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QUASI-LIKELIHOOD MODELS AND OPTIMAL INFERENCE

BY WOLFGANG WEFELMEYER

University of Siegen

Consider an ergodic Markov chain on the real line, with parametric
models for the conditional mean and variance of the transition distribu-
tion. Such a setting is an instance of a quasi-likelihood model. The
customary estimator for the parameter is the maximum quasi-likelihood
estimator. It is not efficient, but as good as the best estimator that ignores
the parametric model for the conditional variance. We construct two
efficient estimators. One is a convex combination of solutions of two
estimating equations, the other a weighted nonlinear one-step least
squares estimator, with weights involving predictors for the third and
fourth centered conditional moments of the transition distribution. Addi-
tional restrictions on the model can lead to further improvement. We
illustrate this with an autoregressive model whose error variance is
related to the autoregression parameter.

Ž .1. Introduction. According to Wedderburn 1974 , a quasi-likelihood
model is defined by a relationship between the mean and variance of the
observations. A simple example is i.i.d. observations with known coefficient of
variation, but otherwise unknown distribution; efficient estimators for the

Ž .mean are constructed in Bickel, Klaassen, Ritov and Wellner 1993 , page 68.
Ž .A related regression model is considered by Amemiya 1973 . A rich class of

quasi-likelihood models is given by generalized linear models with a restric-
tion on the variance of the response. The basic reference is McCullagh and

Ž . Ž .Nelder 1989 . Some surveys may be found in Hinkley, Reid and Small 1991 .
For discrete-time stochastic processes, quasi-likelihood models are defined

by specifying parametric models for the conditional mean and variance
processes given the past. Examples are the Markov regression models of

Ž . Ž .Zeger and Qaqish 1988 ; see also Huhtala 1992 . For continuous time, a
quasi-likelihood model is described by parametric models for the compensator
and the predictable quadratic variation of a semimartingale. There is a
considerable literature on quasi-likelihood models for stochastic processes.

Ž .Several surveys are collected in Godambe 1991 .
We are interested in efficient estimation of the parameter. To keep the

model simple and the assumptions specific, we restrict attention to Markov
chains and to one-dimensional parameters. A version of our approach for

Ž .general semimartingales is outlined in Wefelmeyer 1993 . Here we describe
some results on estimating functions in quasi-likelihood models for Markov
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chains. They are essentially known in other settings and easy to derive.
Hence we do not prove them. The results will motivate our construction of an
efficient estimator.

Let X , . . . , X be observations from an ergodic real-valued Markov chain0 n
Ž . Ž .with transition distribution Q x, dy and invariant distribution p dy . Sup-

pose that we have parametric models for the conditional mean, or autoregres-
sion function, and the conditional variance:

1.1 yQ x , dy s m x ,Ž . Ž . Ž .H q

2
1.2 y y m x Q x , dy s v x ,Ž . Ž . Ž . Ž .Ž .H q q

but that the transition distribution is unspecified otherwise.
A large class of estimators for q is obtained as solutions of estimating

equations of the form
n

1.3 w X X y m X s 0.Ž . Ž . Ž .Ž .Ý q iy1 i q iy1
is1

Under appropriate conditions, the corresponding estimator is asymptotically
normal with variance

2X2p w v r p w m .Ž .Ž .Ž .q q q q

Ž . Ž . Ž .Here p f is short for the expectation Hf x p dx , and prime denotes differ-
entiation with respect to q . Consistency and asymptotic normality may be

Ž .proved along the lines of Klimko and Nelson 1978 .
By the Schwarz inequality, the variance is minimized for w s mX rv . Theq q q

minimal variance is

1.4 1rp mX2rv .Ž . Ž .q q

A version of this result for general discrete-time processes is in Godambe
Ž . Ž .1985 . For continuous time, see Thavaneswaran and Thompson 1986 ,

Ž . Ž .Hutton and Nelson 1986 and Godambe and Heyde 1987 . The denominator
Ž X2 . Ž .p m rv in 1.4 is called the quasi-Fisher information. The optimal estima-q q

tor is the maximum quasi-likelihood estimator. It solves
n

y1 Xv X m X X y m X s 0.Ž . Ž . Ž .Ž .Ý q iy1 q iy1 i q iy1
is1

A different, stronger, optimality property of the maximum quasi-likelihood
Ž .estimator is obtained in Wefelmeyer 1994c : the estimator attains the

asymptotic variance bound for regular estimators which ignore the paramet-
Ž .ric model 1.2 for the conditional variance. This implies that the maximum

Ž .quasi-likelihood estimator does not use the information about q in 1.2 , even
Ž . Ž .though its definition requires 1.2 . Crowder 1987 gives two examples in

Ž . Ž . Ž .which there is much more information in 1.2 than in 1.1 . Amemiya 1973 ,
Ž . Ž .Firth 1987 and Hill and Tsai 1988 consider the loss in efficiency under the
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assumption that the underlying model is a specific parametric model. Then
an efficient estimator is given by the maximum likelihood estimator.

Ž . Ž .If the transition distribution is unspecified except for 1.1 and 1.2 , how
can we find a better estimator than the maximum quasi-likelihood estimator?

Ž .Note first that the estimators obtained from 1.3 are consistent because
Ž . Ž .X y m X are martingale increments by condition 1.1 . From conditioni q iy1

Ž .1.2 we obtain martingale increments
2

X y m X y v X .Ž . Ž .Ž .i q iy1 q iy1

Ž .These lead to further consistent estimating equations besides 1.3 :
n

2
1.5 w X X y m X y v X s 0.Ž . Ž . Ž . Ž .Ž .Ý ž /q iy1 i q iy1 q iy1

iy1

Ž . Ž .This suggests combining estimating equations 1.3 and 1.5 :
n

w X X y m XŽ . Ž .Ž .Ý ž m iy1 i q iy1
is11.6Ž .

2qw X X y m X y v X s 0.Ž . Ž . Ž .Ž .ž / /v iy1 i q iy1 q iy1

Under appropriate conditions, the corresponding estimator is asymptotically
normal with variance

2X X2 2 21.7 p w v q 2w w m q w m y v r p w m q w v .Ž . Ž .Ž .Ž .Ž .m q m v 3 v 4 q m q v q

The variance depends on the centered conditional moments

j
1.8 m x s y y m x Q x , dy , j s 3, 4.Ž . Ž . Ž . Ž .Ž .Hj q

We will not express the dependence of m and similar terms on Q. Thej
Ž .variance 1.7 is minimized for

w s Cy1A , w s Cy1B ,m q q v q q

with

1.9 A s mX m y v2 y vX m ,Ž . Ž .q q 4 q q 3

1.10 B s vX v y mX m ,Ž . q q q q 3

1.11 C s m y v2 v y m2 .Ž . Ž .q 4 q q 3

Ž . Ž .By the Schwarz inequality, C x is positive unless Q x, ? is degenerate. Theq

minimum variance is

1.12 1rp Cy1 A mX q B vX .Ž . Ž .Ž .q q q q q

By the Schwarz inequality, this is strictly smaller than the asymptotic
Ž .variance 1.4 of the maximum quasi-likelihood estimator unless B s 0.q

Hence the maximum quasi-likelihood estimator is inefficient except when
B s 0.q
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The optimal estimator solves

n
y1C X A X X y m XŽ . Ž . Ž .Ž .ŽÝ q iy1 q iy1 i q iy1

is11.13Ž .
2qB X X y m X y v X s 0.Ž . Ž . Ž .Ž .ž / /q iy1 i q iy1 q iy1

The weights depend, through m and m , on the unknown transition distribu-3 4
tion Q. Hence the estimator is, in general, not useful. Suppose, for the

Ž . Ž .moment, that besides 1.1 and 1.2 we have parametric models for the third
and fourth centered conditional moments:

m x s m x , m x s m x .Ž . Ž . Ž . Ž .3 3q 4 4q

Such a model is called an extended quasi-likelihood model. Consider estimat-
Ž .ing equations 1.6 , with weights w and w possibly depending on q . Underm v

appropriate conditions, the corresponding estimator is again asymptotically
Ž .normal. Its asymptotic variance equals again 1.7 , of course now with

m s m andm s m . The variance is again minimized for the estimator3 3q 4 4q

Ž .obtained from 1.13 . Now the weights depend on Q through q only. The
optimal estimator is the extended maximum quasi-likelihood estimator. The

Ž .optimal weights are determined by Crowder 1986, 1987 for independent
Ž . Ž .observations and by Godambe 1987 and Godambe and Thompson 1989 for

discrete-time stochastic processes. These authors restrict attention to the
Ž . Ž .special case with 1.3 and 1.5 orthogonal, that is, m s 0. The general case,3q

Ž .also for continuous time, is treated in Heyde 1987 .
Ž .We return to the ordinary quasi-likelihood model. Then 1.12 is still a

Ž .variance bound for estimators obtained from an equation of the form 1.6 ,
with weights w and w possibly depending on q . Two questions arise. Ism v
Ž .1.12 also a variance bound for the much larger class of regular estimators?
This will be shown in Theorem 1. Can we find an estimator which attains the
bound for all Q? We describe such an estimator in Theorem 2. The basic idea
is the following. For fixed Q, a regular estimator attaining the bound was

Ž .obtained above as the solution of 1.13 . The estimating function, and hence
the estimator, depends on Q through m and m . We want an adaptive3 4
version of the estimator. There are several options. The most direct one

Ž .consists of replacing A , B , C in the estimating equation 1.13 by estima-q q q

tors. They may still depend on q . The resulting estimating equation may be
difficult to solve. A second possibility is a random convex combination of two

Ž . Ž .estimators which solve equations of the form 1.3 and 1.5 , with appropriate
weights. A third option is a weighted nonlinear one-step least squares estima-
tor; such an estimator can be written in closed form.

In particular, the efficient estimator has the following property. Whatever
the parametric models for m and m in an extended quasi-likelihood model,3 4
our estimator is asymptotically as good as the extended maximum quasi-
likelihood estimator when m and m are correctly specified, and strictly3q 4q

better when they are not.



QUASI-LIKELIHOOD AND OPTIMALITY 409

Additional restrictions on the model can lead to further improvement. In
Ž . Ž .Section 3 we assume that Q x, dy s p y y q x dy, with p a mean-zero

density. Then the observations come from an autoregressive process with
error density p. We specify the error variance as a function of q . The
maximum quasi-likelihood estimator is the least squares estimator. We ob-
tain an efficient estimator as a random convex combination of two estimators.
One is an estimator for q , the other a function of an estimator for the error
variance. Both these estimators are efficient in the usual autoregressive
model, without restriction on the error variance. The first is due to Kreiss
Ž . Ž .1987 , the second to Wefelmeyer 1994a . A simpler, but inefficient, convex

Ž .combination is described in Wefelmeyer 1994b .

2. Main results. Let X , . . . , X be observations from a real-valued0 n
Ž .Markov chain, with unknown transition distribution Q x, dy fulfilling

2.1 yQ x , dy s m x ,Ž . Ž . Ž .H q

2
2.2 y y m x Q x , dy s v x .Ž . Ž . Ž . Ž .Ž .H q q

The model can be written as a semiparametric model, with nuisance
parameter given by transition distributions with conditional mean 0 and

Ž . Ž .conditional variance 1. Then 2.1 and 2.2 can be generated by conditional
location and scale transformations. However, we found it more convenient to

Ž . Ž .treat 2.1 and 2.2 as side conditions on the nonparametric model described
by all transition distributions.

Fix q in some open subset of the real line, and a transition distribution Q
Ž . Ž .fulfilling 2.1 and 2.2 .

ASSUMPTIONS. The Markov chain is stationary and ergodic, with nonde-
Ž .generate invariant distribution p . The function C defined in 1.11 is boundedq

away from 0 p-almost surely. For t in a neighborhood of q and for all x, the
Ž .functions m x are twice differentiable in t , with first derivatives at qt

bounded in x. The second derivatives fulfill Lipschitz conditions at t s q :
Y Y Y Y< < < <m x y m x F t y q c x , v x y v x F t y q c x .Ž . Ž . Ž . Ž . Ž . Ž .t q m t q v

The functions mX , mY , c , vX , vY , c have finite eighth moments. The fourthq q m q q v
conditional moment of Q has finite fourth moment:

4
4y Q x , dy p dx - `.Ž . Ž .H Hž /

The derivatives mX and vX are not both p-almost surely equal to 0.q q

To keep the proofs short, we do not strive for minimal assumptions.
Ž .Perhaps one can avoid second derivatives of m and v and prove 2.12q q

below by an appropriate version of the stochastic equicontinuity argument for
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Ž .M-estimators introduced by Huber 1967 in the i.i.d. case and by Bickel
Ž . Ž .1975 for the linear model. A recent reference is Welsh 1989 . In the more
specific setting of Section 3, the assumptions will be close to minimal.

To begin, we show local asymptotic normality. A local model is introduced
Ž .as follows. Let H denote the set of bounded functions h x, y such that, for

all x,

2.3 h x , y Q x , dy s 0,Ž . Ž . Ž .H

2.4 yh x , y Q x , dy s mX x ,Ž . Ž . Ž . Ž .H q

2 X2.5 y y m x h x , y Q x , dy s v x .Ž . Ž . Ž . Ž . Ž .Ž .H q q

For h g H and u g R we must construct a transition distribution Qnuh such
Ž . Ž . nuh y1r2that 2.1 and 2.2 hold for Q s Q and q s q q n u. Consider first

Qnuh x , dy s 1 q ny1r2 uh x , y Q x , dy .Ž . Ž . Ž .Ž .0

Straightforward calculation shows that, for Q s Qnuh and q s q q ny1r2 u,0
Ž . Ž . y1relations 2.1 and 2.2 hold up to terms of order n . These terms cancel if

we add to h an appropriate correction r of order ny1r2 and setn

Qnuh x , dy s 1 q ny1r2 u h x , y q r x , y Q x , dy .Ž . Ž . Ž . Ž .Ž .Ž .n

A possible choice of r is the following. Setn

1r4< <p y s yI y F n ,Ž . Ž .
2 1r4q x , y s y y m x I y y m x F n .Ž . Ž . Ž .Ž . Ž .q q

Center these two functions for conditional expectation 0,

p x , y s p y y p y Q x , dy ,Ž . Ž . Ž . Ž .H

q x , y s q x , y y q x , y Q x , dy .Ž . Ž . Ž . Ž .H
Set

r x , y s a x p x , y q b x q x , y .Ž . Ž . Ž . Ž . Ž .n

Ž . Ž . y1r2Choose q x and t x between q and q q n u such thatnu nu

m y1 r2 x s m x q ny1r2 umX x ,Ž . Ž . Ž .qqn u q q Ž x .nu

v y1 r2 x s v x q ny1r2 uvX x .Ž . Ž . Ž .qqn u q t Ž x .nu
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Define truncated centered moments

v x s q x , y Q x , dy ,Ž . Ž . Ž .H
2

m x s y y m x p x , y Q x , dy ,Ž . Ž . Ž . Ž .Ž .H3 q

m x s y y m x q x , y Q x , dy ,Ž . Ž . Ž . Ž .Ž .˜ H3 q

2
m x s y y m x q x , y Q x , dy .Ž . Ž . Ž . Ž .Ž .H4 q

Elementary computations show that r has the desired properties ifn
X Xav q bm s m y m ' s,˜3 q qnu

X X X2y1r2am q b m y v v s v y v q n um ' t .Ž .3 4 q t q qnu nu

Since s and t are of order ny1r2, so are a and b. Here and in the following,
we often suppress the dependence on n and also on q . We must set

y1a s D m y v v s y m t ,Ž . ˜Ž .4 q 3

y1b s D vt y m s ,Ž .3

Ž .with D s m y v v v y m m a determinant. Since C is bounded away˜4 q 3 3 q

from 0 p-almost surely, so is D. Hence Dy1 is bounded. This ends the
construction of the local model.

Write P for the joint distribution of X , . . . , X if Q is true, and P nuh ifn 0 n n
Qnuh is true. The family P nuh, h g H, u g R, is the local model at Q. Since itn
lies in the given model, it does not exclude reasonable estimators from
competing. On the other hand, it is large enough to give a variance bound
which is globally attainable, for example, by the estimator in Theorem 2

Ž . Ž .below. Write p m Q for the invariant joint distribution p dx Q x, dy of two
successive observations, and

p m Q f s f x , y Q x , dy p dx .Ž . Ž . Ž . Ž .HH
We have local asymptotic normality,

nuh nlog dP 1n y1r2 2 2s un h X , X y u p m Q h q o 1Ž . Ž . Ž .Ý iy1 i PndP 2n is1

and
n

y1r2n h X , X « N under P ,Ž .Ý iy1 i h n
is1

Ž 2 .where N is normal with mean 0 and variance p m Q h . The functions hh
will be called score functions. Local asymptotic normality for Markov chains

Ž .is basically due to Roussas 1965 . For nonparametric versions, see Penev
Ž . Ž . Ž .1991 , Greenwood and Wefelmeyer 1995 and Bickel 1993 . Under our
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conditions a proof may be obtained directly or by modifying the argument of
Ž .Hopfner 1993 , who treats Markov step processes. We need only check an¨

appropriate version of Hellinger differentiability for Qnuh, condition H1Y in
Ž .Hopfner, Jacod and Ladelli 1990 . Here it reads¨

21r2 1y1r2 y1r2 y11 q n h x , y y 1 y n h x , y Q x , dy F n r x ,Ž . Ž . Ž . Ž .Ž .H ž / n2

with r decreasing to 0 pointwise and p-integrable for large n. This is truen
because h is bounded and hence p m Q-square integrable. The only of the
assumptions we have used for local asymptotic normality is ergodicity.

We recall a well-known characterization of regular and efficient estimators.
Ž .A convenient reference is Greenwood and Wefelmeyer 1990 . As indicated at

the beginning of this section, the model can be viewed as semiparametric. For
such models and for the i.i.d. case, versions of the concepts mentioned here
are discussed in the monograph of Bickel, Klaassen, Ritov and Wellner
Ž .1993 : see page 46 there for regular estimators; page 63 for the convolution

Ž .theorem, the information bound and efficient estimators; page 70 for effi-
cient score functions, page 19 for asymptotically linear estimators and influ-
ence functions; and page 64 for the characterization of regular and efficient
estimators.

Ž .Let H denote the closure of H in L p m Q . The efficient score function2
2Ž .s g H at Q minimizes p m Q h over h g H. Hence it is characterized by

2.6 p m Q s2 s p m Q sh for h g H .Ž . Ž . Ž .

The information bound at Q is the squared length of the efficient score
function:

2.7 I s p m Q s2 .Ž . Ž .
ˆAn estimator q is regular for q at Q with limit L if, for all h g H andn

u g R,

1r2 ˆ y1r2 nuhn q y q y n u « L under P .Ž .n n

By the convolution theorem,

L s M q N in distribution,

where M is independent of N, and N is normal with mean 0 and variance
Iy1. This justifies calling an estimator efficient for q at Q if its limit under Pn
is N. We call Iy1 a variance bound for regular estimators. To state the
characterization of regular and efficient estimators, we introduce the follow-

ˆing definition. An estimator q is asymptotically linear for q at Q withn
Ž .influence function f x, y if

n
1r2 y1r2ˆn q y q s n f X , X q o 1 .Ž . Ž .Ž . Ýn iy1 i Pn

is1
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The characterization reads as follows:

An estimator is regular and efficient for q at Q if and only if it is
y1Ž . Ž .asymptotically linear with influence function f x, y s I s x, y .

To construct an efficient estimator, we need an explicit description of the
efficient score function s and the information bound I. There are different
ways of guessing the efficient score function. One guess relies on a formal
analogy with the i.i.d. case. We expect that for fixed x the efficient score

Ž . Ž Ž ..2 Ž .function is a linear combination of y y m x and y y m x y v x .q q q

Ž .Then 2.3 holds. The coefficients in the linear combination must be chosen
Ž . Ž .such that 2.4 and 2.5 hold. A different guess is that the asymptotic

Ž . Ž .variance bound 1.12 for estimators based on equations of the form 1.6
equals the variance bound for the larger class of regular estimators. Then the

Ž .efficient score function is obtained from the estimating equation 1.13 . The
following theorem shows that both guesses are right.

THEOREM 1. The efficient score function at Q is
2y1s x , y s C x A x y y m x q B x y y m x y v x .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .ž /ž /q q q q q q

The information bound at Q is positive and equals

I s p Cy1 A mX q B vX .Ž .Ž .q q q q q

Ž . Ž .Here A , B , C are defined in 1.9 to 1.11 .q q q

Of the assumptions we only use the nondegeneracy and moment conditions
which ensure that s is p m Q-square integrable and I is well defined and
positive.

PROOF OF THEOREM 1. It suffices to check that the function s is in H and
Ž .fulfills 2.6 . Then the explicit form of the information bound I is determined

Ž . Ž . Ž . Ž .from 2.7 . To show that s g H, we must check 2.3 to 2.5 and s g L p m Q .2
Ž . Ž .The calculations leading to 2.3 to 2.6 are straightforward, but tedious, and

Ž .we omit them. It remains to prove that s g L p m Q and that I is well2
defined and positive.

Ž . Ž .i To prove that s g L p m Q , introduce the conditional moments:2

n x s y jQ x , dy .Ž . Ž .Hj

The following two integrals are finite:

2 2 2A x y Q x , dy p dx s p A n ,Ž . Ž . Ž . Ž .HH q q 2

2 4 2B x y Q x , dy p dx s p B n .Ž . Ž . Ž . Ž .HH q q 4

Ž .Since C is bounded away from 0, we easily obtain that s g L p m Q .q 2
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Ž . Ž .ii Since C is bounded away from 0, Q x, ? is nondegenerate by theq

Schwarz inequality. Write

A x mX x q B x vX xŽ . Ž . Ž . Ž .q q q q

22X Xs v x y y m x y m x y y m x y v x Q x , dy .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .H ž /ž /q q q q q

This is positive with positive p-probability since by assumption the deriva-
tives vX and mX are not both equal to 0 p-almost surely. Hence I is wellq q

defined and positive. I

To describe our efficient one-step estimator for q , we need an initial
n1r2-consistent estimator q for q and strongly consistent predictors m forn ji

Ž .the centered conditional moments m X of the transition distribution:j i

m y m X ª 0 almost surely for j s 2, 3, 4.Ž .ji j i

Ž . 1r2Recall that m is defined in 1.8 . For q one may choose an n -consistentj n
solution of

n
y1r2n X y m X s o 1 .Ž . Ž .Ž .Ý i q iy1 Pn

is1

We will not discuss conditions for the existence of such a solution here. For
Ž .m one may take m X , where m is a Nadaraya]Watson type kernelˆ ˆji ji i ji

estimator for the function m . For stochastic processes, such kernel estimatorsj
Ž . Ž .are discussed, for example, by Collomb 1984 and Truong and Stone 1992 .

We do not repeat their assumptions here.
Ž . Ž . Ž .With these estimators, we obtain predictors for A X , B X , C X :q i q i q i

A s mX X m y m2 y vX X m ,Ž . Ž .Ž .q i q i 4 i 2 i q i 3 i

B s vX X m y mX X m ,Ž . Ž .q i q i 2 i q i 3 i

C s m y m2 m y m .Ž .i 4 i 2 i 2 i 3 i

Later we replace q by the initial estimator q . In particular, we obtain ann
estimator for the information bound I:

n
X Xy1 y1I s n C A m X q B v X .Ž . Ž .Ž .Ýn iy1 q , iy1 q iy1 q , iy1 q iy1n n n n

is1

THEOREM 2. The estimator
n

y1 y1 y1q̂ s q q I n C A X y m XŽ .Ž .Ýn n n iy1 q , iy1 i q iy1ž n n
is1

2qB X y m X y v XŽ . Ž .Ž .q , iy1 i q iy1 q iy1ž / /n n n

is regular and efficient for q at Q.
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ˆThe estimator q involves predictors m based on X , . . . , X rathern j, iy1 0 iy1
Ž .than estimators m X making full use of the observations X , . . . , X . Weˆ jn iy1 0 n

have chosen predictors because with them the processes
n

y1C A X y m XŽ .Ž .Ý iy1 q , iy1 i q iy1
is1

and
n

2y1C B X y m X y v XŽ . Ž .Ž .Ý ž /iy1 q , iy1 i q iy1 q iy1
is1

are martingales. This will be used in the proof of Theorem 2. For a similar
Ž .approach, see Wefelmeyer 1994c .

In applications it will often be more convenient to use a weighted average
Ž . Ž .of two estimators which solve equations of the form 1.3 and 1.5 . Specifi-
Ž . Ž . Ž .cally, let A , B , C be predictors or estimators for A X , B X , C X . Asi i i q i q i q i

above, these estimators may depend on q . Let q s q m be an n1r2-consistentn
solution of

n
y1r2 y1n C A X y m X s o 1 ,Ž . Ž .Ž .Ý iy1 iy1 i q iy1 Pn

is1

and let q s q v be an n1r2-consistent solution ofn

n
2y1r2 y1n C B X y m X y v X s o 1 .Ž . Ž . Ž .Ž .Ý ž /iy1 iy1 i q iy1 q iy1 Pn

is1

Write

I m s p Cy1A mX , I v s p Cy1B vX .Ž . Ž .q q q q q q

Ž v m.Let a be a consistent estimator for 1r 1 q I rI . Then the convex combi-n
m Ž . vnation a q q 1 y a q is efficient for q .n n n n

PROOF OF THEOREM 2. By the characterization of regular and efficient
ˆestimators, we must prove that q is asymptotically linear with influencen

function Iy1s, where s is the efficient score function and I the information
bound determined in Theorem 1. We will prove the following two expansions,
all sums extending over i from 1 to n:

ny1r2 Cy1 A X y m XŽ .Ž .Ý iy1 q , iy1 i q iy1n n

y1y1r2s n C X A X X y m XŽ . Ž . Ž .Ž .Ý q iy1 q iy1 i q iy12.8Ž .

y n1r2 q y q p Cy1A mX q o 1 ,Ž . Ž .Ž .n q q q Pn

2y1r2 y1n C B X y m X y v XŽ . Ž .Ž .Ý iy1 q , iy1 i q iy1 q iy1ž /n n n

2y1y1r2s n C X B X X y m X y v XŽ . Ž . Ž . Ž .Ž .Ý ž /q iy1 q iy1 i q iy1 q iy1
2.9Ž .

y n1r2 q y q p Cy1B vX q o 1 .Ž . Ž .Ž .n q q q Pn
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The assertion follows from these two expansions if we prove that I is an
consistent estimator of

I s p Cy1A mX q p Cy1B vX .Ž . Ž .q q q q q q

To show that I is consistent, we split I in the same way as I, and proven n

2.10 ny1 Cy1 A mX X s p Cy1A mX q o 1 ,Ž . Ž . Ž .Ž .Ý iy1 q , iy1 q iy1 q q q Pn n n

2.11 ny1 Cy1 B vX X s p Cy1B vX q o 1 .Ž . Ž . Ž .Ž .Ý iy1 q , iy1 q iy1 q q q Pn n n

Ž . Ž . Ž .From now on we restrict attention to 2.8 and 2.10 . Relations 2.9 and
Ž .2.11 are proved analogously.

Ž . Ž . Ž .i Proof of 2.10 . Write the left side of 2.10 as

y1 Xy1n C X A X m XŽ . Ž . Ž .Ý q iy1 q iy1 q iy1

y1 Xy1 y1q n C A y C X A X m XŽ . Ž . Ž .Ž .Ý iy1 q , iy1 q iy1 q iy1 q iy1

q ny1 Cy1 A mX X y A mX X .Ž . Ž .Ž .Ý iy1 q , iy1 q iy1 q , iy1 q iy1n n

By the ergodic theorem, the first of these three terms converges to
Ž y1 X .p C A m . We must show that the second and third terms are of orderq q q

Ž .o 1 . For the second term, note thatPn

2X 2A y A X s m X m y m X y m q v XŽ . Ž . Ž . Ž .Ž .q i q i q i 4 i 4 i 2 i q i

y vX X m y m X .Ž . Ž .Ž .q i 3 i 3 i

It follows easily from the assumptions that the second term is bounded by an
Ž .expression of the form « Ýr X , with r p-integrable. Hence the secondn iy1

Ž .term is of order o 1 . For the third term, we note thatPn

A y A s mX X y mX X m y m2Ž . Ž . Ž .Ž .q i q i q i q i 4 i 2 in n

y vX X y vX X m .Ž . Ž .Ž .q i q i 3 in

Ž .The assumptions imply as before that the third term is of order o 1 .Pn
Ž . Ž .ii Proof of 2.8 . Choose q between q and q such thatni n

m X s m X q q y q mX X .Ž . Ž . Ž . Ž .q iy1 q iy1 n q iy1n ni

Ž .Write the left side of 2.8 as

ny1r2 Cy1 A X y m XŽ .Ž .Ý iy1 q , iy1 i q iy1n

y n1r2 q y q ny1 Cy1 A mX X .Ž . Ž .Ýn iy1 q , iy1 q iy1n ni

Ž .The second of these two terms is dealt with exactly as in part i of the proof:

ny1 Cy1 A mX X s p Cy1A mX q o 1 .Ž . Ž .Ž .Ý iy1 q , iy1 q iy1 q q q Pn ni n
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Ž .To prove 2.8 , it remains to show that

y1y1r2 y1n C A y C X A X X y m XŽ . Ž . Ž .Ž .Ý ž /iy1 q , iy1 q iy1 q iy1 i q iy1n2.12Ž .
s o 1 .Ž .Pn

Choose q between q and q such thatni n

A s A q q y q AX .Ž .q , iy1 q , iy1 n q , iy1n ni

Ž .Write the left side of 2.12 as
y1y1r2 y1n C A y C X A X X y m XŽ . Ž . Ž .Ž .Ž .Ý iy1 q , iy1 q iy1 q iy1 i q iy1

q q y q ny1r2 Cy1 AX X y m XŽ . Ž .Ž .Ýn iy1 q , iy1 i q iy1

q n1r2 q y q ny1 Cy1 AX y AX X y m X .Ž . Ž .Ž .Ž .Ýn iy1 q , iy1 q , iy1 i q iy1ni

The first term has predictable quadratic variation
2y1y1 y1n C A y C X A X v X .Ž . Ž . Ž .Ž .Ý iy1 q , iy1 q iy1 q iy1 q iy1

Ž . Ž .This is shown to be of order o 1 as in part i of the proof. Hence, byPn

w Ž . xLenglart’s inequality Jacod and Shiryaev 1987 , page 35, Lemma 3.30a , the
Ž . Ž .first term is of order o 1 . The second term is q y q s o 1 , multiplied byP n Pn n

a term with predictable quadratic variation

ny1 Cy2 AX2 v X .Ž .Ý iy1 q , iy1 q iy1

Ž . Ž .This is of order O 1 . Hence the second term is also of order o 1 . The thirdP Pn n
1r2Ž . Ž .term is n q y q s O 1 , multiplied by an expression which is againn Pn

Ž .shown to be of order o 1 . IPn

3. An autoregressive model. Let X , . . . , X be observations from an0 n
autoregressive process

X s q X q « ,i iy1 i

where « are i.i.d. with unknown density p having mean 0,i

3.1 E« s 0.Ž .
Suppose that the error variance is related to the regression parameter:

3.2 E« 2 s v q .Ž . Ž .
Ž . Ž .Then we have parametric models of the form 1.1 and 1.2 for the condi-

tional mean and variance:

3.3 yp y y q x dy s q x ,Ž . Ž .H
23.4 y y q x p y y q x dy s v q .Ž . Ž . Ž . Ž .H
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Hence the model is a quasi-likelihood model. The results of Section 2 are,
however, not directly applicable because of the special structure of the
transition distribution:

3.5 Q x , dy s p y y q x dy.Ž . Ž . Ž .
Ž . Ž .This is an additional restriction besides 3.1 and 3.2 . It also involves q .

The maximum quasi-likelihood estimator solves
n

y1v q X X y q X s 0.Ž . Ž .Ý iy1 i iy1
is1

Hence it equals the least squares estimator
n n

2q s X X X .Ý Ýn iy1 i iy1
is1 is1

It is well known that, in general, the least squares estimator does not even
attain the variance bound for the usual autoregression model, without re-

Ž .striction 3.2 on the error variance. This differs from Section 2, where the
maximum quasi-likelihood estimator was as good as the best estimator

Ž .ignoring the corresponding restriction 2.2 . The reason is that the least
Ž .squares estimator fails to use not only the information about q in 3.2 , but

Ž .also the information in 3.5 . For extended maximum quasi-likelihood estima-
Ž .tors in an autoregressive model, we refer to Heyde 1987 .

We turn to the construction of an efficient estimator for q . The arguments
are similar to those in Section 2, and we will only sketch them. Fix a density

Ž . Ž .p fulfilling 3.1 and 3.2 .

Ž .ASSUMPTIONS. The parameter varies in an open subset of y1, 1 on which
the function v has a continuous and nonvanishing derivative vX. The density
p is absolutely continuous with logarithmic derivative lX and finite Fisher
information

2XUI s El « .Ž .
The error distribution is nondegenerate and has finite fourth moment.

To prove local asymptotic normality, we introduce a local model as follows.
Ž .Besides p, fix q . Let K denote the set of all bounded functions k y such that

Ek « s 0,Ž .
E« k « s 0,Ž .

E« 2k « s vX q .Ž . Ž .
For k g K and u g R, define

pnuk y s 1 q ny1r2 u k y q r y p y .Ž . Ž . Ž . Ž .Ž .Ž .n

y1r2 Ž . Ž .As in Section 2 one can choose r of order n such that 3.1 and 3.2 holdn
for p s pnuk and q s q q ny1r2 u. Write P for the joint distribution ofn
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X , . . . , X if p and q are true, and P nuk if pnuk and q q ny1r2 u are true. As0 n n
Ž . Ž .in Huang 1986 or Kreiss 1987 , one obtains local asymptotic normality:

n
Xnuk y1r2log dP rdP s un yX l X y q X q k X y q XŽ . Ž .Ž .Ýn n iy1 i iy1 i iy1

is1

1 y1 2U2 2y u 1 y q I v q q Ek « q o 1Ž . Ž . Ž . Ž .ž / Pn2
and

n
Xy1r2 nn yX l X y q X q k X y q X « N under P ,Ž . Ž .Ž .Ý iy1 i iy1 i iy1 k

is1

where N is normal with mean 0 and variance equal tok

y1 2U23.6 1 y q I v q q Ek « .Ž . Ž . Ž . Ž .
Hence the score functions are of the form

3.7 h x , y s yxlX y y q x q k y y q x .Ž . Ž . Ž . Ž .
Next we determine the efficient score function and the information bound.

Ž .Let K denote the closure of K in L p . The efficient score function mini-2
Ž . Ž .mizes 3.6 over k g K. As in Theorem 1, the minimum is attained if k y

equals

t y s Cy1 vX q v q y2 y v q y m y ,Ž . Ž . Ž . Ž .Ž .Ž .q 3

with
2 2 jC s m y v q v q y m and m s E« .Ž . Ž .Ž .q 4 3 j

Ž .Since the error distribution is nondegenerate, v q is positive. Hence C isq

Ž .positive by the Schwarz inequality. The efficient score function is 3.7 for
k s t:

3.8 s x , y s yxlX y y q x q t y y q x .Ž . Ž . Ž . Ž .
Ž .The information bound is 3.6 for k s t:

y1 2XU2 y13.9 I s 1 y q I v q q C v q v q .Ž . Ž . Ž . Ž . Ž .q

Ž . ŽThe information bound 3.9 is strictly larger than the bound 1 y
2 .y1 U Ž . Ž .q I v q in the usual autoregressive model, without restriction 3.2 on

the error variance.
By the characterization stated in Section 2, an estimator for q with

y1 Ž .influence function I s x, y is regular and efficient. To construct such an
estimator, we recall some results for the usual autoregressive model, without

Ž . Ž .restriction 3.2 . For this model, Kreiss 1987 has introduced an efficient
estimator q U for q , with influence functionn

y1 XU23.10 y 1 y q I m xl y y q x .Ž . Ž . Ž . Ž .2
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Write « s X y q X for the estimated errors of the autoregressive model,in i n iy1
with q the least squares estimator. The moments m of the error distributionn j
are estimated by the empirical moments

n
y1 jm s n « .Ýjn in

is1

Ž .In particular, m estimates 0. According to Wefelmeyer 1994a , the estima-1n
tor

mU s m y my1 m m2 n 2 n 2 n 3n 1n

Ž . Uis efficient for m if m is not restricted by 3.2 . The influence function of m2 2 2 n
is

2 y13.11 y y q x y m y m m y y q x .Ž . Ž . Ž .2 2 3

Ž .Wefelmeyer 1994a treats only expectations of bounded functions. The result
here follows by the usual truncation argument.

Ž .We return to the autoregressive model with restriction 3.2 . Then m s2
Ž . y1Ž U . Uv q , and we have a new estimator for q , namely v m . Both q and2 n n
y1Ž U .v m are not efficient in this smaller model. An efficient estimator is2 n

obtained as a random convex combination of the two estimators. The weight
U U Ž .involves an estimator for I , say the estimator I of Kreiss 1987 , and ann

estimator for C , sayq

2 2C s m y v q v q y m .Ž . Ž .Ž .n 4 n n n 3n

THEOREM 3. The estimator

ˆ U y1 Uq s a q q 1 y a v m ,Ž . Ž .n n n n 2 n

with
y1 2XUa s 1r 1 q I C v q ,Ž . Ž .Ž .n n n n

is regular and efficient for q at p.

ˆ y1Ž . Ž .PROOF. We show that q has influence function f x, y s I s x, y , withn
Ž . Ž . Ž .s and I defined in 3.8 and 3.9 , respectively. From 3.11 we obtain by

y1Ž U .Taylor expansion that v m has influence function2 n

y1 2 y1Xv q y y q x y v q y v q m y y q x .Ž . Ž . Ž . Ž . Ž .Ž .3

U Ž .The influence function of q is given in 3.10 . The estimator a is consistentn n
for

y1 2XUa s 1r 1 q I C v q .Ž . Ž .Ž .q
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ˆIt follows that q has influence functionn

y1 XU2ya 1 y q I v q xl y y q xŽ . Ž . Ž .Ž .
y1 2 y1Xq 1 y a v q y y q x y v q y v q m y y q xŽ . Ž . Ž . Ž . Ž . Ž .Ž .3

s Iy1 yxlX y y q x q Cy1 vX qŽ . Ž .ž q

=
2v q y y q x y v q y m y y q xŽ . Ž . Ž . Ž .Ž .ž / /3

s Iy1 yxlX y y q x q t y y q xŽ . Ž .Ž .
s Iy1s x , y .Ž .

ˆHence q is regular and efficient for q at p. In
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