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LOCAL SENSITIVITY OF POSTERIOR EXPECTATIONS1

BY PAUL GUSTAFSON

University of British Columbia

We investigate the degree to which posterior expectations are sensi-
tive to prior distributions, using a local method based on functional
differentiation. Invariance considerations suggest a family of norms which
can be used to measure perturbations to the prior. The sensitivity mea-
sure is seen to depend heavily on the choice of norm; asymptotic results
suggest which norm will yield the most useful results in practice. We find
that to maintain asymptotically sensible behaviour, it is necessary to
reduce the richness of the class of prior perturbations as the dimension of
the parameter space increases. Jeffreys’ prior is characterized as the prior
to which inference is least sensitive.

1. Introduction. Statistical inference always requires various assump-
tions. The assumptions are not always directly verifiable; hence statisticians
are interested in the degree to which inferences are sensitive to the assump-
tions. In Bayesian statistics there is a good deal of interest in the degree to
which inferences are sensitive to prior distributions. The common approach to

Žassessing sensitivity is to measure the size of the class of posteriors or
.perhaps just a particular posterior quantity that arises from a specified class

Žof priors. This is referred to as global sensitivity analysis; see Berger 1990,
. Ž . Ž .1994 , Lavine 1991a, b and Wasserman 1992b for reviews. The fact that

global analyses often entail a large computational burden has lead to a recent
surge of interest in local sensitivity analysis; see Basu, Jammalamadaka and

Ž . Ž . Ž .Liu 1993 , Berger 1986 , Cuevas and Sanz 1988 , Delampady and Dey
Ž . Ž . Ž .1994 , Dey and Birmiwal 1994 , Diaconis and Freedman 1986 , Gelfand

Ž . Ž .and Dey 1991 , Gustafson and Wasserman 1995 , Ruggeri and Wasserman
Ž . Ž . Ž .1993, 1995 , Sivaganesan 1993 and Srinivasan and Truszczynska 1990 .
The idea of a local analysis is to examine the rate at which the posterior
changes, relative to the prior. This paper examines several methods of
assessing the local sensitivity of posterior expectations.

Often it might be desirable to assess the sensitivity of the posterior as a
whole rather than the sensitivity of particular posterior expectations. How-

Ž .ever, as discussed in Gustafson and Wasserman 1995 , it is very difficult to
do so in a local manner, without obtaining results which are asymptotically
unsatisfactory. In particular, local measures of the overall posterior sensitiv-
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ity tend to diverge to infinity as the sample size grows. This is in contrast to
our knowledge that, starting from different priors, posteriors tend to agree as
the data accumulate. Here our attention lies with the sensitivity of posterior
expectations. In this setting we can obtain sensitivity measures with more
satisfactory asymptotic behaviour.

Both global and local analyses depend on having some quantified notion of
the difference between two prior distributions. In the global case, one often
starts with a base prior distribution and then forms the class of all priors
with limited difference, or distance, from the base prior. As detailed in
Section 2, we consider a continuum of ways to quantify distance from the
base prior. Different quantifications can lead to different results, most notice-
ably in an asymptotic sense. We also investigate various properties of the
classes of prior defined by our notion of distance.

Usually, we wish to consider classes of priors that are too large to be
indexed by a finite-dimensional parameter, to allow for a wide variety of prior
distributions, especially in terms of tail behaviour. This necessitates having
an infinite-dimensional notion of derivative to measure the rate at which
posterior expectations change with respect to the prior. In particular, we
consider Frechet derivatives and their norms, applied to the mapping from´
prior distribution to posterior expectation. Implementation of this methodol-

Ž .ogy is described in Section 3. When the derivative or more precisely its norm
is large, inference is sensitive to the prior in that small changes in the prior
can cause large changes in the posterior mean. We provide some simple
examples, as a first step toward elucidating the properties of these posterior
derivatives.

In almost any statistical context, it is illuminating to consider what
happens when the sample size grows to infinity. Section 4 contains asymp-
totic results suggesting which versions of the posterior derivative are most
useful in practice. Additionally, these results provide an asymptotic answer to
the question of which prior leads to the least sensitive inference. This is a
previously unexplored starting point for the determination of noninformative
priors.

For the sake of clarity, proofs of the results are relegated to Section 6.

2. Prior perturbations.

2.1. Linear perturbations. We start with a parameter space, Q, assumed
to be a subset of R k, for some k. Additionally, let BB be a s-field of subsets of

Ž .Q and let m be a s-finite measure on Q, BB . Attention is restricted to
Ž .probability measures on Q, BB which are absolutely continuous with respect

Ž . Žto m. Let p be a probability density with respect to Q, BB, m inducing
.probability measure P . We refer to p as the base prior or base density. We

Ž .assume p has support Q else we could reduce Q . Along the lines of most
Bayesian robustness investigations, we consider classes of densities which
contain p .
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A most straightforward way to construct a small class of densities contain-
ing p is by perturbation, and the most common form of perturbation is linear.
The result of perturbation is represented as w :L

1 w ?; p , u s p ? q u ? .Ž . Ž . Ž . Ž .L

We restrict u to be nonnegative, to ensure that w is nonnegative. When wL L
is integrable, its normalized version is denoted as wU.L

To progress further, we must quantify the magnitude of perturbations.
Since p is normalized, any reasonable measure of the size of u should reflect
the degree to which wU can differ from p . Some desirable features of a sizeL
functional are as follows:

Ž .D1. Size ? is a norm.

Ž .D2. Size ? is invariant under a change of dominating measure.

Ž .D3. Size ? is invariant under one-to-one transformation.

Ž . Ž .D4. Size u - ` « w ?, p , u is integrable.

D1 is necessary for the study of local sensitivity. D2 and D3 are minimal
invariance requirements, D2 being necessary as the perturbations are defined
in terms of densities. D4 ensures that members of a class of densities based
on the size function are proper.

One possibility is to define
1rppH urp dP , p - `,Ž .Ž .Q5 52 size u s urp ; P sŽ . Ž . p ½ ess sup urp , p s `,Q

the L p norm of urp with respect to dominating measure P, for some
w xp g 1, ` .

Ž .RESULT 1. For linear perturbations, defining size as in 2 satisfies D1
through D4.

Now a class of densities containing p can be defined. In particular, for
w xp g 1, ` , let

p U 5 53 G P ; d s w ?; p , u : urp ; P F d ,� 4Ž . Ž . Ž . pL L

the class of all limited size perturbations of p .

2.2. Nonlinear perturbations. There is no compelling reason to study only
linear perturbations. Indeed, linear perturbations are usually specified for

Ž .simplicity. We can generalize 1 by selecting a strictly increasing continuous
w . w .function t: 0, ` ª y`, ` and defining

w ?; p , u s ty1 t p ? q u ? .Ž . Ž . Ž .Ž .Ž .N
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Restricting u to be nonnegative ensures w is nonnegative, since t isN
increasing. Again, when w is integrable, we denote its normalized versionN
by wU .N

A basic class of increasing functions is the class of power functions. It is
convenient to consider a class of matched power functions. Specifically, we set
the function and its first derivative to be 1 at 1. The resulting class can be

� w .4indexed as t : p g 1, ` , wherep

t y s py1r p y p y 1 .Ž . Ž .p

It is natural to extend to the case p s ` via the pointwise limit of t . Thus wep
define

t y s log y q 1,Ž .`

giving
p1r pp ? q u ? rp , p - `,Ž . Ž .Ž .

w ?; p , u , p sŽ .N ½ p ? exp u ? , p s `.Ž . Ž .Ž .

Note that when p s 1, the nonlinear perturbations are in fact the linear
perturbations of the previous section. It turns out that the L p norm with
respect to the dominating measure is a natural way to quantify the size of
these perturbations.

w xRESULT 2. For nonlinear perturbations based on p g 1, ` , D1 through
Ž . 5 5D4 are satisfied by taking size u s u; m .p

Ž .In analogy to 3 , define
p U 5 54 P P ; d s w ?; p , u , p : u; m F d .� 4Ž . Ž . Ž . pN N

It is worth noting that satisfying D2 depends crucially on using the same
value of p for the power transformation and the norm. While other size
functionals may satisfy D1 through D4 in both the linear and nonlinear case,
the choices presented here appear to be the only natural quantifications. As is
commonly the case when working with L p norms, principally we are inter-
ested in the values 1, 2 and ` for p. Much of the treatment, however, allows
for arbitrary values of p.

2.3. Properties. Now we wish to make connections to some familiar classes
of probability measures. The most common classes in both frequentist and

w Ž .Bayesian robustness studies are based on «-contamination Berger 1990 ;
Ž .xBerger and Berliner 1986 . The «-contamination of P by P* is the mixture

Ž .distribution 1 y « P q « P*.

1Ž . 1 Ž .RESULT 3. The class G P; d s G P; d is the class of all «-contamina-L N
tions of p , where the contaminants are absolutely continuous with respect to m

Ž Ž ..and « F 1r 1 q 1rd .
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Of course metrics can be used to define classes of probabilities. One such
metric, based on densities, is the Hellinger distance

1r2
21r2 1r2d p , p s p y p dm .Ž . Ž .HH 1 2 1 2ž /

Q

This bears some resemblance to the definition of p s 2 nonlinear perturba-
tions. Indeed, we have the following result.

2 Ž .RESULT 4. G P; d is properly contained in the Hellinger ball of radiusN
dr2 centred about p .

A metric that has attracted attention in the Bayesian robustness literature
w Ž .is the density ratio metric DeRobertis 1978 ; DeRobertis and Hartigan

Ž . Ž .x1981 ; Wasserman 1992a , also defined in terms of densities:

¡ p u rp fŽ . Ž .1 1
ess sup log , S p s S p ,Ž . Ž .1 2~d p , p sŽ . p u rp fŽ . Ž .DR 1 2 Ž . 2 2u , fgS p 1¢

`, otherwise,

Ž .where S p is the support of p . In turns out that density ratio neighbour-
hoods are generated when p s `, using linear or nonlinear perturbations.

`Ž . Ž .RESULT 5. G P; d is identically the density ratio ball of size log 1 q dL
` Ž .about p , while G P; d is identically the density ratio ball of size d about p .N

Thus our endpoints p s 1 and p s ` correspond to the familiar «-con-
tamination class and density ratio class, respectively.

p 5 5Since the L norm with respect to a probability measure satisfies u Fp1

5 5 p2Ž . p1Ž .u whenever 1 F p - p F `, it follows that G P; d ; G P; d when-p 1 2 L L2

ever p - p . For the nonlinear classes a limiting result of this form obtains.1 2

p2Ž . p1Ž Ž ..RESULT 6. If 1 F p - p F `, G P; d ; G P; d q o d .1 2 N N

This result has repercussions for the local sensitivity measure introduced
in the next section.

It is instructive to quantify the notion of richness of a class of perturba-
Ž .tions. For a class G of probability measures on Q, BB containing P, define a

w . w .richness function R : 1, ` ª 1, ` according toG

P9 AŽ .
5 R x s sup sup .Ž . Ž .G P AŽ .� Ž . 4 P9gGAgBB: P A G1rx

The richness function bears some similarity to concentration functions
w Ž .xCifarelli and Regazzini 1987 . Note that R is invariant under transforma-G

Ž . w xtion. As well, R is nondecreasing and R x g 1, x . The rate at which RG G G

increases gives an indication of how much mass can be added to small
P-probability sets, and thus reflects the richness of the class.



LOCAL POSTERIOR SENSITIVITY 179

A way to quantify the rate of increase is via the notion of regular variation.
A function h is of regular variation with index of variation p if

h l xŽ .
plim s l

h xxª` Ž .

for all l ) 0. As examples, x p has index p, as does x p log x. We say G is a
Ž .regular class if R is a function of regular variation. For such G define h GG

Ž . w xas the index of variation of R . It is clear that h G g 0, 1 and thatG

Ž� 4. Ž� 4.h P s 0, while h all probability measures s 1. Furthermore, if G ; G ,1 2
Ž . Ž . Ž .then h G F h G . There are connections to Wasserman’s 1992c definition1 2

of tail richness. In particular, a regular class that is tail rich must have an
index greater than zero.

This notion of richness can be applied to the linear and nonlinear classes of
priors.

RESULT 7. If P is absolutely continuous with respect to Lebesgue measure,
then

1
p w xh G P , d s , p g 1, ` ,Ž .Ž .L p

1, p - `,ph G P , d sŽ .Ž .N ½ 0, p s `.

Thus the linear classes span the whole range of possible richness; however,
the nonlinear classes are either minimally or maximally rich.

3. Posterior derivatives.

3.1. Theory. Before considering the derivative of a posterior expectation
with respect to the prior, the mapping from the prior to the posterior mean
must be represented as a mapping between normed linear spaces. Specifi-

� Ž . 4cally, for either linear or nonlinear perturbations let UU s u G 0: size u - `
and VV s R. Define T g: UU ª VV by

T g u s E x g u ,Ž .w Ž?; p , u.

Ž .the posterior expectation of g u when the prior is the perturbation of p by
u. The norms are the appropriate size functional on UU and absolute value on
VV s R. Note that UU is not a proper linear space as its elements are restricted
to be everywhere nonnegative; however, it is linear if only nonnegative
scalars are admitted. If, for u g UU, there exists a linear functional0
˙Ž .T u : UU ª VV satisfying0

˙ 5 5T u q u y T u y T u u s o u ,Ž . Ž . Ž . Ž .UU0 0 0 VV
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˙Ž .then T is Frechet differentiable at u , with derivative T u . In this case,´ 0 0
˙Ž . Ž .T u is also the derivative in the weak Gateaux sense, satisfyingˆ0

T u q « u y T uŽ . Ž .0 0
Ṫ u u s lim .Ž .0 «« x0

˙Ž .Thus T u u is the rate of change of T at u in direction u.0 0
˙g xŽ . Ž Ž ..In the present context T 0 measures the rate of change of E g u as

Ž .the prior is perturbed since u s 0 corresponds to the base prior p . Letting0
L be the likelihood function and using Cov x to denote posterior covariance,
the derivative can be computed and expressed as follows.

RESULT 8. If L and gL are bounded, then

u uŽ .g xṪ 0 u s Cov g u , .Ž . Ž .L p ž /p uŽ .

RESULT 9. If L and gL are bounded, then

u uŽ .g xṪ 0 u s Cov g u , .Ž . Ž .N p 1r pž /p uŽ .

Ž .In the p s 1 case both linear and nonlinear , the derivative can be
Ž .Ž X .rewritten as m9rm r y r , where m and r are the marginal density ofg g g

the data and posterior mean of g under the base prior p , while m9 and rX
g

are the analogous quantities when the prior density is u. This form of the
Ž .expression is familiar, having been derived under a variety of conditions

Ž . Ž .and used by Ruggeri and Wasserman 1993 , Sivaganesan 1993 and
Ž . Ž .Srinivasan and Truszczynska 1990 . Diaconis and Freedman 1986 consid-

Ž .ered the overall posterior rather than a particular mean and obtained m9rm
as the derivative norm. For a related diagnostic based on posterior covari-

Ž .ance, see Kass, Tierney and Kadane 1989 .
Rather than focussing on a particular direction for perturbations to the

prior, we consider the worst case direction}that in which the posterior
˙ Ž .expectation changes most rapidly. Specifically, T 0 is a linear operator;g

hence we can compute its norm:

gṪ 0 uŽ . VVg g˙ ˙T 0 s sup s sup T 0 u .Ž . Ž . VV5 5u UU 5 5ugUU u s1UU

˙g5 Ž .5Thus T 0 reflects the overall sensitivity of the posterior expectation.
Letting p x be the posterior density on u and denoting by q the extended real
satisfying qy1 q py1 s 1, the following result obtains.

RESULT 10. Under the conditions of Result 8,

g q y˙ 5 5 5 56 T 0 s max a ; P , a ; P ,� 4Ž . Ž . q qpL L L
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where
g u y r p x uŽ . Ž .Ž .g

a u sŽ .L p uŽ .
q Ž . y Ž .and a s max a, 0 , a s ymin a, 0 .

RESULT 11. Under the conditions of Result 9,
g q y˙ 5 5 5 57 T 0 s max a ; m , a ; m ,� 4Ž . Ž . q qpN N N

where
g u y r p x uŽ . Ž .Ž .g

a u s .Ž .N 1r pp uŽ .

An immediate corollary is the following result.

w xRESULT 12. For p g 1, ` ,
g g˙ ˙T 0 s T 0 .Ž . Ž .p pL N

Note that the derivative norm is subscripted by p to indicate the norm
used to measure prior perturbations. The linear and nonlinear classes give
the same indication of local sensitivity, despite their differing natures when

Ž .p g 1, ` . In particular recall that for these intermediate values of p, the
nonlinear class is richer than the corresponding linear class. The p s 1 norm

Ž .was arrived at by Ruggeri and Wasserman 1993 using a slightly different
Ž .argument. The p s ` norm was obtained by Ruggeri and Wasserman 1995

by an entirely different method, namely, differentiation of the endpoints of
the global range with respect to the size of the density ratio class.

Ž . Ž .Note that computationally, some simplification of 6 and 7 occurs.
�5 q5 5 y5 4 5 5 ŽSpecifically, when p s 1, max a , a s a with respect to any domi-` ` `

.nating measure . Additionally, when p s `, a integrates to 0 with respect to
5 q5 5 y5 Ž .5 5the requisite measure; hence a s a s 1r2 a . Only for intermedi-1 1 1

ate values of p is it necessary to compute and compare two norms.
The proofs of Results 10 and 11 give us some indication of the local shape

of these classes. If g, L and p are continuous functions of the parameter,
then the prior direction in which the norm is achieved is itself a continuous
function if 1 - p - `, but discontinuous if p s 1 or p s `. If discontinuous
priors are deemed to be inappropriate for the problem at hand, then a choice
of p other than 1 or ` might be more consistent with the goal of specifying a
class of reasonable priors. This sort of concern about the plausibility of priors
which achieve extreme inferences over a class has been voiced by Hartigan
wŽ . x Ž .1983 , Section 12.8 and Lindley 1992 . In this regard, a choice of p which

Ž .does not correspond to the commonly used cases p s 1, ` might lead to a
more sensible analysis. For example, in a one-dimensional problem, when

Ž .p s 2 and g u s u , the maximizing u in the nonlinear case might be
Ž .q Ž . 1r2Ž .proportional to u y r L u p u , which is typically smooth, and not veryu

Ž . Ž .peaked, as u y r is small when L u is large.u
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Results 10 and 11 also lead to approximations to the posterior range. In
particular, for either linear or nonlinear classes,

x x 5 q5sup E g u s E g u q d a q o d ,Ž . Ž . Ž .qp 9 p
pŽ .p 9gG P ; d

x x 5 y5inf E g u s E g u y d a q o d .Ž . Ž . Ž .qp 9 ppŽ .p 9gP P ; d

Ž .Note that in a truly linear space i.e., one admitting negative scalars , we
produce approximations to the global range that are symmetric about the
target posterior mean. Thus we have the added benefit of being able to
represent asymmetry in the local approximation. These approximations to

Ž .the global range depend on having the stronger Frechet notion of derivative´
apply.

Ž .The form of 6 immediately reveals that the norm is decreasing in p, by
Jensen’s inequality. Indeed this phenomenon is predicted by Result 6 in the
nonlinear case and the remark preceding it in the linear case.

In some contexts the fact that changing the function of interest g can
˙g5 Ž .5change the value of the norm T 0 dramatically might be undesirable. To

Ž .address this issue, Ruggeri and Wasserman 1995 suggested dividing the
norm by the posterior standard deviation of g, which is denoted here by j .g
This can be motivated in two distinct ways. First, this is equivalent to
computing the norm when the function of interest is the centred and scaled

y1Ž Ž . .quantity j g u y r , which is invariant under affine transformations ofg g
y1 ˙g5 Ž .5g. Second, j T 0 can be interpreted as a ratio of between prior uncer-g

tainty about g to within prior uncertainty about g. Particularly, if one
˙g5 Ž .5entertains a class of priors of size d , then d T 0 is approximately the

x Ž .half-width of the range of E g u , while 2j is roughly an analogous range ofg
Ž .posterior uncertainty about g u , given the base prior. Thus, operationally,

˙g5 Ž .5sensitivity to the prior might only be a concern when the ratio of d T 0 to
2j is large. Otherwise, uncertainty about g due to the prior is dwarfed byg

y1 ˙g5 Ž .5uncertainty due to the sample. Henceforth the quantity j T 0 is referredg
to as the scaled sensitivity of g.

3.2. Examples. Here some simple examples of the posterior derivative
Ž .norm are given. Throughout a normal model, X ; N u , 1rn , is assumed.

Three prior distributions for u are considered: normal, Cauchy and log-gamma.
The particular hyperparameters are chosen so that the three priors share the
same first and third quartiles. The normal prior is conjugate, while the
Cauchy and log-gamma are chosen to illustrate the effects of a thicker-tailed
distribution and a skewed distribution, respectively. In the case of the normal

Žprior, the derivative norms for p s 1, 2, ` can be computed analytically up to
.the normal distribution function . In the Cauchy and log-gamma cases one-

Ž . Ž .dimensional numerical integration p s 2, ` and maximization p s 1 is
used to calculate the norms. The norms are plotted as a function of the data
value x, for several sample sizes n, in Figures 1, 2 and 3. Generally, the
p s 1 norms are an order of magnitude larger than their p s 2 counterparts,
which in turn are an order of magnitude larger than p s ` norms.



LOCAL POSTERIOR SENSITIVITY 183

FIG. 1. Posterior derivative norms: normal model and standard normal prior.

For the normal prior, in the p s 1 case we can distinguish only the n s 1
norm. It is surprising that amongst the remaining sample sizes the norms are
visually indistinguishable. As expected, the norm increases as the data value
lies further from the prior mean. The p s 2 norms take on a similar shape as
a function of the data, but exhibit a stronger dependence on the sample size.
Note here that the sample size ordering is not preserved for extreme data. In
particular, when the data value lies far from the prior mean, we see larger
sensitivity associated with the larger sample sizes. The sample size depen-
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FIG. 2. Posterior derivative norms: normal model and Cauchy prior. The prior is centred, with
scale parameter 0.674.

dence appears stronger still for the p s ` norms, but the striking feature
here is a complete absence of data dependence.

With the Cauchy prior, in the p s 1 case we see even less dependence on
the sample size than for the normal prior. Also, the norms are smaller than in
the normal prior case, as might be expected with a thick-tailed prior. The
p s 2 norms again have a shape similar to that of the p s 1 norms, but
exhibit much more dependence on the sample size. This time, the norm
decreases in the sample size even for extreme data values. When p s `, we
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FIG. 3. Posterior derivative norms: normal model and log-gamma prior. The underlying gamma
distribution has shape 1.272 and scale 1.119.

see a dependence, albeit weak, on the data value. This dependence grows
weaker with larger sample sizes.

With the skewed log-gamma prior, the p s 1 and p s 2 norms indicate
Ž .much greater sensitivity for data values in the right thin tail of the prior as

Ž .opposed to the left thick tail, in accord with intuition. Again, for sample
sizes larger than 1, the dependence on the sample size is minimal when
p s 1. Paradoxically, when p s ` the norm is large for data in the left prior
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tail and small for data in the right prior tail, contrary to the other cases. For
larger sample sizes, this phenomenon is tempered, and again the data
dependence is extremely weak.

Since a reasonable measure of sensitivity should depend upon both the
sample size and the sample mean, these examples suggest that the p s 2
norms are the most useful gauge of sensitivity amongst the three norms.

4. Asymptotics. In order to further understand the behaviour exhibited
in the examples of the previous section, we consider the asymptotic behaviour
of the posterior derivative norms. It is assumed that the model is parameter-
ized so that the first component of the k-dimensional parameter is the

Ž . Ž .function of interest, that is, g u s u . As in Chen 1985 , we consider a fixed1
Ž < .data sequence x , x , . . . , assumed to be an iid realization from f ? u * g1 2

� Ž < . 4 Ž . Ž . Ž .f ? u : u g Q . Let I u be the expected Fisher information at u and let l ?n
denote the log likelihood function based on x , . . . , x . We assume l has a1 n n

ˆŽn. X ˆŽn. Y ˆŽn.Ž . Ž .strict local maximum at u ; hence l u s 0 and yl u is positiven n
definite. Define

< y1 <y1A I s I y I I I ,Ž .1 11 12 22 21

where I , I and I s I T are the usual submatrices of the information11 22 12 21
matrix obtained by partitioning according to the parameter of interest u and1

Ž . Ž .the remaining parameters u , . . . , u . As additional notation, let B u be2 k d

the size d Euclidean neighbourhood of u .
We require four conditions for the asymptotic results.

ˆŽn. y1 ˆŽn.Ž . Ž .R1. u ª u * and yn l0 u ª I u * .

R2. For every « ) 0, there exists d ) 0 such that the eigenvalues of
Y ˆŽn. y1 Y ˆŽn.w Ž .x w Ž .x Ž . Ž .l u l u lie in the interval 1 y « , 1 q « for u g B u and suffi-n n d

ciently large n.

R3. For any d ) 0, there exist positive constants c and c such that for1 2
C ˆŽn.Ž .u g B u ,d

c2T YŽn. Žn. Žn. Žn.ˆ ˆ ˆ ˆl u y l u F c u y u l u u y uŽ . Ž . Ž . Ž . Ž .½ 5n n 1 n

for sufficiently large n.

R4. p is bounded and positive and continuous at u *.

R1, R2 and R4 are common, easily satisfied, regularity conditions. R3,
Ž .which is essentially Chen’s 1985 condition C3.1, is stronger than common

Žtail conditions for asymptotic results for example, it is stronger than Chen’s
.condition C3 . This strength is needed to deal with the supremum involved in

the p s 1 derivative norm. R3 holds when u is the natural parameter of an
w Ž .xexponential family Chen 1985 .
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Now we can consider the asymptotic behaviour of the norms.

RESULT 13. Under R1 through R4,
1rp1r2

I u *Ž .
Ž1r2.w1yŽk r p.x u 1r21˙n T 0 ª c A I u * ,Ž . Ž .Ž .p p , k 1p u *Ž .

where
ykr2 y1r2¡ 2p e , p s 1,Ž .~ 1rqc s `p , k Ž .w Ž .xykr2 p 1r2 1q krq q2p 1rq z f z dz , p ) 1,Ž . Ž . Ž .H¢ ž /0

with f being the standard normal density.

A striking feature here is the dependence of the rate at which the norm
Ž .shrinks or grows upon the dimension of the parameter space. Generally, the

norm increases with the dimension of the parameter space. To ensure that
the norm vanishes asymptotically, one must choose p larger than k. Thus
with larger parameter spaces, one must use smaller classes of perturbations
to attain sensible results.

Considering the k s 1 case, the asymptotics make clear the problems with
the p s 1 and p s ` norms. When p s 1 the norm asymptotically does not
depend on the sample size; this is consistent with the finite sample behaviour
in the examples. The range of a posterior expectation with respect to an

w Ž .x«-contamination class vanishes as n increases Sivaganesan 1988 , so in an
asymptotic sense the local approximation to the global range is poor. Con-
versely, when p s `, asymptotically the norm does not depend on the prior,
meaning that asymptotically there is no consideration as to whether or not
the data are consistent with the prior. Hence in finite samples the norm
depends only weakly, if at all, on the data. Only when p s 2 does the
asymptotic sensitivity depend jointly on the sample size and the prior. This is
consistent with the superior performance of the p s 2 norm in the examples.

Result 13 easily gives the asymptotic behaviour of the scaled sensitivity as
well. Specifically, R1 through R4 imply that the posterior standard deviation

1r2 Žn. 1r2Ž Ž ..of u satisfies n j ª A I u * . Therefore, modulo constants the scaled1 u 11

sensitivity behaves like
1rp1r2

I u *Ž .
k r2n .

p u *Ž .

In particular, all components of the parameter are equally sensitive asymp-
totically after scaling.

ŽBefore observing data, a natural goal is to choose the prior so that at least
.asymptotically inference will be insensitive to the prior. As is common when

seeking noninformative priors, the parameter space is assumed to be com-
pact, giving the following result.
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Ž .RESULT 14. For p - ` and compact Q, the maximum over u g Q asymp-
Ž .totic scaled sensitivity is minimized as a functional of the proper prior by

Ž . < Ž . <1r2taking p u to be the probability density proportional to I u .

Ž .Thus we have an interpretation of Jeffreys’ 1961 prior as the prior to
which inference will be minimally sensitive, in an asymptotic minimax sense.
This is yet another sense in which Jeffreys’ prior is noninformative. For other
minimax motivations for the use of Jeffreys’ prior, see Clarke and Barron
Ž . Ž .1994 and Good 1969 . Since all parameters are asymptotically equally
sensitive after scaling, we obtain a prior which makes no distinction between
parameter components. In particular, we do not obtain a prior satisfy-

Ž .ing Stein’s 1985 condition for being noninformative about a particular pa-
rameter.

5. Discussion. Perhaps the most important finding here is that by
considering classes of priors lying between the extremes of «-contamination
and density ratio classes, we can obtain local measures of sensitivity which

Ž .behave reasonably in simple problems and asymptotically. Berger 1992 and
Ž .Wasserman 1992c have criticized the density ratio class for not being rich

Ž .enough for robustness studies, while Berger 1990 and others have suggested
Ž .that unrestricted «-contamination classes are too rich. Often the problem is

addressed by using «-contamination with a restricted class of contaminants.
However, this can entail either unrealistic restrictions or difficult calcula-
tions. The local sensitivity measure of posterior expectations with respect to

Ž .p s 2 perturbations linear or nonlinear appears to have desirable proper-
ties, as one might expect from classes of priors that are smaller than
«-contamination classes but larger than density ratio classes. In particular,
we see a sensible reliance of the p s 2 norm upon the sample size and prior.
Of course the fact that both the linear and nonlinear classes yield the same
measure of local sensitivity, despite having different indices of richness,
underscores the fundamental limitation of local analysis.

While classes of priors based on L2 norms show promise for use in
Ž .assessing sensitivity at least locally , they lack the interpretability of other

classes. The size of «-contamination classes can be gauged by thinking about
mixtures, while density ratio classes have a natural interpretation in terms

Ž . Ž . Ž Ž .. k Ž . Ž Ž ..of odds: d p , p - k implies P A r 1 y P A - e P A r 1 y P ADR 1 2 1 1 2 2
for all A g BB. We can, however, gain an indication of the size of L2 based
classes by comparing them to the more familiar classes. In particular, Result
6 in the nonlinear case and the remark preceding it in the linear case, give a
density ratio class as a lower bound and an «-contamination class as an
upper bound. This provides a way to think about the size of the p s 2 classes,
which is necessary if one wishes to consider local approximations to global
ranges.

The simple examples considered here were introduced to gain some famil-
iarity with the various posterior derivative norms. However, local methods

Ž .are useful in multiparameter problems, where i the model and prior struc-
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ture are sufficiently complicated that sensitivity measures are really required
Ž .and ii global calculations become intractable. Though the treatment here

allows for parameters of arbitrary dimension, it is limited to the case where
the whole prior is perturbed. Typically in multiparameter models one would
like to know if aspects of the posterior are sensitive to various aspects of the
prior, and so one would like to perturb only parts of the prior. Gustafson
Ž .1996 shows how local methods can be used for this sort of investigation.

6. Proofs. Proofs of Results 1, 2, 3, 12 and 14 are straightforward and
omitted.

5 5PROOF OF RESULT 4. Assume u is nonnegative, u; m F d . By the defini-2
U Ž .tion of w ?; p , u, 2 we haveN

u ? uŽ . 1r2U 1r2 1r2s w ?; p , u , 2 p q ; m y p ? .Ž . Ž .Ž .N2 2 2

Squaring both sides and integrating gives
2 25 5u; m u2 1r2s p q ; m q 1ž /4 2 2

u
U1r2 2q p q ; m 2 y d p ? , w ?; p , u , 2 .Ž . Ž .Ž .Ž .H Nž /2 2

Further rearrangement yields
22 1r25 5u; m r4 p q ur2 ; m y 1Ž .Ž .2 2U2d p ? , w ?; p , u , 2 s yŽ . Ž .Ž .H N 1r2 1r2p q ur2 ; m p q ur2 ; mŽ . Ž .2 2

and, in particular,

5 5 2u; m 2U2d p ? , w ?; p , u , 2 F ,Ž . Ž .Ž .H N 4
the desired result. To see that the containment is proper, note that Hellinger
neighbourhoods, unlike G2 , can contain densities with smaller support thanN
the base density. I

PROOF OF RESULT 5. We consider the nonlinear case first. Note that the
density ratio distance is invariant to scalar multiplication of densities, so we

5 5need not work with normalized densities. First say u G 0, u F d . We want`

Ž u.to show d p , p e F d . However,DR

d p , p eu s ess sup u u y u f F ess sup u u F d ,Ž . Ž . Ž . Ž .Ž .DR
Ž . uu , fgS p 0

Ž .since u is nonnegative. Next assume that d p , p 9 F d . p and p 9 mustDR
Ž .then have common support, which we will denote S. Define u* s log p 9rp

on S, u* s 0 on SC. Then

d G d p , p 9 s ess sup u* u y ess inf u* f ,Ž . Ž . Ž .DR
fgSugS
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which implies u* is essentially bounded. In particular, taking u s u* y
Ž Ž .. Ž .inf u* f except on a set of m-measure 0, to ensure nonnegativity of uf

Ž . U Ž .implies that p 9 ? and w ?; p , ` define the same probability measure. SinceN
5 5 ` Ž .u G 0 and u F d , p 9 g G P; d , completing the proof for the nonlinear` N

case. For the linear case, we relate the linear class to a nonlinear class. In
u9 Ž Ž ..particular, p q u s p e , where u9 s log 1 q urp . This immediately im-

plies the result. I

5 5PROOF OF RESULT 6. Fix u such that u; m F d . First we consider thep2

Ž .case p - `. By simple algebra we can verify that w ?; p , u, p s2 N 2
Ž . wŽ 1r p2 Ž .. p2 r p1 1r p1 xw ?; p , u9, p , where u9 s p p q urp y p . Since u9 isN 1 1 2

Ž 1r p2convex in u, by the mean value theorem we have 0 F u9 F p q
Ž ..Ž p2 r p1.y1 5 5 w Ž 1r p2 Ž .. p2yp 1 p1 x1r p1urp u; hence u9; m F H p q urp u dm .p2 Q 21

5 5 5 1r p2Applying Holder’s inequality to the integral gives u9; m F p q¨ p1

Ž .5 Ž p2 r p1.y1 5 5 5 5 Žurp u , so by subadditivity we have u9; m F 1 qp p p2 2 2 1

.Ž p2 r p1.y1drp d , giving the required result. The proof when p s ` proceeds2 2
similarly. Perturbation by u with respect to p s ` is equivalent to perturba-2

1r p1w Žu r p1. xtion by u9 with respect to p , where u9 s p p e y 1 , which is1 1
1r p1 u r p1 5 5 dr p1bounded by p e u. Hence u9 F e d , yielding the required result.p1

I

PROOF OF RESULT 7. First consider the linear case, with p - `. Note that
for A g BB,

y1c
cP9 A P A q H u dmŽ . Ž . A

8 sup s sup P A 1 q ,Ž . Ž .ž /p P A P A q H u dmŽ . Ž .Ž . � 5 5 4 AP9gG P , d u : urp : P FdpL

which is increasing in H u dm and decreasing in H c u dm. Therefore the aimA A
is to maximize H u dm amongst u which vanish on Ac. If u has size less thanA
d , then by Holder’s inequality¨

1rp
p 1r qu dm F urp dP P AŽ . Ž .H Hž /A A

F d P1r q A ,Ž .
where equality can be obtained by taking u proportional to p . Applying this

Ž .to 8 and rearranging gives
y1r p1 q d P AŽ .

R x s sup .Ž .G 1r q1 q d P AŽ .y1� Ž . 4AgBB: P A Gx

Ž .Noting that the quantity in square brackets is decreasing in P A , and using
Žabsolute continuity of P with respect to Lebesgue measure which guaran-

.tees the existence of small P-probability sets , it follows that

1 q d x1r p

r x sŽ .G y1r q1 q d x

; x1r p x ª ` ,Ž .
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from which the result follows immediately. In light of Result 5, the result in
the linear p s ` case follows from that for the nonlinear p s ` case, proved
below.

For nonlinear perturbations with p - `,

P9 AŽ .
sup

p P AŽ .Ž .P9gG P , dL

y1p1r p
cH p q urp dmŽ .Ž .As sup P A 1 q .Ž . p1r pž /H p q urp dmŽ .� 5 5 4 Ž .u: u ; m Fdp A

9Ž .

Ž 1r p Ž .. pAs previously stated, it is necessary to maximize H p q urp subject toA
c 5 5u s 0 on A , and u; m F d . By Minkowski’s inequality, the maximum isp

Ž 1r pŽ . Ž .. p 1r pP A q drp , which is obtained by taking u proportional to p on
Ž .A. This implies that 9 simplifies to

y1
1 y P AŽ .

10 P A 1 q .Ž . Ž . p1r pž /P A q drpŽ . Ž .Ž .

Ž . Ž .A straightforward calculus argument shows that 10 is decreasing in P A ,
Ž . Ž .so the richness function is obtained by replacing P A with 1rx in 10 . Upon

rearrangement, this gives

p1r p1 q drp xŽ .Ž .
R x sŽ . pG 1r p1 y 1rx q 1rx 1 q drp xŽ . Ž . Ž .Ž .

; x x ª ` ,Ž .

implying the desired result. When p s `,

y1u
cH p e dmA

R x s sup sup P A 1 qŽ . Ž .G už /H p e dmy1 P9gG A� Ž . 4AgBB: P A Gx

y1cP AŽ .
s sup P A 1 qŽ . dž /e P AŽ .y1� Ž . 4AgBB: P A Gx

y11
yd ydw xs e q 1 y e ,ž /x

which tends to ed as x ª `, giving the result. I

PROOF OF RESULT 8. For bounded functions h on Q define I u sh
Ž . Ž . Ž . gH h u w u ; p , u m du ; hence T u s I urI u. By the linearity of I in uQ L L g L L h
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˙ Ž .we easily have I 0 u s H hu dm with respect to any norm. By the quotienth Q

rule,

˙ ˙I 0 uI 0 y I 0I 0 uŽ . Ž .g L L g L LgṪ 0 u sŽ .L 2
I 0Ž .Ž .L

u
xs Cov g , ,p ž /p

completing the proof. I

Ž . Ž . Ž .PROOF OF RESULT 9. Define I u s H h u w u ; p , u, p m du . Henceh Q N
T u s I urI u, so we can differentiate T by differentiating I. We need tog g L L

˙ 1r qŽ .show that if h is bounded, then I 0 u s H hp u dm. In light of theh Q

Ž . Ž . Ž5 5 .boundedness assumption, it will suffice to show that H r u m du s o u pQ u
uniformly, where

p1r p 1r qp q urp y p y p u , p - `,Ž .r su u½ w xp e y 1 y u , p s `.

Ž . Ž .When p s 1, r is identically zero, so the result holds. When p g 1, 2 , r uu u
wŽ 1r pis convex in u for each u , so by the mean value theorem, r F p qu

. py1 1r q x Ž . py1urp y p u, giving r F urp u, and, consequently, H r dm Fu Q u
Ž .5 5 p Ž5 5 . w . Ž .1rp u; m s o u; m . The next case is p g 2, ` . Here r u has threep p u

wŽ . Ž .xŽ 1r pnonnegative derivatives with respect to u; hence r F p y 1 r 2 p p qu
. py2 2 Ž5 5 .urp u . When p s 2, this directly implies that H r dm s o u; m .2Q u

When p ) 2, by Holder’s inequality we have¨
py2 py2u u 21r p 2 1r p5 5 5 5r dm F p q ; m u ; m s p q ; m u; mH pr2 pu ž /p pQ Ž . ppr py2

py21 25 5 5 5 5 5F 1 q u; m u; m s o u; m .Ž .p p pž /p

Finally, when p s `,

u 2 5 u ; m 5` 5 5 2 5 5r dm F p e u r2 dm F 1r2 e u; m s o u; m ,Ž . Ž .Ž .H H ` `u
Q Q

as desired. Now we can apply the quotient rule for functional derivatives. In
particular,

˙ ˙I 0 uI 0 y I 0I 0 uŽ . Ž .g L L g L LgṪ 0 u sŽ .N 2I 0Ž .L

u
xs Cov g , ,p 1r pž /p

the required result. I
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˙gŽ .PROOF OF RESULT 10. The expression T 0 u can be written asL
Ž .H a urp dP, orQ

u u
g q y˙11 T 0 u s a dP y a dP .Ž . Ž . Ž . Ž .H HL L Lp pQ Q

5 q 5The boundedness of L and gL ensures that a ; P - `. Thus by Holder’s¨qL
Ž . 5 q 5 5 5inequality, the first term of 11 is bounded by a ; P urp ; P . In fact,q pL

we can either achieve the bound or come arbitrarily close to achieving the
bound, since aq is nonnegative. When p s 1 we can get close to the bound byL

Ž .qtaking u close to the generalized function d , when p g 1, ` we canarg maxŽa .L
Ž q. qy1achieve the bound by taking u A a p and when p s ` we can achieveL

Ž .the bound by taking u A I p . In all cases, the second term of 11 is zero�a ) 04L
Ž .and, hence, the whole expression is maximized. To minimize 11 , we replace

aq with ay. IL L

PROOF OF RESULT 11. The derivative at 0 is H aq u dm y H ay u dm.Q N Q N
5 q 5Again, the boundedness of L and gL guarantees that a ; m is finite. ThusqN

the argument in the previous proof applies here as well. In this case, the
Ž . qmaximizing directions for the positive part are proportional to darg maxŽa .N

Ž q.qy1 Ž .when p s 1, a when p g 1, ` and I when p s `. IN �a ) 04N

PROOF OF RESULT 13. Intuitively, the result is obtained by replacing the
ˆŽn.Žposterior distribution with a normal distribution mean u , variance

ˆŽn. y1w Ž .x .yl0 u and then applying R1. This can be made precise in the p ) 1
case by standard arguments, splitting the region of integration into a neigh-
bourhood of the MLE and its complement. The nonstandard case is p s 1,
where we must deal with a supremum over the parameter space. As prelimi-
naries, note that R1 through R4 imply the standard asymptotic results

y1r2 ykr2Y Žn. x Žn.ˆ ˆ12 yl u p u ª 2p ,Ž . Ž .Ž . Ž .n n

T YŽn. Žn. Žn. Žn. Žn.ˆ ˆ ˆ13 r y u l u r y u ª 0,Ž . Ž .Ž . Ž .n

where r Žn. is the vector of posterior means of u . Thus we have

yk r2 x Žn.ˆn p uŽ .nŽ1r2.w1yk x u1˙14 lim n T 0 s lim lim sup h u ,Ž . Ž . Ž .1 nŽn.ˆnª` nª` nª`p uŽ . u

where

1r2 ˆŽn. ˆŽn.< <h u s n u y u exp l u y l u .Ž . Ž . Ž .Ž .n 1 1 n n

ˆ Ž . Ž .The replacement of r by u is justified by 13 . Applying 12 to the firstu 11
Ž . Ž . y1r2 1r2Ž Ž ..term of 14 , it only remains to show that sup h u ª e A I u * . R3u n 1

ˆŽn.Ž .gives that for any fixed d the supremum will occur on B u for sufficientlyd
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large n. Fixing « and choosing d as in R2 gives, for sufficiently large n,

1 T1r2 Žn. Žn.ˆ ˆ< < w xsup h u F sup n u y u exp y 1 y « u y uŽ . Ž .n 1 1 ž /ž 2Žn.u ˆŽ .ugB ud

= Y Žn. Žn.ˆ ˆyl u u y uŽ . Ž .n /
1

YT y1 Žn.ˆ< < w xs sup z exp y 1 y « z yn l u zŽ .1 nž /ž /2Ž .1r2zgB 0n d

Yy1r2 1r2 y1 Žn.ˆs e A 1 y « yn l uŽ . Ž .ž /1 n

1r21
y1r2 1r2ª e A I u * ,Ž .Ž .1ž /1 y «

with a similar lower bound holding as well. Taking « x0 completes the proof.
I
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