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AN EMPIRICAL BAYES APPROACH TO
DIRECTIONAL DATA AND EFFICIENT

COMPUTATION ON THE SPHERE1

BY DENNIS M. HEALY, JR. AND PETER T. KIM

Dartmouth College and University of Guelph

This paper proposes a consistent nonparametric empirical Bayes esti-
mator of the prior density for directional data. The methodology is to use
Fourier analysis on S2 to adapt Euclidean techniques to this non-
Euclidean environment. General consistency results are obtained. In addi-
tion, a discussion of efficient numerical computation of Fourier transforms
on S2 is given, and their applications to the methods suggested in this
paper are sketched.

1. Introduction. The statistical study of directional data concerns ob-
servations from a sample space taken as the p y 1 dimensional unit sphere,
S py1, where p G 2. The field goes back some time, with some of the earliest

Ž .developments provided by Fisher 1953 . Over the years, several monographs
Ž . Ž .have appeared: Mardia 1972 , Watson 1983 and Fisher, Lewis and Emble-

Ž . Ž .ton 1987 . Jupp and Mardia 1989 provided a comprehensive in depth
review of the directional statistics literature over the period 1975]1988. The

Ž .period prior to 1975 is reviewed in Mardia 1975 .
The usual statistical approach to directional data is a frequentist one. To

date, a very limited number of Bayesian techniques have been formulated.
Ž .Indeed, we are aware of only Mardia and El-Atoum 1976 , Lo and Cabrera

Ž . Ž . Ž .1987 , Guttorp and Lockhart 1988 and Bagchi and Guttman 1988 . Part of
the difficulty is that Bayesian techniques for directional data do not often
work out as in the Euclidean setting. Indeed, even with parametric assump-
tions, it is often the case that closed form solutions do not exist. One way to
partly alleviate this difficulty is to implement conjugate priors, which is the
case in most of the above-mentioned works; in fact, all of the above-men-

Ž .tioned works with exception of Lo and Cabrera 1987 .
Although the use of conjugate priors mathematically simplifies the calcula-

tions, the resulting loss of freedom in the choice of the prior may not be
desirable. In fact, prior selection in Bayesian analysis can be problematic,
particularly if the analysis is sensitive to the prior density. Even when it is
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agreed that the sampling distribution is of some particular parametric form,
there may be disagreement as to what the ‘‘correct’’ prior is. In such a setting,

Ž .one could adopt a nonparametric Bayesian approach as in Ferguson 1973
Ž .and Brunner and Lo 1989 ; alternatively, one could make the prior data

dependent. In this paper we will adopt the latter strategy and take the
Ž .empirical Bayes approach as suggested by Robbins 1955 .

In a nonparametric Euclidean setting, the empirical Bayes approach to
reconstructing the prior can be realized using Fourier methods; see Fan
Ž .1991 . In general, there is a well developed literature available for nonpara-
metric empirical Bayes estimation in the Euclidean case; see, for example,

Ž .Singh 1992 as well as the references contained therein. This is not true in
the non-Euclidean situation: while there has been some work on density

py1 w Ž . Ž .estimation on S see Beran 1979 , Hall, Watson and Cabrera 1987 , Bai,
Ž . Ž .xRao and Zhao 1988 and Hendriks 1990 , there has been no attempt to

formulate nonparametric empirical Bayes estimation of the prior density in
the spherical setting. Our goal is to provide such a technique.

In this paper we pay special attention to the case of the two-sphere.
Although, in principle, we can formally perform the analysis on any S py1,
p G 3, in so doing, we would have to substantially increase the technical
sophistication. Consequently, our focus will be on S2 with some remarks on
how one would extend to higher dimensions. Note that this restriction is also
motivated by the low dimension of many of the applications, in particular,
those coming from geophysics.

We now provide a summary of what is to follow.
2Ž 2 .Our approach is to use Fourier analysis on L S , in analogy to tech-

niques used in the Euclidean setting. This means that this approach largely
comes down to the study of special functions known as spherical harmonics.
Therefore, in Section 2 we provide a brief summary of some of the notions of
Fourier analysis on S2 and of spherical harmonics, as they will play an
integral part in the reconstruction of the prior.

In Section 3, we demonstrate how rotationally invariant densities on S2

can be thought of as the spherical analogue of the location type parametriza-
tion in Euclidean space. The effect is that when the sampling density is
integrated with respect to a prior on S2, the resulting unconditional marginal
density is a convolution of functions on S2. Applying a spherical Fourier
transform breaks apart the convolution similar to the Euclidean setting.
Consequently, the spherical transform of the prior can be formulated in terms
of the spherical transform of the marginal and the spherical transform of the
sampling densities. At this point we bring in the empirical Bayes methodol-
ogy. Indeed, unconditionally, the data are a random sample from the marginal
distribution. We can thus form an empirical version of the spherical trans-
form of the marginal, which then produces an empirical version of the
spherical transform of the prior. The final detail is to invert and smooth the
transform, which produces the nonparametric prior density estimator. Under
minimal conditions, we obtain consistency. If an additional smoothness condi-
tion is imposed, asymptotic L2 rate of convergence can be obtained.
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In Section 4, we illustrate how this can be used to obtain empirical Bayes
point estimates of the location parameter. In addition we work out the
situation when the sampling distribution is the Fisher]von Mises distribu-
tion. It turns out that in order to implement our procedure, the concentration
parameter has to be sufficiently large. In other words, the sampling density
needs to be significantly concentrated if reconstruction of the prior is to be
successful. We quantify how large the concentration parameter has to be.

In Section 5 we provide a brief discussion on efficient computation on S2 as
Ž .developed in Driscoll and Healy 1994 . In particular, for bandlimited func-

tions Driscoll and Healy show that for computing spherical harmonic expan-
sions, one can significantly decrease the number of computations required by
a naive implementation. This amounts to a fast Fourier transform on S2

which is applicable to the problem at hand.
All proofs of consistency are presented in Section 6. The relationship

Ž . 2between the rotation group SO 3 and the sphere S is included in the
Appendix as well as some technical proofs.

Finally, we would like to add that although this paper is written in a
Bayesian context, we could have equally written this paper in a mixture
framework. Indeed, most of the results of this paper are applicable to
nonparametric estimation of the mixture density in the directional setting.
This would provide a spherical analogue to the Euclidean version; see Zhang
Ž .1990 .

2. Fourier analysis and synthesis on the sphere. We provide a brief
discussion of the Fourier transform and its inverse for functions defined on
the sphere. This amounts to an orthogonal decomposition of any reasonable
function as a linear combination of special functions known as spherical
harmonics. These are adapted to the symmetries of the sphere, provided by
the usual rotations of space. A more thorough summary with references may

Ž .be found in Driscoll and Healy 1994 ; a comprehensive treatment can be
Ž .found in Courant and Hilbert 1953 . Other statistical works that use expan-

Ž . Ž .sions in spherical harmonics include Gine 1975 , Wahba 1981 and Hen-´
Ž .driks 1990 .

2Ž 2 .The Hilbert space L S is defined in the usual way with the inner
² : 2product f , h s H f h dv, where the overbar denotes complex conjugation.S

Ž .Here we use the essentially unique rotation-invariant area element on the
sphere,

p2p
1 f v dv s f v u , f sin u du df ,Ž . Ž . Ž .Ž .H H H

2vgS fs0 us0

in the usual coordinates. Its rotation invariance, that is,

f gv dv s f v dv ,Ž . Ž .H H
2 2vgS vgS

Ž .where g g SO 3 is the group of 3 = 3 real orthogonal matrices of determi-
nant 1, follows from the observation that this is the angular part of the polar

Ž . 3coordinate decomposition of the rotation-invariant Lebesgue measure on R .
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2 Ž . ŽFor a generic point v g S , we can write it as v u , f s cos f sin u ,
.tsin f sin u , cos u , where 0 - u F p , 0 - f F 2p and superscript t denotes

transposition. The conventional expressions for the spherical harmonics in
these coordinates are

2 l q 1 l y q !Ž . Ž .ql l iqf2 Y v s y1 P cos u e ,Ž . Ž . Ž . Ž .q q( 4p l q q !Ž .
where yl F q F l, l s 0, 1, . . . and P l are the Legendre functions. Theseq
functions are defined in the following way.

The Legendre polynomial is defined by

1 d l
l2P x s x y 1Ž . Ž .l l l2 l! dx

w x lŽ . Ž .for l G 0 and x g y1, 1 . Define Legendre functions by P x s P x and0 l

dq
qr2l 2 lP x s 1 y x P x ,Ž . Ž . Ž .q 0qdx

w xwhere 0 F q F l, l G 0 and x g y1, 1 . For yl F q F 0, define them through
the equation

l y q !Ž .ql lP x s y1 P xŽ . Ž . Ž .yq ql q q !Ž .
w xfor x g y1, 1 . The effect of this choice is that

q llY s y1 Y ,Ž .q yq

where 0 F q F l and l G 0.
The Legendre functions satisfy the recurrence relation

l y q q 1 P lq1 x y 2 l q 1 xP l x q l q q P ly1 x s 0.Ž . Ž . Ž . Ž . Ž . Ž .q q q

This recurrence is known to provide a numerically stable method of comput-
ing the values of the Legendre functions and it leads to efficient algorithms

Ž .for the computation of Fourier coefficients, as in Driscoll and Healy 1994 .
� l 4We noted that Y : yl F q F l, l s 0, 1, . . . form a complete orthonormalq

2Ž 2 .basis over L S adapted to the rotational symmetries of the sphere. Looking
at the infinitesimal generators of these rotation operators shows that the
spherical harmonics are the eigenfunctions of the Laplace]Beltrami operator
on smooth functions on S2,

1 ­ ­ 1 ­ 2
UD s sin u q ,2ž /sin u ­u ­u sin u ­f
l Ž .and for each l G 0, Y has corresponding eigenvalue l l q 1 for all yl F q Fq

l. In many treatments, this is used as the defining property of the spherical
Ž . Ž . Ž .harmonics; see Gine 1975 , Wahba 1981 and Hendriks 1990 .´

2Ž 2 .Let f g L S . We define the spherical Fourier transform of f as the
collection of its projections onto the elements of the spherical harmonic basis:

l lˆ3 f s f v Y v dvŽ . Ž . Ž .Hq q
2S
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for yl F q F l and l G 0. The spherical inversion can be obtained by

l
l lˆ4 f v s f Y vŽ . Ž . Ž .Ý Ý q q

lG0 qsyl

2 Ž . 2for v g S . We note that 4 should be interpreted as in the L sense,
although it can hold pointwise with additional smoothness conditions.

If one wants to generalize to arbitrary S py1, the way to proceed is to
Ž . Ž .realize that the p y 1 sphere is the quotient space of SO p modulo

Ž . Ž .SO p y 1 , where SO q is the group of q = q real orthogonal matrices of
Ž .determinant 1. Now SO p is a compact Lie group. Consequently, a complete
2Ž Ž ..orthonormal basis of L SO p can be obtained through the irreducible

Ž .representations of SO p ; see the Appendix for the p s 3 case. By transform-
Ž .ing these irreducible representations by the quotient map SO p ª

Ž . Ž .SO p rSO p y 1 , one can recover the higher dimensional spherical har-
Ž . Ž .monics which will satisfy 3 and 4 in the appropriate dimension. The case of

Ž .p s 4 is illustrated in Chapter 4 of Talman 1968 . The abstract case is
Ž .illustrated in Chapter 4 of Helgason 1984 . Discussions on the theory of

Ž . Ž .group representations can be found in Helgason 1984 and Diaconis 1988 .
Generalizations of the algorithms of Driscoll and Healy to higher dimensional

Ž .spheres may be found in Maslen 1993 .

3. Estimation. We begin the discussion by assuming rotational invari-
ance,

< t5 f x m s f m xŽ . Ž . Ž .
2 Ž . Ž . 2for x, m g S ; see Watson 1983 . Let p ? be the prior density on S . Then

the marginal density is

6 m x s p m f mt x dm ,Ž . Ž . Ž . Ž .H
2S

x g S2.
Ž .Now 6 represents convolution in the spherical setting and if we take the

spherical transform, then a simplification similar to that which occurs in the
familiar Euclidean case is obtained. We have the following convolution lemma,
whose proof is deferred to the Appendix.

2Ž 2 .LEMMA 3.1. Suppose f , p g L S . Then

4p
l l l̂m s 2p p f ,ˆ ˆ(q q 02 l q 1

where

l t lf̂ s f h v Y v dv ,Ž .Ž .H0 0
2S

Ž .th s 0, 0, 1 for yl F q F l and l G 0.
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l̂The consequence of Lemma 3.1 is that if f / 0 for l G 0, then0

1r2 l2 l q 1 mŽ . ˆ ql7 p sŽ . ˆq 3 l̂16p f0

for yl F q F l and l G 0.
t l̂Ž .Let us assume f m x is known. Consequently, f is known for l G 0. The0

statistical analysis comes in with respect to prior uncertainty, that is, an
Ž . Ž . Ž .unknown p ? , which of course implies an unknown m ? as defined in 6 . We

note, however, that if a random sample X , . . . , X is observed, then from a1 n
Bayesian point of view, we can regard this random sample as unconditionally

Ž .coming from 6 . This of course can then be used to construct an unbiased
estimator of ml for l G 0. Indeed, defineˆ

n1
n , l lm s Y Xˆ Ž .Ýq q jn js1

l̂for yl F q F l and l G 0. Assuming that f / 0 for l G 0, a logical estimator0
Ž .for 7 would be

1r2 n , l2 l q 1 mŽ . ˆ qn , l8 p sŽ . ˆq 3 l̂16p f0

Ž .for yl F q F l and l G 0. Finally, use spherical inversion 4 to define an
Ž .estimator of p ? , namely,

1rb l
n n , l l9 p v s p Y v ,Ž . Ž . Ž .ˆÝ Ý q q

ls0 qsyl

2 Ž .where v g S and b s b n ª 0 as n ª `. The latter is acting as a damping
factor which controls the accumulation of the higher order frequencies.

We have the following results, whose proofs will be deferred to Section 6.
� 4 � 4 Ž .For two sequences a and c , a s O c as n ª ` will be symbolized byn n n n

5 5 2Ž 2 .a g c as n ª `. Furthermore, ? will denote the L S norm.2n n

l̂Ž . < <THEOREM 3.2. For b s b n ª 0 as n ª `, suppose f / 0 for l s0
Ž . Ž .0, 1, . . . , 1rb. Furthermore, suppose f ? is continuous and p ? can be repre-

sented pointwise by its Fourier series. If
21rb1 2 l q 1Ž .

ª 0Ý 2l̂n < <fls0 0

as n ª `, then

< n < 2E p v y p v ª 0Ž . Ž .
as n ª ` for all v g S2.

Under stronger conditions we can determine the rate of convergence in the
2Ž 2 .L S norm.
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l̂ 2< <THEOREM 3.3. Suppose there is some C ) 0 and u g R such that f G0
yu Ž . Ž .Cl for all l s 0, 1, . . . . Furthermore, suppose f ? is continuous and p ? is s

times differentiable with square integrable derivatives. Then

5 n 5 2 y2 srŽ2 sq3qu.E p y p g n2

for s G 1 and u ) y2 s y 3 as n ª `.

4. Applications. In this section we discuss two applications. The first
application is in the empirical Bayes estimation of the mean direction,
whereas the second application is when we assume the sampling distribution
follows the Fisher]von Mises distribution.

4.1. Empirical Bayes estimation of the mean direction. Suppose we wish
to make inference about m based on the observation X. We note that in terms
of squared error loss, if mU is an estimator of m, then

L m , mU s 1 y mtmUŽ . Ž .
2 Ž .for m g S . Consequently, if p ? is the prior density, then the Bayes risk of

mU is

r mU s 1 y mtmU f mt x p m dx dm.Ž . Ž .Ž .H
2 2S =S

Now in terms of the usual Fubini argument, we have

t U t t U <mm f x m p m dx dm s mm p m x m x dm dxŽ . Ž .Ž .Ž .H H H H
2 2 2 2mgS xgS xgS mgS

U t <s m mp m x dm m x dxŽ .Ž .H H½ 52 2xgS mgS

s mU t Ep Ž m < x .m m x dx ,� 4 Ž .H
2xgS

Ž < . 2where p m x is the posterior density. Thus for each x g S , the solution to

max mU tEp Ž m < x .m
U 2m gS

is the Bayes estimator

Ep Ž m < x .m H 2 m f x tm p m dmŽ .Ž .S
10 m s s .Ž . b p Žu < x . t5 5 5 52E m H m f x m p m dmŽ .Ž .S

Ž .We are assuming that the prior density p ? is unknown. However, suppose
we have a random sample X , . . . , X . Let X s X and use X , . . . , X to1 nq1 nq1 1 n

Ž . Ž .form a consistent estimator of p ? as in 9 . An empirical Bayes estimator of
m can be formulated by

H 2 m f x tm p n m dmŽ .Ž .S
11 m s .Ž . eb t n5 52H m f x m p m dmŽ .Ž .S



DIRECTIONAL EMPIRICAL BAYES 239

In terms of convergence, by Theorem 3.2 and the continuous mapping theo-
rem,

m x ª m xŽ . Ž .eb b

as n ª ` for almost all x g S2. By the dominated convergence theorem, we
have

r m ª r mŽ . Ž .eb b

as n ª `.

4.2. Fisher]von Mises distribution. By far the most popular parametric
density on S2 is the Fisher]von Mises distribution. The density takes on the
parametric form

< t12 f x m , k s c k exp km x ,� 4Ž . Ž .Ž .
2 Ž .where x, m g S , k ) 0 and c k s krsinh k . In this section we will outline

Ž .the methodology when 12 is taken as the sampling distribution.
The fact that we need k ) 0 to be large has the following intuitive

Ž .explanation. Notice in 12 that as k ª `, the density is concentrating on the
2 Ž .mean direction m g S . Since we are trying to reconstruct the prior p ? from

‘‘noisy’’ data, the sampling distribution has to be sufficiently sharp in order to
effectively do this reconstruction, where the sharpness is parametrized by
k ) 0. Therefore, we need to quantify how sharp things must be in order for
the reconstruction of the prior to take place.

Assume k ) 0 is known. As in Lemma 3.1, by the rotational invariance and
the definition of the Legendre polynomials P , one can show thatl

jl1 y1
l k Ž j. yk Ž j.ˆ13 f A e P 1 y e P y1 ,Ž . Ž . Ž .Ý0 l lž /sinh k kjs0

Ž j.'where k ) 0, l G 0, the proportionality constant is 2 l q 1 r4p and P isŽ . l
in reference to the jth derivative for j s 0, 1, . . . , l.

Ž .In order for us to reconstruct the prior density by 9 , we have to be able to
Ž .bound 13 away from 0 for all l between 0 and 1rb. In general, one can show

that this condition cannot be satisfied for all l G 0. However, if the concentra-
Ž .tion parameter k G 0 is sufficiently large, we can keep 13 positive for

l s 0, 1, . . . , 1rb. Define,

1 1 1 11rb14 C k , b s max log 1 q 2 ! 2k ,Ž . Ž . Ž . 2½ 5ž /2 b b b

Ž . Ž .for k , b ) 0. Notice that for b ) 0 fixed, C k , b s o k as k ª `. If k ) 0 is
large so that
15 k ) C k , bŽ . Ž .

l̂for b ) 0 fixed, then f ) 0 for all l s 0, 1, 2, . . . , 1rb. The rest of this section0
will be devoted to proving this statement. Figure 1 demonstrates these facts
pictorally.
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Ž .FIG. 1. Top: Legendre coefficients of Fisher]von Mises density centered at the north pole with k
increasing from 64 to 512 by powers of 2. Below: Four frames showing the effect of changing the

Ž .position of the Fisher]von Mises density k s 64 in the spherical Fourier domain. The colatitude
of the center position, clockwise from the upper frame is 0, pr8, pr2 and 3pr8.
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Using the Rodrigues formula for the Legendre polynomials, we have

1 lŽ j. lqj 2P 1 s D x y 1 .Ž . Ž .l l2 l! xs1

To evaluate this, use the Leibnitz rule:

l1
lq j s 2is m D x y 1 ,Ž .Ý Łsl2 l! is1lsgN

xs1s q ??? qs slqj1 l

where the multinomial coefficients mlq j ares

l q j !Ž .
lq jm s .s s !s ! ??? s !1 2 l

sŽ 2 . <Now observe that D x y 1 s 0 unless s s 1 or 2. In both of thesexs1

cases the result is 2. Therefore, for each j between 0 and l the only
nonvanishing terms in the sum are those corresponding to vectors s having j
components with value 2, and the remaining components all 1. For any of

l lthese vectors, the product always has the same value of 2 . Consequently,ž /j
l q j !Ž .

Ž j.16 P 1 s .Ž . Ž .l jl y j ! j!2Ž .
Note in particular that all the derivatives are positive. A direct consequence

Ž .of 16 is

P Ž j. 1 P Ž jq1. 1Ž . Ž .l lyj jq1k k
17Ž .

1 l q j !Ž .
s 2 j q 1 k y l q j q 1 l y jŽ . Ž . Ž .j jq1 l y j !k 2 j q 1 ! Ž .Ž .

Ž .for any j s 0, 1, . . . , l y 1. Note that a sufficient condition for 2 j q 1 k )
Ž .Ž . 2l q j q 1 l y j for j s 0, 1, . . . , l y 1, l s 0, 1, . . . , 1rb, is for k ) 1rb .

Ž .For evaluating 13 , we note that
ly jŽ j. Ž j.P y1 s y1 P 1 .Ž . Ž . Ž .l l

Thus when l ) 0 is odd,

cosh k P Ž1. 1 cosh k P Ž ly1. 1 P Ž l . 1Ž . Ž . Ž .l l ll̂f A P 1 y q ??? q yŽ .0 l ly1 lž / ž /sinh k k sinh k k k

P Ž1. 1 P Ž ly1. 1 P Ž l . 1Ž . Ž . Ž .l l lG P 1 y q ??? q yŽ .l ly1 lž / ž /k k k

) 0,

provided k ) 1rb2.
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For the case l G 0 is even,

cosh k P Ž1. 1Ž .ll̂f A P 1 y q ???Ž .0 lž /sinh k k

P Ž ly2. 1 cosh k P Ž ly1. 1 P Ž l . 1Ž . Ž . Ž .l l lq y qly2 ly1 lž /sinh kk k k

P Ž1. 1 P Ž ly2. 1 P Ž ly1. 1 P Ž l . 1Ž . Ž . Ž . Ž .l l l ls P 1 y q ??? q y qŽ .l ly2 ly1 lž / ž /k k k k

Ž1. Ž ly1.2 P 1 P 1Ž . Ž .l ly q ??? q2 k ly1ke y 1 k

1 2 l ! 1 2 2 l ! l y 1Ž . Ž . Ž .
) y ,l l 2 kkk 2 l! e y 1

provided k ) 1rb2. Consequently, this term will be positive provided that the
Ž .last term is positive, which is guaranteed if 15 is satisfied.

5. Computational considerations of Fourier transforms on S2. In
order to efficiently apply the methods discussed in this paper, we need an

Ž .effective method for computing the Fourier coefficients as defined in 3 and
for computing the Fourier synthesis formulas needed for the reconstruction of

Ž .the estimates of the prior, as in 9 . In general, these integrals and sums
cannot be computed in closed form. Furthermore, the use of computers to
implement numerical techniques for the approximate computation of Fourier
transform integrals forces us to create algorithms which use only the values,
or ‘‘samples,’’ of a function taken on a prescribed finite set. Note that this use
of the word ‘‘sample’’ is in conflict with that in the term ‘‘random sample.’’
Unfortunately, the former usage is as entrenched in numerical analysis as
the latter is in statistics. We will try to keep the two usages clear.

Although there has been a growing effort already devoted to the issue of
‘‘quadrature’’ on the sphere in the applied mathematics literature, this issue
remains relatively dormant in the statistical literature. In particular, al-

Ž . Ž .though Gine 1975 and Wahba 1981 discuss computational aspects for´
spherical data, there has been little discussion of efficient algorithms which
are required to keep computational costs reasonable in problems requiring
high resolution.

In cases where we require even a moderate resolution, we may need
thousands of function values, or samples, in order to compute a similar
number of that function’s Fourier coefficients. A straightforward application
of the standard quadrature rules to this problem produces a computational
problem of very high cost, typically involving a number of calculations on the
order of the square of the number of desired Fourier coefficients. A less costly
approach is often needed.
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A final consideration in these matters concerns the numerical reliability of
the calculations when performed on a standard computer using finite preci-
sion arithmetic. Many seemingly reasonable algorithms have been found to
be useless when implemented due to the cumulative effects of finite precision
rounding.

In this section, we review the well known and very useful methods in the
Euclidean case which have successfully addressed these issues. We review a
recently developed analogue for the case of Fourier transforms on the sphere.
Finally we apply this new method to the problem considered in the present
paper.

5.1. Euclidean fast Fourier transform. In Euclidean data analysis, the
foregoing considerations are well known, and there is already a well devel-
oped and widely used approach to numerical Fourier analysis. A particular
application of this toolbox to density estimation on the circle may be found in

Ž .Silverman 1986 .
In general, one begins with the well known Shannon sampling theorem,

which shows that for periodic bandlimited functions having no Fourier com-
ponents above, say, the Bth cutoff frequency, the nonvanishing Fourier
coefficients may be computed exactly in exact arithmetic from B uniform
samples of the function on the circle. The quadrature formula in this setting
comes down to a simple trapezoid rule on the uniform samples for each of the
B integrals.

Ž 2 .Naively, these B sums require a total of O B calculations. However, one
may apply any of a number of related schemes for reorganizing the calcula-
tions to speed up the computation of Fourier coefficients. For bandlimited
functions on the circle these tricks, known collectively as fast Fourier trans-

Ž . Ž .form FFT algorithms, compute in O B log B time the B Fourier coeffi-
cients of such a function from its samples at B distinct points. This turns out
to be a huge win for problems which occur in practice. As one may guess from
the widespread practical application of FFT algorithms in applied mathemat-
ics, computer science, engineering and statistics, the FFT is numerically
benign with respect to the perturbations of computational roundoff, or impre-
cisions in the data or the complex exponentials appearing in the computa-
tions.

So we see that in the Euclidean case we may reduce the needed Fourier
coefficient integrals to discrete calculations that a computer may handle, and
that these calculations may be done efficiently and reliably. These properties
of FFT and sampling algorithms make Euclidean Fourier analysis a powerful
and widely used tool in data analysis. This provides the gold standard for any
numerical approach to Fourier analysis on the sphere.

5.2. Fast Fourier transform on S2. Recently, a step has been made to-
ward efficient, reliable numerical Fourier analysis for the sphere. The paper

Ž .by Driscoll and Healy 1994 presented an algorithm for the efficient numeri-
cal computation of Fourier coefficients and for the Fourier inversion. This
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Ž . 2algorithm is exact in exact arithmetic for bandlimited functions on S . This
leads to algorithms for the efficient computation of the convolution of two
such functions on S2.

Ž Ž .2 .The paper cited above presents an O B log B algorithm that, given a
Ž .data structure of size O N log N , computes the spherical harmonic expan-

sion of a discrete function on the sphere defined on an equiangular grid of
k Ž 2 .B s 2 F N points. This improves the naive O B bound, which is the best

Ž .previously known. In addition Healy, Moore and Rockmore 1993 described
methods for inverting this transform in the same time, and using these

Ž Ž .2 .transforms, an O B log B time algorithm to convolve bandlimited func-
tions on the sphere.

The remainder of this section gives a brief overview of the issues of
sampling, fast computation and experimental performance results of actual
implementations.

Sampling. We consider bandlimited functions of degree less than some
bandlimit B. In this paper, the bandlimited assumption is necessarily met

Ž .due to the finite sample size. In fact, in terms of 9 , we can take B s 1rb. If
2Ž 2 .f g L S has bandlimit B, the equiangular grid given by sample points

�Ž . < 4 Ž Ž .. Ž . Ž Ž ..u , f 0 F j, k - 2 B for u s p j q 1r2 r 2 B and f s p k q 1r2 rBj k j k
give a quadrature rule for computing the Fourier coefficients of f. We have

Ž .the following theorem, which is Theorem 3 in Driscoll and Healy 1994 .

Ž . 2THEOREM 5.1. Let f u , f be a bandlimited function on S such that
l̂f s 0 for all l G B. Thenq

2 By1 2 By1'2p
l ŽB . lˆ18 f s a f u , f Y u fŽ . Ž . Ž .Ý Ýq j j k q j k2 B js0 is0

< <for l - B and q F l.

ŽB . Ž .The weights a are a discrete analogue of the usual sin u in thej
Ž .invariant integral on the sphere 1 . A closed form expression for these may

Ž .be found in Driscoll and Healy 1994 .
The number of sample points is asymptotically optimal in B, from the

point of view of linear algebra. That is, if f is determined by its Fourier
l̂ < <coefficient f for 0 F l - B, q F l, then by simple linear algebra, at leastq

Ž 2 . �Ž .4that many B y 2 B q 2 samples are needed. Instead the grid u , f usesi j
2 Ž 2 .4B points, so O B points as well.
This grid also provides algorithmic advantages, as we see in the following

description of an efficient algorithm for the Fourier transform on S2.
Efficient algorithms. The sampling theorem reduces the computation of

Ž .the Fourier coefficients to discrete calculations 18 . For bandlimited func-
Ž 2 .tions with bandlimit B, we have N s O B function samples to compute the

Ž .O N sums required to give us the Fourier coefficients. A naive operation
Ž 2 .count suggests that this requires O N time. However, we have the follow-

Ž .ing result, proved in Driscoll and Healy 1994 .
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Ž . � l < < < 4THEOREM 5.2. If f u , f is in the span of Y l - B, q F l , then theq
l̂ 2< < Ž Ž . .Fourier coefficients f for l - B, q F l can be computed in O M log Mq

2 k Ž .operations from the M s 4B , 2 - N, sampled values f kpr2 B, jprB , 0 F j,
Ž 2 .k - 2 B y 1, using a preprocessed data structure of size O N log N .

The transform of the function f may be viewed as the application of a
matrix of sampled spherical harmonics to a vector of sampled values of f. The
fast transform algorithm utilizes the recurrences satisfied by the harmonics
to effect a factorization of this matrix into sparse, structured matrices. These
may be applied with a net reduction in complexity over the naive approach.

Transposition of this matrix factorization permits the efficient inversion of
Ž 2 .the Legendre transforms and hence an O N log N inversion of the spheri-

cal Fourier transform sampled at the N points of the spherical sampling grid
Ž .described above. Details may be found in Healy, Moore and Rockmore 1993 .

Stability and experimental results. The transform algorithms have been
implemented in C and are undergoing tests. This efficient algorithm demon-
strates significant reduction in running time over naive implementation, even
at relatively moderate problem size. This is illustrated in Figure 2.

FIG. 2. Experimental results on the speed of the fast spherical transform algorithm as a function
Ž .of problem size bandwidth B . Time is given as a fraction of that required by the naive

implementation. Each of the four graphs shows the timing results for the associated Legendre
transform with a given choice of the order parameter. More precisely, at a given bandwidth on a
particular graph, we show the time for projection onto the family P l: with the order q fixed at aq
given fraction of the bandwidth and the degree l varying over its appropriate range between q and
B. Clockwise from top left: q s 0, q s Br4, q s Br2 and q s 3Br4.
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We have both analytical and experimental evidence for the numerical
stability of the algorithms. In the case of the zonal Fourier transform on the

Ž .sphere, a priori bounds have been given in Driscoll and Healy 1994 . These
calculations show that the zonal transform is reliable for a wide range of
problem sizes. The same paper show some experimental results suggesting
the same thing.

It is not so clear how analytical stability for the q / 0 case can be
achieved. However, we can experimentally demonstrate numerical stability.

Ž .See Healy, Moore and Rockmore 1993 for some of these results.

5.3. Computing the prior density. An application of the algorithms de-
scribed above uses the fast inverse transform to synthesize and estimate the

Ž .prior, p ? , on an equiangular grid on the sphere from the estimates of its
Ž .Fourier transform, as in 9 . Use of the fast inverse transform allows us to

evaluate the estimator

Ž .B n l
n n , l l19 p v s p Y vŽ . Ž . Ž .ˆÝ Ý q q

ls0 qsyl

Ž .for all v s v u , f in the grid u s kpr2 B, f s jprB, 0 F j, k - 2 B y 1, in
Ž 2 .O B log B calculations. This can amount to quite a savings over the naive
Ž 2 .O B inversion for even moderate resolutions, particularly if many of these

syntheses must be calculated.
Likewise, the forward direction fast transform may be used in a straight-

Ž .forward manner to obtain the Fourier coefficients of the sampling density f ? .
In particular, should this function be taken from a parametric family without
closed form Fourier transforms, then the algorithm can be used to efficiently
obtain the required Fourier coefficients. This will be especially important if
the exact parameter value is not known, and some experimentation needs to
be done. Likewise, the fast forward algorithm should be very useful in the
case that the sampling density is known only by their values on the equian-
gular grid.

Somewhat more work must be done to apply the fast Fourier algorithm to
the calculation of the empirical estimate of the Fourier coefficients of the
marginal density. Here one is required to take the Fourier transform of a sum
of point masses associated to the observed directions. As the point mass is not
bandlimited, we must replace each point mass by an essentially bandlimited
approximation. The bandlimited function must then be sampled on the
equiangular grid before the transform algorithm may be applied.

A description of a simple procedure for density estimation on the circle
Ž .using the Euclidean FFT can be found in Silverman 1986 . A key considera-

tion of the algorithm described there is the act of replacing each observation
with a bandlimited approximation to the point mass at the observation point.
One then sum these up over all observations, samples the resulting function
on the usual uniform grid and then passes to the Fourier domain with the
Euclidean FFT. The obvious bandlimited approximation of a point mass is its
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projection into the space of bandlimited functions, namely, the appropriate
Dirichlet kernel. Unfortunately, this function has many nonzero values on
the usual sampling grid unless it happens to be centered at one of the points
of that sampling grid. In general, this choice of approximate point mass will
lead to high computational costs in summing up over the observations, as it is
unlikely that one may line up a uniform grid with most of the observations.
The cost will be close to the number of observations times the size of the grid.

To save computational steps, Silverman proposes instead that when an
observation falls between two grid points, it should be replaced with a
function whose values vanish at all grid points but the two bracketing grid
points nearest it. The value at each of these grid points is taken proportional
to the distance between the observation and the other grid point. In effect,
this is an appropriate linear combination of the two Dirichlet kernels cen-
tered on each of the grid points adjacent to the observation. Upon summing
over all observations, one forms the samples of a bandlimited function
associated with the data in a time proportional to the number of observations.
The result is an approximation to the sum of Dirichlet kernels centered at the
true observation positions. This approximation will generally be acceptable in
practice.

The situation in the case of the sphere is somewhat complicated by the
nonuniform mesh of the equiangular grid. We must adjust the scheme for
replacing an observation with a bandlimited approximate point mass accord-
ing to where the observation is located. Nevertheless, we may suggest one
fairly simple scheme at this time.

We assume that a random sample X , . . . , X is observed, and we wish to1 n
construct an approximation of an unbiased estimator of ml for l G 0. Indeed,ˆ
define

n1
n , l lm s Y X .ˆ Ž .Ýq q jn js1

If n, the number of observations is large, then these coefficients must be
Ž . Ž .obtained for a large bandwidth B n ; that is, for all 0 F l F B n and for each

< <fixed l in that range, for all q with q F l. The resulting calculation by
Ž Ž .2 .evaluation of the spherical harmonics at the observation points is O nB n ,

which could be quite onerous.
Instead, we suggest that one replace each observation with a rotationally

symmetric bump function approximating the point mass and which vanishes
outside a small, constant distance of the observation point and is normalized
to have unit mass. One method of construction we have studied begins with a

Ž .bump function, b r , r g R, which is symmetric about the origin. This is
Ž .lifted to a bump on the sphere by forming b 1 y X ? v which is simply a

Ž .function of the distance d X, v s arccos X ? v between the observation loca-
tion X and the evaluation point v, considered as unit vectors. Adding up the
various bumps associated with all the observations amounts to smoothing
those observations with the bump function.
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By this device, we hope to build a function that is well concentrated near
the observation, is effectively bandlimited and which nevertheless is a good
approximation of the point mass subject to the bandlimit. We have considered
simple constructions based on the use of B-splines for the bump function. A
bump function based on a quintic spline is shown in Figure 3. Another
approach might be based upon the use of several of the functions proposed by

Ž .Grunbaum, Longhi and Perlstadt 1982 , which obtain simultaneously good
concentration on the sphere and in the spherical Fourier transform domain.
At any rate, we continue to look for the best approach to building these bump
functions.

The use of splines to smooth the individual observations involves polyno-
Ž .mial evaluation at no more than O B grid points in term of the known

observation vector and the known nearby grid points. The worst case occurs
for observation points near the north pole, due to the bunching up of the
equiangular grid near the poles; see Figure 3. Note, however, that in the very
common case that the data largely avoid at least one axis through the sphere,
that a proper choice of the coordinate system insures that there will be few of
these costly steps to worry about.

Ž Ž ..We now have a worst case of O nB n steps to evaluate the sum of the
approximate point masses corresponding to the entire set of observations,
with a constant depending on the order of the splines used and the radius

Ž Ž . 2 Ž ..chosen for the spline bumps. An additional O B n log B n gives the
estimate of the Fourier transform of the density, so the total cost is domi-

Ž Ž ..nated by the evaluation of the point masses at no more than O nB n . If the
data are clustered, the speed will be considerably better than this.

6. Consistency proofs. Define

1r21rb l 2 l q 1 1Ž .
l l20 K n , v s Y n Y v ,Ž . Ž . Ž . Ž .Ý Ýn q q3 l̂16p fls0 qsyl 0

where n , v g S2. Note that we can write

n1
np v s K X , v ,Ž . Ž .Ý n jn js1

where v g S2. Let X be a generic random element. Then because Ep n, l s p lˆ ˆq q
< <for all q F l and l s 0, 1, . . . , 1rb,

` l
n l l21 Ep v s EK X , v ª p Y v s p vŽ . Ž . Ž . Ž . Ž .ˆÝ Ýn q q

ls0 qsyl

2 Ž .as n ª ` for v g S if p ? can be represented by its Fourier series.
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FIG. 3. Top: Four frames showing a quintic spline bump function approximation to the point
mass, at various positions. Clockwise from top left frame: Colatitudes 0, pr8, pr2 and 3pr8.
Note that many more samples are required to represent a bump function near the north pole than
a bump at other locations. Below: Legendre coefficients of a quintic spline bump function located
at the north pole.
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Note that

1rb l 12 l l< <K x , v dx F 2 l q 1 Y v Y vŽ . Ž . Ž . Ž .Ý ÝH n q q2l2 ˆ< <fS ls0 qsyl 0

1rb l1
l ls 2 l q 1 Y v Y vŽ . Ž . Ž .Ý Ý q q2l̂< <fls0 qsyll

22Ž .

1rb 12F 2 l q 1Ž .Ý 21̂< <fls0 0

2 l < <for v g S . In the above, we use the orthonormality property of Y for q F lq
and l G 0 along with the addition formula

l 2 l q 1
l lY v Y n s P cos g v , n ,Ž . Ž . Ž .Ž .Ý q q l4pqsyl

Ž . 2 Ž .where g v, n represents the angle between n , v g S and P 1 s 1 for alll
l G 0.

� 4 � 4For two sequences a and c , denote the property a rc ª 1 as n ª `n n n n
Ž . Ž .by a ; c . Furthermore, if f ? is continuous, then m ? is continuous, hencen n

2 Ž . Ž .bounded since S is compact. By using 21 and 22 ,

nn Var p v ; EK X , v K X , vŽ . Ž . Ž .Ž . n n

s K x , v K x , v m x dxŽ . Ž . Ž .H n n
2S

F sup m z K x , v K x , v dxŽ . Ž . Ž .H n n
2S

1rb 12
g 2 l q 1Ž .Ý 2l̂< <fls0 0

as n ª ` for v g S2. Furthermore, since S2 is compact, a uniform bound can
be obtained so that

1rb1 12n23 sup Var p v g 2 l q 1Ž . Ž . Ž .Ž . Ý 2l̂n < <2 fls0 0vgS

as n ª `.

Ž .PROOF OF THEOREM 3.2. By the assumption that p ? can be represented
Ž .by its Fourier series, we have 21 . By the assumption that

1rb1 122 l q 1 ª 0Ž .Ý 2l̂n < <fls0 0

Ž nŽ .. 2as n ª `, we have the Var p v ª 0 as n ª `, for all v g S . I
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For a differentiable function g on S2, denote by g Ž j., the jth derivative for
Ž0. Ž j. 2Ž 2 .j s 0, 1, 2, . . . , where g s g. Now suppose g g L S for j s 1, . . . , s.

w Ž .xThen by Lemma 4.1 Hendriks 1990 , we can write
l

2 s 2Ž s. l< < < <24 g v dv s l l q 1 g ,Ž . Ž . Ž .Ž . ˆÝ ÝH q
2S lG0 qsyl

l lwhere g s HgY . Consequently, we can writeˆq q

5 n 5 2 5 Ž s. 5 2 2 s25 p y Ep F p bŽ . 2 2

as n ª `. I

l̂PROOF OF THEOREM 3.3. Under the conditions placed on f , we have that0

1rb1 1 122 l q 1 gŽ .Ý 3qu2l̂n nb< <fls0 0

Ž . Ž .as n ª `. Therefore, by 23 and 24 , we have

12n 2 s5 5E p y p g q b2 3qunb
as n ª `. This rate is optimized by setting b s ny1rŽ2 sq3qu. which gives the
desired result. I

APPENDIX

Let

cos f ysin f 0 cos u 0 sin u
u f s , a u s ,Ž . Ž .sin f cos f 0 0 1 0ž /� 0 ysin u 0 cos u0 0 1

w . w .where f g 0, 2p , u g 0, p . The well known Euler angle decomposition
Ž .says that any g g SO 3 can almost surely be uniquely written as

g s u f a u u c ,Ž . Ž . Ž .
w . w . w .where f g 0, 2p , u g 0, p , c g 0, 2p and are otherwise known as the

Euler angles. Consider the function

D l u f a u u c s exp yiq f d l cos u exp yiq c ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .q q 1 q q 21 2 1 2

l Ž .where d are related to the Jacobi polynomials; see Vilenkin 1968 .
l Ž .The function D can be thought of as matrix entries of a 2 l q 1 =q q1 2

Ž .2 l q 1 matrix. Hence, define
l lD g s D g ,Ž . Ž .q q1 2

l'Ž . �where yl F q , q F l and g g SO 3 . We note that 2 l q 1 D : yl F1 2 q q1 2

4 2Ž Ž ..q , q F l, l s 0, 1, . . . is an orthonormal basis for L SO 3 and is some-1 2
Ž .times referred to as the rotational harmonics; see Lo and Eshelman 1979 .

� l 4 Ž .Furthermore, D : l s 0, 1, . . . are the irreducible representations of SO 3 .
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Ž . 2The mathematical relationship between SO 3 and S is a beautiful result
in classical analysis. In terms of the Fourier basis, the relation can be
described in terms of the Euler angles, where

2 l q 1Ž .
l lY u , f s D u f a u u c ,Ž . Ž . Ž . Ž .Ž .(q q04p

w . w .f g 0, 2p , u g 0, p , yl F q F land l s 0, 1, . . . .

PROOF OF LEMMA 3.1. We note that

m x s p m f mt x dmŽ . Ž . Ž .H
2S

s p gh f h tgy1 x dg .Ž . Ž .H
Ž .SO 3

Therefore,

l t y1 lm s p gh f h g v Y v dg dvŽ . Ž .Ž .ˆ H Hq q
2 Ž .vgS ggSO 3

t y1 ls p gh f h g v Y v dv dgŽ . Ž .Ž .H H q
2Ž .SO 3 S

t Ls p gh f h v Y gv dv dgŽ . Ž .Ž .H H q
2Ž .SO 3 S

t y1l ls p gh f h v Y v D g dv dgŽ . Ž .Ž . Ž .ÝH H j jq
2Ž .SO 3 S < <j Fl

y1 t lls p gh D g dg f h v Y v dv ,Ž . Ž .Ž . Ž .Ý H Hjq j
2Ž .SO 3 S< <j Fl

where D l is defined in this for yl F j, q F l, l G 0.jq
y1 ll Ž . Ž .Now note that D g s D g for all g g SO 3 . Furthermore, it can beŽ .jq q j

shown that

y1 y1l lp gh D g dg s p gh D g dgŽ . Ž .Ž . Ž .H Hjq 0 q
Ž . Ž .SO 3 SO 3

s p gh D l g dgŽ . Ž .H q0
Ž .SO 3

4p
ls 2p p̂( q2 l q 1

< <for q F l, l G 0.
Consequently

4p
l l t lm s 2p p f h v Y v dv ,Ž .Ž .ˆ ˆ( Hq q 0

22 l q 1 S

< <for q F l, l G 0 as required. I
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