
The Annals of Statistics
1996, Vol. 24, No. 3, 1316]1326

ASYMPTOTICS OF LEAST-SQUARES ESTIMATORS FOR
CONSTRAINED NONLINEAR REGRESSION1

BY JINDE WANG

Nanjing University

This paper is devoted to studying the asymptotic behavior of LS-
estimators in constrained nonlinear regression problems. Here the con-
straints are given by nonlinear equalities and inequalities. Thus this is a
very general setting. Essentially this kind of estimation problem is a
stochastic optimization problem. So we make use of methods in optimiza-
tion to overcome the difficulty caused by nonlinearity in the regression
model and given constraints.

1. Introduction. Recently, constrained regression problems have been
studied by many authors. Most of their papers are restricted to linear

Ž .regression problems. For example, Liew 1976 considered linear regression
Ž .with linear constraints. Nagaraj and Fuller 1991 studied linear time series

subject to nonlinear equality constraints. Only a few papers are devoted to
Ž .nonlinear regression problems. Dupacova and Wets 1988 studied very gen-

eral constrained nonlinear estimation problems. They embedded the statisti-
cal estimation problem in the framework of stochastic optimization. However,
their results can only be applied to those nonlinear regression models, in
which the control variable x can be considered random. This may not always
be the case in practical problems.

In this paper we consider nonlinear regression problems with nonlinear
equality and inequality constraints and investigate the asymptotic behavior
of the LS-estimators in these problems. Thus the problem we are facing is of
the following form:

n
2

Min y y f x , uŽ .Ž .Ý i i
is1

1Ž . s.t. g u F 0, i s 1, . . . , p ,Ž .i

h u s 0, j s p q 1, . . . , q ,Ž .j

m Ž .where u g R is the unknown parameter to be estimated and x , y ,i i
i s 1, . . . , n, are observed data from the nonlinear regression model

2 y s f X , u q e , i s 1, . . . , n.Ž . Ž .i i i

Ž .Clearly, 1 is a very general problem.
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ˆ Ž .Let u be the optimal solution to problem 1 and u be the true value of un 0
1r2 ˆŽ . Ž .in model 2 . We are interested in the asymptotic behavior of n u y u .n 0

Because of the appearance of the constraints, especially the inequality con-
1r2 ˆŽ .straints, in general, one cannot expect to get normality of n u y u as inn 0

the unconstrained regression problems. Moreover, one cannot even expect to
get an explicit formula of the asymptotic distribution of the estimators. What

1r2 ˆŽwe will do in this paper is to show that under some mild conditions n u yn
.u converges in distribution to the optimal solution of a comparatively0

simpler program, a quadratic stochastic program. This result is given in
1r2 ˆŽ .Theorem 6. In order to get the limit distribution of n u y u , we willn 0

Ž .determine a limit form of problem 1 . This will be done in the next section.
1r2 ˆŽ .Then we prove n u y u will converge in distribution to the optimaln 0

Ž .solution of the limit problem. Mathematically speaking, problem 1 is a
stochastic optimization problem. It may be a proper way to use the epigraph
convergence theory in optimization to get our desired results.

Ž .2. The limit problem. It can be easily seen that problem 1 is equiva-
lent to

n n
2 2Min e q f x , u y f x , u y eŽ . Ž .Ž .Ý Ýi i 0 i i

is1 is1
3Ž . s.t. g u F 0, i s 1, . . . , p ,Ž .i

h u s 0, j s p q 1, . . . , q.Ž .j

1r2 ˆŽ .Since we are interested in the asymptotic behavior of n u y u , we usen 0
1r2Ž .z s n u y u as the optimization variable. This variable is often used in0

Ž .the statistical literature, for example, in Prakasa Rao 1987 . Substituting z
Ž .into problem 3 , we get

n
2y1r2 2Min e q f x , u y f x , u q n z y eŽ . Ž .Ž .Ý i i 0 i 0 i

is1
4Ž . y1r2s.t. g u q n z F 0, i s 1, . . . , p ,Ž .i 0

y1r2h u q n z s 0, j s p q 1, . . . , q.Ž .j 0

Ž .Denote by F e, z and S the objective function and the feasible solution setn n
Ž . Ž .of problem 4 , respectively. Assume the optimal solution of 4 exists and

1r2 ˆŽ .denote it by z . Then z s n u y u . Thus we need to find the asymptoticˆ ˆn n n 0
Ž .distribution of z . Let us first find the limit form of problem 4 .ˆn

Ž .For the limit form of the objective function F e, z , we have the followingn
result.

THEOREM 1. Suppose:

Ž .i e , . . . , e are i.i.d. with Ee s 0 and Var e s 1;1 n i i
Ž . Ž .ii f x , u , i s 1, . . . , n, are differentiable in u and there is a neighbor-i

hood W of u such that for u in W it holds that0
X 25 5f x , u s f x , u q = f x , u u y u q r u u y u ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .i i 0 u i 0 0 i 0
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Ž < . Ž .where = f x u is the gradient vector of f x , u with respect to u at u s u .u i 0 i 0
5 5 m Ž .? denotes the Euclidean norm in R and r u satisfiesi

n
y1 2lim n r u - `,Ž .Ý

nª` is1

uniformly on W;
n

Xy1iii lim n = f x , u = f x , u s KŽ . Ž . Ž .Ž .Ý u i 0 u i 0
nª` is1

exists and K is a positive-definite matrix.
m Ž .Then for each fixed z g R , F e, z converges in distribution ton

G j , z s zXKz y 2 zXj ,Ž .
Ž .where j is an N 0, K random vector.

PROOF. For any u in W we have
n

2 2e q f x , u y f x , u y eŽ . Ž .Ž .Ý i i 0 i i
is1

n n
2s f x , u y f x , u y 2 f x , u y f x , u eŽ . Ž . Ž . Ž .Ž . Ž .Ý Ýi i 0 i i 0 i

is1 is1
n

XX 25 5s u y u = f x , u = f x , u u y u q o u y uŽ . Ž . Ž . Ž .Ž . Ž .Ý0 u i 0 u i 0 0 0
is1

n n
X 25 5y 2 u y u = f x , u e y 2 r u e u y uŽ . Ž . Ž .Ý Ý0 u i 0 i i i 0
is1 is1

n
X 2X y1 y1 5 5s z n = f x , u = f x , u z q o n zŽ . Ž .Ž . Ž .Ý u i 0 u i 0

is1

n n
2X y1r2 y15 5y 2 z n = f x , u e y 2 z n r u e .Ž . Ž .Ý Ýu i 0 i i i

is1 is1

Ž .By Theorems 4 and 5 in Jennrich 1969 ,
n

y1r2n =f x , u e ª N 0, K ,Ž . Ž .Ý i 0 i D
is1

n
y1n r u e ª 0 a.s.Ž .Ý i i

is1

Hence for any fixed z we have

F e, z ª zXKz y 2 zXj . IŽ .n D

Next, we study the limit of the feasible solution set S . Here we use then
concept of convergence of sets in Kuratowski’s sense, because this kind of
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convergence of sets will lead to convergence of optimal solutions of the related
Ž .programming problems, as shown later. We write S s K lim S , ifn

5 lim sup S ; S ; lim inf S ,Ž . n n

where

� 4lim inf S s z : ' z such that z g S and z ª z ,� 4n n n n n

� 4lim sup S s z : ' z such that z g S and z ª z ,� 4n n n n nj j j j

or equivalently,
� 4for any z g S there is a sequence z such that z g S and z ª zn n n n

� 4 � 4and for any sequence z with z g S any accumulation point of zn n n n
must belong to S.

� Ž . 4Let I s i: g u s 0, i s 1, . . . , p . We then have the following result.i 0

THEOREM 2. Suppose:

Ž .i g , i s 1, . . . , p; h , j s p q 1, . . . , q, are continuously differentiable ini j
W;

Ž . Ž . Ž .ii vectors =g u , i g I; =h u , j s p q 1, . . . , q, are linearly indepen-i 0 j 0
dent.

Ž .Then K lim S s S, where S is defined byn
X X

S s z : =g u z F 0, i g I ; =h u z s 0, j s p q 1, . . . , q .Ž . Ž .� 4i 0 j 0

Ž . Ž . Ž .PROOF. We show inclusion 5 . Expand g u and h u as follows:i j
Xy1r2 y1r2 y1r2 5 5g u q n z s g u q n =g u z q o n z ,Ž . Ž . Ž .Ž .i 0 i 0 i 0

Xy1r2 y1r2 y1r2 5 5h u q n z s h u q n =h u z q o n z .Ž . Ž . Ž .Ž .j 0 j 0 j 0

� 4Suppose z is a sequence such that z g S . We are going to show that anyn n n
� 4accumulation point of z must belong to S. Without loss of generality, wen

� 4assume z itself is a convergent sequence and z ª z. Thenn n
Xy1r2 y1r2 5 5g u q n =g u z q o n z F 0, i g I ,Ž . Ž . Ž .i 0 i 0 n n

Xy1r2 y1r2 5 5h u q n =h u z q o n z s 0, j s p q 1, . . . , q.Ž . Ž . Ž .j 0 j 0 n n

Multiplying both sides of these expressions by n1r2 and taking limits for
n ª `, we obtain

X
=g u z F 0, i g I ,Ž .i 0

X
=h u z s 0, j s p q 1, . . . , q.Ž .j 0

6Ž .

Thus z g S. This implies lim sup S ; S.n
Ž .Now we show the second inclusion in 5 . Let z be a point in S. First we

assume it holds that
X

=g u z - 0, i g I ,Ž .i 0
X

=h u z s 0, j s p q 1, . . . , q.Ž .j 0

7Ž .
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Ž .By the linear independence condition in assumption ii and the theory of
w Ž .xmathematical programming see, e.g., Section 4.3 Bazaraa and Shetty 1979 ,

� 4for this z there exists, u such thatn

g u F 0, i g I ,Ž .i n

h u s 0, j s p q 1, . . . , q ,Ž .j n8Ž .
1r2u ª u , n u y u ª z .Ž .n 0 n 0

1r2Ž .Let z s n u y u . Thenn n 0

g u q z rn1r2 F 0, i g I ,Ž .i 0 n

h u q z rn1r2 s 0, j s p q 1, . . . , q.Ž .j 0 n

9Ž .

� 4 Ž .For i g 1, . . . , p _ I, because g u - 0, we certainly havei 0

g u q z rn1r2 F 0.Ž .i 0 n

Ž . � 4Thus, z g S and z ª z. So for z g S satisfying 7 there is a sequence zn n n n
such that z g S and z ª z.n n n

XŽ .Now assume z g S and =g u z s 0 for at least one i g I. Since vectorsi 0
Ž . Ž .=g u , i g I; =h u , j s p q 1, . . . , q, are linearly independent, the set S isi 0 j 0

� Ž .X 4the intersection of the set z: =h u z s 0, j s p q 1, . . . , q with the convexj 0
� Ž .X 4polyhedral cone z: =g u z F 0, i g I . The latter set has a nonemptyi 0

interior. Then for this z there must be a sequence z such that z ª z andk k

X
=g u z - 0, i g I ,Ž .i 0 k

X
=h u z s 0, j s p q 1, . . . , q.Ž .j 0 k

For each z by the argument given above, we can find a sequence z suchk nk
that z g S and z ª z as n ª `. By the method of diagonalization, onenk n nk k

� Ž .4 � 4can get a subsequence z n of the double-indexed sequence z such thatnk nk
Ž . Ž .z n ª z and z n g S .nk nk n

Thus in any case for a point z g S we can find a sequence z such thatn
z g S and z ª z. This means lim inf S ; S. Then the proof is complete.n n n n

I

Ž .With Theorems 1 and 2 we can formulate a limit problem of problem 4 :

min zXKz y 2 zXj

s.t. =g u F 0, i g I ,Ž .10 i 0Ž .
=h u s 0, j s p q 1, . . . , q.Ž .j 0

Ž .We call 10 a formal limit problem, because it has not been shown that the
Ž .optimal solutions of 10 are in distribution limits of the optimal solutions of

Ž .problem 4 . This is what we are going to do in the last section. Before proving
this convergence result, we have to show that the optimal solutions of

Ž .problem 4 are bounded in probability. This will be done in the next section.
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3. Boundedness of z . For the boundedness of z , we have the follow-ˆ ˆn n
ing result.

THEOREM 3. Under the assumptions made in Theorem 1, z is bounded inˆn
probability.

Ž . 1r2Ž .PROOF. Since z is the optimal solution of 4 and z s n u y u s 0ˆn 0 0 0
Ž .is a feasible solution of 4 , we have

0 G F e, z y F e, zŽ .Ž .ˆn n n 0

n
X 2X y1 y1 5 5s z n = f x , u = f x , u z q o n zŽ . Ž .Ž .ˆ ˆ ˆŽ .Ýn u i 0 u i 0 n n

is1

n n
2X y1r2 y15 5y 2 z n = f x , u e y 2 z n r u e .Ž . Ž .ˆ ˆÝ Ýn u i 0 i n i i

is1 is1

Since
n

Xy1n =f x , u =f x , u ª K ,Ž . Ž .Ž .Ý i 0 i 0
is1

n
y1r2n =f x , u e ª N 0, K ,Ž . Ž .Ý i 0 i D

is1
n

y1n r u e ª 0 a.s.,Ž .Ý i i
is1

then for any « ) 0 there is a constant C such that the following holds:«

X 5 5 y1 5 5 20 G z Kz y 2 z C q o n z ,ˆ ˆ ˆŽ .n n n « n

with a probability larger than 1 y « , when n is large enough. By the positive
5 5definiteness of K, one can find a constant M such that z F M with aˆ« n «

probability larger than 1 y « . This means that z is bounded in probability.ˆn
I

4. Convergence of z . In this section, we give the main result of thisˆn
paper; that is, we show z converges in distribution to the optimal solution ofˆn

Ž .problem 10 . In the proof of this result, the weak convergence theory of
probability measures will be used.

Ž .In Theorem 1 it is shown that for any fixed z the random variables F e, zn
Ž .converge in distribution to G j , z . When z is varying over some connected

� Ž . 4 � Ž . 4set D, F e, z , z g D and G j , z , z g D can be viewed as stochasticn
processes. It is easy to see that all the sample functions of these stochastic

Ž .processes are continuous functions on D. Denote by C D the space of all
Ž .continuous functions on D. We introduce a topology on C D defined by the

Ž . Ž .supremum norm. Then we can generate a Borel field BB D on C D . Later on
we will study convergence of these stochastic processes under this kind of
topology. The following theorem shows the convergence in distribution of the
sequence of these stochastic processes.
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THEOREM 4. Let D be the ball in Rm with center z s 0 and radius d ) 0.
Suppose the assumptions in Theorem 1 hold true. Then the stochastic pro-

� Ž . 4 � Ž . 4cesses F e, z , z g D converge in distribution to G j , z , z g D .n

PROOF. According to the theory of stochastic processes with multidimen-
� Ž . 4 � Ž . 4sional parameter, z t , t g T converges in distribution to z t , t g T ifn

wand only if the following two conditions are satisfied see Prakasa Rao
Ž .x1975 :

Ž . � Ž . 4a any finite-dimensional distributions of z t , t g T converge weaklyn
� Ž . 4to the corresponding finite-dimensional distributions of z t , t g T ;

Ž .b for any « ) 0 it holds that

5 5lim sup P sup z t y z t ) « , t , t g T s 0.Ž . Ž .n 1 n 2 1 2½ 5
nª` , hª0 5 5t yt Fh1 2

Note that the conclusion of Theorem 1 is equivalent to weak convergence of
� Ž . 4 � Ž . 4the one-dimensional distribution of F e, z , z g D to that of G j , z , z g D .n

To show the weak convergence of any finite-dimensional distributions, by the
Cramer]Wold theorem it suffices to show the following: for any c , . . . , c g R´ 1 r
and any values z , . . . , z g D, we have1 r

r r

c F e, z ª c G j , z .Ž . Ž .Ý Ýj n j D j j
js1 js1

w Ž . Ž . Ž y1r2 .xIt is equivalent to show with f z s yf x , u q f x , u q n zi i 0 i 0

n r r
X X2c f z y 2c f z e ª c z Kz y 2c z j .Ž . Ž .Ý Ý Ýj i j j i j i D j j j j j

is1 js1 js1

In fact, this convergence result can be proved in the same way as Theorem 1.
Ž .We will not repeat the procedure here. Thus condition a is satisfied for

� Ž . 4 � Ž . 4F e, z , z g D and G j , z , z g D .n
Ž .Next verify condition b . For any z , z in D, we have1 2

n n
2 2ˆ ˆ< <F e, z y F e, z F 2 f z y f z e q f z y f z .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ý Ýn 1 n 2 i 1 t 2 i i 1 i 2

is1 is1

It is easy to see that
n

X
f z y f z e ª z y z j ,Ž . Ž . Ž .Ž .Ý i 1 i 2 i DD 1 2

is1

uniformly in z , z g D because D is a compact ball. On the other hand,1 2
5 5when n is large enough and z y z is small enough, for any given « ) 0,1 2

we have
n

X X 1 12 2 < <f z y f z F z Kz y z Kz q « - « .Ž . Ž .Ž .Ý i 1 i 2 1 1 2 2 4 2
is1
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Hence

< <lim sup P sup F e, z , y F e, z ) « , z , z g DŽ . Ž .n 1 n 2 1 2½ 5
nª` , hª0 5 5z yz Fh1 2

X 1< <F lim sup P sup z y z j G « , z , z g D s 0.Ž .1 2 1 22½ 5
hª0 5 5z yz Fh1 2

Ž .The last equality holds because j has the N 0, K distribution. Then both
Ž . Ž .conditions a and b are satisfied. Therefore the assertion of this theorem

follows. I

Consider the following restricted optimization problems:

Min F e, zŽ .n
11Ž .

s.t. z g S , z g B M ,Ž .n

Min G j , zŽ .
12Ž .

s.t. z g S l B M ,Ž .

Ž . � 5 5 4where B M is the ball z: z - M and M is a large number. Denote the
Ž . Ž . Ž . Ž .sets of optimal solutions of problems 11 and 12 by A M and A M ,n

Ž . Ž .respectively. Let z M and z M be their measurable selections. Then weˆ ˆn
have the following result.

THEOREM 5. Suppose:

Ž .i the assumptions made in Theorems 1 and 2 hold true;
Ž . Ž .ii for each value of j , A M is a singleton.

Ž . Ž .Then any measurable selection z M of A M converges in distribution toˆn n
Ž .z M .ˆ

PROOF. Observe that the sample functions of the stochastic processes
� Ž . Ž .4 � Ž . Ž .4F e, z , z g B M and G j , z , z g B M are continuous functions onn
Ž . Ž . Ž .B M . Let C M be the space of all continuous functions over B M and let
Ž . Ž .BB M be the Borel field on C M as defined before. Then the stochastic

� Ž . Ž .4 � Ž . Ž .4processes G j , z , z g B M and F e, z , z g B M induce a family ofn
� 4probability measures u, u , n s 1, 2, . . . on the measurable spacen

Ž Ž . Ž .. � Ž . Ž .4C M , BB M . By Theorem 4, F e, z , z g B M converges in distributionn
� Ž . Ž .4 � 4to G j , z , z g B M . This implies that u converges weakly to u, writtenn

as u « u.n
Ž . Ž . Ž Ž . Ž ..Define a collection of operators H ? and H ? on C M , BB M as fol-n

Ž . Ž . Ž .lows: for a function, f z g C M , the image of f under H ? is the optimal
solution of the optimization problem

Min f zŽ .
13Ž .

s.t. z g S l B MŽ .
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Ž .and the image of f under H ? is the optimal solution ofn

Min f zŽ .
14Ž .

s.t. z g S l B M ,Ž .n

where S and S are the sets defined in Section 2. Without loss of generalityn
we may assume that

H G j , z , z g B M s z M ,Ž . Ž . Ž .Ž . ˆ
15Ž .

H F e, z , z g B M s z M .Ž . Ž . Ž .Ž . ˆn n n

We are going to show that

16 lim H f s H fŽ . Ž . Ž .n n
nª`

Ž . Ž .for any f , f in C M with f ª f and f is such that problem 13 has an n
unique optimal solution. Note that the convergence of f to f in the spacen
Ž Ž . Ž ..C M , BB M means that

< <max f z y f z ª 0Ž . Ž .n
Ž .zgB M

and this implies

17 lim f z s f zŽ . Ž . Ž .n n
nª`

for any z ª z.n
Ž .To show 16 , first we show the following: if z , n s 1, 2, . . . , are optimaln

Ž . � 4solutions of problem 14 and z is an accumulation point of z , then z mustn
Ž .be an optimal solution of problem 13 . Suppose it is not true. Then there is a

Ž . Ž . Ž .point z in S l B M such that f z - f z . Since f is continuous, we can0 0
Ž . Ž .find a neighborhood V of z such that for all z in V it holds that f z - f z .0

Thus without loss of generality, we may assume that z is an interior point of0
Ž .B M . On the other hand, by Theorem 2, there is a sequence z such z g Sn n n

Ž . Ž .and z ª z . As z is assumed to be an interior point of B M , so z g B Mn 0 0 n
Ž .when n is large enough. Observing 17 , we obtain

f z s lim f z G lim f z s f z .Ž . Ž . Ž .Ž .0 n n n n

Ž . Ž .This contradicts the working assumption f z - f z . Hence z must be an0
Ž .optimal solution of problem 13 .

Ž .Since B M is compact and S, S are closed, the sequence z must haven n
Ž .accumulation points. Moreover, the only possible accumulation point is H f ,

Ž .by the assumption on f. Therefore we get 16 .
Ž . Ž . Ž .Combining 15 , 16 , u « u and assumption ii of this theorem, we getn

wby an extension of the continuous mapping theorem cf. Theorem 5.5,
Ž .xBillingsley 1968 that

z M ª z M .Ž . Ž .ˆ ˆn DD

This is the desired result. I
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Now we come to the main result of this paper.

THEOREM 6. Suppose the assumptions in Theorem 5 hold for any large M.
Ž .Then the optimal solution, z of problem 4 converges in distribution to theˆn

Ž .optimal solution of problem 10 .

Ž .PROOF. As j has the N 0, K distribution, for any « ) 0 one can find C«

Ž5 5 .such that P j G C F « . Observe that the optimal solution z of problemˆ«

Ž .10 satisfies

18 0 G zXKz y 2 zXj ,Ž . ˆ ˆ ˆ
Ž .because z s 0 is a feasible solution of 10 and with z s 0 the value of the

Ž .objective function is 0. From 18 we can see, since K is positive definite,
5 5 5 5when j F C , there must be a constant M such that z F M . Withoutˆ« « «

loss of generality, we assume that this M is the same as that M in« «

Ž .Theorem 3 otherwise we may choose the larger one as the common M .«

Ž .Let z M be the optimal solution of the following problem:ˆn «

Min zXKz y 2 zXj
19Ž . 5 5s.t. z g S , z F M ,n «

Ž .and z M be the optimal solution ofˆ «

Min G j , zŽ .
20Ž .

5 5s.t. z g S, z F M .«

By Theorem 5 we have

21 z M ª z MŽ . Ž . Ž .ˆ `n « D «

for any « ) 0 and corresponding C , M .« «

5 5 Ž .Note that when z F M , we have z s z M . Thusˆ ˆ ˆ« «

P z / z M - « .Ž .ˆ ˆŽ .«

Ž .Similarly since z is bounded in probability ,ˆn

P z / z M - « .Ž .ˆ ˆŽ .n «

Therefore, for any « ) 0 and any open set G in Rm, we have

lim inf P z g G ) lim inf P z M g G y «Ž .Ž . Ž .ˆ ˆn n «

G P z M g G y « G P z g G y 2« ,Ž . Ž .Ž .ˆ ˆ«

Ž .where the second inequality holds because of 21 . Then, by the arbitrariness
of « , we obtain

lim inf P z g G ) P z g G .Ž .Ž .ˆ ˆn

This is equivalent to z ª z and the proof is complete. Iˆ ˆn D

Acknowledgment. The author wishes to thank an anonymous referee
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this paper.
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