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In a general normal regression model, this paper first derives the
least upper bound (LUB) for the covariance matrix of a generalized least
squares estimator (GLSE) relative to the covariance matrix of the
Gauss—Markov estimator. Second the result is applied to the (unre-
stricted) Zellner estimator in an N-equation seemingly unrelated regres-
sion (SUR) model and to the GLSE in a heteroscedastic model.

1. Introduction. A normal regression model of the form

(1.1) y=XB+ & with ¢ ~N(0,Q),
where
(1.2) Q=0Q(0) €S(n)

is a typical model often used in applications. Here X is a regression matrix of
n X k, rank X = k, the covariance matrix in (1.2) of error term ¢ is a
function of a d X 1 unknown vector § with d <n and S(n) is the set of
n X n positive definite matrices. Models of the form (1.1) include, for exam-
ple, the SUR model formulated by Zellner (1962, 1963) and the heteroscedas-
tic model where Q is diagonal. In the estimation of 8 in (1.1), a GLSE of the
form

(1.3) B(O) = (X0 1X) X0y

is often used where Q) = Q(#) with 6 an estimator of 6. The problem we
consider in this paper is to study the efficiency of a GLSE in (1.3) in terms of
the covariance matrix Cov( B({1)) relative to the covariance matrix of what we
call the Gauss—Markov estimator (GME) B(Q) even if Q is unknown. As is
well known, the GME

:éGME = :é (Q)
is the best linear unbiased estimator when () is known. However, the GLSE

() in (1.3) is, in general, nonlinear in y and hence it is difficult to derive
Cov( B(Q)) explicitly and to study the efficiency of the GLSE B({}) unless an
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additional structure is available. In this paper, the condition we impose on a
GLSE of the form (1.3) is the following distributional property: conditional on
Q,

(14) B(Q) given O ~ N(B, H),

where H is the conditional covariance matrix of S({}) given by
(15) H=H(O,0) = (X0 'X) X000 X(X'O X)) .
For such a GLSE, the covariance matrix is expressed as

(1.6) Cov(B(()) = E[H].

A simple example of a GLSE satisfying (1.4) is the ordinary least squares
estimator (OLSE) B(I) in which case

Hopsp = H(I1,Q) = (X'X) ' X'0X(X'X) "'

is nonrandom. For a GLSE satisfying the property (1.4), the covariance
matrix (1.6) is bounded below by the covariance matrix of the GME Bgyp =

B(Q):
(1.7) Cov( A(Q)) = Cov( faye) = (X'Q7'X) ' =A"

[see Kariya (1981) and Kariya and Toyooka (1985)], where inequalities for
matrices here should be understood in terms of nonnegative definiteness.
Hence an efficiency of a GLSE B({}) that satisfies (1.4) is measured relative
to the GME by such a quantity as

(1.8) n=1Cov( B(Q)) /1 Cov( foue) | = 1

provided E[H] is evaluated. However, it is still difficult to derive E[H]
explicitly since H in (1.5) is nonlinear in y, and even if it is derived, it is
often very complicated. Consequently, to obtain useful information on the
efficiency of a given GLSE satisfying (1.4), we may formulate our problem as
the problem of finding an effective upper bound for the covariance matrix
Cov( B(Q))) = E[ H] relative to its lower bound Cov( Bgyg) = A~ 1:

(1.9) E[H] <a()A™!

[see Kariya (1981) and Toyooka and Kariya (1986)]. Here a(Q) in (1.9) is a
nonrandom scalar function associated with H = H((), Q) in (1.5). Clearly
such an upper bound «({)) can be viewed as an upper bound for the efficiency
of a GLSE in a strong sense. For example, for n in (1.8), (1.9) implies an
upper bound for 7:

(1.10) 1<n<{a(0)}

In Section 2, in order to obtain an effective upper bound in (1.9), we first
derive the least upper bound (LUB) a,(Q)) for the conditional covariance
matrix H relative to the lower bound A%,

(1.11) H<a(Q)A' ae,

k
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and then propose the expected LUB,

(1.12) a,(0) = E[a,(0)],

as a(Q) in (1.9). However, in general it is still not easy to evaluate the
expected value of a,(()) in (1.12) except for certain cases. Hence we also
derive a simpler but effective bound for H and hence for E[ H]. These results
are applicable to any given GLSE so long as it satisfies (1.4).

Typical GLSEs which satisfy (1.4) are the Zellner estimator in the SUR
model and the GLSE in the heteroscedastic model. In Sections 3 and 4,
applying the general results in Section 2 to these models, we derive the
expected LUB and an effective upper bound for the covariance matrices in
these models. More specifically, let the N-equation SUR model be expressed
as a model in (1.1) with

X = diag{X,, ..., Xy},

(1.13) y=(¥1 - 95, e= (&, ..., en),
B=(Bi, .-, By), Q=3eI, with3 e S(N).

Here X;ism Xk, y,ism X 1,gism X 1,B,isk, X 1, n = Nm, k =Z§\’=1kj
and diag{X;, ..., Xy} denotes the block diagonal matrix. The (unrestricted)

Zellner estimator in this model is the GLSE f,; = f(Q ) with O, =S ® I
[Revankar (1974)], where

(1.14) S=Y'[I, - X.(X.X,) X.|Y

Here Y=1[y;,...,yy]l is m XN, X, =[X,, ..., Xyl is m Xk and A"
denotes the Penrose generalized inverse of A. As is well known, the Zellner
estimator B,; = B({),;) satisfies (1.4). In the case of N = 2 (two-equation
SUR model), Kariya (1981) derived the expected LUB for Cov( ,BZE) in (1.12)
as

(1.15) o (Qy5) =1+2/(q —3) withg =m —rank X,.

Also when N = 2, Bilodeau (1990) found a GLSE Bgg = B({pg) such that
the expected LUB of Cov( Bgg) is smaller than that of Cov(B,z), that is,
a,(Qpp) < (Q,y). However, when N > 3, the problem of finding the ex-
pected LUB for Cov( 3,;) remained open since it is not a trivial generaliza-
tion. In Section 3, we derive the expected LUB for Cov( ,BZE) in a general case
where N > 2. The expression of al(QZE) for N > 3 is rather complicated and
involves zonal polynomials for N > 4. Hence a simpler but effective upper
bound is also derived. In Section 4 in the heteroscedastic model (1.1) with

(1.16) O, = diag{6,1,,, ..., 0y, },
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the LUB and an effective upper bound for Cov( ,é(flo)) are derived where éi is
the unbiased estimator of 6, based on the residuals of y, = X, B + & with
g ~N(, 6,I,). The case where N =2 is treated by Kariya (1981)
and Bilodeau (1990).

2. LUB for H and E[AH]A First to derive the LUB for H in the sense of
(1.11) for a given GLSE B({)) which satisfies (1.4), let

(2.1) X=0"YV2XA"Y? withA =X'Q X,
(2.2) P=P(Q,0)=0"1200"172,

(2.3) o(X) = (XP'X) XP2X(XPX)
(2.4) F(n,k)={Z;nXk|ZZ=1,).

Then X € F(n, k), Cov( Byy) = Cov( () = A™! and

(2.5) H=H(0,Q) =Cov(f(Q)|0) =A120(X)A /2,
Therefore, by (1.11) we need to derive the least value a,({)) among a({})s
satisfying

(2.6) o(X) <a(Q)I.

For this purpose, observe

(2.7) ®(XA)=AD(X)A forany X € F(n,k)and A € O(k),

where O(k) is the group of k X k& orthogonal matrices. Combining (2.6) with
(2.7) implies that a,(Q)) is the maximum root of ®(X). In fact, we obtain the
following important result.

LEMMA 2.1. Let 0 < 7y < -+ < m, be the latent roots of P in (2.2). Then
a,(Q) = ay(P) with

(my + m,)°
4w,

That is, a,(P) is the LUB of ®(X) in (2.6).

(2.8) ag(P) =

ProoF. For any given Xe F(n, k), choose A, € O(k) such that
A, X'P~'XA, is diagonal. Then Z = XA, € F(n, k) and by (2.7),

(2.9) ®(Z) = (¢y)

with

(2.10) b= d(z;, 2;) = z;P*2zj/(z’inlzi)(z}Pflzj),

where Z = (z,,...,2,). Next choose A, € O(k) such that A,®(Z)A, =
®(ZA,) is diagonal. Then setting ZA, = U = (uq, ..., u,) € F(n, k) yields

(2.11) D(U) = diag{d(uy, uy), ..., d(uy, uy)}),
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since ¢(u;, u;) = 0 (i # j). Therefore, to find the LUB a for which ®(U) < al,
we maximize ¢(u;, u;) under v’u; = 1:

WP %u ) (Wu,
sup d)(uj’uj): sup ( J J) J2J
wiu;=1 wiu;=1 (u}PiluJ-)
B (P u;)(uw)Pu;)
(2.12) wern  (whuy)®
sup (w;P~'u;)(u;Pu;)
wiu;=1
=(m + 7Tn)2/47717'rn.

Here the last equality follows from the Kantorovich inequality [Anderson
(1971), page 570]. This completes the proof. O

The LUB ay(P) in (2.8) is symmetric in 7; and 7, and it is invariant
under the transformation P — P~!. In fact, letting 7, < --- < @, be the
latent roots of P71,

(2.13) (my + m)° f4mym, = (7, + 7,) /A7 7,

Also a,(P) > 1, where equality holds if and only if 7; = 7, or equivalently
P = yI for some y> 0. In other words, by (2.2), a;(P) =1 if and only if
Q) = yQ for some y > 0. Therefore, as a function of P = Q12007172 q,(P)
is a measure of sphericity of P and hence it may be regarded as a loss
function for choosing an estimator Q) of Q in the GLSE ,é(ﬁ). This idea was
adopted in Bilodeau (1990) and applied to the estimation problems in the
SUR model of two equations and in the heteroscedastic model of two distinct
variances.
Now by Lemma 2.1, we obtain our main result in this section.

THEOREM 2.1. For any GLSE S(Q) satisfying (1.4),

(2.14) Cov( éGME) < Cov( é(ﬁ)) < al(ﬁ)Cov( ,éGME),
where
(2.15) (Q) = E[ay(P)] = E[(m, + m,)"/4mm,|.

The expected LUB a,(Q) may be regarded as a risk function of () in
choosing () of B(Q) as has been discussed above.
Since the OLSE By, o5 = B(I) satisfies (1.4), we obtain the following result.

COROLLARY 2.1.  Cov( Bgyg) < Cov( B(I)) < a,(I)Cov( Bayg) with
(2.16) a (1) = (0, + 0,)" /40,0,

where w; < - < w, are the latent roots of ().
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Though the expected LUB al(fl) is given by (2.15), in general it is not easy
to evaluate «;({)) explicitly except for some special cases such as in (2.16).
Further, even if it is evaluated explicitly, it may be very complicated. Hence
we next derive a simpler but effective upper bound for Cov( 8({2)). Such a
bound is obtained through the following lemma.

LEMMA 2.2. For ay (P) in (2.8), a,(P) < a,(P), for any P € S(n), where

217 P 1 i ﬁ 1/n ' (tI‘ P)n
( : ) al( )_ ;j:177j/j:177j - n”|P| :
The equality holds if and only if wy = - =m,_; = (w, + m,) /2.

ProoF. By the inequality between the arithmetic and geometric means,

1 n n (n—1 (n—2)
a,(P) = (; Y 7Tj) (ym,) 1_[2 7Tj1/(n—2)}
j=1 /=

2.18
( ) 1 n n r 1 n—1 (n—2)
> | — . .
_(njglﬂ-]) (Wlwn)-n_2j§2 le )
where the equality holds if and only if 7, = -+ = @,_; = ¢ (say). Hence the

smallest lower bound for a,(P) is given by

as = [%(% +(n - 2>c)]n/(mn>c<n2>,

where b = (7, + m,)/2. Again using the inequality between the arithmetic
and geometric means, (1/n)2b + (n — 2)c) = b*/ "c"~?/" and hence

ay = (b*") /(mym,) = b2 /(mym,) = as(P),
where the equality holds if and only if b = ¢, proving the result. O

The expectation in (2.19) is more easily evaluated as will be shown in the
SUR model and a heteroscedastic model.

THEOREM 2.2.

(219)  a,(0) < () = E[a,(P)] = E

S| =

3. N-equation SUR model. In the case of the N-equation SUR model
(1.13) with Q =3 ®1,, we first evaluate the LUB «,(Q,;) in (2.15) for

m»

Cov( B,z) of the unrestricted Zellner estimator B, = B({Q,5) with
(3.1) Oy =S ®I, with S in (1.14).
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As Py = P(Qyp, Q) = Q120,072 =We I withW=31/283"1/2

(3.2) al(ﬁZE) = E[(w1 + wN)2/4w1wN],

where w; < -+ < wy are the latent roots of W, where W ~ Wy (I, q), the
Wishart distribution with degrees of freedom ¢ = m — rank X, . To evaluate
(3.2), let C (A) with A = diag(A,,..., Ay) denote a zonal polynominal corre-
sponding to the partition « of 2 into not more than N parts, which is
denoted by k = (&4, ..., ky) = k(k, N), and let

(33) D(x) = 7" V4 [T (x - (j - 1)/2),
j=1

and

(3.4) L(x;6) =70 V4T (2 + k- (J—1)/2),
j=1

with k = k(k, r). Further let B(a, b) be the beta function, (a), = ala +1)
~(a+r—D,(@,=1II"_, (a = (- 1)/2)ka and

72N 2Ty o((N = 2) /2)Ty_5((N + 1) /2)
4ANNI2Ty(N/2)Ty(q/2)

(35)  Co(N,q) =

THEOREM 3.1. Let ¢ > N + 1. Then the LUB a,({},;) is given by

al(ﬁZE) = Co(N, q)

> I'(Nq/2 + k)
X L TN
2 > N—q+1)
X
(36) B%&%“ 2 ),
«p( DIV +2) +k+n+r,—q_N_1)l
2 2 r!
k Iy_o((N+1)/2;7)
k T N 2
ng)(s);;gw Iy o(N + 1;7) CT(IN_Z)},

where p=p(r, N—2), c=0(s, N-2), r=1(r +s, N - 2), and g}, s are
defined by

(3.7) C,(M)C,(A) = Xg;,C.(N)

and (ay, a, ay) = (4, —4, 1).

The proof is given in the Appendix.
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The expression (3.6) involves zonal polynomials and is complicated. How-
ever, in the case of the three-equation SUR model, a simpler expression is
obtained as follows.

THEOREM 3.2. When N = 3 and q > 4,

al(ﬁZE) =Cy(q)
> I'(3¢/2 + k)
Xy ——
50 3¢k
I'(k+n+5)
"T(q/2+k+n+3)

<y {a

(3.8) .-
k I'(s + 2)
% Z( )F(s—|—4)

2 (—q/2+2)j(k+n+5)(s+2);
ngo (g/2+k+n+3)(s+4),j!

where C(q) = 7%?T(q/2 — 2)/4 3%1/2T3(8 /2)T4(q /2).

PrOOF. The pdf of the roots w = (w;, w,, w,) is given by

3

3
(3.9) fs(W)=d3(Q)eXp{—%Z }l—[ 6l—l(w w;) Ly,

where d,; = dj(q) = 4C(q)3%7/2/231/2T(q /2 — 2), = (¢ — 4)/2 and I, de-
notes the indicator function of the set A = {0 < w,; <w, <w,}. To evaluate
a,(Q,5) = [a,(Q,)fs(w) dw, transforming w;s into v, =1—w;/w; (j=
1, 2) and v; = w, yields

a( [d3/4]f 1) [ljl(l_vj)a}(vl_%)vﬂ)z

><H(v1, vy) dv, du,,

(3.10)

where B, = {0 < v, <v; <1} and

o 3 1
H(vy, vy) =f vgq/z_lexp{ 203}exp{ 3(l)1+v2)} dv,
0
(3.11) 39/2
2\%4/2 = T(3¢/2 + k)
e

k
3 3kk| (vl+02) .
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Further transforming u; = v; and u, = v,/v; in (3.10) yields

A

al(QZE)
dB)(z)Sq/Z i I'(3q/2 + k)
e

(312)  _ (_ - ek

A [ u)us(1+uy)!

XG(uy)du,,

0

where with b(n, &) = a,['(8)I'(k + n+5)/T(6+ 5+ k + n),

1 —
Glug) = [ (2= w2) (1 = ) wi™* (1 —wy)* " duy

(3.13)

i (=8)j(k+mn+5); .

2
b(m, k :
oW L Grsraema

J

Hence expanding (1 + u,)* and evaluating (3.12) yields the results. In the
evaluation, the monotone convergence theorem is used. O

It is noted that a,({,;) does not depend on unknown parameters.

The expected LUB «,({),5) in (3.6) or even in (3.8) is very complicated.
A weaker but much simpler upper bound for Cov( 8,;) is obtained via
Theorem 2.2 as follows.

THEOREM 3.3. For any N > 2,

R N-1 N-2)/N]j+2
(8.14)  a(Qyg) < 1:[1 1+[( q_)J,/_]2J+ = y(N, q).

Moreover a)(Q,;) = 1 as g — .

PrROOF. By Theorem 2.2, ay(Q,5) < E{(w, + -+ +wy)Y¥/NVw, - wy}, the
right-hand side of which is evaluated by Khatri and Srivastava (1971) as

(3.15) ['(Ng/2)Ty(q/2 - 1)/NVT(Ng/2 - N)Iy(q/2).

This leads to the results in Theorem 3.3. O

In the case of N = 2, the equality holds in (3.14), which is the result of
Kariya (1981). When N > 2, the inequality is strict. In particular, when
N =3,

1+L)(1+L)
3(q — 3) 3(q —4))

The larger the number N of equations is, the greater the upper bound v(N,
@) in (3.14) is relative to «;(Qyg), though y(N, q) gives an effective bound.

al(ﬁZE) <
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For the OLSE By, gz = B(I), by Corollary 2.1,

where A;, < -+ < Ay, are the ordered latent roots of 3. Clearly, even if
q = », o,(I) does not converge to 1, implying an inefficiency of the OLSE.
The LUB a,(I) measures the sphericity of 3, while a;({),;) measures the
sphericity of %7'/2S37!/%. As has been discussed in Section 2, a,(Q) can be
regarded as a risk function for choosing Q) in the GLSE ,B(Q) When q is
large, a;(Q,;) < o,(I) unless 3 is spherical.

The efficiency of the Zellner estimator relative to the GME in terms of the
generalized variance is

N N R k
1<n=| COV( BZE) /1 COV( BGME) |< {al(QZE)> )

which converges to 1 as ¢ — .

4. N-equation heteroscedastic model. In this section, we derive the
expected LUB for the covariance matrix of the GLSE B({,) in the N-
equation heteroscedastic model (1.1) with Q = Q, where

(4.1) O, = diag{6,1,, , ..., 051, }
and
(4.2) 0, = diag{0,1,,,, ..., by 1, }-

Here letting y, = X; B + &, with & ~ N(0, 6,1,,) be the ith homoscedastic
submodel of (1.1), §, is given by

(43) b, =il 1 - X(XiX)" Xi] y/4,
with q; = m; — rank X, where q; > 0 is assumed. Let
(4.4) P =P(0,, Q,) = 0;1/20,0,1/2
and let v, < -+ < vy, be the ordered values of v, = 6,/6;s, which are the

latent roots of P. Then, by Theorem 2.1, the expected LUB for Cov( B(Q ) is
given by

(4.5) o () = E[(v(l) + U(N))2/4U(DU(N)].

Though the expression in (4.5) is simple, the evaluation is difficult. Therefore,
we do not pursue a further evaluation beyond (4.5). On the other hand,
applying Theorem 2.2 with

2 N
(4.6) ay(P) = (vay + vy - (v + = +v)
4U(I)U(N)

=ay(P)
NNU(l) U '

yields the following result.
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THEOREM 4.1. When q; 23 (i =1, ..., N),

N

( 2 )Nf‘l I(q;/2 + N, — 1)

NN)f[l I'(q,/2)

(4.7) (o) < 37w Z(N1

= yO(Ql’ L] QN)7

J

where N; > 0 and ¥ N; = N. Moreover, a,(Qy) - 1 as all q;s > .

ProoOF. From (4.6), (4.7) follows easily as

E[ay(P)] =E[(”1 + - +uy) Y /NN, - UN]

and as qv;, ~ x*(q;) independently. Next let ¢, = (2/qj)NflI‘(qj/2 + N, —
1/T(q;/2). Then ¢;=1+2/(q;—2)if N;=0, ¢;=1if N;=1 and ¢, =
N2+ (2i)/q;) if N; > 2. Hence ¢; > 1 as q; — =, proving the result. O

When N = 2, the equality holds in (4.6) and

1 N 1
2(q1 —2) 2(qs — 2)

al(ﬁo) =1+

[see Kariya (1981)]. The upper bound vy, in Theorem 4.1 will be an effective
bound for Cov( B(Q ).

For the OLSE By, gx = B(I), letting 01y < ** < Oy, be the ordered values
of s,

2
(0a) + Ov))

a(l) =
: 4610w

b

which does not converge to 1 even if g;s — «. In fact, a,(I) simply measures

the sphericity of (,, while al(Q) measures the sphericity of P, =
Q120,052 Since a,(Q,) - 1 as g;5 — = by Theorem 4.1, a;(Q,) < al(I)
for q;s large

APPENDIX
ProOF OF THEOREM 3.1. The joint pdf of w = (w, ..., wy) is given by
N
(A1) f(w) =dy exp{ Z }l_lw l_[(w w;) 1y,
- = i<j

where dy = 7V°/2/2N4/21 (N/2)T(q/2), §=(q—-N—-1)/2 and A=
{0 <w; < - <wy). To evaluate « = E[a,(P)] with a (P) = (w; +
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| = ..., N—1) and

wy)? /4w wy, transform w;s into v, =1 —w;/wy (=1
Uy = wy. Then

dN 2 — 12N1 Nfl N-1
a=(T)[B —(1_1)1) [ (1—v) il:[j(vi—vj)jl:llvj

N-1
(A.2) N1
XHy_1(v) ]_[1 dv;
j=
={0<vy ;< <vy<1luv=(vy, ... UN_I) and
N _
}exp{—N Yo }va

with By_,
n-1() =/(‘) UNNq/2 19XP{_EUN 9 =

N
where ¢y (k) = T'(Nq/2 + k)/N*k! and the monotone convergence theorem
was used in the second equality. Next transforming v;s into u; = vy, u; =

N — 1) in (A.2) yields

(A.3) ( , )NW )

N-1 \*
Y on(h)| Y ) |
k=0 j=1

Uj/U1 (=2,
a = (dy/4)(2/N)N?

x Z (k) [ n t-w), T1 (wi-w)

(A4) By_5 j=
_ _ k N-1
l_[ ( Y u; + 1| Gy_y(u) 1_[2duj
— ~ =
with By_, ={0 <upy_, < = < u2 <1} u = (uy,..., uy_,) and
1)671 dul,

(A.5) GN 2(u) / 2 - ul)z 1_[ a - uju )3 At k— 1(1

where A = (N — 1)(N + 2)/2. Here note

TT (- u) =12 s = Al = £ T(-),uiG,(1)/r
r=0 p
where A = diag{u,, ..., uy_,) [see, e.g., Sugiyama (1970)]. Hence writing
@2 —-u)? = X;_o a,u] and integrating (A.5) term by term yields
(A6) Gy_y(u) = 22:0% io 2(=8),C,(MB(A+Ek+n+r,8)/r!
n= r=0 p
5wk as

Now to evaluate « in (A.4), expanding (1 + £,

k

Y (F)eray - ¥ (’;)gc,,(m

s=0 s=0
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and using C,(A)C,(A) = X, g7,C (M),
a = (dy/4)(2/N)""?

X a — r r!
wn X I Lo LT 0Bkt
k
x ¥ ()T Cep Kyoolr)
s=0 o T
with
N-1 N-1 N-1
Ky_o(7) = fB j]j[2 (1- uj)g(ul —u;) jle u;C.(A) jljz du;

(A-8) _ Dy o (N —2)/2) Ty (N +1)/257) Ty (N + 1) /2)
a0=D'/2 0 (N +1;7)

XCT(INf2)7

where Lemma 3.3 of Sugiyama (1966) is used and T'y(a; 7) is given by (3.4).
This completes the proof. O
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