
The Annals of Statistics
1996, Vol. 24, No. 2, 816]824

PARTIAL LEAST SQUARES ALGORITHM YIELDS
SHRINKAGE ESTIMATORS

BY CONSTANTINOS GOUTIS

Universidad Carlos III de Madrid

We give a geometric proof that the estimates of a regression model
derived by using partial least squares shrink the ordinary least squares
estimates. The proof is based on a sequential construction algorithm of
partial least squares. A discussion of the nature of shrinkage is included.

1. Introduction. Partial least squares is a class of regression estimation
Ž .methods initially developed by Wold 1966, 1973 that has recently been

increasingly popular among chemists and other scientists as a technique for
treating highly collinear data. It is almost routinely applied in spectroscopy,
where one aim is to predict a chemical composition from a near infrared
reflectance spectrum. The philosophy is to reduce the data to a manageable
form before solving the prediction problem. For a treatment of this and
related methods in multivariate calibration setups, see Martens and Næs
Ž . Ž .1989 . Some papers examining partial least squares include Helland 1988

Ž .and Næs and Martens 1985 , and a thorough review can be found in Frank
Ž .and Friedman 1993 .

In this paper we give a geometric proof that the coefficients derived by
partial least squares shrink the ordinary least squares coefficients. Though
shrinkage features of partial least squares estimates have been discussed
w Ž . Ž .xSundberg 1993 ; Frank and Friedman 1993 , these papers do not contain

Ž .any proof concerning shrinkage effects. Frank and Friedman 1993 give an
analysis in terms of the eigendirections of the predictor sample covariance
matrix and show that there are some directions in which partial least squares
increases the projected length of the ordinary least squares solution. We
examine whether the overall length of the vector of the partial least squares
coefficients is less than that of ordinary least squares.

The paper is organized as follows. In Section 2 we describe the setup of the
problem and a picture illustrating the geometry. Section 3 presents our main
result and its proof, and we conclude with a discussion.
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2. Setup and geometry. We suppose that the data consist of a n = p
matrix X of rank r and a n = 1 vector y. The columns of X represent
‘‘explanatory’’ variables, whereas y is a vector of values of the ‘‘response’’
variable. Each row of X and the corresponding element of y represents an
observation. The goal is to predict a future value of y corresponding tof
known values x of the given variables. A prediction formula, closely relatedf j
to the standard linear model, is

p

ˆ1 y s x bŽ . ˆ Ýf f j j
js1

ˆ ˆ ˆand the coefficients b , b , . . . , b can be considered as estimates of parame-1 2 p
ters.

Both ordinary and partial least squares are equivariant under orthogonal
wtransformations, so we can transform the problem to the canonical form see,

Ž . xe.g., Scheffe 1959 , page 21 . Since lengths of vectors are preserved under´
orthogonal transformations, the estimates in the original form will have the
same length as in the canonical form. We find orthogonal matrices P and Q of

X Ž .appropriate dimensions so that X s P DQ, where D s d is a n = p ma-i j
trix with d ) 0 for i s 1, 2, . . . , r and d s 0 otherwise, and use D and Pyi i i j

ˆ ˆ ˆŽ .instead of X and y, respectively. To compute b , b , . . . , b , we can ignore1 2 p
all but the first r rows and columns of D. Hence, we may assume without loss
of generality that n s p s r and X is a diagonal matrix with positive diago-
nal elements. Furthermore, we can take y to be the least squares fitted

ˆ y1values and b s X y to be the least squares coefficients.
The partial least squares method determines the coefficients by choosing

subspaces of the column space of X sequentially and then projecting y onto
these subspaces. The fitted values and parameter estimates at step a of the

ˆsequence will be denoted by y and b , respectively. The algorithm, under theˆa a
wcanonical form of X and y, can be described as follows see also Helland

Ž . Ž .x1988 or Stone and Brooks 1990 :
At the first step, one searches for a t s Xw to maximize the sample1 1

covariance of t and y for a fixed wX w . The solution is t A X 2 y or w A Xy.1 1 1 1 1
The normalization constraint wX w s 1 is often used, but we will take1 1

2 wX w s K 2 ' yX Xy2 y.Ž . 1 1 1

Ž X .y1 XThe fitted values are given by y s t t t t y ' P y, where P is theˆ1 1 1 1 1 1 1
Ž X .y1 Xprojection matrix t t t t .1 1 1 1

The subspaces of subsequent steps are determined by finding arrays
orthogonal to the previous ones, to maximize the sample covariance with y.
More precisely, at step a, t has the form t s Xw and maximizes tX ya a a a
subject to tX t s tX t s ??? s tX t s 0 and a normalizing constraint1 a 2 a ay1 a

XX 2 y23 w w s K ' y y y X y y y .Ž . Ž . Ž .ˆ ˆa a a ay1 ay1
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Ž X .y1 XSo by letting P s t t t t , we obtains s s s s

ay1
24 t A X I y P y,Ž . Ýa sž /

ss1

ay1

5 w A X I y P yŽ . Ýa sž /
ss1

and y s Ýa P y. Since the span of t , t , . . . , t is a subspace of the columnˆa ss1 s 1 2 a
5 5 5 5 w Ž .space of X, it follows immediately that y F y see Denham 1991 , pageˆa

x74 .
The geometry of the model can be seen in Figure 1, to which we will refer

throughout the paper. A similar picture and an extensive discussion appears
Ž .in Phatak, Reilly and Penlidis 1992 . Due to limited drawing ability, we have

taken r s 3. The ellipsoid EE has axes with lengths proportional to the0
diagonal elements of X. The fitted values using least squares are represented
by the point A which lies on EE .0

Several geometrical arguments and concepts are independent of the coordi-
nate system and for them we will use purely geometrical language and
notation. In other words, we differentiate between a vector and its coordi-
nates, since the vector is a geometric object whereas the coordinates depend
on the basis and have different significance in different bases. The norm of an
array will be the square root of the sum of squares of its elements.

We will use two systems of bases and coordinates in the drawn space. The
first basis is the natural one consisting of equal unit vectors along the axes of
EE . We will refer to the coordinates with respect to this basis as spherical0
coordinates or simply coordinates. We will also use the half axes of EE as0
basis and refer to the respective coordinates as elliptical coordinates. The
relation between elliptical coordinates w and spherical coordinates t is
t s Xw. The terminology is justified since all vectors with elliptical coordi-
nates w such that wX w s d2 lie on an ellipse of the form tX Xy2 t s d2 instead
of a sphere. Abusing the language somewhat, we will refer to d as the radius

ˆof the ellipse. Therefore, the point A has elliptical coordinates equal to b and
spherical coordinates equal to y and EE has radius K . As a convention, we0 1
consider the various ellipsoids as surfaces rather than solids. Hence a point
will lie ‘‘inside,’’ ‘‘on’’ or ‘‘outside’’ an ellipsoid, rather than in the ‘‘interior,’’
the ‘‘boundary’’ or the ‘‘exterior,’’ respectively.

3. The main result. We are now ready to show our main result concern-
ing the partial least squares estimates, which can be stated as follows:

ˆ ˆ5 5 5 5THEOREM 1. For every a F r we have b G b .a

PROOF. The proof will proceed by constructing the partial least squares
estimates sequentially and showing that the result is true at each step. It will
be clear that taking r s 3 is sufficient; higher dimensions are essentially the
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FIG. 1. Geometry of partial least squares.

same. Taking r s 2 would not be enough since there are no intermediate
ˆ ˆ ˆ ˆ ˆsteps between b and b s b. We will take without loss of generality b / b1 r a

for a - r.
For the first step, we note that all vectors with an endpoint in a hyper-6 6

plane perpendicular to A A have the same inner product with A A . The0 0
Ž .standardization 2 restricts the vectors with coordinates t to have endpoints1

on the ellipsoid EE and the particular radius K is chosen so that the vector0 1
with coordinates y lies on EE . The vector with an endpoint on EE maximizing0 0
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6

2Ž 5 5this inner product is A B with coordinates t s K X yr Xy and elliptical0 1 1 1
5 5.coordinates w s K Xyr Xy . The point B is the intersection of EE and a1 1 1 0 6

Ž .hyperplane not drawn in Figure 1 tangent to EE and perpendicular to A A .0 0
The coordinates t of points of this hyperplane satisfy

6 tX Xy2 t s tX Xy2 tŽ . 1 1 1

because it is tangent to EE , or0

7 yX t s yX tŽ . 16

because it is perpendicular to A A . The fitted values after one step are0 66

obtained by projecting A A onto A B . If A is the projection of A, the0 0 1 1
ˆelliptical coordinates of A are equal to the coefficients b , whereas the1 1

spherical coordinates are the fitted values y .ˆ1
ˆ X y1 XŽ .Now Xb s ct , where c s t t t y; hence 0 F c F 1. Note that c is1 1 1 1 1

nonnegative, since if it were negative, we would have tX y - 0 - ytX y and t1 1 1
could not be the maximizing array. It follows that

ˆ 2 2 X y2 2 X y2 2 ˆ 25 5 5 58 b s c t X t s c y X y s c b ,Ž . 1 1 1

ˆ ˆ5 5 5 5hence b G b , that is, the partial least squares estimates after one step1
shrink the least squares estimates. Geometrically this can be seen by noting
that the radius of an ellipsoid concentric to EE going through A is necessar-0 1
ily smaller than or equal to that of EE . Hence the sum of the squared0
elliptical coordinates of A is less than or equal to the sum of the squared1
elliptical coordinates of A. 6

In subsequent steps we will need the hyperplane S , perpendicular to A A ,1 0
Ž .that goes through A. The hyperplane S is parallel to the one given by 6 or1

Ž .7 and separates the whole space into two half spaces. The distance of the
5 5point A from S is equal to y ; hence all points with coordinates t such0 1

5 5 5 5that t F y lie in the half space containing A . In particular, since0
5 5 5 5y F y , the points representing the fitted values of partial least squares atˆs
any step s s 2, 3, . . . , a lie in the half space containing A .0

Ž . Ž .Using a defining equation analogous to 6 rather than 7 , since the
hyperplanes are parallel and y s P y s ct , the coordinates t of points of Sˆ1 1 1 1
satisfy

X Xy2 y29 P y X y s P y X t.Ž . Ž . Ž .1 1

Ž .The half spaces into which S separates the whole space can be defined by 91
Ž .X y2with inequalities instead of equality, and since P y X y G 0, the half1

space containing A is defined by0

X Xy2 y210 P y X y G P y X t.Ž . Ž . Ž .1 1

Ž .Hence 10 is true for t s y , s s 2, 3, . . . , a.ˆs
For the derivation of the two-step estimates, the orthogonality require-

ment tX t s 0 restricts the vector with coordinates t to the r y 1 dimen-1 2 2
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6

Ž .sional subspace R , perpendicular to A B . The normalization 3 restricts2 0 1
the endpoints of the vector with coordinates t to an ellipsoid concentric to2
EE ; hence we consider vectors with endpoints on FF , which lies in R and has0 1 2

Ž .radius K given by 3 .2
The projection of A onto R is C and is on FF . Hence finding t is2 2 1 2

equivalent to finding a vector with an endpoint on FF maximizing the inner16

product with A C . Similarly to the one-step case, the desired t is repre-0 2 2

6

sented by A B , where B is the intersection of FF and the r y 2 dimen-0 2 2 1

6

sional affine in R perpendicular to A C and tangent to FF . Projecting the2 0 2 16 66

point C or A onto A B we obtain D , and adding A A and A D we2 0 2 2 0 1 0 26

obtain the vector A A . The point A represents the fitted values after two0 2 2
ˆsteps, so its elliptical coordinates are the parameter estimates b .2

Using an argument similar to the one-step case, it follows that D lies2
�inside FF . Let EE be the parallel displacement of FF , that is, the ellipsoid E:1 1 1

6 6 66 6
4A E s A A q A F , F g FF . Since A C is parallel to A A , the normal-0 0 1 0 1 0 2 1

Ž .ization 3 is exactly the one that guarantees that A will lie on EE , which has1
radius K . Since EE is the parallel displacement of FF , it follows that A lies2 1 1 2
inside EE , so its coordinates y satisfyˆ1 2

11 yX I y P Xy2 I y P y G yX I y P Xy2 I y P y .Ž . Ž . Ž . Ž . Ž .ˆ ˆ1 1 2 1 1 26 6
Furthermore, since A D is perpendicular to A A , it follows that0 2 0 1

12 P y s P y.Ž . ˆ1 2 1

Ž . Ž . Ž .Substituting t s y in 10 and using 11 and 12 we obtainˆ2

13 yX Xy2 y G yX Xy2 y ;Ž . ˆ ˆ2 2

ˆ ˆ5 5 5 5hence A lies inside EE . The last statement is equivalent to b G b .2 0 2

66

Now let S be the hyperplane through A perpendicular to A A and A C .2 1 0 2
Ž .Following arguments similar to the ones that led to 9 , it is also parallel to a

hyperplane tangent to FF at the point B , so its coordinates satisfy1 2

X Xy2 y214 P y X y s P y X t.Ž . Ž . Ž .2 2

The hyperplane S appears in Figure 1 as two lines}one going through A2
and the other going through C . It separates the space into two half spaces.2

5 5 5 5From the inequality y y y F y y y for s ) 1, and the fact that theˆ ˆ ˆs 1 1
5 5distance of A from S is equal to y y y , it follows that the half spaceˆ1 2 1

containing A and A also contains the partial least squares points at1 0
subsequent steps. For the coordinates t of all points in this half space, and
hence for t s y , s s 3, . . . , a,ˆs

X Xy2 y215 P y X y G P y X t.Ž . Ž . Ž .2 2

The patient reader who has followed the arguments up to here should be
convinced that the problem is identical in all following steps. Suppose that As
are the points representing the fitted values at steps s s 1, 2, . . . , a y 1. At
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step a, the orthogonality constraints on t , t , . . . , t are equivalent to pro-1 2 a6 6 6

jecting A onto a space R perpendicular to A A , A A , . . . , A A anda 1 1 1 2 ay2 ay1
searching for a vector with coordinates t lying on R . Let C be thea a a

Ž .projection of A onto R . The normalisation 3 generates an ellipsoid FF ofa ay1
radius K , concentric to EE but of lower dimension. The desired direction ofa 0
the vector is, say, A B , where the hyperplane which is tangent to FF is0 a ay16

perpendicular to A C . Using an argument similar to the one-step case, we0 a 6

can show that the projection of A C onto A B is inside FF . This implies0 a 0 a ay16

that, after displacing FF by the vector A A to obtain EE , A is insideay1 0 a ay1 a
EE , soay1

ay1 ay1
X y2y I y P X I y P yÝ Ýs sž / ž /

ss1 ss1
16Ž .

ay1 ay1
X y2G y I y P X I y P y .ˆ ˆÝ Ýa s s až / ž /

ss1 ss1

Furthermore, the orthogonality constraints on t , t , . . . , t imply1 2 a

17 P y s P yŽ . ˆs a s

for s s 1, 2, . . . a. Considering the hyperplanes S , S , . . . , S that are per-1 2 ay16 6 6

pendicular to A A , A A , . . . , A A , respectively, and using arguments0 1 ay2
Ž . Ž .similar to the ones that led to 10 and 15 , we obtain

X Xy2 y218 P y X y G P y X yŽ . Ž . Ž . ˆs s a

Ž . Ž .for s s 1, 2, . . . , a y 1. A simple algebraic manipulation of 16 ] 18 implies
yX Xy2 y G yX Xy2 y and the assertion follows. Iˆ ˆa a

4. Discussion. The fact that partial least squares estimators shrink
classifies them to a large class of widely used estimators that perform well
with highly collinear data. An immediate result is that their estimation mean
squared error will be better than that of ordinary least squares if the true
parameter values are small. One can also hope that they will have a smaller
prediction mean squared error. Obtaining analytical results concerning the
range of parameters for which there will be an improvement seems a hard, if
not impossible, task, but for most practical problems with large p one would
expect that most of the true coefficients will be small. Hence, achieving better
results can reasonably be expected.

Since typically the X matrix and the y vector are centered, the shrinkage
toward the origin of the transformed vectors translates to shrinkage toward
the sample means of the original variables, whereas the intercept remains
constant. However, the kind of shrinkage is by no means as obvious as in

w Ž .xridge or principal components regression cf. Frank and Friedman 1993 .
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The direction of the vector of parameter estimates depends on the response
variable in a complicated way and from the geometrical picture it can be seen
that shrinking does not apply to all parameter components. Indeed one can
have components that expand, but this should not be considered a deficiency.
If not all components of estimates are shrunken by the same proportion, one
can find a coordinate system in which some coordinates expand for some data.

The complicated shrinking nature of partial least squares should not come
as a surprise, since the method uses information about variances and covari-
ances of both explanatory and response variables. However the geometry can

wgive us some idea about their behavior see also Phatak, Reilly and Penlidis
Ž .x1992 . Principal components explaining a large proportion of the variance in
the explanatory variables will tend to draw all partial least squares fitted
values toward them, since tangent planes will tend to be closer to peaks of
the ellipsoids. Nevertheless they will have no effect if the corresponding least

Ž .squares estimates in the canonical form are zero or near zero. For highly
collinear explanatory variables the lower dimensional ellipsoids will be very
small after some steps. This is in common with principal components regres-
sion, but involving the response variable tilts the ellipsoids in each step so
that the effect will be stronger. On the other hand if the explanatory
variables are orthogonal or nearly orthogonal to each other, the ellipsoids are
spheres and partial least squares will be nearly equal to least squares. This
gives a geometric interpretation to the empirical fact that partial least
squares regression ‘‘saturates’’ faster than principal components.

Since the original submission of this paper, we have become aware of
another algebraic proof of the shrinkage of the partial least squares coeffi-

w Ž .xcients relative to the ordinary least squares estimator de Jong 1995 .
Indeed de Jong proves the somewhat stronger result that the length of partial
least squares coefficients is a nondecreasing function of the step a, that is,
ˆ ˆ5 5 5 5b F b for every a s 1, 2, . . . , r y 1.a aq1
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