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A ROBUST ADJUSTMENT OF THE
PROFILE LIKELIHOOD1

BY JAMES E. STAFFORD

University of Western Ontario

Under mild misspecifications of model assumptions, maximum likeli-
hood estimates often remain consistent and asymptotically normal.
Asymptotic normality will often hold for the signed root of the likelihood
ratio statistic and the score statistic as well. However, standard estimates
of asymptotic variance are usually inconsistent. This occurs when Bartlett’s
second identity fails. In the manner of McCullagh and Tibshirani, a
variance correction may be used to adjust the profile likelihood so this
identity obtains. The resulting likelihood yields the robust versions of the
signed root, Wald and score statistic suggested by Kent and Royall.

Assuming model correctness, asymptotic expansions for the first three
cumulants of each robust statistic are derived. It is seen that bias and
skewness are not severely affected by using a robust statistic. An invari-
ant expression derived for the asymptotic relative efficiency of a robust
method allows assessment in numerous examples considered. Even for
moderately large sample sizes, losses in efficiency are significant, making
the misuse of a robust variance estimate potentially costly. Computer
algebra is used in many of the calculations reported in this paper.

1. Introduction. Consider the situation where data x , . . . , x are as-1 n
sumed to be independent realizations of a distribution that belongs to the

� Ž . 4 Ž .parametric family f X , u g Q , where f X is the joint density for theu u

data and u may be partitioned into a scalar parameter of interest c and a
nuisance parameter l. Inference for c , the true value of c , may be based on0

Ž .the signed square root of the likelihood ratio statistic r c , the score function
ˆŽ .u c or the maximum likelihood estimate c . Standard asymptotic results

show

r c ª N 0, v ,Ž . Ž .0 r

'u c r n ª N 0, v ,Ž . Ž .0 u1Ž .
ˆ'n c y c ª N 0, v .Ž .Ž . ˆ0 c

Typically, v s 1 and expressions for v , v simplify so they may be consis-ˆr u c

tently estimated by quantities that depend solely on the observed informa-
tion. However, under a mild model misspecification, where v , v and v doĉr u
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not simplify, estimates of variance based on the observed information will be
inconsistent.

Under model misspecification, it is the failure of Bartlett’s second identity,
which equates the variance of the score and the expected Fisher information,
that does not allow simplification in expressions for asymptotic variance. A
robust adjustment of the profile log-likelihood to correct this identity is

Ž .motivated in the manner of McCullagh and Tibshirani 1990 and leads to a
simple adjustment involving v , a sample version of v . The resulting robustr̂ r
profile likelihood is invariant under a broad class of reparameterizations and
has observed information that provides the usual robust estimates of vari-

Ž .ance given in Kent 1982 . This is discussed in detail in Section 2.
The main results of this paper may be found in Section 3. Here, we

compare asymptotic expansions of the first three cumulants of the signed
root, score and maximum likelihood estimate, standardized by model-based
and model-robust variance estimates. An implicit assumption of the paper is
the preference of robust methods when a model misspecification occurs. This
is sensible given that robust methods remain asymptotically correct while
model-based methods typically do not. Therefore cumulant comparisons are
made assuming model correctness. This allows us to assess the effect of using
a robust variance estimate when it is unnecessary and provides insight into
the importance of model assumptions to improve the accuracy of inference. If
comparisons were favourable, then robust variance estimates could be used
at all times.

Expressions for bias and skewness are found to agree to order ny3r2, and
hence, robust variance estimate has a limited effect on these cumulants.
Model-robust estimates of variance tend to be more variable than their
model-based counterparts. For example, the model-based estimate of variance
for the signed root is simply 1. One would then expect this to result in a more
variable test statistic that may fall into a rejection region more often. A
measure of asymptotic relative efficiency F, that may be used to make
variance comparisons, is derived. Numerous examples are considered in
Section 4, where computer algebra methods are used to evaluate F. For these
examples, robust methods appear to be much less efficient than their model-
based competitors, as one might suspect.

Throughout this paper, we assume broad conditions like those found in
Ž . Ž .Huber 1967 or White 1982 that ensure the consistency of the maximum

ˆŽ . Ž .likelihood estimate and the asymptotic normality of r c , u c and c . Under
ˆ U Ua model misspecification, we denote the limit of u by u with components c

and lU, and under model correctness, by u with components c and l . In0 0 0
U w Ž .some special cases, c and c will coincide Gould and Lawless 1988 ; Lin0

Ž .xand Wei 1989 . However, in general this will not be the case, and one must
assume that under a model misspecification c U still has a meaningful
scientific interpretation since this is the only quantity for which we may
conduct inference.

The remainder of this introduction is devoted to the development of
Ž .notation. Let l u denote the usual log-likelihood function with components
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Ž .l u , i s 1, . . . , n. We will occasionally use the alternative representationi
ˆŽ . Ž .l c , l for the log-likelihood and, similarly, l c , l for a component. Let li c

be the constrained maximum likelihood estimate for l holding c fixed. When
ˆl is replaced by l in the log-likelihood, the result is called the profilec

Ž . Ž .log-likelihood l c . Letting  s r c , the signed square root of the likeli-p c

hood ratio statistic and the score function are defined as
1r2ˆ ˆr c s sgn c y c 2 l c y l c ,Ž . Ž .Ž . Ž .½ 5p p

˙u c s l c s  l c .Ž . Ž . Ž .p c p

ˆ ˆLet c and l be the c and l components of the global maximum likelihood
ˆestimate u . The parameter u has length p q 1; a component of u is denoted

Ž . Ž .with the use of a subscript u . Derivatives of l u or l u are also indicatedr i
Ž .by the use of subscripts. Let  s r u ,r r

l s    l u , l s   l u .Ž . Ž .r st r s t i ; r s r s i

Expected values of sums of products of derivatives of the components of the
log-likelihood function are called expected information quantities,

y1 y1w xI s n E l , I s n E l l .Ýr st r st r , st i ; r i ; st
i

Sums that are centered and scaled so they are bounded in probability are
denoted as

n
y1r2 1r2 y1r2 1r2z s n l y n I , z s n l l y n I .Ýr st r st r st r , s i ; r i ; s r , s

is1

Ž .These are typically referred to as O 1 random variables. Occasionally, inp
our notation we require explicit dependence of expressions on c and l and,
hence, we subscript terms by these parameters. The nuisance parameter is
assumed to be a vector and hence it is subscripted as well to denote a
component of that vector:

l s    l u ,Ž .i ; cl l c l l ir s r s

I s E l l ,l , l c i ; l i ; l cr s r s

n
y1r2 1r2z s n l l y n I .Ýl , c i ; l i ; c l , cr r r

is1

The notation I r s and I lr ls is used to denote the matrix inverses yIy1 andr s
y1 Ž . Ž . r s ccyI , respectively. The c , c and c , l components of I are denoted Il l rr s

and Iclr. On occasion, we will estimate an expected information quantity by
an observed quantity. For this we use the notation

y1 ˆ y1 ˆ ˆ lr ls y1J s n l u , J s n l u l u , J s yJ .Ž . Ž . Ž .Ýcl cl l , l c i ; l i ; l c l lr r r s r s r s
i

Finally, since we are in a multiparameter setting we use the summation
convention to represent inner products, where a subscripted index repeated
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as a superscript represents an implicit sum over that index. For example,
p

r s r sI z s I z .Ýs s
ss1

2. Bartlett’s second identity and estimates of variance. The Bartlett
identities result from the density being normed,

f x dx s 1.Ž .H u

Successive differentiation of this integral with respect to the components of u
rŽ . Ž . r sŽ . Ž .yields identities. Let f x s  f x and f x s   f x . Thenu r u u r s u

f r xŽ .u rI s l f x dx s f x dx s f x dx s  f x dx s 0Ž . Ž . Ž . Ž .H H H Hr r u u u r uf xŽ .u

and similarly,
rf xŽ .uyI s y l f x dx s y  f x dxŽ . Ž .H Hr s r s u s u½ 5f xŽ .u

f r x f s x f r s xŽ . Ž . Ž .u u us f x dx y f x dxŽ . Ž .H Hu uf x f x f xŽ . Ž . Ž .u u u

s l l f x dx y   f x dx s I .Ž . Ž .H Hr s u r s u r , s

Now consider a model misspecification where the true density for the data
Ž . � Ž . 4g x does not belong to the family f X , u g Q . The cancellations necessaryu

to derive the above identities will not occur since

f r x f r s xŽ . Ž .u ur r sg x / f x , g x / f x ,Ž . Ž . Ž . Ž .u uf x f xŽ . Ž .u u

and hence the identities cannot be obtained.
ˆ UThe maximum likelihood estimate u will converge to u , the value of the

Ž .parameter that minimizes the Kullback]Leibler distance between f x andu

Ž .g x :

g xŽ .
d f , g s log g x dxŽ . Ž .Hu ½ 5f xŽ .u

s log g x g x dx y log f x g x dx .� 4 � 4Ž . Ž . Ž . Ž .H H u

Ž . USince d f , g is minimized at u it is the case thatu

U U d f , g s l g x dx s 0Ž . Ž .Hr u rusu usu

and so the expected value of the score is zero at u U, even if the model is
misspecified. However, only in very special cases will the second identity hold.
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That is, we usually have

y l g x dx / l l g x dx , ;u g Q.Ž . Ž .H Hr s r s

The failure of Bartlett’s second identity has implications for estimates of
asymptotic variance. Standard asymptotic calculations like those given in

Ž .Kent 1982 show
2c r c s cc c r c s cc c r c sv s I I I rI , v s I I I r I , v s I I I ,Ž .Ž . ˆr r , s u r , s c r , s

which simplify to v s 1, v s 1rIcc and v s Icc when I s yI . Thisĉr u r , s r s
allows variance estimates to be based on the observed information alone.
However, when a model is misspecified and such simplifications cannot occur,

Žthen such estimates will be inconsistent. Note that under model correctness,
asymptotic variance may also be consistently estimated by the expected

ˆ Ž .Fisher information evaluated at u . Efron and Hinkley 1978 show, however,
.that the observed information is preferable.

In developing robust methods that address model misspecifications where
the second Bartlett identity fails, it is natural to consider correcting the

Ž .identity. McCullagh and Tibshirani 1990 adjusted the profile likelihood so
the first two Bartlett identities obtain to higher order. Their adjustment was
motivated by an effort to reduce the effect of nuisance parameter estimation
when the model is correctly specified and belongs to a class of adjustments for

w Ž . Ž .xthis purpose Barndorf-Neilsen 1983 ; Cox and Reid 1987, 1993 which
Ž .have been extensively studied by DiCiccio and Stern 1994a, b . They begin

by showing that under model correctness,

2y1 y1 y1 y1 y1E n u c s O n , E n u c y E n u c s O n .� 4Ž . Ž . Ž . Ž . Ž .˙

That is, these identities hold asymptotically, but are only approximate for a
finite sample size. To improve these approximations, a bias and variance

Ž . Ž .correction of the profile score is developed by solving for e c and v c such
that

E u c s 0, Var u c s yE  u c ,Ž . Ž . Ž .ˆ ˆ ˆl a l a l c ac c c

Ž . Ž .� Ž . Ž .4where u c s v c u c y e c . The adjusted profile log-likelihood is thena
Ž . c Ž .l c s H u t dt. The solutions are simplya a

yE  u c y e c� 4Ž . Ž .l̂ cce c s E u c , v c s .Ž . Ž . Ž .l̂c Var u cŽ .l̂c

Now rather than adjusting the profile likelihood for the effect of nuisance
parameter estimation, we consider the use of the McCullagh and Tibshirani
Ž .1990 adjustment for robust purposes. In the case of a model misspecifica-

Ž .tion, only the second Bartlett identity fails and so we may let e c s 0. Given
the true model is unknown, we cannot compute the expected values required

Ž .to implement v c and so replace it by the asymptotically equivalent quan-
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Ž . Ž . Ž . Ž . Ž . Ž . n � Ž .42tity v c s i c rj c , where i c s y u c and j c s Ý u c . Theˆ c is1 i
adjusted profile likelihood then becomes

c
v t u t dt .Ž . Ž .ˆH

Ž .To elucidate implementation, integration can be avoided by replacing v cˆ
ˆŽ .by the asymptotically equivalent quantity v c without affecting the desiredˆ

property that the second Bartlett identity obtains. The result is the robust
ˆŽ . Ž . Ž .profile likelihood l c s v c l c which has the following properties, whichˆr p

are demonstrated below:

1. The second Bartlett identity obtains asymptotically.
� 4 � Ž . Ž .42. It is invariant under transformations of the form c , l ª t c , v c , l .

Ž .3. Just as the standard statistics result from l c , the signed root, score andp
Ž .Wald statistics based on l c are simply the robust standardizations ofr

ˆŽ . Ž .r c , u c and c .
ˆŽ . Ž . Ž .4. If there is no nuisance parameter present, then l c s v c l c , whereˆr

¨ n ˙ 2Ž . Ž . Ž . � Ž .4i c s yl c and j c s Ý l c .is1 i

Ž .The first property results from the construction of l c and can be verifiedr
y1 ˙Ž . w Ž .xby differentiating l c and noting the result. In particular, note E n l cr r

y1 y1 ˙ 2 y1¨ y1r2Ž . � Ž .4 Ž . Ž .s O n , and n l c and n l c differ by O n . The fourthr r
property is entirely straightforward.

ˆ cc y1Ž . Ž .Invoking standard calculations, we can show i c s J and similarly
ˆ c r c s cc 2Ž . � Ž . 4j c s J J J r J . Hence we haver , s

y1c r c sJ J J 1r , sˆv c s s ,ˆŽ . cc½ 5 vJ r̂

where v is simply a sample version of v . So the signed root, standard scorer̂ r
1r2 1r2'Ž . Ž . Ž . Ž .and Wald statistics based on l c are simply r c rv , u c r n v andˆ ˆr r u

1r2ˆ' Ž .n c y c rv , whereˆĉ

2c r c s cc c r c sv s J J J r J , v s J J J .Ž .ˆ ˆˆu r , s c r , s

Ž .That is, they are simply the robust statistics suggested by Kent 1982 based
Ž .on the asymptotic results 1 . The Wald statistic is standardized by v , theˆĉ

well known ‘‘sandwich’’ estimator that occurs naturally in the theory of
M-estimation and was evaluated for many parametric settings in Royall
Ž . Ž .1986 . Barndorff-Nielsen and Sorensen 1994 generalize its use to martin-
gale theory.

Ž .To establish the invariance properties of l c , consider a reparameteriza-r
� Ž .4tion to h. The log-likelihood for h is l u h and similarly the log-likelihood for

ˆ ˆi i� Ž .4 Ž . � 4 < � 4 <u is l h u . Note h s h u and let u s u s u rh with inverseˆ hsh hshˆ ˆr r i r
r � r4 < � 4 <h s h s h ru . From this we haveˆ ˆˆ usu usui i r i

ˆi ˆj ˆi ˆj h rhs r i j sJ s u J u , J s u J u , J s h J h .ˆ ˆh h r i j s h , h r i , j s i jr s r s
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Assuming h is the parameter of interest, then we have under reparameteri-1
zation

y1h h h h 1 i j k l 11 i j 1J J J h J J J hˆ ˆh , h i j , k li jv h s s ,Ž .ˆ ˆ1 h h½ 5 1 i j 11 1J h J hˆ ˆi j

ˆ r 1Ž .which equals v c if h is block diagonal; that is, if h s 0, i ) 1. Anˆ i i
Ž .important class of transformations under which l c is invariant are thoser

that preserve c and hence its interpretability. In the context of the adjusted
Ž .profile likelihood of Cox and Reid 1987 , transformations of this type, that

also achieve parameter orthogonality, reduce the effect of nuisance parameter
estimation on inference for c . In the present context, the effect of nuisance

Ž .parameter estimation is not a concern, but Kent 1982 does show that
parameter orthogonality under the true model simplifies the robust variance
estimates. However, in the case of a model misspecification, parameter
orthogonality typically cannot be obtained because the true model is un-
known.

3. General cumulant expressions. For each of the signed root, score
and Wald statistics, we have the choice between a model-robust standardiza-
tion s versus a simpler model-based version s . The cautious user mayr m

Žprefer to use s more often than is actually necessary in M-estimation s isr r
.always used . In this section, we study the effect of redundant use of s byr

comparing, under model correctness, asymptotic expansions for the first three
cumulants of each statistic standardized by s and then by s . The explicitm r
details of how the expansions are derived are lengthy and therefore deferred
to the Appendix. An outline is provided here.

Differences in the expansions are due to differences in the expansions for
s and s . In each case we will haver m

s s s q ny1r2s q ny1s q O ny3r2 ,Ž .m 0 11 21 p

s s s q ny1r2 s q s q ny1 s q s q O ny3r2 ,Ž . Ž . Ž .r 0 11 12 21 22 p

where s , s , . . . represent the coefficients of the powers of n. The expansion11 12
of s shares all the terms in the expansion of s . Hence, the additional termsr m
s and s in the expansion of s are of interest since they will effect all12 22 r

Ž . Ž .differences in all subsequent calculations. Allowing T to be either r c , u c
ˆor c y c , T has an expansion of the form

T s T q ny1r2T q ny1T q O ny3r2 .Ž .0 1 2 p

Letting T s Ts and T s Ts we then haver r m m

T s T s q ny1r2 T s q T sŽ .m 0 0 1 0 0 11

q ny1 T s q T s q T s q O ny3r2 ,Ž . Ž .0 21 2 0 1 11 p

T s T s q ny1r2 T s q T s q T sŽ .r 0 0 1 0 0 11 0 12

q ny1 T s q T s q T s q T s q T s q O ny3r2 .Ž . Ž .0 21 0 22 2 0 1 11 1 12 p
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Letting d s T y T , thenr m

d s ny1r2s T q ny1 T s q T s q O ny3r2 .Ž . Ž .12 0 0 22 1 12 p

w xCalculations in the Appendix show E T s s 0 for each pair of competing0 12
Ž .statistics. Also, T s , T s involve odd powers of O 1 random variables0 22 1 12 p

that will have expected values with order ny1r2. Hence,

w x y3r2d s E d s O n .Ž .1

The case of the skewness is almost as simple. For any random variable X,
we may write the skewness r in terms of its moments,X

3 w i xr s m y 3m m q 2m , m s E X .X 3 2 1 1 i

For T , T we haver m

m3 s O ny3r2 , m s 1 q O ny1 , m s O ny1r2 ,Ž . Ž . Ž .1 2 3

3
3 3 3 2 3 3 2 y3r2E T s E T s q T T s q T s s q O n ,Ž .Ž .m 0 0 0 1 0 0 0 11'n

3
3 3 3 2 3 3 2 3 2 y3r2E T s E T s q E T T s q T s s q T s s q O n ,Ž .r 0 0 0 1 0 0 0 11 0 0 12'n

and so

d s r y r3 T Tm r

3
3 2 2 2 y3r2w x w xs E T s s y E T E T y E T E T q O nŽ .� 4Ž .0 0 12 m m r r'n

3 3
3 2 y3r2 3 2 y3r2w xs E T s s y E d q O n s E T s s q O n .Ž . Ž .� 40 0 12 0 0 12' 'n n

w 3 2 xCalculations in the Appendix show E T s s s 0 for each pair of competing0 0 12
Ž y3r2 .statistics and hence d s O n . One important consequence of this is that3

Ž y3r2 .the signed root retains the property that its skewness is O n under
w Ž .xrobust standardization DiCiccio 1984 .

For two competing statistics with similar bias and skewness properties, a
comparison of variances will provide insight into relative behaviour. In
particular, the statistics with larger variance will typically fall into a common
rejection region more often. One cannot expect this to always be the case,
especially given that other distributional characteristics, like kurtosis, have
an effect as well. However, unfavourable variance comparisons can alert us to
inefficiencies.

A natural way to make variance comparisons is through a measure of
Ž .asymptotic relative efficiency ARE

F s ARE T , T s Var T rVar T .Ž . Ž . Ž .m r r m

Given model correctness, both s and s are consistent for the same quan-m r
tity. Hence it becomes necessary to examine higher order terms.



J. E. STAFFORD344

We have
w x w xVar T s Var T q T y T s Var T q dŽ .r m r m m

w x w x w xs Var T q Var d q 2 Cov T , d .m m
Let

n
y2w xVar T s 1 q q O n .Ž .m n

Ž y1r2 . w x w x Ž y1 .Since d s O n , both Var d and Cov T , d are O n , and sop m

w x w x w x w xF s Var T q Var d q 2 Cov T , d rVar T� 4m m m

y1n n
y2 y2w x w xs 1 q q Var d q 2 Cov T , d q O n 1 q q O nŽ . Ž .m½ 5 ½ 5n n

n n
y2w x w xs 1 q q Var d q 2 Cov T , d 1 y q O nŽ .m½ 5 ½ 5n n

w x w x y2s 1 q Var d q 2 Cov T , d q O nŽ .m

w 2 x w x y2s 1 q E d q 2 E T d q O nŽ .� 4m

22 s T s12 0 0 y1 2 2 2 2s 1 q E q n s T q 2 s T s q 4T T s s q 2T s s� 412 0 22 0 0 1 0 12 0 0 11 12y1r2n

q O ny2 .Ž .
Calculations in the Appendix show that for each pair of competing statis-

tics the asymptotic relative efficiency is
L

i j i jF s 1 y I q I q 3I q 4I q 2 A I A q I I A� 4r stu rs , tu r , s , tu r , stu rsi tu j i , r , s tu j4nk0

Ic rIc sI tu

y I q 6I q 8 I q 2 I q 2 I� r stu r t , su r , t , su r , stu t , r su22nk0

qA I i jA q 4I I i jA q O ny2 ,Ž .4r si tu j i , r t su j

where C s Ic rIc sIc tIc u and A s I q I q I . Note F possesses ther si r , si s, r i r si
same invariance properties as the robust profile likelihood.

4. Examples. In this section, we consider a variety of examples where
the above expression for the asymptotic relative efficiency is evaluated and
terms of order ny2 or smaller are ignored. In most cases, the robust methods
suffer losses in efficiency that are severe for small sample sizes. Some
simulation results are also presented where we focus on the signed root of the
likelihood ratio statistic. For these, and others not reported, the robust
methods tend to result in confidence intervals that under-cover. In the
examples, the maximum likelihood estimate is either a common summary
statistic, like a mean, variance or correlation coefficient, or it is a regression

Ž .coefficient, where we assume the developments of Gould and Lawless 1988 .
That is, the maximum likelihood estimate is meaningful in the presence of a
model misspecification.
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Computer algebra methods are used for the evaluation of F. These meth-
ods involve operators for evaluating highly nested sums and the expected
information quantities that compose the terms in a sum. The relevant code,

w Ž .xwritten in Mathematica Version 2.0 see Wolfram 1988 , is available at the
ftp site utstat.toronto.edu in the file ARE.tar. The expansion for F is
provided in a form that may be manipulated in Mathematica, and instruc-
tions for the use of the code are given along with an example. For detailed

Ž .information related to these tools see Andrews and Stafford 1993 , Stafford
Ž . Ž .and Andrews 1993 and Stafford, Andrews and Wang 1994 .

Ž .EXAMPLE 1 Normal mean, variance unknown . For this example, data x ,i
i s 1, . . . , n, are assumed to be from a univariate normal distribution with
mean c and variance l. For this case, the observed information is diagonal

� cc 42and so the sandwich estimator is simply J J . However, J s yJ sc , c c , c cc
n 2Ž .Ý x y x rn and hence the robust methods reduce to the model-specificis1 i

methods. That is, the usual methods of inference based on the maximum
likelihood estimate, score or signed root are robust in this case. Here, the
above expression equals 1 as it should.

Ž .EXAMPLE 2 Normal regression . This example also appears in DiCiccio
Ž . Ž .and Stern 1994b . We assume data y , x , i s 1, . . . , n, derive from ai i

regression model where the conditional expectation of y given x is a linear
function of x, x t b ; errors are normally distributed with variance s 2. Thei
parameter of interest is s and the resultant expression for the asymptotic
relative efficiency is 1 q 9rn. Note that this is not only independent of the
parameters in this model, but also of the design. That is, this case is
equivalent to Example 1 where the parameter of interest is the standard
deviation rather than the mean.

For this example, we simulated data from a regression with two covariates,
n s 10 and s s 1. This value of s was tested at 95% level for 5000
simulations. The usual signed root rejected this hypothesis at the rate 0.0594,
while the signed root of the robust profile likelihood rejected this hypothesis
at the rate 0.1084. Figure 1 is a plot of the quantiles for the normal
distribution against the simulated values of the signed root of the likelihood
ratio statistic and its robust version. The quantiles of the robust statistics are
shifted a greater distance from the diagonal. The dotted line represents
where the theory predicts the robust quantiles should lie. The line passes
through the origin with slope determined by F. Here, there is close agree-
ment between theory and simulation.

Ž .EXAMPLE 3 Exponential regression . In this example, data are assumed
y1 Ž .to have exponential distribution with mean l exp yc z , where the slope ci

is the parameter of interest. For this case, a component of the log-likelihood is

c z y log l y ly1 y exp yc z .Ž . Ž .i i i

Expressions derived are simplified by standardizing the covariate so Ýz s 0.i
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FIG. 1. Normal regression: Q-Q plots for the simulated values of the signed square root of the
profile likelihood ratio statistic and its robust counterpart. The line gives the location of the
quantiles of the robust statistic as predicted by the theory.

This also has the effect of orthogonalizing the parameters. Letting z sj
ny1Ýz j, the asymptotic relative efficiency isi

217z 5z 14 2
F s 1 q y y .2 3 2nz n z n2 2

Ž .EXAMPLE 4 Correlation coefficient . For this example, we assume bivari-
T Ž . Ž . Tate data x s x , x , i s 1, . . . , n, derive from N m, S , where m si 1 i 2 i

Ž .m , m and1 2

2s str
S s .

2str t

A component of the log-likelihood is

T1 12 y1y log 1 y r y log s y log t y x y m S x y m .Ž . Ž . Ž . Ž .Ž . i i2 2
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The calculations for this example are complicated by the relatively large
number of parameters. For instance, the derivative l has 33 terms andi, rrrr

the evaluation of the above expression for asymptotic relative efficiency
involves inner products of arrays with dimension 4 or 6. This means that
some inner products are nested sums with possibly 56 terms that are ex-
pected values of products of terms like l . This is an extremely compli-i, rrrr

cated calculation.
Ž .Lawley 1956 used properties specific to the normal distribution to sim-

plify calculations in this case. We choose to explicitly evaluate all inner
products. The use of computer algebra tools greatly simplifies such a calcula-
tion. The value of F is simply 1 q 6rn.

w Ž .xEXAMPLE 5 Normal regression revisited . We again consider the case of
a normal regression model where

y s m q c x q b x q « ; « § N 0, s 2 , i s 1, . . . , n.Ž .i 1 i 2 i i i

The parameter of interest is the coefficient c of the first covariate. The
second covariate is assumed to contribute nuisance variation in the data.
Calculations are again complicated for this example and again computer
algebra is of valuable assistance. Letting m s ny1Ýx j x k , the asymptoticˆ jk 1 i 2 i
relative efficiency is

1 q y4m2 m4 q 2m m4 y 10m m3 m q 17m2 m2 m y 12m3 m mˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ02 11 04 11 02 11 13 02 11 22 02 11 31ž
q8m3 m2 m q m m m2 m y 2m2 m m m q m3 m mˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ02 11 20 02 04 11 20 02 11 13 20 02 22 20

2
4 2 4 2 2y4m m q 3m m r nm ym q m m .ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆŽ .02 20 02 40 02 11 02 20ž //

When the design is orthogonal, this expression simplifies considerably to

1 q 3m q m y 4 rn.ˆ ˆŽ .40 22

Ž .EXAMPLE 6 Parameter orthogonality . In this last example, we test the
invariance property of F by considering two examples where parameters

w Ž .xmay be orthogonalized Cox and Reid 1987 . Consider first, bivariate data
Ž . Ž .y1x , x , i s 1, . . . , n, from exponential distributions with means cl and1 i 2 i
ly1, respectively. A component of the log-likelihood is

ylog c q 2 log l y x r cl y x rl,Ž . Ž . Ž .1 2

and the parameter of interest is c , the ratio of the two means. Under both
this parameterization and the orthogonal parameterization given in Cox and

Ž .Reid 1987 , F was calculated to be 1 q 5rn.
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In the case of a Weibull distribution, where data x , i s 1, . . . , n, arei
assumed to have density

cy1 cyŽ x rl.crl xrl e ,Ž .

and interest lies in the index c , F was calculated to be 1 q 9.813rn for both
parameterizations.

5. Final remarks. In conclusion, the use of a model-robust variance
estimate for the signed square root, score or Wald statistic, while leaving bias
and skewness characteristics relatively unchanged, can increase variability
considerably. In the examples considered, robust methods are much less
efficient than their model-based counterparts. This suggests caution should
be used when employing a robust method. It also reflects the importance of
model assumptions in improving the precision of inference.

Robust methods were derived from an adjusted profile likelihood due to
Ž .McCullagh and Tibshirani 1990 . An important aspect in the development

˜ c ˆŽ . Ž . Ž . Ž . Ž . Ž .was to approximate the integral l c s H v t u t dt by l c s v c l cˆ ˆr p r p
Ž . Ž .from which the standard results of Kent 1982 and Royall 1986 can be

˜ Ž .obtained. A question of interest is whether this is wise given l c makes anr
Ž .adaptive adjustment over the entire range of c while l c does not. Ar

Ž 2 .simple example is illuminating. Consider data x , . . . , x from a N c , s1 n
distribution where model assumptions incorrectly specify that s s 1. The

Ž . Ž . Ž .2 Ž . Žlog-likelihood function is l c s l c s yÝ x y c r2, v c s Ý x yˆp i i
2 2ˆ. Ž . Ž .c rn and v c s Ý x y x rn and the profile log-likelihood under the trueˆ i

Ž . � Ž .4model is l c s yn log v c r2. What is compelling about this example isˆt p
˜ Ž . Ž . Ž .that l c is exactly l c while this is not the case for l c . So even thought pr r

Ž .l c is computationally convenient, a compromise is sometimes made. This isr
perhaps worth further investigation.

APPENDIX

Below are the detailed calculations involved in deriving the results of
Section 3. Computer algebra tools such as those discussed in Stafford, An-

Ž . � cc 41r2 r r sdrews and Wang 1994 were instrumental. Let k s I , z s I z ,0 s
z lr s I lr ls z and zc s Ic sz . Expansions of the signed root, Wald and scorel ss w Ž . Ž .xstatistic are well known Lawley 1956 ; DiCiccio and Stern 1994b and from
these we have

T T c c c c c0 1 1 2 3 4 5
1c c r s c r s tˆ' Ž .n c y c z I z z q I I z z 1 0 y3 1 3r s r st2

1y1 r2 c 2 2 c r l c r l ls s tŽ . Ž .� 4n u c z rk 1r2k I z z q I I z z y1 y4 1 0 10 0 rl rl l2s s t
1 1c c r s c r l c r s tsŽ . Ž .�r c z rk 1r2k I z z y I z z y I I z z 0 y2 y1 20 0 r s rl r st3 2s

1 1c r s l c r l lt s t4y I I z z y I I z zr sl rl l3 3t s t
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together with coefficients c , . . . , c defined for later use. To determine the1 5
coefficients for the various estimates, let

A s y z q I z tŽ .r s r s r st

1 1t t u t v u t w u vB s y z z q I z z q I I z z q I I I z z ,Ž .r s r st r stu r st uv r st uv w2 2

C s z q I q I z t ,Ž .r s r , s r , st s , r t

1t t uD s z q z z q z z I q I q 2 IŽ . Ž .r s r , st s , r t s , r tu r , stu r t , su2

1t v u t w u vq I z z q I I z z I q I ,Ž .Ž .uv uv w r , st s , r t2

E r s s yI r tA I u s ,tu

F r s s I r tA I uvA I w s y I r tB I u s ,tu v w tu

G s Ic rC I sc q 2 Ecc ,cc r s

H s Ic rD I sc q 2 Fcc q 2 Ec rC I sc q Ec rI E sc .cc r s r s r , s

Using these expressions, we have the expansions

yJ s I q ny1r2A q ny1B q O ny3r2 ,Ž .r s r , s r s r s p

J s I q ny1r2C q ny1D q O ny3r2 ,Ž .r , s r , s r s r s p

J r s s I r s q ny1r2E r s q ny1F r s q O ny3r2 ,Ž .p

Jc rJ J sc s Icc q ny1r2G q ny1H q O ny3r2 ,Ž .r , s cc cc p

2cc cc cc� 4E F 3 Ey1r2cc y1� 4J s k y y q ,0 3 53' 2nk 8nk2 n k 0 00

G H 3G2
y1r2 cc cc ccc r sc y1J J J s k y y q ,� 4r , s 0 3 53' 2nk 8nk2 n k 0 00

2cc cc cc� 4E F E1r2cc� 4J s k q q y ,0 3' 2nk 8nkn 2k 0 00

y1r2
c r sc cc cc 2 ccJ J J G y2 E H y2 F 3G y4G Er , s cc cc cc ccs k y y q ,02 4½ 5cc ' 2nk 8nk2 n kw x 0 0J 0

y1r2c r sc cc ccJ J J G y E H y Fr , s cc ccs 1 y y
cc 22½ 5 'J 2nk2 n k 00

22 cc cc� 43G y 2G E y Ecc ccq .48nk0
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Let g s G y Ecc and k s H y Fcc. From the above expansions for T, scc cc m
and s and using the coefficients c , . . . , c , we haver 1 5

3c 3 3 2 c 5� 4T s s yz gr 2k , T s s s y z gr 2k ,Ž . Ž .0 12 0 0 0 12 0

2 22 c 4 2 2 c 2 6� 4 � 4T s s s y z gr 2k , T s s z g r 4k ,Ž . Ž .0 0 12 0 0 12 0

2c 4 2 c cc 6� 4T T s s s T z gr 2k , T s s s c z g E r 4k ,Ž . Ž .0 1 0 12 1 0 0 11 12 1 0

2 2 22 c 4 c 2 cc cc 6� 4 � 4 � 4T s s s y z kr 2k q z 3G q c G E q c E r 8k .Ž . Ž .ž /0 0 22 0 cc 2 cc 3 0

In particular,

2T 2s s q 2T 2s s q T 2s2
0 0 22 0 11 12 0 12

2 2c c� 4 � 4z k L z
s y q C y A C y c A .Ž . Ž .r s r s tu 5 tu4 6k k0 0

For the calculations that follow, we make use of numerous identities,

g X s z q z q A z i ,r s r , s r , s r si

g s Ic r C y A I sc s Ic rg X I sc , I q I q I q I q I s 0,Ž .r s r s r s r si r , si s , r i i , r s r , s , i

2 Xc r c s c y1r2 i j� 4E I I z g s n L I q I q A I I ,� 4r s r , s , t , u r , s , tu r si t , u , j

2 Xc cc i j y1� 4E z z g s I I q I q I I A q O n ,Ž .� 4r , s tu r , s , t , u r , s , tu r , s , j tui

2 Xc cc i j y1� 4E z z g s I I q I q I I A q O n ,Ž .� 4r , s tu r , s , tu r s , tu i , r s tu j

Xc i c u i j y1E z z z g s I I q I q A I I q O n ,Ž .� 4t i r s r , s , tu r s , tu tui j , tu

Xc j c u i j y1E z g z z s I I q I q I I A q O n ,Ž .� 4r s t j r , s , tu r s , tu j , tu r si

2c i c i c j cc i j y1� 4 � 4E z z 2 z q z s 2 I I q I I 2 I q I q O n ,Ž . Ž .Ž .r , si r si i , r , js i , jr s

2c l c t c u cc tu y1� 4E z z z s 2 I I q I I I q O n ,Ž . Ž .jl t , ju

2c k l c t c u cc tu y1� 4E z z z s 2 I I q I I q O n ,Ž .

w c X x w� c 43 X x w� c 42 j X x w c j k X xand the expected values E z g , E z g , E z z g , E z z z g ,r s r s r s r s
w c X l j x w c X j lk x w c X l j lk x Ž y1 .E z g z z , E z g I z z and E z g I z z are all O n ortlr s r s t jl r s tl lj k j k

w xsmaller. From these identities, we immediately have that E T s and0 12
w 3 x Ž y1 . w x w x Ž y3r2 .E T s s are O n and hence E d s E d are O n . Also, after0 0 12 1 3
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lengthy calculations we have

L
2 i jE T s s s y I q I q A I I ,Ž .0 0 12 r , s , t , u r , s , tu r si t , u , j4'n 2k0

c L4 c u i jw xE T T s s s y I q I I q I I A ,Ž .� 40 1 0 12 r , s , tu r s , tu j , tu r si42k0

2c i j� 4E z k s L I q 4I q 4I q 2 I q A I A� 4r stu r , stu r , s , tu r s , tu r si tu j

1
c r c s cc tuq I I I I I q 2 I q 2 I q 8 I� r stu r , stu t , r su r , t , su2

q6I q 4I I i jA q A I i jA ,4r t , su j , r t u si r si tu j

L
E C y A C y c AŽ . Ž .r s r s tu 5 tu6k0

L
cc i js I I q c q 1 I q c I q I q c I I A .Ž . Ž .� 4r , s , t , u 5 r , s , tu 5 r s , tu r , s , i 5 i , r s tu j6k0

Combining all the relevant terms yields the same expression for the signed
root, score and Wald statistics:

L
i j i jF s 1 y I q I q 3I q 4I q 2 A I A q I I A� 4r stu rs , tu r , s , tu r , stu rsi tu j i , r , s tu j4nk0

Ic rIc sI tu

y I q 6I q 8 I q 2 I q 2 I� r stu r t , su r , t , su r , stu t , r su22nk0

qA I i jA q 4I I i jA q O ny2 .Ž .4r si tu j i , r t su j
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