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This paper proves the local asymptotic normality of a stationary and
ergodic first order random coefficient autoregressive model in a semipara-
metric setting. This result is used to show that Stein’s necessary condition
for adaptive estimation of the mean of the random coefficient is satisfied if
the distributions of the innovations and the errors in the random coeffi-
cients are symmetric around zero. Under these symmetry assumptions, a
locally asymptotically minimax adaptive estimator of the mean of the
random coefficient is constructed. The paper also proves the asymptotic
normality of generalized M-estimators of the parameter of interest. These
estimators are used as preliminary estimators in the above construction.

1. Introduction. The construction of estimators that are asymptotically
efficient in the presence of infinite dimensional nuisance parameters has been
the focus of numerous researchers in the last three decades. For example, see
the recent monograph by Bickel, Klaassen, Ritov and Wellner (1993) and the
references therein. The present paper is concerned with the construction of
such estimators in the first order random coefficient autoregression (RCAR)
model. In fact, the estimators of this paper are adaptive in the sense that
they are asymptotically as efficient as if the nuisance parameters were
known.

In the RCAR model one observes X,,...,X,, where the sequence {Xj:
J € 7} satisfies

(1.1) X;=(0+2)X; 1 te, JELZ

for some unknown 6 in R, and for independent sequences {sj: j € 7} and {Zj:
J € 7} of independent and identically distributed random variables with
distribution functions F and G, respectively. Here Z denotes the set of all
integers. The importance of general RCAR models in time series analysis is
illustrated in the lecture notes by Nicholls and Quinn (1982) and in the book
by Tong (1990).
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1026 H. L. KOUL AND A. SCHICK

Let © denote the class of all distribution functions with zero means and
finite variances. Let o7 denote the variance of a D in ®. Throughout the
paper it is assumed that F and G belong to ® and that

(1.2) 02 + o2 < 1.

In view of Theorems 2.1 and 2.7 of Nicholls and Quinn (1982), under these
assumptions the process {X;: j € 7} satisfying (1.1) is strictly stationary and
ergodic. It can be constructed so that
o J

(1.3) Xj=3j+ Zsjﬂ» H (60+2,)

i=1 k=j—i+1
almost surely and in mean square. We denote the underlying probability
measure by P, r ; and the corresponding expectation by E, . ;. From (1.3)
one obtains that

oy

14 E X,=0 d E X2=——.
(1.4) 0,F,G<%0 an 0,F,G0 1— 62 — o2

The problem of interest is the construction of adaptive estimators of 6 in
the presence of the nuisance parameter (F, G). If G is degenerate at 0, then
the model (1.1) reduces to the first order autoregression model. Kreiss (1987a)
provides adaptive estimates for parameters in ARMA models when the error
distribution is symmetric and has finite second moment and finite Fisher
information for location, and Kreiss (1987b) constructs adaptive estimates of
parameters in AR models without the symmetry assumption. The latter
result has been improved and generalized by Schick (1993) to AR models with
unknown regression. See also Koul and Pflug (1990) for adaptive estimation
in explosive autoregression.

From the general asymptotic theory for adaptive estimation in locally
asymptotically normal (LAN) families it follows that adaptive estimation is
not always possible. Necessary conditions for adaptive estimation for these
families are given by Fabian and Hannan (1982). A general method of
constructing adaptive estimates was originally proposed by Bickel (1982). His
method has been generalized and improved by Schick (1986, 1987). This
theory is developed for the case of independent (and identically distributed)
random variables. No general theory for the construction of adaptive esti-
mates for dependent random variables exists at the present stage.

The paper is organized as follows. Section 2 addresses the problem of
constructing preliminary estimators of 6. It is shown that generalized M-
estimators are Vn -consistent for 6 under fairly general assumptions on
(F, @) and the underlying weight and score functions. This class of estimators
includes the least squares and the least absolute deviations estimators.
Section 3 discusses local asymptotic normality for the above RCAR semipara-
metric model. Section 4 addresses the question of efficient and adaptive
estimation of 6. First, a locally asymptotically minimax (LAM) estimator of 6
is given when F' and G are known. Then the necessary condition for adaptive
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estimation is verified for the model when both F and G are symmetric about
zero. Finally, an LAM-adaptive estimator of 6 is constructed. The Appendix
contains technical details that may be of independent interest also.
Throughout this paper, 6, F and G are fixed and 0 = {¢: 3% + o2 < 1}.
For convenience, P, 5 , is abbreviated by P; and the corresponding expecta-
tion is denoted by E. For a sequence {6,} in ® and a sequence {a,} of positive
numbers, 0p ! (a,) [O (a )] denotes a sequence of random variables {X,} such
that a, 1X converges to 0 (is bounded) in P, -probability. The distribution of
a random Varlable X under a probability measure P is denoted by (X | P).

2. Generalized M-estimators of 0. This section discusses the asymp-
totic distributions of a class of generalized M-estimators. These results are of
independent interest. In addition, any one of these estimators can be used as
a preliminary estimator in the construction of efficient estimators of 6. To
define generalized M-estimators, let g be a measurable function from R to R
such that xg(x) > 0 for all x € R, and let ¢ be a monotone function from R
to R. Set

1 n
T,(t) = 7 glg(Xj,l)lp(Xj -tX;, ,), teR.

A generalized M-estimator 6, of 6 is defined as a solution of the equation
T,(t) = 0.
In this section, it is assumed that
E,(y(X, - 6X,)| X)) =0 and

2.1
(21 0 < yi= Byg?(Xo) (X, — 6X,) < =.

These assumptions imply that T (6) is a mean zero square integrable martin-
gale which satisfies the conditions of Corollary 3.1 of Hall and Heyde (1980).
Thus

(2.2) (T, (0)|P)) = N(0,7y).

REMARK 2.1. If &; and Z; are symmetrically distributed around zero,
then the conditional distribution of X; — 60X, = &, + Z, X, given X, is
symmetric around zero. Hence, E,(¢(X; — 6X,)| X,) = 0 for all odd func-
tions ¢ with E,|¢(X; — 6X)| < .

The asymptotic distribution of én can now be obtained via the following
lemma.

LEMMA 2.2. Suppose (2.1) holds and
(2.3) T,(0+n"2t) = T,(0) = —tb +0,(1)
for all t € R and some b # 0. Then
L(Vn (6, - 0)1P,) = N(0,yb?).
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ProoF. By the monotonicity of ¢, the map ¢ — T,(¢) is monotone. Thus
(2.3) implies
sup |T,(60 + n='/%t) — T,(0) + tb| = 0,(1)

ltl<e
for every finite c¢. From this one concludes in a routine fashion that
Vn (6, — 0) = b71T,(0) + 0,(1).

The desired result follows from this and (2.2). O

The following two lemmas give sufficient conditions for (2.3).

LEMMA 2.3. Suppose i is absolutely continuous with a.e.-derivative '
satisfying
(2.4) E| X,8(Xo)¥' (X, — 0X;)| <=
and

(2.5) gi_{%EelXog(Xo)l |‘!’,(X1 - 0X, —sX,) — ¢'(X; — 0X0)| = 0.
Then (2.3) holds with
b=EX,8(X,)¥'(X; — 0X,).

ProoF. Let U, =X; - 06X, ,, j=1,...,n By (2.4) and the ergodic theo-
rem,

1 =
n Y X 18X )W (U) > b as.
-1

J

Using stationarity, the absolute continuity of ¢, Fubini’s theorem and (2.5),
we obtain

t n
E0 Tn(0+n_1/2t) _Tn(e) + ; Z‘Xj—lg(Xj—l)lp/(Uj)
j=1

<n'?’E|g(X )IMU - tX—°) — (U, + M—W'(U)
- 0 0 1 ‘/; 1 \/z 1

dz — 0.

X,
Ul - Zﬁ

Combining the above yields the desired result. O

< ItIfOIEgIXog(Xo)I ‘w'(Ul) -y

ExamPLE 2.4 (Least squares estimator). Let g(x) = ¢(x) = x, x € R. The
resulting estimator is the least squares estimator. Assume that E,X; <
and o7 > 0. Then (2.1) holds with y = E,X2E,s? + E,Z?E,X; and the as-
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sumptions of Lemma 2.3 hold with b = E,X¢. Applying Lemma 2.2 yields
Ln%, — )| P,) = N(0, ), where

_ o oiE,(Xy)
EX{  (E,(x2))

This is a special case of a result of Nicholls and Quinn (1982).

ExampLE 2.5 (Modified least squares estimator). This estimator is ob-
tained upon taking (x) =x and g(x) =«xI[|x| < c] + csgn(x)I[|x| > c],
where ¢ is a known positive constant. If o7 > 0, then (2.1) holds with
y = 07 E,8°(X,) + 0fE,X7g%(X,) and the assumptions of Lemma 2.3 hold
with b = E,X,g(X,). Consequently, (n'/2(6, — 6)| P,) = N(0, 7), where

. O'FZEegQ(XO) + UGZEeXoZgZ(XO)
- 2
(EeXog(Xo))

Unlike the least squares estimator, this estimator does not require the
finiteness of the fourth moment of X,.

ExamPLE 2.6 (Huber estimator). This estimator is obtained upon taking
g(x)=x and y¢(x) =xI[|x| <c] + csgn(x)I[|x] > c], x € R, where ¢ is a
known positive constant. Assume that ¥ and G are symmetric around zero,
F is continuous and E,XZ[F(c — X,Z,) — F(—c — X,Z,)] > 0. Then one
verifies (2.1), (2.4) and (2.5) and obtains from Lemmas 2.2 and 2.3 that
Ln'%(§, — 6)| P,) = N(0, ), where

E,X3*(X, — 6X,)
(EeXOQ[F(C —XoZ,) —F(—c— X0Z1)])2 ‘

T =

ExampPLE 2.7 (Arctan estimator). Let g(x) =x and (x) = arctan(x),
x € R. Assume that F and G are symmetric around zero and that o7 > 0.
Then one verifies (2.1), (2.4) and (2.5) and obtains from Lemmas 2.2 and 2.3
that L(n'/2(6, — 6)| P,) = N(0, 7), where

E,X? arctan®( &, + Z,X,)
(E,X; arctan'( &, + ZlXO))2 '

T =

LEMMA 2.8. Suppose i is bounded, F has a bounded and continuous
Lebesgue density f and E,g*(X,) < . Then (2.3) holds with

b=E,X,8(X,) [ f(u~2,X,) dy(u).
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Proor. Without loss of generality assume that ¢ is nondecreasing. Fix
t € R. With U/s as in the previous proof, let

D, .= — i g(Xj—l)(‘/’(Uj - t)‘j%l) - ‘ff(Uj))’

n 0
1 =~ tX._
D, ,= —njgg(le)Ee(lP(U} - ‘/J;l) - ¢(U)| le)>

1 tX;
D5 = 7= L a(X) [ E(f(u = 2,X, )| X;) di ().

Observe that D, ; — D, , is a mean zero square integrable stationary martin-
gale. Thus,

X, 2
E,D, - Dn,2)2 =< Eegz(Xo)(¢(U1 - _i/; ) - ¢(U1)) .
Let

X,
Vn
Using the fact that (x) — ¥(y) = [(I[u < x] — Ilu < y] d¢(v) and Fubini’s
theorem, one obtains from the above inequality that

E/(D,,~D,,)* <2 suglw(x)leegZ(Xo)l &) dyr(u).

&(u) = F(u — Z,X,) —F(u —-Z, X, + ) u€R.

By the Lebesgue dominated convergence theorem and the continuity of F,
this upper bound tends to zero. Hence

(26) EH(Dn,l - Dn,2)2 - 0

Using Fubini’s theorem and a conditioning argument together with the
underlying independence between ¢;, Z; and X;_;, we obtain

E9|Dn,2 + Dn,3|

(2.7) < nl/Z/E9(|g(X0)|

X
£.(u) + %f(u - Z,X,)

Javcar o

by the Lebesgue dominated convergence theorem and the assumed properties
of f. Finally, by the ergodic theorem,

(2.8) D, 5 = tb + 0,(1).
Combining (2.6)-(2.8) yields (2.3). O
ExaMPLE 2.9 (Least absolute deviation estimator). Let g(x) = x and ¢(x)

= sgn(x). The resulting estimator is the least absolute deviation estimator.
Assume now that F has a continuous, bounded and even density f, G
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is symmetric around zero and E,(XZf(Z,X,)) > 0. Then (2.1) holds and
the assumptions of Lemma 2.8 are met. Thus Lemma 2.2 implies that
Ln%, — )| P,) = N(0, 7,), where

 E(X))
'\ A(E,X(Z,X,))"

We need the continuity of f everywhere to conclude this result. This is unlike
the ordinary autoregression model, where f needs to be continuous at zero
only. See, for example, Chapter 7 of the monograph by Koul (1992).

3. Local asymptotic normality. In this section we obtain the LAN
condition for the RCAR model when the distributions of ¢, and Z, are
allowed to depend on a finite dimensional parameter. This result is basic to
the characterization of efficient estimators and the ensuing discussion of
adaptation.

From now on we assume that F has finite Fisher information for location,
that is, F has an absolutely continuous density f with a.e.-derivative /' and

(3.1) J(f) =/(%) dF(x) < .

Then, under Py, X, has a Lebesgue density q, and the conditional distribu-
tion X; — 94X, given X, has a density p given by

p(x1,%,) = [f(x, —22,) dG(2), %, %, €R,

for 9 € 0. Consequently, a joint density =, of (X,, X; — 9X,) under P, is
given by

(3.2) Ty (%1, %) = qy(%1) (%1, X3), x1, %y €R, 9 € 0.

Define now

P(x1, %) = [ (%, —2%,) dG(2), %, %, € R,

D'(xq,%3)

L(x,x,) = )
(%1, %) p(xq, x5)

X1, %9 €ER,

W(0) = [*2L(xy, x5) p(%1, %) qy(x,) da, dicy
and
1(9) = -X, L(X; ,,X,—-9X,,), Jj=1,...,n,9€R.

Observe that ©7_,7,(6) and nW(6) are the score and the Fisher information
for the estimation of 6, respectively, when F' and G are known.
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An application of the Cauchy—Schwarz inequality and Fubini’s theorem
shows that

(3:3) sz(xl’ X9) p( %1, x5) dxy < J(f), x; €R.

Therefore, W(0) < J(f)E,X; < . It is also easy to check that W(§) > 0.
We now introduce a parametrization of the distributions of (&, Z,).

DEFINITION 3.1. By a path we mean a map 7 — (F,,G,) from (—1, 1) into
D X D satisfying (F,,G,) = (F,G) and 62 + [z dG (z) <1- a, for all
n €(—1,1) and some a, > 0.

Fix a path n — (F,, G,). Then there exist positive numbers «, and «; such
that

(0 +8)" + [22dG,(2) <1

for all 9 € O, =[0 — oy, 0 + o] and (t,n) € Ay = (—ay, a;) X (=1,1). For
9 € 0, and 6 =(¢,m) € A, let @j 5 denote the restriction of Py, , r, G, to
%, and let A (9, 8) denote the log likelihood of Qj 5 with respect to 3.0
Here and in the sequel, §; denotes the o-field generated by (X,,..., X ),
j=0,1,....,n

DEeFINITION 3.2. We say the path n — (F,,G,) is regular if the following
conditions hold.

(R.1) The map n — [x” dF,(x) is continuous at 0.
(R.2) For each n, F, has Lebesgue density f, and there exists a measurable
function ¢ from R to R such that f§2(x)f(x) dx < « and

[(VAG) =) — geCene) ) de = o(n?)

(R.3) There exists a measurable function ¢ from (0,1) to R such that
J& €%(w) du < © and

1 2
[ (G (w) = G7H(w) = mé(w)) du = o(n*),
where Gn_l(u) = inflz: G,(t) > u}.
In this case we set, for 9 € 0,

X - (9+2) X, ) (X — (0 +2)X,_,) dG(2)
(34) J(ﬁ) - ff(X] _ (19 + Z)inl) dG(Z) )
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Jo @) f'(X; = (8 + G (1) X; 1) du
J£( j_(ﬁ+Z)Xj—1)dG(Z) ’

(38) ¢&(9)=-X;_,

1;(9)

S =1 £ 9) + &(9)

ji=1,2,...,

and
V(6) = E,[5,(6)ST(6)].
We are now ready to state the LAN result.

THEOREM 3.3. Suppose the path n — (F, ,G, ) is regular and the sequence
{0,} in ®, is such that Vn (6, — 6) is bounded Then

1 1
3.6 AlO,— - — TS (0) + —=ulV(e -0
in Qy -probability for every bounded sequence {u,} in R? and

1 n
L(ﬁjgsxen)lmn,o) = N(0,V(6)).

The proof of this theorem is facilitated by the following two lemmas, proofs
of which are given in the Appendix. Let g, ; and p, ;, respectively, denote
the stationary and transition densities under Qy 5 if ‘the path is regular. In
this case define also a map s, from R? to R? such that

$9(Xo, Xp) = 1(19)\/p(X0>X1 - 9X,) as. Py.

Observe that p, ;(X,, X)) = p, (X, X; — 9X) and s,(X,, X;) = §,(X,,
X, — 9X,).

LEMMA 3.4. Suppose the path n — (F,,G,) is regular. Then

(3.7) ﬂs;lg f(1+x ‘/q19 s(x) — \/qﬂ’o(x))2 de—>0 asd— 0.

LEMMA 3.5. Suppose the path n — (F,,G,) is regular. Then

2
asuel)) Eﬁ/(\/Pﬂ s(Xo, x) — \/pﬁ,O(XO’ x) — 3875,(X,, x)) dx = 0(”5”2)
€0

and
supEf”sﬁH(XO,x) $5(Xp, x)|Pdx > 0 ast—0.
e 0,
PrROOF OF THEOREM 3.3. Let Z, ; =n"'/2S,(6,), j = ., n. Our proof

utilizes the martingale central hmlt theorem [Corollary 3.1 in Hall and
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Heyde (1980)] and a proper application of Theorem 3.10 in Fabian and
Hannan (1987). More precisely, we shall apply their theorem with 0,

=0, E, ;()= /- ng s» U, j=Z, ; and M, = nl,, where I, 1sthe2><2
1dent1ty matrix. In view of these results it sufﬁces to verify

(3.8) Een( Z, |%;-1)=0, j=1,...,n,as. P,
(39) L,(a) = ¥ E,(IZ, I’I[IZ, ]I > a] I &, 1) =0,(1), a>0,
j=1
(3.10) Y E,(Z, 2] I%;_1) =V(6) +0,(1),
j=1

and, for every sequence {§,} = {n_l/Qun} in A, with {«,} bounded,
W, = /(\/%n,an(x) ~ 1/46,,0(%) )2 dx
+ ilfwfn,an(le,y)dy =0, (1),
=
where wy ;= ‘/m ‘/m—gﬁs

It follows from Lemma 3.5 that

(3.11)

/éﬁ(XO, x)\/pﬁ’O(Xo, x)de=0 as.Py,9€0,,
which implies (3.8). Verify that for a > 0,
. 2T
E,(L,(a)) = [ [ Is6(u,0)[*I[l[50(, )| > avnyp(w,0) | gy (u) dudo.
Analogous to (3.3), one verifies [ |l$,(u, v)I® dv < 2(1 + u>)[J(F)A +

[o £2(t)dt) + [£? dF]. This, together with Lemma 3.4, yields (3.9). Next,
Lemmas 3.4 and 3.5 imply that

E,(W,) = /(\/q(;n,sn(x) - \/qen,o(x) )2 dx
+nE9n/(\/p0n,5n(X0’ x) — \/pen,o(Xo, x)

2
— 5875, (X,, x)) dx - 0

for every sequence {8} ={n"'/2?u,} in A, with {u,} bounded. This gives
(3.11).

Verify that
n 1 n
Y E, (2,2 1%;,) = —~ Y fs'O(Xj_l,v)sO(X L) dv.
i=1 j=1

Thus (3.10) follows from the ergodic theorem if 6, = 6 for all n. This
shows that the theorem holds for the constant sequence {6}. From this one
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concludes that {an,o} is contiguous to {Qj ,} and hence (3.10). This completes
the proof. O

COROLLARY 3.6. Let P} denote the restriction of Py to &, for 9 € O. Let
{6,} be a sequence in ©, such that Vn (6, — 0) is bounded and let {t,} be a
bounded sequence in R. Then

(3.12) 1og%+;” 2 1,(6,) + =t2W(0) = 0, (1)
and "

(3.13) (T ; (an)|P9") — N(0,W(6)).
Consequently,

1 1
(314 — ;lj(e,,) " _glj(e) +Vn (6, — 0)W(0) = o, (1).

REMARK 3.7. The results (3.12) and (3.13) together become the usual LAN
condition for the joint log-likelihood ratios if 6, = 6. This result is different
from the LAN-type expansion for the conditional log-likelihood ratios, given
X,, of Hwang and Basawa (1993).

4. Efficient and adaptive estimates. This section discusses efficient
estimation of 6. First, consider the case when F and G are known. As can be
seen from Corollary 3.6, the parametric experiment associated with this case
satisfies the LAN condition. Thus, it follows from the Hajek-Le Cam theory
for LAN experiments that an estimator {6,} is LAM at 6 for bounded loss
functions, herein called efficient for 6, if

4.1 Vn (6, — 6 1.(6) = 0,(1).
(41) (6, - 0) - rww)JZ 1(6) = 0,(1)
See Fabian and Hannan (1982). To exhibit such an estimator, let
X L(9
Z,(9) =9+ ;J(), 9 € R.

SANHEY

The following construction of efficient estimators uses discretized Vn -con-
sistent preliminary estimators of 6. The idea of discretization goes back to Le
Cam (1960) and has become an important technical tool in the construction of
efficient estimators in semiparametric models; see Bickel, Klaasen, Ritov and
Wellner (1993) and references therein. In our problem, vV -consistent prelimi-
nary estimators can be chosen from the class of generalized M-estimators of
Section 2.
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THEOREM 4.1. Suppose (3.1) holds. Then, for every sequence {6,} in ©
such that Vn (0, — 0) is bounded,

1 n
Y 1,(0) = 0,(1).

(4.2) Vn(2,(6,) - 0) - nw(e) =

Consequently, if {én} is a discrete Vn -consistent estimator of 6, then {Zn(én)} is
efficient for 0.

ProoF. Fix a sequence {6,} in ® such that vn (6, — 6) is bounded. From
(3.8) to (3.10) one obtains that

17 17

- ZZJ2(0n) = - ZEB (ZJZ(On)|%J—1)+09(1) =W(0) +09(1)‘

nj-1 nip " " "
This, together with (3.14), gives (4.2). O

Our next goal is to construct estimates of 6 that satisfy (4.1) when F and
G are unknown. Such estimates are LAM-adaptive for 6 in the class of all
LAN-subproblems that satisfy Stein’s (1956) necessary condition for adapta-
tion; see Fabian and Hannan (1982). We now show that this necessary
condition is satisfied in our model if F' and G are symmetric around zero. To
see this consider a regular path n — (F,,G,), where both F, and G, are
symmetric around zero for all n € (—1,1). For such a path, the conditional
density p, of X; — 0X,, given X, satisfies

Po(Xo, =9) = [f,(~y = 2X,) dG,(2)

:/fn(y_ZXO)dGn(Z):pn(XO’y), yER

This implies that £,(6) + £,(6) [cf. (3.4) and (3.5)] is an even function in the
variable X; — 60X, and [,(0) is an odd function in the variable X; — 6X,.
Consequently,

V12(0) = Eell(g){Q(O) + 51(0)} =0,

which is Stein’s necessary condition for adaptation for the given path.

In order to construct adaptive estimates of 6, F' and G will be assumed to
be symmetric around zero for the remainder of this section. To describe our
estimates, let %2 denote the logistic density. Let {a,}, {6,} and {c,} denote
sequences of positive integers which converge to zero. Let {d,} be a sequence
of positive numbers such that d, — « and let y, denote the map from R to R
defined by x,(x) = xI[|lx| <d,] + d, sgn(x)I[|x| > d,], x € R. Define func-
tions k£, and %/, from R? X R? to R by

Uy — 0y k Ug — Vg k —uz—v2)
bn an an

1
k,(u,v) = 5a b k

n

n
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, 1 Uy — Uy [ us — Uy [ TUe T Uy
k. (u,v) = 5ab k( b )(k( . )—k(—a ) ,

u=(u,uy,) €R%v=_(,vy) €ER%FordeRand j=1,...,n,set
Yi(9) = (Xo0, X; = 0X;,)

and

and

L (1/n)Xn k/(Y(ﬁ) Yi(9))
e, (/)T k(Y (9),Y(9))

n J(ﬁ) -

Finally, set

(1/n)L) ; J(9)
(1/’7‘)2] 1 n j(ﬁ)

Z2,(9) =19+ ¥ ER.

THEOREM 4.2. Suppose F and G are symmetric and F satisfies (3.1).
Assume that the sequences {a,},{b,},{c,},{d,}, in addition, satisfy

(4.3) n'~*a*b2c? -  for some a > 0,

(44) a,>b,d,.
Then for every sequence {6,} in ® such that Vn (6, — ) is bounded,

(4.5) Vn (Z,(6,) - 0) - Z 1,(0) = 0,(1).

\/_W(e)

Consequently, if {én} is a discrete Vn -consistent estimate of 0, then {Zn( én)} is
LAM-adaptive for 6.

Proor. For 9 € R, let

(1/n)E7 11, (D)
(1/n)2?:12r21,j(19) ’

Z,(9) =19+
where

Xa( X5 ) B (Y5(9),v)my () dv
c, + fkn(YJ(ﬁ), v)wﬂ(v) dv

ln,j(ﬁ)=_ =1,...,n,

and 7, is as in (3.2).
Now fix a sequence {6,} in ® such that Vn (6, — 6) is bounded. It suffices to
prove the following two statements:

(46) ‘/;(Zn( en) - Zn( Hn)) = Oen(l)’
(47) ‘/;(zn( en) - Zn( gn)) = Oﬁn(l)'
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As n~/2%7_11(6,) and (1/n)L}_,17(6,) are bounded in P, -probability, (4.6)
and (4.7) follow from the following four statements:

(48) A= f ¥ (1,5 = 1(6)) = 0,1,
(49) b= 5 ()~ y0)) =),
(4.10) b= g T A00) 18] = 0 1),
(411) b=y (0) ~L0) =00

Let Y, ,=Y(6,) and Y, = (Y, y,...,Y, ). Define maps k, and % from
R? x R2" 1nt0 R as follows:

HM:

};n(u’yh""yn): k(u yj)

M:

]%,H(U,J’p---,yn) =

S|—= S|+

k,(u,y;), U,Yi,---,, € R
1

J

Let K denote the logistic distribution function. Define maps &*, %, and %/,
from R? to R by

Ei(w) = [qu (@ = bv1) (= by, up) dK(v,),

Bo(w) = [ [ o (us = b,0)p(uy = b0y, 1, = a,0,) dK(v,) dK (vy),

Bo(u) = [ [ o (us = b,00)p' (2 = by, uy — a,0,) dK(vy) dK(v,)
for u = (u,, u,) € R% Verify that

Bo(w) = [Ry(u,y)m(y)dy and E,(u) = [k(u,y)m(y)dy, ue<R?

The following facts, proved in the Appendix, are used to establish (4.8) and
(4.9):

(412) J,1 =57 [ [(VEEGrrm) — (e m) ) deydy 0,

B (%1, %5) B \/Qen(x1) p'(xy,x5)
\/En(xl,xz) \/P(xpxz)

(413) J,,= [ [} dx, dxy — 0,
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(414) J,5=a,2[[(1+ xf)(\/ﬁn(xl, xy) — VEE (%1, x,) )2 dx, dx, — 0.

Now set

Bl

B . B L Ry
B =g T @ MY T iy

Bl

for u € R? and y € R?". Verify that, for j =1,...,n,

[,:(6,) = —xu(X,_)Lo(Y, ;,Y,) and I, (6,) = —x.(X;_1)L.(Y, ;).

We shall now summarize various properties of R,, L, and L, needed in
proofs of (4.8)-(4.11). The logistic kernel satisfies

(4.15) k(x)<1/4, |E(x)| <k(x), |k'(x)]<k(x), x€R.

From this and (4.4) one obtains the following properties. For each u € R?,
y € R?" and t € R,

- 1 J — 1
(L.1) |L, ()| <|R,(u)] < . and &—uz_Ln(u) S i=1,2;
A 1

(L2) PACE

d . 1
(L.3) a—LLiLn(u, y)| < ab’ i=1,2;

Ja 1
(L.4) &—yiLn(u,y) < m, i=1,...,2n;

A N 1

(L.5) |Ln(u,y+tei)—Ln(u,y)|SW, i=1,...,2n,
where e, ..., e,, denotes the standard basis in R?". Note also that

(L.6) T,n((ul, —uy)) = —L,(u) and f,n((ul, —uy),y) = —ﬁn(u,y)

for u = (u,, u,) € R? and y € R?",
PRrOOF OF (4.8) AND (4.9). Using (L.6), one obtains that

Eﬁn(zn,j(en) —1;(6,) | Xj—l) =0, j=1,...,n.
Thus (4.8) and (4.9) will follow if we show that

In = Een(zn,l( an) - ll( On))2

_ 2
= ff( Xo(%1) L, (21, x9) — 27 L( %4, x2)) Wen( X1, X9) dxq dxy = 0.
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However, we can bound I, by 5(1, , + 1, , + 1, 3 + 1, , + I, 5), where

2
In,l = /f(Xn(xl) - x1) LQ(xp xz)ﬂ'on(xp xy) dxy dxy,

ko (%, x5) \/Qen(xﬂ p'(xq, %5)

I”’2 - fanz(xl) m - ,—p(xl’ ) dx, dx,,
v = [ [ X2 R Cerm) (VR (o, 20) — VRS (o) ) dl, i,y

La= [ [ X2 REGer, ) (VEEGer ) — (e ) ) diey dy

2
In = fan(xl) n(X15 29) — Rn(xpxz)) Wen(xpxz) dxq dxy

-l

It follows from (3.3) and Lemma 3.4 that I, ; — 0. Bound I, , by o O
conclude I, , — 0, by (4.13). Use (L.1) to bound 1 3 by J,, ;. Thus I .- '0 by
(4.14). As I,\/n(xl)R (x,, x)l<d,a;! and d,a, s b, ! by (44) I 4 < Jn »
Hence, by (4.12), I, , — 0. Using Lemma 3.4 and the fact I, +I na = 0,
one obtains

2
Cﬂ
e + %n(xl’ %) ) Xr?(xl)Ri(xl’ x2)779n(x1, xy) dxy dxy.

n,
-1

2

Cn
o = U(cn T aayy ) ()M (6, %) diy iy + o(1).

By (4.12), (4.14) and Lemma 3.4, k, — 7, in measure. Thus, I, ; > 0 by the
Lebesgue dominated convergence theorem. This proves that I, — 0 and
obtains (4.8) and (4.9). O

PROOF OF (4.10) AND (4.11). Without loss of generality, assume that the
underlying probability space (Q,«, P, ) is rich enough so that there exist
independent sequences {X 1 jE 7}, { a i J €2y and {(s, ;,Z, ) j € 2} of
independent and 1dentlca11y glstrlbuted random vectors such that X, 1 has
the same distribution as X,, Y, ; has the same distributionas Y, ,(¢, 1, Z, ;)
has distribution F X G and

J

X, =s,;+ ;g 1 6.+2,))

V=j+ l-a
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almost surely P, . From this one also obtains the P, -a.s. representation

J—i—-1 J
X = + Z En,j—a l_[ (On +Zn,v)
v=j+1-a
(4.16) .
+Xi ]._[ (0n+Zn,l/)’ l<.]
v=i+1

Define now

j-i-1 j R j

Xj,i=‘9n,j+ Z gn,jfa 1_[ (0ﬂ+Z7L,V)+XI’l,i 1_[ (0n+Zn,V)’
=1 v=j+1l-a v=i+1

i <j.
Then X ; has the same distribution as X;, and X; ; is independent of X, and
of X, for s <r <1i <. The proof below exp101ts this independence.
Now let {m,} be a sequence of pos1t1ve integers such that m, ~ n®/?

where « is asin (4.3), and let p, = 62 + 02. As 0, > 0, p, = 0% + o2, which
is less than 1 by (1.2). Therefore, by (4.3),

m 2
np,”" m;
Let
Y= (YF,....Y",), whereY', = (Xj,l,j,mn,Xj’j,m 0,X; 1 i-m )

For a subset A of {1,..., n}, let Y,*(A) denote the vector obtained from Y by
replacing Y*, by Y, for each i € A. Abbreviate Y;*(A) by cif A ={a:

"J

a=1,.. nla— |<m}andby nJilfA {fa:a=1,....,n,la —jl<m,,
|a—i|<m}
Observe that
A ! iD Y Y d A 1%
n,3 ‘/;jzl n( n,jo n) an n,4 n = ( )’

where D, is the map from R? X R?" to R defined by
D,(u,y) = Xn(ul)(f‘n(u’ y) — En(u))’ u=(up,uy) € R?, y € R*".

To prove (4.10) it suffices to verify the following two statements:

1 =n
(418) Tn,l = ﬁ Z (Dn(Yn,j’Yn) - Dn(er,j’Yf;k,J)) = O“’n(]‘)’

j:

—-

2

Zan(Yn”jj,Yj’j) - 0.
j=

(419) T,,=E,

-

n
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By the construction of Xj’ i
E,(X,-X;,)" <2p/ 'E,(X2), Jj>i.
Therefore,

1 n
= ; Z -1,j—-m, _‘)(j—ll2 = 00"( prinn)
Jj=1

and

E ”Yn,j - Yn*,j”Z = O{,n(np;"”).
=1
Utilizing (L.1) one obtains

noo_ — 2 np,'"
Suo= L (LY, ;) —L,(Y))) < 57 Y Iy, ; = Yl = 09,1(—(12172 )

Jj=1 nnjf nn

and utilizing (1..3)—(L.5) one verifies

o ~ 2
Sn,3 = Z (Ln(Yn,j’Yn) - Ln(Yf,J’Y’Tv]))
j=1
6 6 12m?
< = Y,  —Yr | Y, - Yr | —"
np, m;,
+
"\ aybicy  napbler )
Using (L.1) and (L.2) one obtains
12n 3
TYnQ,lS az Sn1+_21X21J m(Sn2+S )
n J

In view of the above bounds, (4.18) follows from (4.17).
Since Y*, and Y,*; . ; are independent for li —jl=m,, one obtains with the

n,t

aid of (4.15) and the identity E, R (u, Y ) =E, k,(u, Y 1) = k() that
E, (ko(u,Y}) - Ro(w))

1 _ —
=2 Z E@,L(kn(u’Ynﬂjj) - kn(u))(kn(u’Yn*,z) - kn(u’))

|i7j‘<mn

EH,L(kn(u’ Yn,l) - En(u))z

IA

<

1) = b n(u)

n

and, similarly,

B, (K, Y7) — Ey(w) <

By (R(w,Y50) = L5 ha(w).
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The same arguments give

(Bu(w,Y2,) = Ro(w))  m
— <
o k,(u) "~ na,b

and

(l%’n(u,Y,j"j) —E;(u))z m

On k,(u) = nalb,

This shows that

E, (L, (u,Y: ) ~L(w))

. Eo(u) — B, (u,Y*)) B (u,Y*) R (u
=E,|L,(u,Y} ) () _( g) - ( f_) ()
" ’ c, +k,(u) c, +k,(u)

2 m, 2m, 4m,
< + = )
~ a’c, na,b, nalb,c, nalb,c,

Therefore, by the independence of Y,*; and Y, ,,

im,
(4.20) E,DX(Y;}.,Y};) = [E,DX(u, Y} ,)m (u) du < —p B XS

and
1 8m;,
: — LY SYED) < —— .
4.21 E, D, (Y, Y} )D, (Y, Y}, 3 E, X?
imjl<m, ’ ’ ’ ’ na.b,c, "

As D,((s, —t),y) = —D,((s,%), y) and p(s, —¢) = p(s, t) we have

fDn((s,t),y)p(s,t) dt = 0.

If i —jl=m,, then Y, and (Y ;, Y, ; ;,Y,*,) are independent and hence

E,,nDn(Ynfj,Yj,j)Dn(Ynfi,Y,;ﬁj,i) =0 and
EonDn(Ynfj’Y:,j,i)Dn(Ynfi’Yr?k,j,i) =0.

Thus for |i — j| > m,, we find with the help of (L.5),
By, D, (Y 1, Y5 ) Du(Y 1, Y5

=| B, (D(Y . Y5 ) = Dol o Yo

n,J,t

N(Du(YELYE ) =D, (Y, Y5 )|
2

2

2m, 4m;

< E X?

na’b c = n2atp2c2 00
n n-n n n-n

X

-1,j-m*i-1,i—-m,

<E,|X;
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Consequently,

1 4m?
(4.22) — Y E,D,(Y};, Y} )D(YF,,Y},) < —55E, X2
li—jl=m, ! 7 , ’ ' nanbncn "
Combine (4.21) and (4.22) with (4.17) to obtain (4.19).
We are left to verify (4.11). In view of (4.20) and (4.17), it suffices to show
that

=

T 1
3_;'

n’)
J

2
(Dn(Yn,j7Yn) - Dn(Yn*,j?Yr;k,j)) = Oﬂn(l)‘

1

However, this follows from the bound

3d2
T, ; <12a,”S, , + )y (X1 jom )Z(Sn 2+ S,3)
Jj=1
and the above calculations. O
APPENDIX

This Appendix provides the proofs of Lemmas 3.4 and 3.5 and the state-
ments (4.12)-(4.14). To do this we review some facts about L,-convergence
and discuss uniform L,-differentiability. Let (S,.%, p) be a measure space
and let A, hy, hy,... be measurable functions from S to R.

DEriNiTION A.1. We say h, converges to h, in p-measure on sets of finite

, fin
measure and write h, g hy if p{lh, — hol>a} N B) - 0 for every a > 0
and every B €.% with p(B) < .

The notion of convergence in measure on sets of finite measure is helpful in
proving convergence in L,( p) as is evidenced in the following lemma which
can be deduced from Theorems 4.8.6 and 4.8.11 in Fabian and Hannan
[(1985), pages 199-201].

,fin
LemMMA A.2. Suppose h, hy, hy,... are p-square integrable and h,, " hy.

Then the following statements are equivalent:
@ [(h, — hy)2dp — 0.
Gi) [h2dp — [hZdp.

(iii) The sequence {h,} is uniformly p-square integrable.

As a consequence we obtain the following result which will be used
repeatedly in the sequel. Let A denote the Lebesgue measure on R.
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LEmmA A.3. Let ry,ry,... be measurable functions from S to R, let
Los {1y--- be elements of Ly()), let &,, &,... be elements of Ly(p) and let
®g, P1,--- be the elements of Ly,(A X p) defined by

eu(2,8) = L(x — ro(5))E(s), xER,sES.

,fin

Suppose that p is o-finite, &, = &, in Ly(p), ¢, = {, in Ly,(\) and r, 5 ro-
Then ¢, = @, in L,(A X p).

PrOOF. Define a map D from R to R by

D(t) = [(4o(x =) = &(x)) dN(x), teR.

Then D is bounded by 2/ {2 d A and is uniformly continuous; see Theorem 9.5
in Rudin (1974) for the latter. The desired result follows from this Lemma A.2
and the bound

5[0 = @) d(X X p)

< [(&=¢)*dA[ &2 dp+ [ (P dA[(& &) dp+ [Do(r, —ro) & dp.
O

LEMMA A.4. Assume the path n — {Fn, gn} is regular. Then for every
%€ 0O, [1gy,5— qy,0ldA > 0 as § - 0.

Proor. Fix 9 € 0. For § = (¢,m) € A, define a map r; from (0,1) to R
by
re(u) =9 +t+ G ' (u), ue(0,1),

and set Bs = [i17s(w)| du, B; = max{B;, B,} and 7, = [ lxlgy, 5(x) dx.
Fix a positive integer k. We shall show that

(A1) yir(l)f 19s,5 — Q5,0ldX < 2kT, B

The desired result follows from this as 8, < 1. Let
J

k-1 k
w(ys)= [ [ fly—= L yTIr(w) —sTTrs(w)
k=1 J(0, 1) j=1 i=1

R i=1

k-1 k

X lj[l fo(3:) dy; lj[1 du;.
Then one verifies

qy.5(y) = / ¥%(y,8)qy 5(s) ds for A-almost all y € R.
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Using this one finds that [ |g,; 5 — gy ol dA < A; + B;, where

o= [t~ 0t

<k[If,~fldr

+f|f’IdA(

1

k — -1 — k-1 1
i UFL(BB) +k(35) 75)‘/;)|r5(u)—r0(u)|du

1

and

B; = fl‘fmx’)’o(y, 3)(%9,3(3) - %},0(3)) ds|dy

< /_ f_ |’YO(y’ S) - 'yO(y,O)l(qﬂ’g(s) + Qﬂ’o(s))dsdy
< ]If’ld/\(r5 + 7,) BE.
Taking limits shows that (A.1) holds. O

ProoF orF LEmMmMA 3.4. Fix 9 € 0, It follows from (1.4) and the
properties (R.1) and (R.3) of a regular path that [(1 +x?)g, ,(x)dx —

fi
J( +x*)gy o(x)dx as 6 > 0, and from Lemma A.4 that g, ; A—>nq0,0 as
8, — 0. Consequently, by Lemma A.2,

f(l + xz)(\/qﬁ’ﬁ(x) — Vas.0(%) )2 dx as 8- 0.

The desired result follows from this, the compactness of ®, and the fact that
Q5+s.(t.m) = 99.,(s+¢,m) 10T 8 in a neighborhood of 0. O

Let I' be a compact metric space and let A be a subset of R™ which
contains 0 and has 0 as accumulation point.

DEFINITION A.5. Let ® ={¢, ;: y €T, 6 € A} be a family of elements of
L,(p) and let ® = {¢,: y € I'} be a family of elements of L3 ( p). Then we say
® is p-smooth for ® if:

(i) The map y = ¢, , is L,( p)-continuous.
(ii) The map y — ¢, is Ly ( p)-continuous. '
(iii) The map 8 — ¢, 5 has Ly(p)-derivative ¢, at 0 uniformly in y €T,

that is,

sup [(, 5 = #,0 = 8%,)" dp = o(I5]%).

'yEF
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PropoSITION A.6. Let (Y,%,v) be a o-finite measure space. Let {¢s:
5 € A} be a class of A-densities, let {h%s: veT, §e A} be a class of elements
of Ly(v) and let {r, s: y €T, 8 € A} be a class of measurable functions from Y
to R. Let

by 5(x,9) = Ve (x =1, 5(9))h, 5(y), xER,yeY.

Suppose that the following conditions hold for a class {f'y: v € T'} of measur-
able functions from Y to R™:

(a.1) The density ¢, has finite Fisher information J(¢,) for location.

(a.2) For some ¢, in L}()), f(\/go,S - \/gTO — 8% dx = o(lI8]1?).

(a.3) The class {h,, s: 'y eI, 8§ € A} is v-smooth for {h v eT}.

(a.4) The class {(r r, O)hy oo YeTl, 8 A}is w-smooth for{r b, yEThL

v, fi
(a.5) Foreveryyel,r, ; —;nr oasy— ¥yand §—0.

Then the class {¢, 5: y €T, 8 € A} is A X v-smooth for {qby: v € T'}, where

(509 = €o(x = 70(0)) = A9 5 o (8= 7)) ()

+'\/¢)O(x - ry,O(y));Ly(y)
forxc ceRandy Y.

Proor. Using (a.3)-(a.5) and Lemma A.3 one verifies the continuity of the
maps ¥y~ ¢, , and y — ¢,. Let

t,s(x,9) = es(x—r, ()b (),
& 5(x,y) = fo(x - ry,B(y))hy,O(y)$

gy,s(x’ y) = f‘y(y)h%()(y)_/;)l2:/o%(

x — vSTfy(y)) dv.

It follows from (a.3)—(a.5) and Lemma A.3 that
(A.2) tysti00 L5280 &5 60

in LP(A X v) as (v, 8) = (7,0). As ¢, has finite Fisher information, /¢, is
absolutely continuous with derivative ¢ /2y/ ¢, . This show that

\/Soo(x—S) —\/cpo(x) f 2\/_(x—st)dt x,s €R.
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Using this and the translation invariance of the Lebesgue measure, one
derives the bound

()5 = byo— 8%,) d(Ax v)

. \2
< [(Ry5 = Pyo = 87h, ) dv +11SI° [lit, 5 — £, olI° d(A X v)

+[(Vas Voo —8%) daf 2 dv+ 151 (114, 5 — &, ol* d(Axv)

2
+ J( QDO)/(T"%S —T, 0~ 8Tf‘7) h,dv+ ||5||2/||§y,,3 - gy’OHZ d(A X v).
This, (A.2) and (a.2)—(a.4) establish the property (iii). O

The next result is a uniform version of a special case of Pitman’s (1979)
result on the preservation of Hellinger differentiability under transforma-
tions.

PrOPOSITION A.7. Let (X, %, n) and (Y, %, v) be o-finite measure spaces.
Let ® ={¢, 5: y€ T &€ A} be u X v-smooth for {d) y € I'}). Then ¥ = {y, ;:
vel, de A} is u-smooth for {¢ v € T}, where

U, 5(x) =/ Jd25(x,y)dv(y)  and

(A.3) . q")y x,y)d, o(x,y) dv
%(x)zf ( y)¢ ,O((x)y) (7)

for x € X.

PrROOF. For each y €1 and § € A, define a linear operator A, ; from
Ly(pu X v) to Ly(pn) as follows. For h €Ly(uxv)let A ;h denote the
element of L,(u) defined by
Jh(x, 9)(by,5(2,9) + &y 0(x,5)) dv()

'y,ﬁ(‘x) + lpy,()(x)

Now fix yeT and & € Ly(u X v). An application of the Cauchy—Schwarz
inequality shows that

A, sh(x) = , xe€X.

(A.4) (A, k(%)) < [R*(x,y)dv(y), xeX.

Therefore the class {A ;h: y € I', § € A} is uniformly u-square-integrable. It
follows from (i) and (111) that the map (y, 8) = ¢, 5 is Ly(u X v)-continuous
at (¥,0). This implies that the maps (y, §) — y25 and (y, §) —

[R(C, y), 5(, y)dv(y) are L,(u)-continuous at (y,0). From this one con-
cludes that A ;h —> A oh as (y, 8) = (3,0). Therefore, Lemma A.2 yields
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that the map (y, §) » A, ;A is L,(n)-continuous at (¥, 0). Easy calculations
show that for every y € r and €A, 8%, =A, 6%, and

R g : . :
w'y,é - lvby - ST% = H _A aTd)y + A'y,BaT(by - Ay,OaTd)'y
8 Y,0
= A, (b5 — b0 — 8b,) + A, 8%, — A, 6%,

The desired result follows now from the properties of the operators A ; and
the u X v-smoothness of ® for &. O

ProoF oF LEMMA 3.5. For 9 € O, and 6 = (¢,m) € A, define maps

1,110,5(36) = \/qﬁ(xl)pﬁ,é(x) and lj’ﬁ(x) = V‘L?(’H) %éﬂ(x)

for x = (x,, x,) € R% Verify that these maps satisfy (A.3) with T = 0,
A = A,, v = U, the uniform distribution on (0, 1),

Go.5(x.3) = Fo(x2 = (9 + £+ G (1)) a0 (%)
and
by (x,¥)

fl
1 _xlﬁ(xz — 2,9 — 2,G7 ()
= 5\/(]19(361) f/
f(xz —x9 — le’l(y)) - x1§(y)ﬁ(x2 —x9 — le’l(y))

for x = (x,, x,) € R?, y € (0,1), where ¢ and ¢ are as in (R.2) and (R.3). It
suffices to show that {is, ;: ¢4 € 0y, § € A} is A X X smooth for {i;: & € O}
By Proposition A.7 this follows if we verlfy that {¢y s: 9 € 0y, 6€ Ay}
is A X A X U smooth for {¢,: ¥ € @,}. However, this follows from Proposi-
tion A.6 applied with Y =R X (0,1), v=AXU, I'=0,, A=A;, ¢ =/,
hy s(¥) = as(y,) and ry s(y) =y, (3 +t + G, ' (yy)) for 5= (t,m) € A and
y =(y1,y5) €Y. Note that the assumptions (a.1)-(a.5) are verified with
hy =0,

0 . 1
gozé(g) and ry(y)=y1(§(y2)), yeY,
relying on Lemma 3.4, (R.2) and (R.3). O

In the remainder of this Appendix we shall derive additional corollaries to
Propositions A.6 and A.7. Corollaries A.10-A.12 will imply the required
statements (4.12)—(4.14).
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REMARK A.8. Let 9 € O. Then the density gy can be chosen to satisfy

go(x) = [ [f(x = (3 +2)w)gy(w) dwdG(2)

for all x € R. It is easy to check that this choice is absolutely continuous with
a.e.-derivative gy given by

Qs(x) = fff’(x - (9 +2)w)gy(w) dwdG(z), x € R.

The argument used to derive (3.3) yields now that gy, has finite Fisher
information J(q,) < J(f).

Now let, for 3 € ®, B € R and x = (x,, x,) € R?,

qy(x, — Bxy)
22\/(119(961 — Bxy) ‘

Recall that K denotes the logistic distribution function.

Xﬁ,ﬁ(x) = qs(x, — Bxy) and )‘(g,o(x) =X

COROLLARY A.9. Let T" be a compact subset of R X ® and let A, be the
measure defined by dA,(t) = (1 + ¢t2) dX¢). Then the following hold:

(i) The map (B, ) = xg o is Ly(A, X K) continuous.
(i) The class {xg;59: (B,9) €T, §€R} is A X K-smooth for {x; s:
(B, erl}.

Proor. The first statement follows from Lemmas A.3 and 3.4. To obtain
the second statement, set

by 5(%,5) = V(%1 = (B+8)xy — (9 +55)51) Vs (1)

and

. _ f/(xl—,BxZ—(13+y2)y1)
d)'y( 7y) 22‘/f(x1 _sz — (Y+y2)y1) Vqﬁ(yl)

for x = (x;, x,) € R?, y =(y,,y,) €R?, y=(B,9) €T and & € R. Then

Xg+s,0(%) = /d’f,a(x,y)dV(y) and

[, (x,¥) b, o(x,y) dv(y)
Xﬁ,ﬁ(x)

XB+5,0(x) =

2

where » = A X G. It follows from Proposition A.6 that {¢, ;: y €T, 6§ € R} is
A X K X A X G smooth for {¢,: y € I'}. Now apply Proposition A.7 with » =
K X XA X G to obtain the desired result. O
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For a, B € R and 4 € 0, define functions g, 5 » and g, z » by

8o, p,o( %1, X3)

- ffff(xz —au —w(x; — Bv))gy(x, — Bv) dK(u) dK(v) dG(w),
8u,p, 9 (%1, %)
J[ [ £~ au—w(z, ~ Bv))ay(x, — Bv) dE(u) dK(v) dG(w)

for x,, xy, € R Then 80,00, = T, 80,0,0 (%1, x3) = p'(xy, x5)q, (x,),
Sa,. b0 =k, and g, , =k;. The following results are now easy conse-
quences of Propositions A.7 and A.8 and of Corollary A.11.

COROLLARY A.10. The class W ={¢s, 5= /80 5, YET, E R} is A X A-
smooth for {t/}y =0: ye I} for every compact subset T' of ©. Consequently,
(4.12) holds.

COROLLARY A.11. For (a,B,9) € R X R X 0 and 6§ € R, let

Yia,8,9),5( %15 X3) = \/gs,;;,a(xl, Xy — 6x1)
and

_xlgix,ﬁ,ﬂ( X1, Xg)

‘j’(a,ﬁ,ﬂ)(xlaxz) = )
2\/ga,3,0(x1a x5)

where x,, xo € R. Then the class ¥ ={¢;, ;: y €', § € R} is A X A smooth for
v = {lpyi v eI} for every compact subset T' of R X R X 0. Consequently,
(4.13) holds.

COROLLARY A.12. For (B,9%) € R X ©® and § € R, let

lp(ﬁ,z‘)),ﬁ(xl’ xy) = \/(1 + x%)ga,ﬁ,ﬁ(xl’ X3) xq, %y € R.

Then the class ¥ ={y, 52 y€T, 8 € R} is A X A-smooth for {g['/y =0: yeTI}
for every compact subset T' of R X 0. Consequently, (4.14) holds.
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