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ASYMPTOTIC EFFICIENCY OF ESTIMATES FOR MODELS
WITH INCIDENTAL NUISANCE PARAMETERS

BY HELMUT STRASSER

In this paper we show that the well-known asymptotic efficiency
bounds for full mixture models remain valid if individual sequences of
nuisance parameters are considered. This is made precise both for some

Ž .classes of random i.i.d. and nonrandom nuisance parameters. For the
random case it is shown that superefficiency of the kind given by an
example of Pfanzagl can happen only with low probability. The nonran-
dom case deals with permutation-invariant estimators under one-dimen-
sional nuisance parameters. It is shown that the efficiency bounds remain
valid for individual nonrandom arrays of nuisance parameters whose
empirical process, if it is centered around its limit and standardized,
satisfies a compactness condition. The compactness condition is satisfied
in the random case with high probability. The results make use of basic
LAN theory. Regularity conditions are stated in terms of L2-differentia-
bility.

1. Introduction. In this section we will give an overview over the main
results and the leading ideas of the paper. Moreover, we will discuss the
limitations of the results.

p Ž .Suppose that Q : R is an open set and that L, CC is a measurable space.
Ž .Let P : u g Q, h g L be a family of m-continuous probability measuresu , h

Ž .defined on a measure space V, AA, m . The subject of this paper is the
estimation of the parameter u if the second parameter h is a nuisance
parameter which is not observed and varies from observation to observation.

Ž .Let k be an estimator sequence, and let WW be the set of all bounded,n
continuous and bowl-shaped loss functions defined on R p. We want to find
local asymptotic bounds for the risks

n

'1.1 W n k y u d P ,Ž . Ž .Ž . mH n u , h i
is1

Ž . nwhere W g WW and h g L .i
Ž .A starting point of the present paper is Pfanzagl 1993 . We recommend

this source also for its detailed discussion of the history of the subject. In that
paper bounds for the asymptotic risk of estimators are considered being valid
under i.i.d. observations from mixtures of the probability measures P . Theu , h

question is discussed whether these bounds remain valid if individual se-
Ž .quences of nuisance parameters incidental nuisance parameters are consid-

ered.
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Ž .Before we recall the message of Pfanzagl 1993 let us describe the situa-
tion in a bit more detail.

Ž .Let G be a probability measure on the space L, CC , and let Y , Y , . . . , Y1 2 n
be random variables that are i.i.d. according to G. We have to distinguish
between the risks

n

'1.2 W n k y u d PŽ . Ž .Ž . mH n u , Y i
is1

for individual realizations of nuisance parameters, and the expected risks
n

'1.3 E W n k y u d PŽ . Ž .Ž . mH n u , Y iž /is1

of an estimator sequence. Let us explain that a theory for the expected risks
is equivalent to a theory for i.i.d. observations from mixtures of probability
measures. For this we write

Q A = B s P A G dh , A = B g AA m CC ,Ž . Ž . Ž .Hu , G u , h
B

X <and Q s Q AA. Then the expected risks can be written asu , G u , G

n
X n' 'E W n k y u d P s W n k y u dQ .Ž . Ž .Ž . Ž .mH Hn u , Y n u , Giž /is1

Thus, we can treat the problem of expected risks as if the observations were
i.i.d. according to the mixture distributions QX . For this a complete theory ofu , G

wlocal asymptotic efficiency in estimation is available and well-known cf.
Ž .Pfanzagl and Wefelmeyer 1982 , Section 14, Bickel, Klaassen, Ritov and

Ž . Ž . xWellner 1993 , Section 4.5, or Strasser 1994 , Section 20.3 . If the class of
Ždistributions of the nuisance parameters is sufficiently rich full mixture

.models , then asymptotic efficient estimator sequences can be characterized
by an asymptotically linear expansion.

The problem is whether the asymptotic bounds obtained from the full
Ž . Ž .mixture model for the expected risks 1.3 remain valid bounds for risks 1.1

Ž .or 1.2 with incidental nuisance parameters.
Roughly speaking, Pfanzagl’s paper implies the following assertion

w Ž . Ž .xPfanzagl 1993 , Theorem 3.1 : if an estimator sequence is asymptotically
linear with an expansion being optimal for the full mixture model, then for
almost all realizations of a random nuisance parameter sequence the risks
Ž .1.1 converge to the risk bound of the full mixture model. However, it must
be questioned whether the asymptotic optimality in the mixture model
remains valid for incidental nuisance parameters, too.

w Ž .In his paper, Pfanzagl presents a counterexample Pfanzagl 1993 , Exam-
Ž .xple 2 : there is an estimator sequence which keeps the asymptotic risk

bound of the full mixture model for almost all realizations of a random
nuisance parameter, but underflows the bound for countably many further
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realizations. This phenomenon could be interpreted as a kind of supereffi-
ciency.

Our first main result shows that this kind of superefficiency as shown by
Pfanzagl can occur only with small probability. This is Theorem 2.13 of the
present paper, and it is presented and proved in detail in Section 2. Here we
are giving only a rough statement of the assertion. The message is as follows:

Ž . Ž .Consider the risks 1.3 . If for a stochastic array Y ofni
nuisance parameters that are i.i.d. according to G the
efficiency bound for the full mixture model is underflowed1.4Ž .
with positive probability for some loss function W, then the
efficiency bound is overflowed with positive probability for
some possible other loss function W.

This result deserves some general comments.

REMARK 1.5. The assertion Assertion 1.4 and of Theorem 2.13 is an
asymptotic admissibility assertion. A similar asymptotic admissibility asser-

Ž .tion was proved for the first time by Le Cam 1953 . It was rediscovered by
Ž . wŽ .Hajek 1972 . From a general point of view it is discussed by Le Cam 1986 ,´

xSections 7.4 and 7.5 . We are referring to the version presented in Strasser
wŽ . x Ž .1985 , Theorem 83.5 and in Strasser 1994 .

In the case p s 1, Assertion 1.4 and Theorem 2.13 can be stated even for a
single and fixed loss function W. In the case p ) 1, a similar asymptotic
admissibility assertion is not valid for a single loss function. The problem is
usually circumvented by Hajek’s convolution theorem, restricting the atten-´
tion to regular sequences of estimators. In the present context this is the

Ž .approach taken by Bickel and Klaassen 1986 . Another possibility, which has
Ž .already been mentioned by Hajek 1972 , is to replace the single loss function´

by a sufficiently large set of loss functions. Then it is possible to apply the
one-dimensional admissibility assertion to every component of the estimator
sequence. In this way we obtain the assertion of Theorem 2.13.

It should be noted that the assertion of Theorem 2.13 does not exclude that
the risks of a nonoptimal estimator sequence may underflow the risk bound
with positive probability. To exclude such cases, one has to impose regularity

Ž .conditions like those used by Bickel and Klaassen 1986 .
Thus, in view of Assertion 1.4 we can show that ‘‘in probability’’ the local

asymptotic risk bounds of the full mixture model remain valid for incidental
nuisance parameters. However, it must be questioned whether the local
asymptotic risk bounds of the full mixture model remain valid if fixed
incidental nuisance parameters are considered. Clearly, for arbitrary se-
quences of estimators this cannot be true since the knowledge of the nuisance
parameter sequence up to a term of order ny1r2 makes it possible to improve
the estimator sequence. We have to restrict the class of estimator sequences
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in such a way that they cannot be biased toward a particular sequence of
Ž .nuisance parameters. Bickel and Klaassen 1986 apply a kind of regularity

condition on the estimator sequence to achieve this goal. Instead of imposing
regularity of the estimator sequence we prefer to restrict our attention to the
subclass of permutation-invariant estimators.

Our second main result deals with permutation-invariant estimators in the
case of nonrandom incidental nuisance parameters. We are going to consider

Ž .triangular arrays h of nuisance parameters.ni

Ž .DEFINITION 1.6. Let us call a triangular array h of nuisance parame-ni
ters weakly distributed according to G if

n1 1
lim f h s f h G dh for all f g C L .Ž . Ž . Ž . Ž .Ý Hni bnnª` 0is1

Let TT be a subfamily of weakly G-distributed arrays of nuisance parame-
ters. It would be nice to be able to prove an assertion of the following kind for
some reasonable subfamily TT:

Ž .Consider the risks 1.1 and suppose that the estimator
sequence is permutation invariant. If, for a triangular
array in TT and for some loss function W, the efficiency1.7Ž .
bound of the full mixture model is underflowed, then the
efficiency bound is overflowed for some possible other array
in TT and possibly other loss function W.

In fact, we are able to prove such a result, under some limitations,
however. First, it is essential for the methods we are going to apply that
L : R is an open interval and that the distribution function of G is continu-
ous and strictly increasing on L. An extension to nuisance parameters of
dimension greater than 1 seems not to be straightforward with our methods.

Having accepted the restriction to the one-dimensional case, it is not far to
Ž .the assumption that L s 0, 1 and G s l, where l denotes the Lebesgue

measure. In fact, if the distribution function of G is sufficiently smooth and
Ž .strictly increasing on L, then a simple reparametrization of the family Pu , h

wwith respect to h gives us the reduction to that case. We confess not having
checked whether our second main result, Assertion 1.7, remains valid if the
distribution function of G is continuous, but not smooth and strictly increas-
ing. It seemed worth presenting a proof whose essentials are not obscured by

xtechnicalities.
Ž .In the following we assume that L s 0, 1 and G s l.

We have to specify the subfamily TT of triangular arrays for which, Asser-
tion 1.7, is going to be proved. Let F be the empirical distribution functionn y

Ž .of the nth row of the array y s h .ni
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Ž .DEFINITION 1.8. A triangular array y s h is strongly equidistributed ifni
it satisfies the following conditions:

Ž .i h / h if i / j;ni n j
'Ž . Ž Ž .. Ž .ii n F y I is relatively compact in D 0, 1 .n y

We let TT denote the set of all strongly equidistributed triangular arrays.s

In Section 3 we present and prove in detail that Assertion 1.7 is valid for
the subfamily TT s TT of strongly equidistributed arrays. This is Theorem 3.4.s
It could be questioned whether the arrays in TT are suited to cover interestings
cases related to the nuisance parameter problem. The rest of this introduc-
tory section is devoted to a discussion of this question.

The set TT carries properties which are typical for triangular arrays ofs
random nuisance parameters. Let us explain this in some detail.

Ž .REMARK 1.9. Let Y s Y be a triangular array of random variablesni
Ž .which in each row are independent and distributed according to U 0, 1 . Then

Ž . ny1 n � 4the following facts are well known: 1 ProbF F Y / Y s 1 foris1 jsiq1 ni n j
Ž . Ž .every n g N; 2 for every « ) 0 there is a compact set K : D 0, 1 such that

'� Ž . 4Prob n F y I g K G 1 y « for every n g N.nY
Ž . Ž .Property 2 must not be misunderstood. Suppose that Y is a sequence ofi

Ž .i.i.d. random variables distributed according to U 0, 1 , and let Y s Y for allni i
Ž .n g N and i s 1, 2, . . . , n. Then 2 means that for every sample size n g N

' Ž .the empirical processes n F y I are in K with high probability. How-n y
Ž .ever, it does not mean that typical sequences of realizations h are such thati' Ž .the empirical processes n F y I are relatively compact. On the contrary,n y

wthe law of the iterated logarithm for empirical distribution functions see
Ž . xShorack and Wellner 1986 , page 530 implies that, for almost all realiza-

'Ž . Ž . Ž .tions h of Y , the empirical processes n F y I leave any compact Ki i n y
for infinitely many n g N.

Hence, our results cannot be applied to study the asymptotic behavior of
Ž . Ž .estimator sequences under fixed realizations h of a sequence Y . Superef-i i

ficiency for fixed sequences cannot be excluded by results on arrays in TT . Thiss
is also made explicit by Pfanzagl’s counterexample.

Ž . Ž .Nevertheless, the random arrays Y satisfy property 2 . Therefore, ourni
result Assertion 1.7 is valid with arbitrarily large probability if we are
focusing on individual arrays of nuisance parameters. Moreover, it follows
that asymptotic superefficiency of Pfanzagl’s kind cannot be seen for finite
sample sizes: for each finite sample size the overwhelming majority of real-
izations of the random nuisance parameter behaves regularly as if they give
rise to strongly equidistributed arrays in TT .s

REMARK 1.10. Let us illustrate the contrast between assertions for se-
quences and for arrays from a more familiar point of view by a parable.

Ž .Assume that X is a sequence of i.i.d. random variables with mean zero andi
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finite variance. By the law of the iterated logarithm almost all realizations
Ž . Ž .x of the sequence X satisfyi i

n1
lim sup x s `.Ý i'nnª` is1

Nevertheless, for practical purposes we are less pessimistic and apply the
central limit theorem, which implies that

n1
Prob X F a ) 1 y « for suitable a and all « ) 0.Ý i « «½ 5'n is1

Thus, for practical purposes we dispense with considering fixed realizations
Ž .x . We are satisfied with the fact that the array of random variablesi 'ŽŽ . .1r n X has bounded row sums with large probability, although fori
different finite sample sizes different sequences of realizations are responsi-
ble for this property.

2. Efficiency bounds for random nuisance parameters. The goal of
this section is the statement and the proof of Theorem 2.13, which has been
summarized in Assertion 1.4. Keep the notation of Section 1. We need the
following conditions.

Ž .CONDITION 2.1. For every h g L the family P : u g Q is continuouslyu , h
2 Ž . Ž Ž . .L -differentiable with Fisher’s information I u , h . The family I u , ? : u g Q

is uniformly G-integrable.

The gradient with respect to u of the log-likelihood functions is denoted by
Ž . U Ž . � 2Ž . Ž . 4 Ž < .l ?, u , h . Let L G s k g L G : E k s 0 and let E ? AA be the condi-1 G u , G

tional expectation under Q with respect to AA. Let us recall the LANu , G
`Ž . Ž . � < < 5 5 4property of mixture distributions. If k g L G , let U k s t : t - 1r k .`

Ž .THEOREM 2.2. Assume that the family P : u g Q, h g L satisfies con-u , h

Ž . U Ž . `Ž . Ž Xdition 2.1 . Then for every k g L G l L G the family Q : u g Q,u , Ž1qt k .G
Ž .. 2t g U k is continuously L -differentiable and the derivative of the log-likeli-

Ž Ž Ž . < . Ž < ..hood function at u and t s 0 is given by E l ?, u , ? AA , E k AA .u , G 1 u ,G

Ž X .PROOF. It is sufficient to show that the families Q : u g Q andu , Ž1qt k .G
Ž X Ž ..Q : t g U k are continuously differentiable with the correspondingu , Ž1qt k .G

Ž X .derivatives. For the first family Q : u g Q the assertion follows fromu , Ž1qt k .G
wŽ . xBickel, Klaassen, Ritov and Wellner 1993 , Section 4.5 . For the second

Ž X Ž ..family the assertion is valid since the families Q : t g U k andu , Ž1qt k .G
Ž Ž . Ž .. wR s 1 q t k G: t g U k are mutually Blackwell-sufficient cf. Strassert

Ž .x1995 . I

Ž X Ž ..From Theorem 2.2 it follows that the family Q : u g Q, t g U ku , Ž1qt k .G
satisfies the LAN condition.

Our second condition is an identifiability condition.
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U Ž .CONDITION 2.3. For every k g L G the functions

< <E k AA , E l ?, u , ? AA , i s 1, 2, . . . , p ,Ž . Ž .Ž .u , G u , G 1 i

are linearly independent.

Similar conditions are well known and used by many authors dealing with
wthe asymptotic theory of mixture models. See Pfanzagl and Wefelmeyer,

Ž . x1982 , page 231.
The following construction leads to the asymptotic efficiency bounds for full

mixture models. If Conditions 2.1 and 2.3 are satisfied, then there exist
U Ž . Ž Ž . < .orthogonal projections l ?, u of the functions E l ?, u , h AA to the or-1 i u , G 1 i

� Ž < . U Ž .4thogonal complement of the linear space E k AA : k g L G . We haveu , G

Ž U Ž ..E l ?, u s 0 and denoteu , h 1 i

y1TU U U2.4 A u [ E l ?, u l ?,u .Ž . Ž . Ž . Ž .Ž .u , G 1 i 1 i

U Ž .This inverse matrix exists by Condition 2.3. The matrix A u is the efficient
covariance matrix for the estimation of u in the full mixture model. The
efficient influence function is given by

KU s AU u lU ?, u .Ž . Ž .u 1

Let WW be the set of all bounded, continuous loss functions which are bowl-
� 4shaped, that is, whose level sets W F a are convex and centrally symmetric.

This gives us a position to state the basic and essentially well-known theorem
on the asymptotic efficiency bound for full mixture models. Let

2.5 b W , u [ W d NN 0, AU u , W g WW .Ž . Ž . Ž .Ž .H
Our version differs from usual formulations in that we do not impose any
regularity on the estimator sequence. As a compensation we have to require

Ž .condition 2.7 for a sufficiently large set of loss functions. Recall Remark 1.5.

Ž .THEOREM 2.6. Assume that the family P : u g Q, h g L satisfies Con-u , h

Ž .ditions 2.1 and 2.3 for the probability measure G. Let k be an estimatorn
sequence such that

X n'2.7 lim sup W n k y u y s dQ F b W , uŽ . Ž . Ž .Ž .H Ž .n uqsr n , 1qkr n G' '
nª`

p U Ž . `Ž .for all s g R , k g L G l L G and W g WW . Then the following assertions
p U Ž . `Ž .are true for all s g R , k g L G l L G and W g WW :

n1
X nU'2.8 n k v y u y K v ª 0 Q ;Ž . Ž . Ž .Ž . Ž .Ýn u i u , G'n is1

X n U' <2.9 LL n k y u Q ª NN s, A uŽ . Ž . Ž .Ž .Ž .ž /n uqsr n , 1qkr n G' '

X n'2.10 lim W n k y u y s dQ s b W , u .Ž . Ž . Ž .Ž .H Ž .n uqsr n , 1qkr n G' '
nª`
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Ž . Ž . Ž .PROOF. The implication 2.7 « 2.8 is Theorem 2 in Strasser 1994 .
There the proof is based on the LAN property of the mixture distributions,

Ž . Ž .which follows from Theorem 2.2. The implication 2.8 « 2.9 is obvious for
Ž .s s 0 and k s 0. The general case of 2.9 follows from the LAN property and

Le Cam’s third lemma. I

Ž . Ž .REMARK 2.11. If p s 1, then the implication 2.7 « 2.8 is even valid if
Ž . Ž .2.7 is satisfied for one single loss function W g WW such that W - sup W is

Ž .a neighborhood of zero. See Remark 1.5.

The assertion of Theorem 2.6 deals with expected risks and does not
concern risks under individual random nuisance parameters. However, the
following assertion shows how conclusions for individual random nuisance
parameters can be drawn. We apply the obvious fact that

n
X n n n2.12 Q A s P A G dh , A g AA .Ž . Ž . Ž . Ž .mHu , G u , h iž /is1

Ž .THEOREM 2.13. Assume that the family P : u g Q, h g L satisfiesu , h

Ž .Conditions 2.1 and 2.3 for the probability measure G. Let k be an estima-n
tor sequence. If

n

n n 'G h g L : W n k y u y s d P G b W , u q «Ž . Ž .Ž . mH n uqsr n , h' i½ 52.14Ž . is1

ª 0,

p Ž . Ž .for all s g R , « ) 0 and W g WW , then assertions 2.7 ] 2.10 are valid and it
follows that

n

n n 'G h g L : W n k yu ys d P yb W , u )«Ž . Ž .Ž . mH n uqsr n , h' i½ 52.15 ,Ž . is1

ª 0

for all s g R p, « ) 0 and W g WW .

Ž . Ž .PROOF. In the first part of the proof we show that 2.14 implies 2.7 .
Ž . pSuppose that 2.14 is true. Let s g R , W g WW and « ) 0. Write

n

q n 'M s h g L : W n k y u y s d P G b W , u q « .Ž . Ž .Ž . mHn , « n uqsr n , h' i½ 5
is1

Ž . nŽ q . U Ž . `Ž .Assumption 2.14 says that G M ª 0. If k g L G l L G and G sn, « n
n n n q'Ž . Ž . Ž . Ž .1 q kr n G, then we have G 1 G . This implies G M ª 0. Hence,n n n, «
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it follows from

nX'W n k y u y s dQŽ .Ž .H Ž .n uqsr n , 1qkr n G' '

n

n's W n k y u y s d P G dhŽ . Ž .Ž . mHH n uqsr n , h n' i
is1

n q 5 5F b W , u q « q G M WŽ . Ž . un n , «

that

X n'lim sup W n k y u y s dQ F b W , u q « .Ž . Ž .Ž .H Ž .n uqsr n , 1qkr n G' '
nª`

p U Ž . `Ž .Since s g R , W g WW , k g L G l L G and « ) 0 have been chosen arbi-
Ž .trarily, the assertion 2.7 follows.

Ž . Ž .From Theorem 2.6 we obtain that 2.8 ] 2.10 are true. In the second part
Ž . Ž . Ž .of the proof we show that 2.10 and 2.14 together imply 2.15 .

Let s g R p, W g WW and « ) 0. Denote
n

y n 'M s h g L : W n k y u y s d P F b W , u y «Ž . Ž .Ž . mHn , « n uqsr n , h' i½ 5
is1

and
n

'R h s W n k y u y s d P y b W , u .Ž . Ž . Ž .Ž . mHn n uqsr n , h' i
is1

Ž .From 2.10 we obtain that

X n'lim W n k y u y s dQ s b W , u ,Ž . Ž .Ž .H n uqsr n , G'
nª`

in other words

lim R h G n dh s 0.Ž . Ž .H n
nª`

Ž .Now, the rest of the proof is almost trivial since assertion 2.15 follows from
Lemma 5.9, setting f s R and m s G n. In n n

Let us state the assertion of Theorem 2.13 in a way indicated in Assertion
1.4.

Ž .COROLLARY 2.16. Assume that the family P : u g Q, h g L satisfiesu , h

Ž .Conditions 2.1 and 2.3 for the probability measure G. Let k be an estima-n
Ž .tor sequence, and let Y be an array of random nuisance parameters eachni

row of which is i.i.d. according to G. If
n

'lim sup Prob W n k y u y s d P F b W , u y « ) 0,Ž . Ž .Ž . mH n uqsr n , Y' ni½ 5
is1nª`
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for some s g R p, « ) 0 and W g WW , then
n

'lim sup Prob W n k y u y s d P G b W , u q « ) 0,Ž . Ž .Ž . mH n uqsr n , Y' ni½ 5
is1nª`

for some possible other s g R p, « ) 0 and W g WW .

3. Efficiency bounds for nonrandom nuisance parameters. Let
Ž . Ž Ž ..V, AA, m be a s-finite measure space and P : u g Q, h g 0, 1 a family ofu , h

m-continuous probability measures. Assume that Q : R p is an open set.
Ž .In this section we consider nonrandom arrays h of nuisance parameters.ni

Recall Definition 1.8 of the family TT of strongly equidistributed arrays. Fors
every n g N let SS : AAn be the s-field of the permutation invariant sets. Then
basic fact used to prove the main result of this section is provided by the

Žfollowing theorem. This theorem might be of independent interest. See
.Definition 4.1.

Ž Ž ..THEOREM 3.1. Assume that the family P : u g Q, h g 0, 1 is uni-u , h

Ž . Ž . pformly continuous u.c. differentiable. Let s : R be bounded. Then alln
nŽ < . Ž .sequences of probability measures m P SS with h g TT anduqs r n , h n ni s'is1 n ni

X nŽ < .the sequence Q SS are mutually contiguous.uqs r n , l n'n

PROOF. In the first part of the proof we show mutual contiguity of the
nŽ < .sequences m P SS . The main idea of the proof is based on auqs r n , h n'is1 n ni

suitable parametrization of the set TT . We want to describe triangular arrayss
Ž . Ž .y s h g TT by functions in D 0, 1 .ni s

Ž . Ž .Let y s h be a triangular array. Let h be the corresponding array ofni n : i
Ž .order statistics. The triangular array consisting of t [ ir n q 1 will play ani

particular role. We define
n
'c y [ n h y t 1 .Ž . Ž .Ýn n : i ni ŽŽ iy1.r n , i r n x

is1

Ž Ž ..Thus, for every triangular array y we have a sequence of functions c y :n
Ž . Ž .D 0, 1 . For every n g N the function c y is the quantile function of the nthn

Ž .row of y. The array of order statistics h can be recovered from then : i
Ž Ž ..sequence of functions c y . For this, letn

irn
c [ n c h dh if c g D 0, 1 .Ž . Ž .Hni

Ž .iy1 rn

' 'Ž . Ž . Ž .Then we have c y s n h y t or h s t q c y r n . This im-ni n : i ni n : i ni ni
plies

n n n

< < <3.2 P SS s P SS s P SS .Ž . m m mu , h n u , h n u , t qc Ž y .r n n'ni n : i n i n i
is1 is1 is1

Ž Ž ..The relation between the sequence c y and the standardized empiricaln'Ž Ž .. wdistribution functions n F y I of the rows of y is well known seen y
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'Ž . x Ž Ž ..Shorack and Wellner 1986 , page 86 : if n F y I is relatively compactn y
Ž . Ž Ž .. Ž .in D 0, 1 , then c y is relatively compact in D 0, 1 , too. Thus, if y g TT ,n s

Ž Ž .. Ž .then the sequence c y is relatively compact in D 0, 1 and thereforen
2Ž .also relatively compact in L 0, 1 . From the LAN property stated in Theo-

rem 4.18 we obtain that the sequences of probability measures
nŽ .m P are mutually contiguous. The same is then obvi-uqs r n , t qc Ž y .r n' 'is1 n ni ni

ously true of their restrictions to the symmetric s-fields SS . Thus, it followsn
Ž .from equation 3.2 that the sequences of probability measures

nŽ < .m P SS are mutually contiguous. This settles part one of theuqs r n , h n'is1 n ni

proof.
In the second part of the proof we will show that

n
X n< <P SS 1 Q SS for all h g TT .Ž .Ž .m u , h n u , l n ni sniž /is1

In view of the first part of the proof, it is sufficient to prove the following
assertion:

Suppose that A g AAn, n g N, is a sequence satisfyingn
X n Ž .Q A ª 0. Then there is at least one triangular arrayu , l n

nŽ . Ž .y s h g TT such that m P A ª 0.ni s u , h nis1 ni

X n Ž .Let « [ Q A . By the uniform tightness of the empirical processn u , l n
Ž .under the uniform distribution, there is a compact set K : D 0, 1 such that

the sets

n 'M s h g R : n F y I g K , h / h if i / jŽ .½ 5n n nh ni n jn

nŽ .satisfy l M G d ) 0 for all n g N. Since we haven

n

nP A l dh s « ,Ž . Ž .mH u , h n nni
is1

it follows that
n

«n
inf P A : h g M F .Ž .m u , h n n nni½ 5 dis1

Hence, for every n g N, there exists h g M such thatn n

n
« 1n

P A F q .Ž .m u , h nni d nis1

Ž .In this way we have obtained a triangular array h g TT which satisfiesni s

n

P A ª 0.Ž .m u , h nni
is1

This settles the second part of the proof.
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In the last part of the proof we show that

n
X n< <P SS 2 Q SS for all h g TT .Ž .Ž .m u , h n u , l n ni sniž /is1

Suppose that A g AAn, n g N, is a sequence and there is at least onen
Ž . n Ž .triangular array h g TT such that m P A ª 0. From the first partni s u , h nis1 ni

Ž .it follows that this convergence is even true for all arrays h g TT . By theni s
uniform tightness of the empirical process under the uniform distribution,

Ž . nŽ .there is a compact set K : D 0, 1 such that the sets M satisfy l M G dn n
for all n g N, where d is arbitrarily close to 1. Since we have

n n

n nP A l dh F P A l dh q 1 y d ,Ž . Ž . Ž . Ž . Ž .m mH Hu , h n u , h nni ni
Mis1 is1n

it follows that

lim sup QX n A F 1 y d .Ž .u , l n
nª`

This proves the assertion. I

The main result of this section is the following theorem. The formal
U Ž .similarity with Theorem 2.6 should be noted. Recall the definition of A u in

Ž . Ž . Ž .2.4 and of b W, u in 2.5 . The regularity conditions of Theorem 3.4 are
stronger than those of Theorem 2.6 since we have to replace Condition 2.1 by

w Ž .xthe following stronger condition see 4.1 .

Ž Ž ..CONDITION 3.3. The family P : u g Q, h g 0, 1 is uniformly continu-u , h

ously L2-differentiable.

Ž Ž ..THEOREM 3.4. Assume that the family P : u g Q, h g 0, 1 satisfiesu , h

Ž .Conditions 3.3 and 2.3 for the probability measure G s l. Let k be an
sequence of permutation-invariant estimators such that

n

'3.5 lim sup W n k y u y s d P F b W , u ,Ž . Ž . Ž .Ž . mH n uqsr n , h' ni
is1nª`

p Ž .for all s g R , W g WW and h g TT . Then the following assertions are true:ni s

nn1
U'3.6 n k v y u y K v ª 0 P ,Ž . Ž . Ž .Ž . Ý mn u i u , hniž /'n is1is1

Ž .for all h g TT ;ni s

n
U' <3.7 LL n k y u P ª NN s, A u weaklyŽ . Ž . Ž .Ž .mn uqsr n , h' niž /is1
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p Ž .for all s g R and h g TT ; andni s
n

'3.8 lim W n k y u y s d P s b W , u ,Ž . Ž . Ž .Ž . mH n uqsr n , h' ninª` is1

p Ž .for all s g R , W g WW and h g TT .ni s

Ž .PROOF. Let k be a sequence of permutation-invariant estimators whichn
Ž . p Ž .satisfies 3.5 for all s g R , W g WW and h g TT . As a first step we showni s

Ž . Ž .that the sequence k satisfies assumption 2.14 of Theorem 2.13.n
Ž .Let d ) 0 and K : D 0, 1 be a compact set such that the sets

n 'M s h g 0, 1 : n F y I g K , h / h if i / jŽ . Ž .½ 5n n nh ni n jn

nŽ . Ž .satisfy l M G 1 y d for all n g N. Condition 3.5 impliesn
n

n 'l M l W n k y u y s d P G b W , u q « ª 0,Ž . Ž .Ž . mHn n uqsr n , h' ni½ 5ž /is1

Ž .for every « ) 0. Since l M ) 1 y d for all n g N and since d ) 0 is arbi-n
Ž .trarily small, assertion 2.14 follows.

Ž . pFrom Theorem 2.13 we obtain that assertion 2.8 is valid for all s g R .
Ž .Now, we apply Theorem 3.1. Since the sequence k is permutation invari-n

Ž . Ž . Ž .ant, it follows that 2.8 implies 3.6 for all h g TT .ni s
Ž . Ž .In order to prove assertion 3.7 we apply the identity 3.2 . We have to

show that, for a g R p and K s aTKU, the assertionu

nn1
23.9 lim LL K v P s NN m , s weakly,Ž . Ž . Ž .Ý mi uqsr n , t qc r n' 'ni ni'ž /nª` n is1is1

T 2 T U Ž .with m s a s, s s a A u a and for all relatively compact sequences in
Ž . Ž . 2Ž .c : D 0, 1 . It is sufficient to prove it for convergent sequences in L 0, 1 .n

Ž .For this we apply Theorem 4.24. This gives 3.9 .
Ž . Ž .Assertion 3.8 is an immediate sequence of 3.7 . I

Let us state the assertion of Theorem 3.4 in a way indicated in Assertion
1.7.

Ž .COROLLARY 3.10. Assume that the family P : u g Q, h g L satisfiesu , h

Ž .Conditions 3.3 and 2.3 for the probability measure G s l. Let k be an
sequence of permutation-invariant estimators. If

n

'lim inf W n k y u y s d P - b W , u ,Ž . Ž .Ž . mH n uqsr n , h' ninª` is1

p Ž .for some s g R , h g TT and W g WW , thenni s
n

'lim sup W n k y u y s d P ) b W , u ,Ž . Ž .Ž . mH n uqsr n , h' ni
is1nª`

p Ž .for some possible other s g R , h g TT and W g WW .ni s
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Another corollary is concerned with the existence of estimator sequences
which satisfy the assumptions of Theorem 3.4.

Ž .COROLLARY 3.11. Assume that the family P : u g Q, h g L satisfiesu , h

Ž .Conditions 3.3 and 2.3 for the probability measure G s l. Let k be ann
estimator sequence which is efficient for the full mixture model. Then for this

Ž . Ž .sequence assertions 3.5 ] 3.8 are satisfied.

PROOF. Since the full mixture model is an i.i.d. model, the efficient
Ž .sequence k can be assumed to be permutation invariant. Efficiency for then

Ž .full mixture model means that condition 2.8 is satisfied. From Theorem 3.1
Ž . Ž . Ž .we obtain 3.6 and thus 3.7 and 3.8 . I

4. LAN for non-i.i.d. observations. In this section we are going to
summarize and prove some basic facts on local asymptotic normality with
independent but not identically distributed observations. We attempt to give
a set of conditions which is general but simple.

Let us begin with a general situation where the parameter set is an open
k wand relatively compact set A : R . The parameter is denoted by x. Later we

Ž . x Ž .will specialize to the case A s Q = L and x s u , h . Let P : x g A be ax
family of probability measures on a measurable space which is dominated by

<a s-finite measure m AA.

Ž . 2DEFINITION 4.1. The family P : x g A is u.c. L -differentiable if thex
mapping

1r2dPx2F : A ª L V , AA, m : x ¬ 2Ž . ž /dm

2Ž .is differentiable and if the derivative DF: A ª L V, AA, m is uniformly
continuous on A.

Continuous differentiability is a familiar assumption to verify the LAN
wproperty for products with identical factors see, e.g., Bickel, Klaassen, Ritov

Ž .xand Wellner 1993 . We need, in addition, uniform continuity of the deriva-
tive since we are considering likelihood ratios whose denominators are prod-
ucts with nonidentical factors. If continuous differentiability is satisfied, then
on compact subsets of the parameter space even uniform continuous differ-
entiability is fulfilled.

Ž .Assume that the family P ; x g A is u.c. differentiable. Let us collectx
some well-known consequences.
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Ž .The derivatives satisfy DF x s 0, where dP rdm s 0 m-a.e. Thereforex
2Ž . Ž .there are functions l g L V, AA, P , such that the derivative DF x can bex x

written as
1r2dPx

DF x s l ? , x g A.Ž . x ž /dm

The functions l may be viewed as derivatives of the log-likelihood functionx
Žin m-measure. If the densities are positive m-a.e., then they are in fact the

.derivatives of the log-likelihood functions. It is a well-known fact that

4.2 E l s 0, x g A.Ž . Ž .x x

If the parameter space is of dimension greater than 1, let the derivatives
Ž .DF x and let l be represented by row vectors of random variables. Denotex

the Fisher information function by

I x s lT l dP , x g A.Ž . H x x x

Ž .The mapping x ¬ I x is uniformly continuous on A.

Ž .LEMMA 4.3. Suppose that P is u.c. differentiable. Then for every « ) 0x
Ž . Ž .there is a d « ) 0 independent of x g A such that

2 21 < < < <4.4 F x q t y F x y l ? t F x dm - « t if t - d « ,Ž . Ž . Ž . Ž . Ž .Ž .H x2

whenever the interval between x g A and x q t g A is in A.

PROOF. This is a consequence of the mean value theorem. Apply Dieudonné
wŽ . x Ž .1960 , 8.6.2 and consider that x ¬ DF x can be extended continuously
onto A. I

Ž .Among others, this implies that the Hellinger distances of P : x g Ax
satisfy a Lipschitz condition:

< <4.5 d P , P F C x y y if x , y g A.Ž . Ž .2 x y

1Ž .It follows that x ¬ dP rdm is uniformly continuous in L m . Since A isx
Ž .relatively compact, the family dP rdm: x g A is even uniformly integrablex

1Ž .in L m :

dPx
4.6 lim sup dm s 0.Ž . H dma` dP rdm)axgA x

For the LAN property we need uniform integrability of the log-likelihood
derivatives in order to satisfy the Lindeberg condition.
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Ž .LEMMA 4.7. Suppose that P is u.c. differentiable. Thenx

< <24.8 lim sup l dP s 0.Ž . H x x
a` < <l )axgA x

Ž . Ž . Ž .PROOF. The mappings x ¬ F x and x ¬ G x [ l F x can be ex-x
tended continuously to A. If we define

G xŽ .
l [ 1 , x g A ,x �F Ž x .) 04F xŽ .

then x ¬ l , x g A, is a m-continuous extension of x ¬ l , x g A. Hence, thex x
mappings

2< <x ¬ l dP , x g A ,H x x
< <l )ax

are continuous and decreasing to zero. Since A is compact, Dini’s theorem
Ž .proves 4.8 . I

Now we are in a position to state the basic theorem concerning the LAN
5 5property. Let us denote by ? the Dudley norm of measures on metricD

spaces.

Ž .THEOREM 4.9. Assume that the family P : x g A is u.c. differentiable onx
Ž . Ž .A. Let x : A be an arbitrary triangular array, and let t : A be ani ni

triangular array satisfying
n1 2< <4.10 lim sup t - `,Ž . Ý ninnª` is1

1
< <4.11 lim max t s 0.Ž . ni'nª` 1FiFn n

Write
n1

X24.12 s s t I x t , n g N.Ž . Ž .Ýn ni ni nin is1

Then it follows that
n nd m P 1 1x qt r n'is1 ni ni 24.13 s exp l ? t y s q r ,Ž . Ý x ni n nn niž /'d m P 2nxis1 is1ni

Ž n .where r ª 0 m P . Moreover,n xis1 ni
nn1

24.14 LL l ? t P y n ª 0.Ž . Ý mx ni x 0, sni ni n'ž /n is1is1 D

PROOF. The proof is straightforward. For instance, one may apply Corol-
Ž .lary 74.4 in Strasser 1985 , setting P s P , Q s P and h sni x ni x qt r n ni'ni ni niy1r2 Ž .n l ? t . The Lindeberg condition needed for 4.14 is a consequence ofx nini

Ž .4.8 . I
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In the following we specialize to the situation considered in Section 3. We
need some abbreviations.

Ž . pLet A s Q = 0, 1 , where Q : R is an open set. The Lebesgue measure
Ž . Ž .on 0, 1 is denoted by l. If x s u , h g A, the derivative of the log-likelihood

Ž .function is denoted by l : v ¬ l v, u , h and the partial derivatives withx
Ž . Ž .respect to u and h are denoted by l ?, u , h and l ?, u , h , respectively. The1 2

Ž . Ž .components of Fisher’s information matrix I x are denoted by I u , h , thati j
is,

I u , h s l ?, u , h l ?, u , h dP .Ž . Ž . Ž .Hi j i j u , h

Ž .Let t s ir n q 1 .ni
It is straightforward to specialize Theorem 4.9 to the products

n

P ,m uqsr n , t qt r n' 'ni ni
is1

Ž . Ž .where t is a triangular array of numbers in 0, 1 . However, in Section 3ni
Ž .we are considering a particular parametrization of the triangular arrays t .ni

Žw x.There the parameter set is D 0, 1 . The LAN property is even valid for the
2Ž .larger parameter set L 0, 1 . Therefore we will state the LAN property for

this set.
2Ž .Let c g L 0, 1 be any square integrable function. For such a function we

Ž .define a triangular array c of numbersni

irn 2c [ n c h dh if c g L 0, 1 .Ž . Ž .Hni
Ž .iy1 rn

The products of probability measures can then be parametrized by pairs
Ž . p 2Ž .s, c g R = L 0, 1 according to

n

p 24.15 P [ P if s, c g R = L 0, 1 .Ž . Ž . Ž .mn sc uqsr n , t qc r n' 'ni ni
is1

The LAN property requires a sequence of random variables and a nonrandom
quadratic function of the parameters. For convenience let us abbreviate these
components by

n1
n4.16 X : v ¬ l v , u , t ? s q l v , u , t c , v g V ,Ž . Ž . Ž .Ž .Ýn sc 1 i ni 2 i ni ni'n is1

and

2 X4.17 I s l ? s q l c dQ .Ž . Ž .Hsc 1u 2u u , l

Now we are in a position to state that kind of LAN property which is
applied in Section 3.

Ž Ž ..COROLLARY 4.18. Assume that the family P : u g Q, h g 0, 1 is u.c.u , h

Ž . p Ž . 2Ž .differentiable. Let s : R be bounded, and let c : L 0, 1 be relativelyn n
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compact. Then we have
dP 1n s cn n4.19 s exp X y I q r ,Ž . n s c s c nn n n nž /dP 2n00

Ž .where r ª 0 P andn n00

<4.20 LL X P y NN 0, I ª 0.Ž . Ž .Ž .n s c n00 s cn n n n D

Ž . Ž Ž ..PROOF. According to Lemma 5.1 the triangular array s , t c satis-n ni
Ž . Ž .fies conditions 4.10 and 4.11 . Writing

n1 sn2s s s , c I u , t ,Ž . Ž .Ýn n ni ni ž /cn niis1

it follows from Theorem 4.9 that
dP 1n s cn n 2s exp X y s q r ,n s c n nn nž /dP 2n00

Ž .where r ª 0 P andn n00

2<LL X P y NN 0, s ª 0.Ž .Ž .n s c n00 nn n D

From Lemma 5.4 it follows that s 2 y I ª 0. This proves the assertion. In s cn n

Our second goal in this section is concerned with the asymptotic distribu-
tion of standardized sums of a random variable under independent but not

Ž .identically distributed observations. This is applied to prove assertion 3.7 of
Theorem 3.4.

Let K be an AA-measurable function satisfying

4.21 K 2 dP dh - `,Ž . HH u , h

4.22 K dP dh s 0.Ž . HH u , h

Write

4.23 J u , h [ Kl ?, u , h dP , i s 1, 2.Ž . Ž . Ž .Hi i u , h

Ž Ž ..THEOREM 4.24. Suppose that the family P : u g Q, h g 0, 1 is u.c.u , h
2Ž . p Ž .differentiable. Let c ª c in L 0, 1 and s ª s in R . If K satisfies 4.21n n

Ž .and 4.22 , then
nn1

2LL K v P ª NN m , s weakly,Ž . Ž .Ý mi uqs r n , t qc r n' 'n ni ni'ž /n is1is1

where

m s J u , ? ? s dl q J u , ? c dl,Ž . Ž .H H1 2

2
2 2s s K dP dh y K dP dh .HH H Hu , h u , hž /
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The proof of this theorem is divided into two parts. First, we will prove a
special case. This special case is a straightforward application of Le Cam’s
third lemma. We provide a proof for the reader’s convenience.

LEMMA 4.25. The assertion of Theorem 4.24 is valid if K is bounded.

Ž .PROOF. Keep the notation of 4.15 . Let

n1
U v s K v ,Ž . Ž .Ýn i'n is1

n1
V v s l v , u , t ? s,Ž . Ž .Ýn 1 i ni'n is1

n1
W v s l v , u , t c .Ž . Ž .Ýn 2 i ni ni'n is1

Ž .First we are interested in the common limit distribution of U , V , W undern n n
Ž n . Ž .m P s P .u , t n00is1 ni

Ž . Ž .The expectations of V and W are zero by 4.2 . The expectations of Un n n
Ž . Ž .converge to zero by Lemma 5.7, 4.5 and assumption 4.22 . Since K is

Ž .bounded, U satisfies the Lindeberg condition. The Lindeberg conditions forn
Ž . Ž . Ž .V and W are implied by 4.8 and Lemma 5.1.n n

Thus, we obtain

n c c c11 12 130
LL U , V , W P ª NN , weakly,c c c0mn n n u , t 12 22 23niž / ž /is1 � 0� 00 c c c13 23 33

where, by Lemma 5.4,

2
2c s K dP dh y K dP dh ,HH H H11 u , h u , hž /

c s s2 I u , h dh ,Ž .H22 11

c s c 2 h I u , h dh ,Ž . Ž .H33 22

c s s J u , h dh ,Ž .H12 1

c s s c h I u , h dh ,Ž . Ž .H23 12

c s c h J u , h dh .Ž . Ž .H13 2
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From Corollary 4.18 we obtain

dP 1 1n s cn nlog y V y W q c q c q c ª 0 P .Ž .n n 22 23 33 n00dP 2 2n00

This implies

dPn s cn nLL U , log Pn n00ž /dPn00

0 c c q c11 12 131 1ª NN , weakly.ž /c q c c q 2c q cy c y c y c 12 13 22 23 3322 23 33� 0� 02 2

Ž .By a standard argument Le Cam’s third lemma the assertion that

<LL U P ª NN c q c , c weaklyŽ .Ž .n n s c 12 13 11n n

follows. I

PROOF OF THEOREM 4.24. We shall apply Theorem 3.1. For every n g N,
let SS : AAn be the symmetric sub-s-field.n

Ž < . Ž X n < .Let « ) 0 be arbitrary. Since, by Theorem 3.1, P SS 1 Q SSn s c n u , l nn n
Ž .there is d « ) 0 such that, for every sequence of subsets A g SS ,n n

4.26 lim sup QX n A F d « « lim sup P A F « .Ž . Ž . Ž . Ž .u , l n n s c nn n
nª` nª`

Ž p. Ž .Let f g CC R be uniformly continuous and choose d « such thatb

p< <4.27 x y y - d « « f x y f y - « , x , y g R .Ž . Ž . Ž . Ž .

For every a G 0, we define

K s K1 y K1 dQX .Ha � < K < F a4 � < K < F a4 u , l

Each function K satisfies the conditions of Lemma 4.25, and therefore wea
have

n1
24.28 lim f K v dP s f d NN m , s .Ž . Ž . Ž .ÝH Ha i n s c a an nž /'nª` n is1

It is easy to see that

2 Xlim K y K dQ s 0.Ž .H a u , l
a`

This implies that

lim m s m and lim s 2 s s 2 .a a
a` a`
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Ž .Therefore we may choose a « such that

2 X 3K y K dQ - d «Ž .Ž .H aŽ« . u , l

and

2 2f d NN a, s y f d NN m , s - « .Ž . Ž .H H aŽ« . aŽ« .

By the Chebyshev inequality we have, for every n g N,
n n1 1

X nQ K v y K v ) d «Ž . Ž . Ž .Ý Ýu , l i aŽ« . i½ 5' 'n nis1 is1

1 2 XF K y K dQ - d « .Ž .Ž .H aŽ« . u , l2d «Ž .
Ž .By 4.26 this implies

n n1 1
4.29 lim sup P K v y K v ) d « F « .Ž . Ž . Ž . Ž .Ý Ýn s c i aŽ« . in n½ 5' 'n nnª` is1 is1

Considering the inequality
n1

2f K v dP y f d NN m , sŽ . Ž .ÝH Hi n s cn nž /'n is1

n n1 1
F f K v dP y f K v dPŽ . Ž .Ý ÝH Hi n s c aŽ« . i n s cn n n nž / ž /' 'n nis1 is1

n1
2q f K v dP y f d NN m , sŽ . Ž .ÝH HaŽ« . i n s c aŽ« . aŽ« .n nž /'n is1

2 2q f d NN m , s y f d NN m , s ,Ž .Ž .H HaŽ« . aŽ« .

Ž . Ž . Ž .it follows from 4.27 , 4.28 and 4.29 that
n1

2 5 5lim sup f K v dP y f d NN m , s F 2 q f « . IŽ . Ž .Ž .ÝH H ui n s cn nž /'nnª` is1

2Ž .5. Auxiliary lemmas. If c g L 0, 1 , define
irn

c s n c h dh , i s 1, 2, . . . , n.Ž .Hni
Ž .iy1 rn

Ž . 2Ž . 2LEMMA 5.1. Suppose that c : L 0, 1 is uniformly L -integrable. Thenn
n1

25.2 lim sup c - `Ž . Ý ninnª` is1

and
1

< <5.3 lim max c s 0.Ž . ni'nª` 1FiFn n
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PROOF. Since
n1 12 2c F c h dhŽ .Ý Hni nn 0is1

Ž .holds, 5.2 follows. Moreover, we have

1 irn'< <c F n c h 1 h q 1 h dhŽ . Ž . Ž .Ž .H 4 4ni n � <c < F « n � <c < ) « n' 'n n' Ž .n iy1 rn

1
2F « q c h dh .Ž .H n« < <c )« n'n

Ž .This proves 5.3 . I

Ž . Ž . 2Ž .LEMMA 5.4. Let f g C 0, 1 and assume that c : L 0, 1 is uniformlyb n
L2-integrable. Then

n1 i 1
5.5 c f y c h f h dh ª 0,Ž . Ž . Ž .Ý Hni nž /n n q 1 0is1

n1 i 12 25.6 c f y c h f h dh ª 0.Ž . Ž . Ž .Ý Hni nž /n n q 1 0is1

PROOF. Let
n i

f h s f 1 h .Ž . Ž .Ýn ŽŽ iy1.r n , i r n xž /n q 1is1

Ž . Ž . Ž . 2Ž .Then we have f ª f m and hence c f y f ª 0 m and c f y f ª 0n n n n n
Ž .m . Since both sequences are uniformly integrable, the assertions follow. I

Ž .LEMMA 5.7. Assume that f g C 0, 1 satisfies a Lipschitz condition. Thenb

n1 i 1'n f y f h dh ª 0.Ž .Ý Hž /ž /n n q 1 0is1

< Ž . Ž . < < <PROOF. Suppose that f s y f t F C s y t . Then we have
n n1 i i1 irn

f y f h dh F f y f h dhŽ . Ž .Ý ÝH Hž / ž /n n q 1 n q 1Ž .0 iy1 rnis1 is1

nC 1irn
F 1 dh s O . IÝ H ž /n nŽ .iy1 rnis1

The proofs of the next lemmas are straightforward and hence omitted.

� Ž .4LEMMA 5.8. Assume that the family f : u g Q, h g 0, 1 is uniformlyu , h

< Ž .m-integrable. Then, for every probability measure p BB 0, 1 , the family
� 4Hf dp : u g Q is uniformly m-integrable, too.u , h
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Ž .LEMMA 5.9. Let f be a uniformly bounded sequence of measurablen
Ž .functions, and let m be a sequence of probability measures. Ifn

lim f dm s 0H n n
nª`

and
� 4lim m f ) « s 0 for all « ) 0,n n

nª`

then
� 4lim m f - y« s 0 for all « ) 0.n n

nª`
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