to1 1 1 1 1
Ž . Ž .the condition H f v #B q 1 y v # W. That is by Definition 2.3 , H $r 1 1 1 1 11

Ž . Ž . X XH iff xH q 1 y x G $ xH q 1 y x G , where G and G are constant2 1 1 2 1 1 1
Ž .acts, symmetric mixtures of outcomes r and v #B q 1 y v # W.1 1 1

ŽWe show that each V g VVVVV which extends $ where V is standardly1
�Ž .4 Ž ..represented by the set of pairs p, U according to condition 4.1 carriesj

Ž .only state-independent utilities for r . That is, for each such U , U r s v #1 j j 1 1
if s is p-nonnull. To verify this claim, define act H as follows:j j

w xH s s v #y« Bq 1y v #y« W and H s sW for sf s .Ž . Ž . Ž .Ž .y« , j j 1 1 y« , j j

If state s is not $-potentially null then, since v # is the lower bound ofj 1
Ž . Ž . wTTTTT r , by HL Axiom 4, we have ; v # ) « ) 0 , H $ H . Recall,1 1 1 y« , j 1, j
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Ž . Ž . xH s s r and H s s W when s f s . By the Archimedean condition1, j j 1 1, j j
HL Axiom 3, letting « ª 0, we find that these $-preferences create the

Ž .constraint ! H $ H , which applies also to each extension of $.1, j «s0, j
Thus, if s is not $-potentially null, each V which extends $ has v # as aj 1 1

Ž .lower bound on the state dependent utility U r . Likewise, by appeal to HLj 1
Ž .Axiom 5 in case s is $-potentially null, it follows that ! H $ H andj 1, j «s0, j

this applies also to all extensions of $. So, again, v # is a lower bound on1
Ž .the state dependent utility U r for cases where s is $-potentially null butj 1 j

Ž . ŽV-nonnull and ) extends $ on simple acts . Note: Here we use axiomV
HL Axiom 5 to regulate the state-dependent utility of lotteries in $-

. Ž .potentially null states. Because V r s v # for each ) that extends $1 1 V 1
on simple acts, v # also is an upper bound on all such V-nonnull state-1

Ž . Ž .dependent utilities U r . This is so because v # s V r is the p-expectationj 1 1 1
Ž .of U r . Hence, each ) that so extends $ assigns to reward r thej 1 V 1 1

state-independent utility v #.1
Ž . Ž .Next, assume that TTTTT r is not an open interval, for example, let TTTTT r s2 2 2 2

Ž U x U Ž U . Ž w U x.v #, v , and we know v - 1. Thus, H $ v q « B q 1 y v q « W.2 2 2 r 1 2 22

Extend $ to $ by introducing the f -condition H f vU B q1 2 2 r 2 22
Ž U . Ž .1 y v W. That is, define $ by H $ H iff xH q 1 y x G $ xH q2 2 1 2 2 1 2 1 2
Ž . X X1 y x G , where G and G are constant horse lotteries, which are symmet-2 2 2

U Ž U .ric mixtures of acts H and v B q 1 y v W.r 2 22

To see that all ) -extensions of $ impose a state-independent utility onV 2
Ž . U Ur , that is, to show U r s v , it suffices to demonstrate that v B q2 j 2 2 2

Ž U .1 y v W serves as an upper utility bound for r over all $ , s -called-off2 2 1 j
preferences, called-off if s fails. In other words, we are to establish that, forj

Ž .Ueach state s , the constraint ! H $ H applies to $ and itsj v q« , j 1 2, j 12
Ž . Uextensions. Then, by the reasoning we used above, since V r s v for all2 2

Ž . U) which extend $ on simple acts , v also is a lower utility bound forV 2 2
Ž . Ž .each state-dependent utility U r , and thus U r is state-independent.j 2 j 2

Ž . UThat is, since V r s v is the p-expectation of quantities, none of which is2 2
U Ž . U Ž .greater than v , then U r s v if P s ) 0.2 j 2 2 j

To establish that vU is such a state-independent upper bound, expand2
Ž U .each of the relevant $ -preferences, to wit, ; 1 y v ) « ) 0 expand1 2

Ž U . Ž w U x.H $ v q « B q 1 y v q « W, into its respective $ -preference:r 1 2 22
Ž X .' x ) 0, ' G , G ,« 1« 1«

XU Uw xx H q 1 y x G $ x v q « B q 1 y v q « W q 1 y x G .Ž . Ž . Ž .Ž .« r « 1« « 2 2 « 1«2

Ž X .Each pair G , G is a symmetric mixture of acts H and v #B q1« 1« r 11
Ž .1 y v # W. These $-preferences are between constant horse lottery acts. By1
appeal to HL Axiom 4 in case s is not $-potentially null, or by appeal to HLj
Axiom 5 in case s is $-potentially null, we arrive at a constraint forj

Ž .called-off acts involving the two lottery outcomes x r q 1 y x G and« 2 « 1«

wŽ U . Ž w U x. x Ž . Xx v q « B q 1 y v q « W q 1 y x G . Specifically, we obtain the« 2 2 « 1«

Ž .restriction ! H $ H }a constraint on all extensions of $ }wherexq« , j x , j2

XU Uw xH s s x v q « B q 1 y v q « W q 1 y x G andŽ . Ž . Ž .Ž .xq« , j j « 2 2 « 1«
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H s s W if s f s ,Ž .xq« , j j

H s s x r q 1 y x G and H s s W if s f s .Ž . Ž . Ž .x , j j « 2 « 1« x , j j2 2

Ž .However, each ) extension of $ on simple acts assigns to r theV 1 1
state-independent utility v #. Thus, each extension assigns G and GX this1 1« 1«

Žsame state-independent utility v #. Then, as the constraint ! H $1 xq« , j 1

.H obtains, so too does the constraint which results at the limit, whenx , j2

« s 0, and terms G and GX are canceled according to HL Axiom 2. Hence,1« 1«

each ) extension of $ has the quantity vU as an upper bound on theV 1 2
Ž .state-dependent utility U r of r , provided s is not null under ) .j 2 2 j V

Ž . UTherefore, since V is a weighted average of U values, U r s v for eachj j 2 2
) that extends $ on simple acts.V 2

ŽProceed, this way, through the first n stages in the extension of $ using
.Theorem 3 , by choosing for the ith stage either the condition H f v #B qr i ii

Ž . U Ž U . Ž .1 y v # W or the condition H f v B q 1 y v W, as TTTTT r is closed belowi r i i i i ii
Ž .or above respectively . Then the set VVVVV 9 of extensions for $ provides then

w Ž .requisite subset of VVVVV . Note: VVVVV 9 may fail to be convex when TTTTT r is a closedi i
interval, as in the example for Theorem 1. Then either endpoint may be

xchosen, but not values in between. I

Ž .F. Proof of Theorem 6. The proof of Theorem 6 i is based on the idea of
the proof of Lemma 4.3. The argument is by induction on the number of

� 4rewards, that is, on the length of the initial segment of r , r , . . . . The1 2
method is a straightforward epsilon]delta technique of fixing the degree of
state-dependence to be tolerated and then choosing target set values suffi-
ciently close to a boundary of the target sets to force agreement with the
allowed tolerance for state-dependent utilities.

Ž .The proof of Theorem 6 ii follows the argument of Corollary 3.1; that is,
� 4use the countable set RRRRR j BBBBB in forming the extensions of $, subject to the

� 4following modification in the ordering of RRRRR j BBBBB : Fix k, which determines
� 4the initial segment of RRRRR, r , . . . , r , over which the almost state-indepen-1 k

dent utilities are to be provided. Given a nonsimple act H g BBBBB, insert it into
the sequence of extensions based on HHHHH only after these k-many rewards have
been assigned their utilities. This method ensures that assigning utilities to
the nonsimple acts in BBBBB does not interfere with using the boundary regions

� 4of the target sets of the k-many rewards, r , . . . , r , to locate their almost1 k
state-independent utilities. For interesting discussion of this point, see Sec-

Ž .tion 5 of Nau 1993 . I

Two remarks help to explain the content of Theorem 6. First, in light of
Example 4.1, it may be that for each « ) 0, $ admits an almost state-

Ž .independent utility, but corresponding to « s 0 there is no agreeing proba-
Ž .bilityrstate-independent utility pair in the limit. That is, the limit as « ª 0

Ž .of the nested sets of agreeing, almost state-independent utilities is empty.
Second, Definition 31 requires only that $ admit almost state-
independent utilities for each finite set of n-many rewards. Obviously, by
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Ž .increasing n, we can form sequences of nested sets of probabilityrutility
pairs. However, Definition 31 does not provide for an almost state-indepen-
dent utility covering infinitely many rewards simultaneously. We do not yet

Žknow whether, given our five axioms, there exists a nonempty limit as
.n ª ` to these nested sets.

G. Results from Section 5.

Ž . XPROOF OF LEMMA 5.1. i By HL Axiom 2, H $ H iff 0.5H q 0.5H $1 2 1 1
0.5H q 0.5H X . Regrouping terms on the r.h.s. of the second $ relation, we2 1
obtain H $ H iff 0.5H q 0.5H X $ 0.5H q 0.5H X . Another application of1 2 1 1 1 2
HL Axiom 2 yields the desired result: H $ H iff H X $ H X .1 2 1 2

Ž . Xii Suppose H f H . By Corollary 2.3, it suffices to show that xH q1 2 1
Ž . X Ž . X Ž .1 y x H $ H iff xH q 1 y x H $ H . By HL Axiom 2, xH q 1 y x H3 4 2 3 4 1 3

w X Ž . x Ž . Ž . Ž .$ H iff z xH q 1 y x H q 1 y z H $ zH q 1 y z H 0 - z F 1 .4 1 3 1 4 1
Since H f H , by Corollary 2.3, substituting H for H on the l.h.s., the1 2 2 1

w X Ž . x Ž . Ž .biconditional reads: iff z xH q 1 y x H q 1 y z H $ zH q 1 y z H .1 3 2 4 1
Ž .y1 XLet zx s 1 y z, that is, z s 1 q x . Then regrouping terms in H and1

w X Ž . x Ž .H , the biconditional reads: iff z xH q 1 y x H q 1 y z H $ zH q2 2 3 1 4
Ž .1 y z H . Another application of HL Axiom 2 yields the desired result. I1

Ž .PROOF OF THEOREM 8. Part i is immediate as H is a subset of H .e R
Ž .Specifically, if a weak order ) of Theorem 3 agrees with $, it agreesV

Ž .with $ . That is, consider the e-called-off family H , where H s s W ife e
s f e and $ is the restriction of $ to H . Let H and H be simple actse e 1 2

Ž . Ž .that belong to H . If H $ H , then H $ H and therefore V H $ V H .e 1 e 2 1 2 1 2
Ž .Let the expected utility V be given by the probabilityr state-dependent

Ž . Ž . Ž . Ž .utility pair p, U . As U W s 0 and H s s W for s f e i s 1, 2 , thenj j i
Ž . Ž . Ž . Ž . Ž .Ý p s U L - Ý p s U L . Hence, p , U agrees with $ .s g e j j 1 j s g e j j 2 j e jg e ej j

Ž . Ž .For part ii , without loss of generality Lemma 5.1 , continue with the
Ž .e-called-off family H determined by fixing H s s W if s f e. Define the acte

Ž .B g H by B s s B if s g e. With respect to $ , B serves as the ‘‘best’’e e e e e
Ž < . Ž . Ž .act and W serves as the ‘‘worst.’’ Thus, for H g H , V H e V B s V H .e e

Ž . Ž .Let V ? agree with $ over the set H . Assume V ? differs from eache e e e
Ž < . Ž .conditional expected utility V ? e V g VVVVV . In particular, with HHHHH ordered fore

applying Theorem 3 to $ , let H g HHHHH satisfy the following condition: Fore z e
Ž . Ž < . Ž . Ž . Ž < .each V g VVVVV such that V H s V H e i s 1, . . . , z y 1 , V H / V H e .e i i e z z

Ž < .That is, H is the first e-called-off act, where V differs from each V ? e ,z e
V g VVVVV . Without loss of generality, according to Corollary 3.3, put the first
z-elements of HHHHH as the initial segment of HHHHH. Thus, H is the zth element ine z
this reordering of HHHHH.

Ž . Ž < . Ž .By hypothesis, for some V g VVVVV , V H s V H e i s 1, . . . , z y 1 . Thene i i
mimic the first z y 1 extensions of $ in the first z y 1 extensions of $.e
That is, provided e is not potentially null so that W $ B , use Definition 20e
to extend $ to $ with symmetric mixtures of the z y 1 act pairs: Hzy1 i

Ž . Ž Ž ..and V H B q 1 y V H W. Also by hypothesis, $ cannot be ex-e i e e i zy1
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tended to $ using Definition 20 with symmetric mixtures of H andz z
Ž . Ž Ž ..V H B q 1 y V H W.e z e e z

Ž .Next, we show that V H is an endpoint of the conditional target sete z
Ž .TTTTT H , defined using mixtures of B and W. Argue indirectly: either H $z z e z zy1
Ž . Ž Ž .. Ž . Ž Ž ..V H B q 1 y V H W or else V H B q 1 y V H W $ H . Wee z e e z e z e e z zy1 z

Žgive the analysis for the former case. The reasoning for the latter case is
.parallel. Expand the $ -preference into its equivalent $-preference.zy1

Thus, for i s 1, . . . , z y 1, there exist x G 0, x ) 0, Ý x q x s 1, suchi z i i z
that

x G q ??? qx G q x H1 1 zy1 zy1 z z

X X$ x G q ??? qx G q x V H B q 1 y V H W ,Ž . Ž .Ž .1 1 zy1 zy1 z e z e e z

Ž X . Ž .where the pairs G , G are symmetric mixtures of H and V H B qi i i e i e
Ž Ž ..1 y V H W. However, as this $-preference involves elements of HHHHH only,e i e

X X w Ž .then x G q ??? qx G q x H $ x G q ??? qx G q x V H1 1 zy1 zy1 z z e 1 1 zy1 zy1 z e z
Ž Ž .. x Ž . Ž .=B q 1 y V H W . Thus V H f TTTTT H }a contraction with the as-e e z e z e, z z

Ž . Ž .sumption that V ? agrees with $ . Hence, V H is a precluded endpoint ofe e e z
Ž .the conditional TTTTT H according to preferences $ , but it is not precludedz z zy1

Ž .from TTTTT H according to the subset of preferences in $ . Ie, z z e, zy1
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