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ON THE EXISTENCE OF INFERENCES WHICH ARE
CONSISTENT WITH A GIVEN MODEL1

BY PATRIZIA BERTI AND PIETRO RIGO

Universita di Firenze`
� 4If p is a s-additive statistical model and p a finitely additive prior,u

then any statistic T is sufficient, with respect to a suitable inference
� 4 Ž .consistent with p and p , provided only that p T s t s 0 for all u andu u

t. Here, sufficiency is to be intended in the Bayesian sense, and consis-
� 4tency in the sense of Lane and Sudderth. As a corollary, if p isu

s-additive and diffuse, then, whatever the prior p , there is an inference
� 4which is consistent with p and p . Two versions of the main result areu

also obtained for predictive problems.

1. Introduction and motivation. Suppose that, for each u in a param-
eter space Q, a probability p is assigned on a s-field AA of subsets of X.u X

Here, X is to be seen as the collection of possible outcomes of some experi-
� 4 Ž .ment. Call the family p [ p : u g Q a statistical model. Likewise, call anu

� 4inference any family q [ q : x g X , the q being probabilities on a s-fieldx x
AA of subsets of Q.Q

In the Bayesian approach, once a model p is assigned, the goal of inferen-
tial analysis lies in assessing an inference q. But also some non-Bayesian
procedures, such as confidence intervals, fiducial distributions and some
likelihood methods, can be led back, at least formally, to the selection of an
inference q. Hence, a main question in statistical inference is: which are the
‘‘admissible’’ inferences once a model is assigned? Or, using a different
terminology, which inferences are ‘‘consistent’’ with a given model?

One answer is that an inference q is consistent with a model p provided
there are probabilities p and m, defined on the power sets of Q and X,
respectively, such that

1.1 f x , u p dx p du s f x , u q du m dxŽ . Ž . Ž . Ž . Ž . Ž . Ž .HH HHu x

Ž .for every bounded f: X = Q ª R which is measurable with respect to w.r.t.
the product s-field AA m AA . Plainly, p and m are finitely additive probabili-X Q

Ž .ties and are not forced to be s-additive. Besides, if 1.1 holds for a particular
p , q is also said to be consistent with p and p .

The above notion of consistency has been introduced by Lane and Sudderth
Ž .1983 . Substantially, it is a weak version of a definition of coherence for
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Ž . Ž .statistical inference given by Heath and Sudderth 1978 . We think that 1.1
Ž .is an interesting condition for at least three not independent reasons. First,

Ž . Ž .at least for diffuse models, 1.1 is sufficient even if not necessary for
dF-coherence, that is, for that notion of coherence introduced by Regazzini
Ž .1987 developing de Finetti’s theory of coherence for conditional probabilities
Ž .cf. Section 3 . Indeed, in our opinion, dF-coherence is a fundamental requi-
site for any inference q. Second, while allowing for finite additivity and not

Ž .imposing measurability constraints, 1.1 captures much of the meaning of
Ž .the usual Kolmogorov definition of conditional probability cf. Section 6 .

Ž .Third, 1.1 may also be interpreted as a sort of ‘‘second order de Finetti’s
w Ž .x Ž .coherence’’ Berti and Rigo 1992 , and, in this sense, 1.1 establishes some

link between the theories of de Finetti and Kolmogorov.
However, a serious shortcoming in the definition of consistency is that,

given a fixed model p and a ‘‘prior’’ p on the power set of Q, it may be that
Ž .there are not an inference q and a probability m satisfying 1.1 . Examples of

Ž . Ž .this phenomenon are in Dubins 1975 , Prikry and Sudderth 1982 and
Ž . wHeath and Sudderth 1989 . Incidentally, a further drawback is the possible

Ž .nonuniqueness of the couple q, m satisfying 1.1 , even when it exists, but
xthis is generally unavoidable.

� 4One result in this paper is that, if p is s-additive and p x s 0 for all uu u

and x, then, for any prior p , there are an inference q and a probability m
Ž .satisfying 1.1 . In other terms, the above-mentioned shortcoming in the

definition of consistency cannot occur for s-additive, diffuse models. More-
over, the previous result can be strengthened as follows. If p is s-additiveu

� Ž . 4and T is any measurable function on X such that p x: T x s t s 0 for allu

Ž .u and t, then, whatever the prior p , condition 1.1 holds for some probability
m and inference q such that

1.2 x , x g X and T x s T x « q s q .Ž . Ž . Ž .1 2 1 2 x x1 2

As far as consistency is regarded as a satisfactory requisite for an infer-
Ž . Žence q, 1.2 has a nice interpretation in terms of sufficiency in the Bayesian

.sense; cf. Section 6 . Briefly, whatever the prior p , any statistic T is suffi-
cient, w.r.t. a suitable consistent inference q, provided only that no value t in
the range of T has positive probability under the model. This seems in line
with both the substantial meaning of sufficiency and the subjective view of
probability. Indeed, the assessment of q can be split into two steps. First, a
partition of X is selected, by grouping those experimental outcomes which,
according to the inferrer, have the same inferential content. This step pre-

Ž .cisely amounts to the choice of a sufficient statistic T. Subsequently, a
probability law on AA is attached to every element of the partition. Our resultQ

grants that, if consistency is seen as ‘‘enough’’ for q, this procedure can
always be performed whenever no element in the partition has positive
probability under the model.

The above considerations about sufficiency are particularly meaningful in a
predictive framework, that is, when the inferential analysis aims to predict
future observable facts. Two versions of the result on sufficient statistics are
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obtained. In the first, predictive inferences are based on a statistical model
and a prior distribution, while in the second they are not.

Two such versions are given in Section 5, after the main result is proved in
Section 3. The proof rests on a simple cardinality argument. Section 3 also
includes some heuristic comments on the role played by the assumptions of
s-additivity and diffuseness of the model. Moreover, Section 2 contains some
preliminary material, Section 4 some examples and Section 6 a few general
remarks.

A last note is that the interplay between consistency and sufficiency is also
Ž .treated, from a different point of view, in Wetzel 1993 .

2. Preliminaries. In this section, after introducing some terminology
and notation, three lemmas are given. The first two are mere technical facts,
to be used in the proofs of subsequent results. Even if quite intuitive, the
third has perhaps some autonomous interest.

Let V be any set. Throughout this paper, a probability is a nonnegative,
finitely additive function, defined on some field of subsets of V, and assuming

Ž .value 1 at V. Let PP V denote the power set of V. Given any partition UU of
Ž . Ž .V, a UU-strategy is a function P ?N ? on PP V = UU such that, for each H g UU,

Ž < . Ž . Ž < .P ? H is a probability on PP V with P H H s 1.
Let DD be a s-field of subsets of V. An atom of DD is the intersection of all

Ž .the elements of DD including a given point of V. Let UU DD be the collection of
Ž . Ž .atoms of DD. Then, UU DD need not be included in DD, but UU DD is a partition

Ž .of V and every element of DD is union of elements of UU DD . A sufficient
Ž .condition for UU DD ; DD is that DD is countably generated.

Ž .A probability P on DD is said to be diffuse whenever UU DD ; DD and
Ž . Ž .P H s 0 for H g UU DD . Further, P is said to be perfect whenever, for every

Ž .DD-measurable function f : V ª R, there is a Borel set B ; f V such that
Ž . Ž .P f g B s 1. We remark that, if V, DD is a standard space, that is, V is a

Borel set in some complete, separable metric space and DD the corresponding
Borel s-field, then DD is countably generated and any s-additive P on DD is

Ž .perfect. More generally, this is also true if V, DD is a Lusin space, as
Ž .defined, for instance, in Blackwell 1955 . A last point is that all the integrals

Ž .in this paper are intended in the sense of Dunford and Schwartz 1958 ,
Chapter 3. We are now in a position to state the three preliminary lemmas.

Ž .LEMMA 2.1. Let A, B be nonempty sets, and for each a g A, let L a be a
subset of B. If card A F card B, then there is an injective function f : A ª B

Ž . Ž . Ž .such that f a g L a whenever a g A and card L a G card A.

Ž . �PROOF. Let F be a well ordering on A such that, setting I a s x g A:
4 Ž .x - a , one has card I a - card A for every a g A. Assign also any well

Ž .ordering on B. For fixed a g A, suppose f : I a ª B is defined such that

min B y f I x , if card L x - card A ,Ž . Ž .Ž .
2.1 f x sŽ . Ž . ½min L x y f I x , if card L x G card A.Ž . Ž . Ž .Ž .
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Ž . Ž Ž .. Ž Ž ..Since card B G card A ) card I a s card f I a , the set B y f I a is
Ž . Ž . Ž Ž ..nonempty. Likewise, if card L a G card A, then L a y f I a / B. Hence,

Ž . � 4 Ž . w Ž Ž ..x Ž .f can be extended to I a j a by setting f a s min B y f I a or f a s
w Ž . Ž Ž ..x Ž . Ž .min L a y f I a according to whether card L a - card A or card L a G

Ž .card A. By transfinite induction, there is f : A ª B behaving as in 2.1 for
every x g A. In particular, such f has the desired properties. I

Ž .LEMMA 2.2. Let UU be a partition of V, P ?N ? a UU-strategy and P a
� Ž .probability on a field CC. Setting CC s E g CC: P E ) 0 and E l H / H for0

4each H g UU , suppose that

<2.2 for every E g CC there is H g UU such that P E H s 1.Ž . Ž .0

Ž .Then, there is a probability l on PP UU such that

<P E s P E H l dH for all E g CC .Ž . Ž . Ž .H

PROOF. Let ZZ be the linear space spanned by the indicators of the
Ž . Ž < .elements of CC. For X g ZZ and H g UU, define Q X s HX dP and Q X H s

Ž . Ž < . Ž .HX v P dv H . By Theorem 3.1 of Berti and Rigo 1992 , it is enough to
Ž . Ž < .prove that Q X F sup Q X H for all X g ZZ. Fix X in ZZ. Since CC is aH

field, X can be expressed as X s Ýn a I , where a , . . . , a g R andis1 i E 1 ni
� 4 Ž .E , . . . , E is a partition of V in CC. Pick j with P E ) 0 and a G a for1 n j j i

Ž . Ž .each i with P E ) 0. Using 2.2 , it is easily seen that, whether or noti
Ž < .E g CC , there is H g UU with P E H s 1. Hence,j 0 j j j

< <Q X s a P E F a s Q X H F sup Q X H . IŽ . Ž . Ž .Ž .Ý i i j j
H

Ž .LEMMA 2.3. Let DD be a countably generated s-field, UU DD the set of atoms
of DD and P a probability on DD. If P is s-additive, diffuse and perfect, then
Ž . � Ž . 4P E s 0 whenever E g DD and card H g UU DD : H ; E - card R.

� Ž . 4PROOF. Let E g DD with card H g UU DD : H ; E - card R. Since DD is
y1Ž .countably generated, there is f : V ª R with DD s f BB , BB denoting the

y1Ž .Borel s-field on R. Let B g BB be such that E s f B . Since P is perfect,1 1
Ž . Ž .there is B g BB with B ; f V and P f g B s 1. Let B s B l B . Noting2 2 2 1 2

Ž c. Ž . � Ž .that B l f E s B, one obtains: card B F card f E s card H g UU DD : H1
4; E - card R. Hence, B must be countable, since this is generally true for

w Ž .any U g BB such that card U - card R Parthasarathy 1967 , Theorem 2.8,
x y1 Ž .page 12 . Noting that P ( f is s-additive and diffuse, one has P E s

Ž . Ž .P f g B s P f g B s 0. I1

3. The main theorem. We shall now return to the general inferential
setting outlined in Section 1. Before stating our main result, some more
information is in order, concerning some of the statements made earlier in
Section 1.
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As already pointed out, if p is diffuse, then consistency of q with p
suffices for the dF-coherence of q. This follows, for instance, from Theorem

Ž .4.1 of Berti and Rigo 1994 . Using Theorem 4.1, it is also easy to produce
examples of nonconsistent inferences which are dF-coherent. The notion of

Ž .dF-coherence has been introduced by Regazzini 1987 , by applying to an
inferential problem the general idea of de Finetti’s coherence. Briefly, dF-

Žcoherence amounts to demanding that all the ‘‘ingredients’’ of the problem in
.our case, p, q, p and m are parts of the same conditional probability, the

Ž .latter to be intended in de Finetti’s sense. We refer to Regazzini 1987 and to
Ž .Berti, Regazzini and Rigo 1991 for a discussion of the underlying ideas, as

well as for a comparison with the other notion of coherence, introduced by
Ž .Heath and Sudderth 1978 , which we now briefly recall.

Suppose for a moment that every element p of the model p is extended asu

Ž . Ž .a probability on PP X . Then, after assessing a prior p on PP Q , one can
define

m A s p A p du for all A ; X .Ž . Ž . Ž .Hp u

Ž .If 1.1 holds for some p , with m in the place of m, then q is coherent w.r.t.p

p according to Heath and Sudderth. Thus, coherence in Heath and Sudderth’s
sense implies consistency. However, unless q satisfies some measurability

w Ž .assumptions, the converse need not be true Berti and Rigo 1994 , Example
x3.6 .

Ž .Let T be a statistic, that is, a measurable function from X, AA into someX
Ž .measurable space TT, AA . In this paper, unless otherwise stated, T is said toTT

be sufficient for an inference q whenever ‘‘q depends on the data only through
Ž .T,’’ that is, condition 1.2 holds. See Section 6 for a brief comparison between

the usual notions of sufficiency and the present one.
For the reasons explained in Section 1, the following proposition is in line

with the meaning of the above definition of sufficiency.

THEOREM 3.1. Given a model p and a statistic T, suppose that:

Ž . y1Ž .i card AA F card R, card AA F card R and the s-field T AA is count-X Q TT

ably generated;
Ž .ii for each u g Q, p is a s-additive and perfect probability on AA , suchu X

Ž . y1Ž .that p F s 0 for all atoms F of T AA .u TT

Ž .Then, for any probability p on PP Q , there are an inference q and a
Ž .probability m on PP X such that:

Ž .a for each x g X, q is a s-additive probability on AA ;x Q

Ž . Ž .b condition 1.1 holds for p, q, p and m;
Ž . Ž .c condition 1.2 holds for q and T ; that is, T is sufficient for q.

Ž . � Ž . 4PROOF. For C ; X = Q and x, u g X = Q, let C s x: x, u g C andu
x � Ž . 4C s u : x, u g C . Moreover, in the notation of Lemma 2.2, define V s
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Ž . Ž . Ž .X = Q, CC s AA m AA and P C s Hp C p du for C g CC. Finally, let DD sX Q u u
y1Ž . Ž . Ž . � Ž .T AA , UU DD the partition of X in the atoms of DD and L C s F g UU DD :TT

Ž . 4F = Q l C / B for C g CC. We claim that it is enough to prove that

3.1 card L C G card R for all C g CC with P C ) 0.Ž . Ž . Ž .
Ž . Ž .Assume indeed that 3.1 holds. By i , card CC F card R, so that Lemma 2.1

� Ž . 4implies the existence of an injective function f, from C g CC: P C ) 0 into
Ž . Ž . Ž . Ž .UU DD , such that f C g L C . For each F g UU DD , select a s-additive proba-

bility on AA , say n , according to the following rule. If F is not in the range ofQ F
f , n is arbitrary. Otherwise, if C is the unique element in the domain of fF

Ž . x w Ž .xwith F s f C , pick x g F with C / B which is possible since F g L C
Ž x .and take n such that n C s 1. Now, define q by q s n for every x g F.F F x F

Ž . Ž . Ž . �� 4Plainly, q satisfies a and c . Moreover, b holds, too. In fact, let UU s x =
4 Ž < .Q: x g X and let P ? ? be any UU-strategy such that

< x� 4P C x = Q s q C for all x g X and C g CC .Ž .Ž . x

Ž . Ž .Then P ?N ? satisfies 2.2 , and Lemma 2.2 implies the existence of a probabil-
Ž . Ž .ity m on PP X such that 1.1 holds for all f ’s of the form f s I , withC

C g CC. But this is enough, since any bounded CC-measurable f is the uniform
limit of some sequence of simple functions.

Ž . Ž .It remains to check 3.1 . Fix C g CC with card L C - card R. We are
Ž . Ž .showing that P C s 0. Let M be the union of those F ’s such that F g L C .

Ž .Since C ; M for all u , it suffices to prove that p A s 0 whenever u g Q,u u

Ž . Ž . Ž .A g AA and A ; M. In fact, in this case, P C s Hp C p du s 0. FixX u u

Ž . Ž .u g Q and A g AA with A ; M. If p A ) 0, one can define m E l A sX u

Ž . Ž . Ž .p E l A rp A for all E g DD. By i , DD l A is a countably generatedu u

Ž .s-field of subsets of A, and its atoms are of the form F l A with F g UU DD
Ž .and F l A / B. By ii , m is s-additive, diffuse and perfect. Hence, denoting

Ž .by UU DD l A the set of atoms of DD l A, one has

card L C G card F g UU DD : F l A / B� 4Ž . Ž .
3.2Ž .

s card UU DD l A G card R,Ž .
where the first inequality depends on A ; M, and the second inequality

Ž . Ž .follows from Lemma 2.3 applied to A, DD l A, m . But 3.2 is a contradiction;
Ž .hence, p A s 0. Iu

Some examples concerning Theorem 3.1 are included in Section 4. Here, we
� 4give a few remarks. If the singletons t belong to AA , the assumption that pTT u

y1Ž . � Ž . 4vanishes on the atoms of T AA can be written as p x: T x s t s 0 forTT u

all t g TT. Next, given any s-field FF, a sufficient condition for card FF F card R

is that FF is generated by some subfamily FF such that card FF F card R.0 0
y1Ž . Ž .Moreover, T AA is countably generated whenever AA is. Thus, i holds, forTT TT

instance, whenever AA , AA and AA are all countably generated. We alsoX Q TT
Ž . Ž .recall that cf. Section 2 , if X, AA is a Lusin space and p is s-additive,X u

then p is perfect.u

Ž . Ž . Ž .Setting TT, AA s X, AA and T x s x, we get the following result whichTT X

is a direct consequence of Theorem 3.1.
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COROLLARY 3.2. Given a model p, suppose that AA is countably generated,X

card AA F card R and p is s-additive, diffuse and perfect for each u g Q.Q u

Ž .Then, for any probability p on PP Q , there are an inference q and a
Ž . Ž . Ž .probability m on PP X satisfying a and b of Theorem 3.1.

In Corollary 3.2, assuming p s-additive and diffuse is fundamental. This
Ž .follows from the results of Dubins 1975 , Section 2, and Heath and Sudderth

Ž .1989 , Section 5. In both cases, for a suitable prior p , there is no inference q
consistent with p and p . However, p is diffuse but not s-additive in the first
case, and s-additive but not diffuse in the second. More generally, in Theo-
rem 3.1, the s-additivity of p and the diffuseness of p (Ty1 are keyu u

Ž � 4 .assumptions. In fact, in these hypotheses and if the sets T s t are in AA ,X

every subset of X = Q with positive probability must intersect the strips
� 4T s t = Q for ‘‘sufficiently many’’ values t. This fact enables one to have
great freedom in assessing q, and this is crucial in proving Theorem 3.1. Such

Ž .freedom, instead, is not available when p T s t ) 0 for some u and t. For,u

Ž . Ž . Ž .in that case, there is p such that m T s t s Hp T s t p du ) 0. Underp u

� 4such p , the set T s t has a privileged status, and this determines q on
� 4 � 4T s t . Indeed, since q is to be constant on T s t , setting f s I in�Tst4=B
Ž .1.1 yields

� 4q B s p T s t p du rm T s t for every x g T s t and B g AA .Ž . Ž . Ž . Ž .Hx u p Q
B

Ž .However, with the latter definition of q, 1.1 can fail for some other c / f.
� 4 � 4A further shortcoming can arise if x g AA and m x ) 0 for some x g0 X p 0 0

� 4T s t . In fact, one is also forced to set

� 4 � 4q B s p x p du rm x ,Ž . Ž .Hx u 0 p 00
B

and clearly the two definitions can conflict.
The next lemma gives another version of the ideas underlying Theorem

3.1. It is quite technical, but will be useful in dealing with point estimation
Ž .problems see Example 4.4 .

LEMMA 3.3. Suppose that Q s R, AA is the Borel s-field, card AA s card RQ X

and d: X ª R is an AA -measurable function. Let p be a model and p aX
Ž .probability on PP Q such that

3.3 card x g A: inf B - d x - sup B s card R,� 4Ž . Ž .
Ž . Ž .whenever A g AA , B g AA and H p A p du ) 0. Then, there are an infer-X Q B u

Ž .ence q and a probability m on PP X such that q is s-additive for everyx
x g X,

3.4 d x s u q du , u 2q du - q` for every x g XŽ . Ž . Ž . Ž .H Hx x



P. BERTI AND P. RIGO1242

and

3.5 h x g u p dx p du s h x g u q du m dxŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .HH HHu x

for every h: X ª R and g: Q ª R bounded and measurable.

� Ž . Ž . 4PROOF. Let VV s A = B: A g AA , B g AA and H p A p du ) 0 . UnderX Q B u

Ž .3.3 , Lemma 2.1 implies the existence of an injective f : VV ª X such that

f A = B g x g A: inf B - d x - sup B for every A = B g VV .� 4Ž . Ž .
Ž .Fix x g X. If x is not in the range of f, take q as the unit mass at d x .x

Ž .Otherwise, if A = B is the unique element of VV for which x s f A = B , let
Ž . Ž .q be s-additive, satisfying 3.4 and such that q B s 1. Clearly, thex x

Ž . Ž .existence of such q depends on inf B - d x - sup B. To prove 3.5 , justx
apply Lemma 2.2 as in the proof of Theorem 3.1, with the only difference that

Ž . �CC is now defined as the field and not the s-field generated by A = B:
4A g AA , B g AA . IX Q

4. Some examples. This section includes four examples. The first one
does not make a direct use of Theorem 3.1, but can be useful for describing
the procedure of assessing an inference q via a suitable statistic T. The other
three examples, instead, are based on Theorem 3.1 and Lemma 3.3. In all four
examples, AA , AA and AA are the Borel s-fields on X, Q and TT.X Q TT

Ž . kEXAMPLE 4.1 James]Stein estimator . Let X s Q s R , k G 3, and let pu

Ž .be N u , I , I denoting the identity matrix. Let the prior p be translation
Ž . Ž .invariant; that is, p B q u s p B for every u g Q and B g AA . SupposeQ

also that, in the inferrer’s opinion, the inference q should be affected by the
data only through the statistic

5 5 2r xŽ .
T x s 1 y x ,Ž . 2ž /5 5x

Ž . 5 5where r is some nondecreasing function such that 0 F r F 2 k y 2 and ?
denotes the Euclidean norm. For instance, such an opinion can be based on
decision-theoretic arguments. Indeed, T is minimax as an estimator of u

Ž . 5 5 2 w Ž .xunder the quadratic loss L u , u s u y u Baranchik 1970 . Moreover,1 2 1 2
Ž .by a well-known result of Stein 1955 , the usual sufficient statistic in the

Ž .classical Fisherian sense, that is, d x s x, is not admissible. In particular,
wan estimator dominating d is just given by T after setting r ' k y 2 James

Ž . xand Stein 1961 .
By choosing T, the inferrer has partitioned X into subsets having the

same inferential content. To assign q, the remaining step is to select a family
� 4 Ž .n of probabilities on AA and to set q s n whenever T x s t. Moreover,t Q x t
the resulting q is asked to be consistent with the model p and the prior p .
Theorem 3.1 implies that, actually, at least one q of this type always exists.
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However, in this particular example, an interesting q can also be obtained
Ž Ž . . Ž .explicitly. Define q to be N T x , I . Then, q is centered on T x which, inx x

a sense, is a reasonable estimate of u . Moreover, q is consistent with p and
p . In other words, this choice of q makes T the posterior Bayes rule, under
quadratic loss, w.r.t. a consistent inference.

U Ž . UWe prove that q is consistent with p and p . Let q be N x, I . Then q isx
wcoherent with p and p in Heath and Sudderth’s sense Heath and Sudderth

Ž . x Ž . Ž . Ž .1978 , Example 4.1 . Hence, setting m A s Hp A p du for A g AA , itp u X

suffices to show that

4.1 f x , u q du m dx s f x , u qU du m dxŽ . Ž . Ž . Ž . Ž . Ž . Ž .HH HHx p x p

for every bounded measurable f: X = Q ª R. Let f be the density of an
Ž . 5 Ž .5 5 5N 0,I . Using that x y T x ª 0 as x ª q`, it can be verified that

Uf x , u q du y f x , u q duŽ . Ž . Ž . Ž .H Hx x

< <F sup f f u y T x y f u y x du ª 0Ž . Ž .Ž .H
5 5 Ž . Ž .as x ª q`. Since m A s 0 if A is compact, 4.1 follows.p

Ž . nEXAMPLE 4.2 Inferences depending on the median . Let X s R , Q s R

and let p be the probability distribution of a random sample of size n drawnu

Ž .from an N u , 1 . Let p be translation invariant. In Example 4.1, we have
considered a statistic T inducing a s-field smaller than the minimal suffi-
cient one, where ‘‘sufficient’’ is intended in the classical Fisherian sense. Now,
we deal with a statistic T inducing a different but not smaller s-field. Let
Ž . Ž .T x s median x . By Theorem 3.1, there is an inference q, consistent with

Ž . Ž .p and p , such that q s q whenever median x s median x .x x 1 21 2

Ž .EXAMPLE 4.3 Marginalization paradox . Let T : X ª R and g: Q ª R be
measurable functions, where X and Q are Borel sets in complete separable
metric spaces. Let p be a s-additive model and q an inference. Usually, in
marginalization paradoxes, q is the formal posterior of some improper prior.
The marginalized model, that is, p (Ty1, is assumed to depend on u onlyu

Ž . y1through g u . Likewise, the marginalized inference q ( g is supposed tox
Ž .depend on x only through T x . A paradox is claimed in case there is no prior

Ž . y1p for g u which, when combined with the marginalized model p (T ,0 u

leads to the marginalized inference q ( gy1.x
A marginalization paradox, as described above, cannot occur if q is consis-

tent with p and some p . In fact, setting p s p ( gy1, it can be shown that0
y1 y1 w Ž .xq ( g is consistent with p (T and p Sudderth 1980 . Suppose nowx u 0
Ž .that p T s t s 0 for all u and t. Then Theorem 3.1 grants that, whateveru

the prior p , it is always possible to avoid the paradox. Indeed, the inferrer
Ž . Ž .can select an inference q such that: a q depends on x only through T x ,x
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y1 Ž .so that, in particular, the same is true for q ( g ; b q is consistent with px
and p , so that the paradox does not arise.

Ž . nEXAMPLE 4.4 Point estimation . Let X s R , Q s R and let d: X ª Q be
Borel measurable and such that

4.2 lim p d G c s lim p d F c s 0 for every real c.Ž . Ž . Ž .u u
uªy` uªq`

Thus, d is a possible estimator of u and it is linked with the model p by
Ž . Ž .condition 4.2 . For many choices of p, 4.2 seems to be a reasonable request

for an estimator d of u . Suppose also that p is s-additive and diffuse for allu

Ž .u and take the prior p such that p B s 0 for every compact B. Then, in
Ž .view of Lemma 3.3, there are an inference q and a probability m on PP X

Ž . Ž . Ž . Ž .satisfying conditions 3.4 and 3.5 . By 3.4 , q has mean d x and finitex
variance for every x. Hence, d is the posterior Bayes rule, under quadratic
loss, w.r.t. q. To summarize:

Ž .If p and p are as above, every d satisfying 4.2 can be seen as the posterior
Bayes rule w.r.t. some suitable inference q which is linked with p and p by
Ž . Ž .3.5 . Note, however, that, in this finitely additive setting, 3.5 is a weaker
condition than consistency.

Ž .To prove the existence of q and m, we check condition 3.3 of Lemma 3.3.
Ž . Ž . �Fix A g AA and B g AA with h [ H p A p du ) 0. Setting D s x g A:X Q B u

Ž . 4 Ž .inf B - d x - sup B , one has to show that card D s card R. Using 4.2 and
< < Ž .h ) 0, one can find a ) 0 such that, if u g B and u ) a, then p A y D -u

hr2. Further, since p vanishes on compact sets,

< <h s p A p du F sup p A : u g B , u ) a .� 4Ž . Ž . Ž .H u u
cw xBl ya , a

Ž .Hence, there is u with p D ) 0. Since p is s-additive and diffuse, Lemmau u

2.3 implies that card D s card R.

5. Two predictive versions of Theorem 3.1. Suppose that a couple of
experiments are to be performed. What is asked is to predict the outcome of
one of the trials conditionally on the outcome of the other. More precisely,
denoting by YY and X the respective sample spaces, the task is the assign-

� 4ment of a predictive inference, that is, a family v [ v : x g X of probabili-x
ties on a s-field AA of subsets of YY.YY

Let P be a given probability on the product s-field AA m AA . Usually, theX YY

choice of v is subjected to some ‘‘compatibility’’ conditions with P. In line
w Ž .xwith the definition of consistency see also Lane and Sudderth 1984 , we ask

P and v to be linked by the equation

5.1 f dP s f x , y v dy m dxŽ . Ž . Ž . Ž .H HH x



EXISTENCE OF CONSISTENT INFERENCES 1245

Ž .for some probability m on PP X and every bounded, AA m AA -measurableX YY

f: X = YY ª R.
� Ž . 4Let T be any statistic such that a x: T x s t s 0 for all t, where

Ž . Ž .a ? s P ?= YY denotes the marginal of P on AA . Again, our purpose isX

showing that, under some assumptions on P, there exist a probability m and
Ž .a predictive inference v satisfying 5.1 and

5.2 x , x g X and T x s T x « v s v .Ž . Ž . Ž .1 2 1 2 x x1 2

Ž . Ž .The interpretation of 5.2 is the same as that given in Section 1 for 1.2 ,
Ž . Ž .with YY , AA in the place of Q, AA . Now, however, using a statistic T as aYY Q

preliminary step in the choice of v seems to be particularly ‘‘natural’’
w Ž .xCifarelli and Regazzini 1982 .

Two distinct situations about P are considered. In the first, P is assessed
in a traditional way, that is, by integrating a model w.r.t. a prior. In the
second, P is directly assigned, without passing through the mediation of a
parametric statistical model. Even if quite unusual, this latter case is theoret-
ically important. Indeed, as far as the problem is a predictive one, resorting to
a parametric model is merely a tool for the analysis, perhaps useful but never
conceptually essential.

Ž . Ž . Ž .For the sake of simplicity, in what follows X, AA , YY , AA and TT, AA areX YY TT
Ž .assumed to be standard spaces cf. Section 2 . We are now able to begin with

the first case. Let

5.3 P E s P E p du for all E g AA m AA ,Ž . Ž . Ž . Ž .H u X YY

Ž .where p is a probability on PP Q , and, for each u , P is a s-additiveu

probability on AA m AA . Moreover, let a and b denote the marginals of PX YY u u u

Ž . Ž . Ž . Ž .on AA and AA , that is, a A s P A = YY and b B s P X = B forX YY u u u u

Ž .A g AA , B g AA and u g Q. Then, after selecting some parametric inferenceX YY

q, a standard rule for defining v is

<5.4 v B s b B x q du for all x g X and B g AA ,Ž . Ž . Ž . Ž .Hx u x YY

Ž < .where b B x denotes a regular version of ‘‘the conditional probability of Bu

given x and u .’’
Ž .Even if T is sufficient for q, condition 5.2 can clearly fail for v, because

Ž < .of the dependence on x of b B x . This is why in the next propositionu

it is supposed that, given u , the coordinates x and y are conditionally
independent.

Ž . Ž .COROLLARY 5.1. Let P be as in 5.3 , T a statistic and q a parametric
Ž . Ž . Ž < .inference. Define v as in 5.4 with b B in place of b B x and supposeu u

that:

Ž . Ž .j q and T satisfy 1.2 , and q is consistent with p and the marginal
� 4model a : u g Q ;u
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Ž . Ž .jj for every bounded, AA m AA -measurable f, the function x, u ªX YY
Ž . Ž .Hf x, y b dy is AA m AA -measurable;u X Q

Ž . Ž . Ž . Ž .jjj for each u g Q, A g AA and B g AA , P A = B s a A b B .X YY u u u

Ž . Ž . Ž .Then, v satisfies 5.1 and 5.2 for some probability m on PP X . Moreover, a
Ž . Ž .sufficient condition for the existence of a parametric inference q satisfying j

is

Ž U . � Ž . 4j card AA F card R, and, for each u g Q and t g TT, a x: T x s t s 0.Q u

Ž . Ž . Ž .PROOF. Since 1.2 holds for q, v satisfies 5.2 . By j , there is m such that
Ž . Ž .1.1 holds with a in the place of p . To check 5.1 , fix f and defineu u

Ž . Ž . Ž . Ž . Ž . Ž .f x, u s Hf x, y b dy . By jjj and Fubini’s theorem, Hf x, y P dx, dy su u

Ž . Ž .Hf x, u a dx . Thus,u

f x , y v dy m dxŽ . Ž . Ž .HH x

s f x , y b dy q du m dxŽ . Ž . Ž . Ž .HHH u x

s f x , u q du m dxŽ . Ž . Ž .HH x

s f x , u a dx p du by jj and consistency of qŽ . Ž . Ž . Ž .HH u

s f x , y P dx , dy p du s f dP .Ž . Ž . Ž .HH Hu

Ž U . Ž . Ž .Finally, assume j holds. Then, since X, AA and TT, AA are standardX TT

spaces and a is s-additive, the existence of q is a direct consequence ofu

Theorem 3.1. I

EXAMPLE 5.2. Let X s YY s Q s R k, all equipped with the Borel s-field.
Let p be translation invariant and let P be the probability distribution of au

Ž .random sample of size 2 from an N u , I . When k G 3, by the techniques of
Example 4.1, the predictive inference v could be asked to depend on x only

Ž . w Ž5 5 2 . 5 5 2 xthrough T x s 1 y r x r x x, where r is nondecreasing and 0 F r F
Ž . Ž Ž . .2 k y 2 . Define q to be N T x , I . As proved in Example 4.1, q is ax

Ž . Ž .consistent parametric inferece and clearly it satisfies 1.2 . Using such q, v
Ž . Ž < . Ž .can be calculated by 5.4 , where b ? x is taken to be N u , I . In particular,u

Ž Ž . . Ž . Ž .v turns out to be N T x , 2 I . By Corollary 5.1, v satisfies 5.1 and 5.2 .x

We close this section with the second case on P.
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THEOREM 5.3. Let P be a probability on AA m AA , a the marginal of P onX YY
� Ž . 4AA and T a statistic. If a is s-additive and a x: T x s t s 0 for all t g TT,X

Ž .then there are a probability m on PP X and a predictive inference v, satisfy-
Ž . Ž .ing 5.1 and 5.2 , and such that v is s-additive for every x g X.x

Ž . � Ž . 4PROOF. Let L E s F: F atom of DD, F = YY l E / B , where E g
y1Ž .AA m AA and DD s T AA . By the same argument used in the proof of Theo-X YY TT

Ž . Ž .rem 3.1, it suffices to show that P E s 0 whenever card L E - card R. Fix
Ž . � Ž .E g AA m AA with card L E - card R and set A s x g X: x, y g E forX YY

4 Ž . Ž .some y g YY . Since X, AA and YY , AA are standard spaces, A is anX YY

analytic set, and since a is s-additive, this implies the existence of A , A g1 2
Ž . Ž . w Ž .AA such that A ; A ; A and a A s a A cf. Brown and Purves 1973 ,X 1 2 1 2

x Ž .page 908 . If a A ) 0, then, by using the hypotheses on a and applying1
Ž . Ž . Ž . Ž .Lemma 2.3 to A , DD l A , m where m ? s a ?l A ra A , the contradic-1 1 1 1

Ž . Ž .tion card L E G card R can be obtained. Hence, a A s 0, and since E ;1
Ž . Ž . Ž . Ž .A = YY , one obtains P E F P A = YY s a A s a A s 0. I2 2 2 1

6. Concluding remarks. Let T be a statistic. In a classical Fisherian
setting, whether or not T is sufficient depends on the model only. In a
Bayesian framework, T is often said to be sufficient if, whatever the prior p ,
the posterior of p depends only on T. Under this definition, Bayes sufficiency
is also essentially determined by the model only. In particular, if the model is

Ždominated and if conditional probability is intended in the usual Kolmogoro-
.vian sense , then T is classically sufficient if and only if it is Bayes sufficient

w Ž .xcf. Blackwell and Ramamoorthi 1982 .
In the subjective approach to probability, it is more appropriate perhaps to

relate the sufficiency of T to the inference q which is actually assessed, and
not to other inferences that could be assigned but are not. This is why, in this

Ž .paper, T is said to be ‘‘sufficient for q ’’ provided 1.2 holds for a particular q.
In a sense, if the choice of q is a subjective act, only subject to some

Ž .constraint like 1.1 , the sufficiency of T is also reducible to a subjective
statement.

To make the above considerations effective, one needs a general result
implying that, for ‘‘many’’ choices of T, it is possible to view T as sufficient;
that is, there is a consistent inference q which makes T sufficient. This is
just Theorem 3.1. Note, however, that Theorem 3.1 is merely an existence
result, not to be confused with something like a rule for assessing q.

A last note concerns the notion of conditional probability which underlies
Ž . Ž .1.1 . The interested reader is referred to Heath and Sudderth 1978 , Lane

Ž . Ž . Ž .and Sudderth 1983 , Regazzini 1987 and Berti and Rigo 1992 . Here, we
only make clear the connections between such a notion and the usual one.

Ž . Ž . Ž .Given the model p and the prior p , define P C s Hp C p du for C gu u

� Ž . 4AA m AA , where C s x: x, u g C . In a standard setting, p and p areX Q u u

Ž .s-additive and the function u ª p A is AA -measurable for every fixedu Q

Ž .A g AA . Then, a standard inference q is the marginalization on AA of aX Q
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� 4regular conditional distribution for P given the sub-s-field A = Q: A g AA .X

Hence, q is s-additive for every x, andx

6.1 x ª q B is AA -measurable for every fixed B g AA ,Ž . Ž .x X Q

6.2 P C s q C x m dx for all C g AA m AA ,Ž . Ž . Ž . Ž .H x p X Q

x � Ž . 4 Ž . Ž . Ž .where C s u : x, u g C and m A s Hp A p du for A g AA .p u X

Loosely speaking, a consistent inference q, that is, an inference of the type
studied in this paper, is like a standard inference except q is allowed to bex

Ž .finitely additive and the measurability condition 6.1 is not requested. Since
Ž . Ž . Ž . Ž x . Ž .6.1 can fail, 6.2 must assume the weaker form P C s Hq C m dx forx

Ž . Ž .some extension m of m to PP X . Indeed, in this weaker form, 6.2 isp

Ž .equivalent to 1.1 .
It is because of these changes in the standard notion of conditional

probability that a statement like Theorem 3.1 becomes available.
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