
The Annals of Statistics
1996, Vol. 24, No. 4, 1474]1492

A NONPARAMETRIC CALIBRATION ANALYSIS

BY MARIE-ANNE GRUET

Institut National de la Recherche Agronomique

In this paper we discuss a new approach to solve calibration problems
in a nonparametric setting. This approach is appealing because it yields
estimates of the required quantities directly. The method combines kernel
and robust estimation techniques. It relies on strong approximations of
the estimating process and the extreme value theorem of Bickel and
Rosenblatt. Using these results, we first obtain robust pointwise estimates
of the parameters of interest. Second, we set up asymptotic simultaneous
tolerance regions for many unknown values of the quantity to be cali-
brated. The technique is illustrated on a radiocarbon dating problem. The
nonparametric calibration procedure proves to be of practical, as well as
theoretical interest; moreover, it is quick and simple to implement.

1. Introduction. Statistical calibration analyses provide a way to pre-
dict a quantity from the observation of another one by using a dose]response
type relationship. The problem occurs in industry or the biological sciences
when the quantity to be calibrated is hard or expensive to measure, or is not
observable. In many situations, the knowledge of the experimental process
can hardly be translated into a parametric model for the dose-response
relationship. A tempting alternative may be provided by a nonparametric
modeling.

Let Z denote the random response variable we observe. The unknown
scalar quantity of interest, j , is related to Z through the regression model0

1 Z s r j q e,Ž . Ž .0

where e is a centered random variable with finite variance. r is some
unknown but smooth function. It is supposed to be strictly monotonic and

w xtwice continuously differentiable on the calibration domain II s a, b . The
additional information about r is given by experimental data obtained from a

Ž .calibration experiment, X , Y , i s 1, . . . , n, and following the same regres-i i
sion model

2 Y s r X q « , i s 1, . . . , n.Ž . Ž .i i i

The X ’s are measured with negligible error compared to the Y ’s. The « ’s arei i i
independent random variables with zero mean and finite variances. The

�Ž . 4training sample X , Y , i s 1, . . . , n , is independent of Z.i i
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The calibration problem is of great practical importance in biology and
w Ž . Ž .xmedicine Finney 1978 ; Hubert 1992 : bioassay data analysis requires

calibration techniques to determine the amount of an agent, for instance, a
hormone concentration j , from the measurement of a response Z, which0

Ž . Žmay be a radioactivity count RIA experiments or an optical density ELISA
.experiments . The conversion of radiocarbon dates to calendar dates is an-

other case of calibration: radiocarbon measures on tree-ring dated wood have
Ždemonstrated the need to correct or calibrate radiocarbon dates. Clark 1979,

.1980 discussed the statistical aspects of the construction and use of a
calibration curve for carbon-14 dates, as well as some of its geophysical and
archeological implications. In the nuclear industry, accurate determination of
some state variables of processing tanks is required. Knafl, Sacks, Spiegel-

Ž .man and Ylvisaker 1984 provided a calibration procedure to evaluate the
volume of the material contained in a tank from the measurement of a
differential pressure.

Ž .As clearly shown by Osborne 1991 in a thorough review of the area,
calibration is usually discussed in a parametric setting and most of the
papers deal with a Gaussian linear model. To fill the gap between the
traditional linear-model approach and the practical need of more flexible
regression functions r, some authors in the 1980s have developed a nonpara-

Ž .metric approach: Clark 1980 discussed calibration of radiocarbon dates
using a convolution-smoothing estimator of r ; Knafl, Sacks, Spiegelman and

Ž .Ylvisaker 1984 proposed new procedures to cope with systematic departures
from an exact linear model and an extension of the method to suit smoother

Ž .regression functions; Muller and Schmitt 1988 introduced kernel estimates¨
of quantal dose]response curves. The nonparametric procedures are designed
on the same pattern as that of the classical parametric ones: they follow a
two-step estimation process. In the first step, the calibration experiment is
used to estimate r and construct confidence intervals about the regression
function. The second step solves the calibration problem by inverting predic-
tion intervals for the response variable Z. The two-step structure contributes
to increase the computational complexity of nonparametric methods. More-
over, the objective of calibration is not the estimation of a regression function,
the latter being possibly thought of as a nuisance parameter. Our main
concern is indeed the estimation of the parameter j corresponding to0

Ž .observations Z satisfying 1 . We therefore propose in this paper an approach
leading to a direct statistical inference on the parameter of interest. This
approach is appealing for two reasons: First, it introduces some robustifica-
tion of calibration; second, it yields a convenient construction of simultaneous
tolerance intervals for calibration.

The proposed method combines classical nonparametric techniques with
ˆrobust estimation methods. An estimate j of j is defined as a solution, if it0

exists, of the estimating equation
n1 1 j y Xi

3 H j , Z s K C Y y Z s 0Ž . Ž . Ž .Ýn iž /n h hn nis1
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� 4with respect to j . K is a density kernel, h is a sequence of bandwidths andn
Ž .C is an odd nondecreasing function. Since 3 may have several solutions, we

ˆ Ž .define the estimate j to be the solution of 3 that is closest to the value X ,i
whose corresponding observation Y is the nearest to Z. In practical imple-i
mentation, we can use the Newton]Raphson method with starting value Xi
to find such a solution. We essentially think of two different types of C-
functions: C is the identity function or C is a bounded function. The

Ž .choice of a bounded C, for instance Huber’s classical function C u s
� Ž .4max yk , min u, k , k ) 0, is expected to give protection against training

data containing outliers, generated by heavy-tailed distributions. This issue
ˆ y1Ž . Ž . Ž .is discussed in Section 3. If C u s u, the solution of 3 is j s r Z , whereˆ

w Ž .r is the usual Nadaraya]Watson kernel estimate of r Nadaraya 1964 andˆ
ˆŽ .xWatson 1964 . That is, j is the classical calibration estimate. However, in a

nonparametric context, techniques for constructing interval estimates to
accompany this estimate have not been much developed. Our aim is to
provide a new answer to this question.

Ž .If a single unknown j is to be predicted based on Z satisfying 1 , a0
�natural way to compute a confidence interval for j is to consider the set j ,0

< Ž . < 4H j , Z F c , where the bound c is to be determined later. This is ann
extension of calibrating against a least squares line by considering the

Ž .residual Z y r j . Difficulties arise when, as in many calibration situations,ˆ
a single calibration experiment is performed and used repeatedly to provide
many estimations of j , j , . . . , corresponding to new observations of the1 2
response variable Z , Z , . . . . This uncertainty approach was originated by1 2

Ž . Ž .Scheffe 1973 and discussed by Lechner, Reeve and Spiegelman 1982 and´
Ž .Mee, Eberhardt and Reeve 1991 in the framework of a linear model. In a

Ž .nonparametric setting, Clark 1979 solved the multiple-use case by using
Bonferroni inequalities and obtained somewhat conservative confidence re-

Ž .gions. Knafl, Sacks, Spiegelman and Ylvisaker 1984 proposed new tech-
niques to extend Scheffe’s method to nonparametric estimates of r. The main´
step of their procedure is the construction of a confidence band for r, suitably
expanded to account for the variability of observations of the response
variable Z. To construct an appropriate confidence band, Knafl, Sacks,
Spiegelman and Ylvisaker used numerical differentiation techniques. As a
result, their procedure is cumbersome to use because it requires the evalua-
tion of multidimensional integrals. In response to this difficulty, Carrol,

Ž .Spiegelman and Sacks 1988 proposed a simpler numerical solution but
modified the uncertainty statement on which the intervals were based. In
this paper, we give another solution to the multiple-use problem. The result-
ing calibration intervals are simpler to compute than those obtained using
the procedure of Knafl, Sacks, Spiegelman and Ylvisaker yet have the same
probability interpretation.

The main results of this paper are derived from the asymptotic properties
of H and the study of the limiting distribution of its maximal deviation.n
Therefore we give in the next section some technical lemmas. The strong

ˆconsistency and the asymptotic normality of the rescaled estimate j are
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established in Section 3. Robustness properties are also investigated through
a simulated example. In Section 4, the multiple-use calibration procedure
based on H is discussed. For an illustrative purpose, it is applied on a datan

Ž .set from Clark 1975 for tree-ring calibration of radiocarbon dates. Finally,
closing comments are made in Section 5.

2. Preliminary results.

Ž . Ž .2.1. Regularity conditions. We assume that X , Y , . . . , X , Y is a ran-1 1 n n
dom sample drawn from the distribution P of a two-dimensional random

Ž . Ž .vector X, Y such that Y s r X q « . Let F be the distribution function of
Ž .X, Y . G denotes the marginal d.f. of X and F the conditional d.f. of YY < X

Ž . Ž .given X. Let f x, y and g x be the joint density and marginal density of
Ž .X, Y and X, respectively. P denotes the empirical distribution, P sn n

y1 n 1r2 Ž .n Ý d and Z s n P y P is the empirical process ofis1 Ž X , Y . n ni i
Ž . Ž .X , Y , . . . , X , Y .1 1 n n

Given a specified value z of the response variable Z that is related to jc 0
Ž . y1Ž .through 1 , a point estimate of j s r z is defined as a zero in j ofc c

H j , z s K j y x C y y z dP x , yŽ . Ž . Ž . Ž .Hn c h c nn

Ž . y1 Ž y1 .with K u s h K h u .h n nn

We first give the regularity conditions; each result may require only part of
them to be derived.

Ž . Ž .A1 a C is odd, nondecreasing and piecewise twice continuously dif-
ferentiable with bounded derivatives.

Ž .b r is monotone and twice continuously differentiable on a bounded
w xinterval of calibration J s a, b .

Ž . Ž .A2 a K is symmetric, twice continuously differentiable and has a
w x Ž . Ž . Ž .compact support yA, A , K A s K yA s 0, HK u du s 1.

Ž . < < 51r2 < XŽ . <b H u log u K u du - `.
Ž . Z < < 51r2 < YŽ . <c K exists and H u log u K u du - `.

Ž . Ž . Ž < .A3 a The conditional densities f y x are symmetric for all x and
Ž . Ž < . Ž 2 2 . Ž < .they have bounded partial derivatives ­r­ x f y x and ­ r­ x f y x ,

Ž .Ž 2 2 . Ž < . 1Ž .uniformly in x g J. C ? ­ r­ x f ? x g L R , for x g J.
Ž .b g is twice differentiable on an open interval containing J; its second

Ž .derivative is bounded, inf g x ) 0.J
Ž . Ž .c sup H f x, y dy - `.x

Ž . 2 w x2 Ž . Ž Ž . Ž < ..A4 Define T : R ª 0, 1 by T x, y s G x , F y x .Y < X

Ž . y1a The inverse transformation T exists and is measurable.
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Ž . Ž . Ž . Ž . y1b Let f x, y s K j y x C y y z . f (T is twice continuouslyh, j h c h, j

differentiable.

Ž . Ž XŽ Ž .. < .A5 inf E C Y y r j X s j ) t ) 0.j g II 0

Ž . Ž . Ž 2Ž Ž .. < . Ž .A6 Let v j s E C Y y r j X s j g j . v is differentiable with a
Ž . Ž .bounded derivative, sup v j - ` and inf v j ) v ) 0.j g J j g J 0

There exists an increasing sequence a of positive numbers satisfyingn
a ª ` as n ª ` and Ýa 2 - `, such that:n n

Ž . Ž . Ž 2Ž .. 2Ž . Ž .M a E C Y - ` and sup HC y f x, y dy - `.x
Ž . 2Ž Ž .. Ž . Ž 2 .b sup sup H C y y r j f x, y dy F O h .j g J x < y < ) a n

Ž X.M C is bounded.

Ž . Ž .a sup H f x, y dy ª 0 when n ª `.x < y < ) a n
Ž . Ž . Ž 2 .b sup H f x, y dy F O h .x < y < ) a n

Ž . Ž .Assumptions A1 and A3 asking for oddness and monotony of C and
symmetry of the conditional densities are common assumptions in robust
regression. They are sufficient to ensure the consistency of the estimates.

Ž . Ž .Condition A2 specifies the class of kernels K. Assuming A4 is necessary to
Ž .apply the bivariate invariance principle of Tusnady 1977 and to approxi-

Ž .mate H by a Gaussian process. Note that A5 is trivially fulfilled forn
Ž .C u s u.

Ž . Ž X.The moment conditions M and M ensure the vanishing of some remain-
Ž . Ž X.der terms. M will be used for unbounded C only, while M will be used in

the case of bounded C. The following lemmas and propositions will be stated
for unbounded C functions, the equivalent statements on bounded C func-

Ž . Ž X.tion being obtained by replacing assumption M with M . Let us also notice
Ž . Ž . Ž X. Ž .that the conditions b in M and M are refinements of conditions a that

Ž Ž ..will be used to study the statistic H j , r j .n
Unless otherwise stated, the integration domain is the entire real line. As

a minimal assumption, the bandwidth is assumed to vary with n according to
the classical conditions, h ª 0 and nh ª `, which will be refined through-n n
out the discussion. All limits have to be thought of as limits when n tends to
infinity. To simplify the notation, we will generally write h instead of h .n

2.2. Gaussian approximation of H . We consider the statistic of interestn
�Ž Ž ..Ž . w x4H y E H j , z , j g a, b , for each fixed z , as a continuous stochasticn n c c

w xprocess on a, b and approximate it by an appropriate stationary Gaussian
process. More precisely, we have the decomposition

4 H y E H j , z s ny1r2r j q h j ,Ž . Ž . Ž . Ž . Ž .Ž .n n n n

where

5 r j s K j y x C y y z dB F x , yŽ . Ž . Ž . Ž . Ž .HHn h c
< <y Fan
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and h is an error term we will consider subsequently. B F denotes then
Brownian bridge based on the measure with distribution function F, so that
for s, sX, t, tX g R2,

E B F s, t B F sX , tX s F s n sX , t n tX y F s, t F sX , tX .Ž . Ž . Ž . Ž . Ž .Ž .
Ž .a is the sequence of positive numbers introduced in assumptions M andn

Ž X.M .
The asymptotic behavior of the leading term is given in the next lemma.

Ž .The proof of this result is adapted from Silverman 1976 and Mack and
Ž . Ž .Silverman 1982 , and is detailed in Gruet 1992 .

Ž . Ž .Ž .LEMMA 1. Under the assumptions A2 and M a ,
1r2y1log hŽ .n y1r2 < <if ª 0, then n sup r j s o 1 a.s.Ž . Ž .n1r2nhŽ . jg IIn

We now consider the error term h . h splits up into two terms:n n

y1r2 F6 « j s n K j y x C y y z dZ x , y y dB x , yŽ . Ž . Ž . Ž . Ž . Ž .HHn h c n
< <y Fan

and

7 t j s K j y x C y y z d P y P x , y .Ž . Ž . Ž . Ž . Ž . Ž .HHn h c n
< <y )an

« is the error of approximation made in replacing the empirical process by an
Brownian bridge. t is a truncation error term. Each term is now beingn
considered.

Truncation error term. Note that this term does not appear if Y is almost
surely bounded. Otherwise,

< < < < < <t j F K x y j C y y z 1 d P q P x , yŽ . Ž . Ž . Ž . Ž .HHn n c < y < ) a nn

s t j q t j .Ž . Ž .1 2

Ž .By the Borel]Cantelli lemma, sup t j is zero with probability 1. If C isj 1
< Ž . < Ž . Ž . Ž .Ž .not bounded, the expectation term sup t j s o 1 with A2 and M a ,j 2

� 4since C is monotone and a increase to `. The same result is true if C isn
Ž X.Ž .bounded if we assume M a . This yields the uniform almost sure conver-

gence to 0 of the truncation error term t .n
Approximation error term. The evaluation of the approximation error

term « rests on a strong uniform approximation of the bivariate empiricaln
process, based on independent random variables uniformly distributed over
w x2 w Ž .x0, 1 , by a bivariate Brownian bridge Tusnady 1977 . To apply this result,

2 w x2we transform our data with the help of the transformation T : R ª 0, 1
w Ž .x Ž . Ž Ž . Ž < ..Rosenblatt 1952 defined as T x, y s G x , F y x . Let m denote theY < X n

Ž . ŽŽ ..empirical measure of the transformed sample U , V s T X , Y , i si i i i
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˜ Ž .Ž .1, . . . , n, and Z there empirical process. Under assumption A4 a , we haven
Ž . Ž Ž .. 2P AA s m T AA for any Borel set AA of R . By classical arguments andn n

Ž .Ž .A4 b , the last equality can be extended to the class of continuous bounded
functions. With an integration by parts, we can write

y1r2 ˜ y1 X< < < < < <sup « j F n sup Z x , y y B x , y h K u duŽ . Ž . Ž . Ž .Hn n
2jg II w x0, 1

an X < < < <= C y y z dy q C a y z q C ya y z .Ž . Ž . Ž .H c n c n c½ 5yan

From this formula, « can be evaluated with the help of the invariancen
principle of Tusnady: for each n, we can find a suitable probability space

ˆsupporting both Z and a version of the Brownian bridge based on then
w x2uniform measure on 0, 1 , B, such that

2y1r2˜< <sup Z x , y y B x , y s O n log nŽ . Ž . Ž .Ž .n
x , y

< Ž . < Ž .2 < Ž . <with probability 1. Thus, sup « j F C log n rnh C a a.s. with somej g II n n
constant C - `.

This yields the following lemma:

Ž . Ž . Ž .Ž .LEMMA 2. Suppose assumptions A1 ] A4 and M a hold. Then

y1r2sup H y E H j , z y n r jŽ . Ž . Ž .Ž .n n c n
jg II

2log nŽ .
< <s O C a q o 1 a.s.,Ž . Ž .nž /nhn

Ž .where r is defined by 5 .n

2.3. Asymptotic maximal deviation of H . Up to now we have consideredn
Ž .the statistic H j , Z conditionally on a specified or fixed value of then

response variable Z. The third lemma of this section deals with the statistic
Ž . Ž Ž ..H j s H j , r j and gives the limiting distribution of the maximumn n

Ž . Ž .1r2 y1r2Ž .Žabsolute value of the normalized statistic D j s nh v j H yn n
Ž ..Ž . Ž . Ž 2Ž Ž .. < . Ž .E H j , where v j s E C Y y r j X s j g j .n

yb Ž . Ž . Ž .LEMMA 3. Let h s n , 0 - b - 1r2, and suppose A1 ] A6 and M
Ž .y1r2 < Ž . <hold. If nh C a ª 0 when n ª `, thenn

1r2 y1r21r2y1P 2 log h sup nh lv j H y E H j y d - zŽ . Ž . Ž . Ž .Ž . Ž .Ž . n n h½ 5ž /
jgJ

ª exp y2 exp yz , when n ª `,Ž .Ž .
2Ž . Ž y1 .1r2 Ž y1 .y1r2 ŽŽ 1r2 .y1 1r2 .with l s HK u du, d s 2 log h q 2 log h log 2 p Ch 2

Ž .y1 Ž XŽ ..2and C s 2l H K u du.2
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Ž .PROOF. We first use the Gaussian approximation formula 4 :

D j s h1r2 vy1r2 j r j q h1r2 vy1r2 y vy1r2 j r jŽ . Ž . Ž . Ž . Ž .Ž .n n n n n
8Ž .

1r2 1r2y1r2 y1q nh v j « j q nh v j t j ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .n n

Ž . 2Ž Ž .. Ž .where v j s H C y y r j f j , y dy. r , t and « are adapted ton < y < F a n n nn
Ž Ž .. Ž .the process of present interest H j , r j by replacing z with r j in then c

Ž . Ž .formulas 5 ] 7 . For instance,

r j s K x y j C y y r j dB F x , y .Ž . Ž . Ž . Ž .Ž .HHn h
< <y Fan

Clearly, the results of Lemmas 1 and 2 can be extended to these modified
processes. It is shown in the Appendix that the three last terms on the r.h.s.

Ž .of 8 are negligible, uniformly in j .
Ž . Ž . Ž . Ž . 1r2 y1r2Ž . Ž .Hence D j s r j q o 1 , where r j s h v j r j . Usingn n, 1 P n, 1 n n

Ž .arguments analogous to those used in Bickel and Rosenblatt 1973 , Liero
Ž . Ž .1982 or Hardle 1989 , r can be successively approximated by normalized¨ n, 1
Gaussian process sharing the same covariance structure and thus having the
same limit distribution. The final approximating process is the stationary

Ž . y1r2 Ž y1Ž .. Ž . � Ž .Gaussian process Y t s h HK h t y u dW u , where W t , t gh 0 0
Ž .4y`, ` is a standard Wiener process. Y was studied by Bickel and Rosen-h

Ž .blatt 1973 , who proved that the limiting distribution of its maximal absolute
deviation is the Gumbel distribution. We can then apply the result of Bickel
and Rosenblatt to D :n

1r2y1 y1< <lim P 2 log h sup l D t y d - zŽ .Ž . n hž /½ 5nª` y10FtFh

1r2y1 y1< <s lim P 2 log h sup l Y t y d - zŽ .Ž . h hž /½ 5nª` y10FtFh

s exp y2 exp yz . IŽ .Ž .

3. Robust nonparametric calibration. We now turn to the study of
ˆŽ .the calibration method defined by the estimating equation 3 . Recall that j

Ž .is defined as a solution of H j , Z s 0. Given a specified value of then
ˆ� 4response variable Z s z , we first show that j is a consistent estimate ofc

y1Ž . Ž .j s r z . The parameter of interest j , defined in 1 and denoted by jc c 0 c
when we work conditional on Z, is assumed to belong to the calibration

w xdomain II s a, b .

3.1. Consistency.

ˆŽ . Ž . Ž .PROPOSITION 1. Suppose assumptions A1 ] A4 and M hold. Then j
converges to j almost surely ifc

2log nŽ .
< <h ª 0 and C a ª 0 when n ª `.Ž .n nnhn
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Ž . 1r2Ž .1r2qh ybREMARK. If we choose C x s x, a s n log n and h s n , withn
h, b ) 0, the condition for strong consistency is 0 - b - 1r2. Moreover, if Y
is bounded a.s. or if C is bounded, then the condition becomes 0 - b - 1,
which is the weakest possible condition to be imposed on h in order to obtain
asymptotic consistency.

Ž . Ž . Ž .PROOF. Under the assumptions A1 ] A3 and the moment condition M ,
Ž .it follows from the weak law of large numbers that H j , z converges inn c

Ž .probability to a limit function H j for all j , with

<H j s E C Y y z x s j g j .Ž . Ž . Ž .c

Ž < .Since C is odd, the conditional densities f y x are symmetric and r is
Ž .one-to-one, H j has a unique zero at j . If we prove the uniform almost surec

convergence of H to H over II, then we can deduce almost surely thatn
ˆ ˆ ˆ ˆŽ . < Ž . Ž . < Ž .H j ª 0 from H j , z y H j ª 0 a.s. and H j , z s 0. As a result, wen c n c

ˆobtain the consistency of j .
The uniform almost sure convergence of H to H over II is derived fromn

Section 2:

Ž . < Ž Ž .. Ž . < Ž 2 .i By standard arguments, sup E H j y H j s O h , using as-j g J n
Ž . Ž .Ž .sumptions A3 and M a .

Ž . <Ž Ž ..Ž . <ii The convergence of the random term sup H y E H j , z to 0j g II n n c
is a direct consequence of Lemmas 1 and 2. I

3.2. Asymptotic normality.

Ž . Ž . Ž .PROPOSITION 2. Let A1 ] A5 and M be satisfied. If
y1 23 < <nh log n C a ª 0Ž . Ž . Ž .n

when n ª `, then
y1r21r2 2ˆnh lv j t j j y j y d j h ª NN 0, 1 ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .c c c K c DD

Ž . Ž XŽ Ž .. < . XŽ . Ž . Ž .where t j s E C Y y r j X s j r j g j and d j is uniformlyK
bounded on II.

Ž Ž ..PROOF. The proof follows from a Taylor series expansion of H j , r jn
ˆ Ž . Ž . Ž .around j , noting that, under the regularity conditions A1 ] A3 and M ,

n
X Xy1 y2 y1H j s n h K h j y X C Y y zŽ . Ž . Ž .Ž .Ýn c c i i c

is1

Ž . 3 Ž .tends to t j in probability if h ª 0 and nh ª `; condition A5 ensuresc
< Ž . < Ž .that t j ) 0. d j is easily obtained from a classical bias calculation.c K c

1r2 ˆŽ . ŽThe only technical point is to show that the remainder term R s nh j yn
X U X U ˆ U.Ž Ž . Ž .. < < < <j H j y H j , where j y j F j y j and j is random, tends to 0c n n c c c

in probability. However, the results of the previous section about H can ben
X Ž .Ž . Ž .easily extended to its derivative H , using A2 c and the conditions b ofn
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Ž . Ž X. <Ž X Ž X ..Ž . < ŽŽŽ .Ž .y3 .1r2 .M or M . Thus we can write sup H y E H j F O log n nhII n n
Ž 3.y1Ž .2 < Ž . < < < Ž .1r2almost surely, if nh log n C a ª 0. It follows that R F c nhn n

ˆ ˆ X X 3 y1r2< Ž . Ž . < <Ž Ž ..Ž . < ŽŽ . .= H j y H j , z sup H y E H j F O nh log n , where c )n c II n n P
0 is a constant. Hence Proposition 2. I

Application. In calibration applications, since we are interested in confi-
dence intervals for j , whose corresponding observation Z is a random0
variable, it is more natural to compute confidence sets directly based on H .n
For instance, if we assume that Z is Gaussian with variance s 2 and if we

Ž ybignore the bias term which amounts to assuming h s n , b ) 1r5 or using
.a higher order kernel , then

1r2
a lv̂ny1 2< <j , H j , Z F F 1 y s qŽ .n ž /½ 5ž /2 nh

is a calibration set for j with asymptotic confidence level 1 y a . F is the0
Ž .Gaussian distribution function. v is a consistent estimate of v j , forˆn 0

instance,

n1
2ˆv s K X y j C Y y Z .Ž .ˆ Ž .Ýn h i inh is1

If we are interested in confidence intervals for j , which corresponds to ac
fixed, predetermined value of the response z , we can compute a confidencec

� < Ž . < y1Ž .Žset with asymptotic level 1 y a as j , H j , z F F 1 y ar 2 v lrˆn c n
.1r24nh .

Ž .3.3. Minimax robustness. Following Hardle and Gasser 1984 , who in-¨
vestigated robustness properties of M-type smoothers, we may ask ourselves
whether incorporating robust estimation methods in the estimating equation

ˆŽ .3 will result in some robustification of the calibration estimate j . As a
Ž .matter of fact, we can show that the estimate derived from 3 is robust

against symmetric departures from a symmetric model distribution.
In analogy with Huber’s theory of robust estimation, we define the most

ˆrobust estimate j as the solution to the minimax variance problem: Find the
ˆfunction C that minimizes the maximum asymptotic variance of j given by

Proposition 2,

lv j l E C2 Y y r j N X s jŽ . Ž .Ž .Ž .
V C , f s s ,Ž . Xj 2 2Xr j g jt j Ž . Ž .Ž . E C Y y r j N X s j� 4Ž .Ž .Ž .

Ž < .when the underlying density function f y x varies over the usual contami-
˜� Ž < . Ž Ž .. Ž Ž .. Ž . Ž Ž ..4nation model FF s f y x s 1 y h x f y y r x q h x l y y r x , where

˜ Ž .f is a fixed density function, 0 - h x - 1, l is any symmetric density
˜Ž Ž Ž ... Ž .function and ylog f ?y r x is convex. From Huber 1964 and Hardle and¨
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Ž .Gasser 1984 we know that this problem admits a solution, that is, there is
an f and a C such that0 0

sup V C , f s V C , f s inf V C , f .Ž . Ž . Ž .j 0 j 0 0 j 0
CFF

ˆAs a consequence, j computed with the optimal C is minimal when the0
conditional density function varies in the contamination neighborhood FF.

Ž .Table 1 in Hardle and Gasser 1984 gives some evidence that the use of¨
Ž . � Ž .4Huber’s classical function C u s max yk , min u, k , k ) 0, which is mini-k

max over contamination neighborhoods of the Gaussian distribution, will
result in a significant gain in asymptotic efficiency. Practically speaking, it is

ˆexpected that j computed with C is less sensitive to outliers in the trainingk

data than the classical nonparametric estimate.
In a small simulation study, we compared the performances of the calibra-

Ž .tion method using C u s u, which yields the classical nonparametric esti-
U ˆŽ . Ž .mate j , and C u s C u , which yields the more robust estimate j . Wek

Ž . 2 �Ž .4chose r x s x and generated 400 training data sets X , Y of lengthi i
w xn s 100: the X ’s were drawn from the uniform distribution on 0, 1 ; the Y ’si i

Ž .are according to 2 with the residual’s density function

95 5 y y r xŽ .
<f y x s f y y r x q f .Ž .Ž . Ž . ž /100 900 9

f denotes the density function of a centered normal variable with variance
0.0252. The bandwidth was subjectively set to h s 0.1 and the cutoff point of

�Ž .4Huber’s C-function was set to k s 0.2. For each simulated data set X , Y ,i i
U ˆwe computed j and j corresponding to the specified value of the response

variable z s 0.4, together with the associated confidence intervals of asymp-c
Ž .totic level 95% according to Section 3.2 . One simulated data set and the

confidence intervals based on this data set are displayed in Figure 1. The
Ž .average length of the confidence intervals with C u s u, based on the 400

simulations, is 0.054 and that of the confidence intervals obtained with
Ž . Ž .C u s C u is 0.046, whereas the empirical coverage probabilities arek

Ž .nearly the same 90% and 89.75%, respectively . These results show that
using the robust method significantly decreases the length of the intervals
Ž . Ž .15% on average . On this example, calibrating with C u s u leads to longer
confidence intervals, which reflects the expected sensitivity to outliers of the
estimate j U.

4. A multiple-use calibration procedure. We deal here with the prob-
lem of estimating, not a single parameter j , but different unknown values0
j , j s 1, 2, . . . , corresponding to new measurements of the response vari-j
able Z,

Z s r j q e , j s 1, 2, . . . ,Ž .j j j

with identically distributed centered errors e with finite variance s . In thisj
section, we assume that the distribution of e is symmetric and that thisj



NONPARAMETRIC CALIBRATION 1485

FIG. 1. The robust calibration method compared with the standard method on a simulated data
set. The random variables generated with probability 5r100 from the long-tailed distribution are
marked as squares, whereas the normal random variables are marked as asterisks. The confi-

Ž .dence interval obtained with C u s u is shown as a dotted line and the interval obtained with
Huber ’s C-function is shown as a solid line.

distribution function x has the form

x
x x s x ,Ž . 0 ž /s

where x is a fixed distribution function.0
The problem is now to find calibration intervals for j , j , . . . , on the basis1 2

�Ž . 4of a single data set X , Y , i s 1, . . . , n obtained from the calibrationi i
experiment. In bioassay, for instance, a standard curve is performed on
which all future assays are to be run. In this situation, one would like to
evaluate the conditional probability, given the training sample used to con-
struct the calibration interval, that the interval covers the true value of j .j

Ž .Therefore, the purpose of this section is to find tolerance sets CC Z , j sj
1, 2, . . . , for j , j s 1, 2, . . . , satisfying the asymptotic uncertainty statementj

<9 lim inf P P j g CC Z EE G 1 y a , j s 1, 2, . . . G 1 y dŽ . Ž .Ž .j j
nª`

Ž . �Ž . 4for given a , d . EE s X , Y , i s 1, . . . , n is the outcome of the calibrationi i
experiment. This approach enables us to distinguish more drastically the
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variability of the calibration experiment outcome EE from that of the measure-
ment outcome Z . Moreover, it guarantees the same precision over the entirej

Ž .calibration domain II. Throughout the section, it is assume that C x s x.

Ž .4.1. Simultaneous tolerance sets. Since Scheffe 1973 , multiple-use cali-´
bration procedures have been based on the construction of lower and upper

Ž . Ž . Ž .bounds L t and U t for the calibration curve r t such that

P L t F r t F U t , t g II G 1 y d .Ž . Ž . Ž .Ž .

The bounds L and U usually have the prescribed form

U t s r t q c a , d s q c a , d S t ,Ž . Ž . Ž . Ž . Ž .ˆ ˆ1 2

L t s r t y c a , d s y c a , d S t ,Ž . Ž . Ž . Ž . Ž .ˆ ˆ1 2

Ž .where s is an estimate of the variance of the Z and S t is the standardˆ j
Ž .deviation of r t . Thenˆ

y1 y1CC Z s U Z , L ZŽ . Ž . Ž .j j j

is the desired calibration interval for j . The difficulty of the procedure lies inj
the choice of the factors c and c , which are determined to satisfy state-1 2

Ž .ment 9 .
In their nonparametric calibration approach, Knafl, Sacks, Spiegelman

Ž .and Ylvisaker 1984 proposed an exact method to compute c and c . It rests1 2
on the assumption that the observations are Gaussian. The calculation
involves integrals of known density functions. However, long and complicated
numerical procedures are needed to evaluate the multidimensional integrals
and solve related equations. Furthermore, the method is based on the estima-

Ž < Ž . < . Ž . Ž Ž ..y1Ž Ž . Ž ..tion of P sup Z t F a , where Z t s S t r t y r t is a GaussianˆII
Ž < Ž . < .process: this is done by computing P sup Z t F a , where G is a grid ofG

points covering the range of calibration, and interpolating the lower and
upper bounds L and U from the grid G to II.

Our derivation of simultaneous calibration intervals is different from that
of Knafl, Sacks, Spiegelman and Ylvisaker in two ways: First, we use
an asymptotic approach, valid for a wide class of distribution functions
of the observations. Our method rests on the asymptotic estimation of
Ž < Ž . < .P sup D j F a given in Lemma 3. Second, our method is not based on anII n

a priori form of the confidence band for r : for a given c ) 0, we define
Ž .calibration sets CC Z for j , j s 1, 2, . . . , byj j

< <H j , ZŽ .n j
CC Z s j g J , F cŽ .j ½ 5g jŽ .n

Ž . n Ž . Ž .with g j s Ý K j y X rn. The problem is to determine c s c a , d inn 1 h i
Ž .order to satisfy the simultaneous probability statement 9 . The answer is

given by the following proposition.
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Ž . Ž . Ž .PROPOSITION 3. Suppose that A1 ] A6 and M hold and that the train-
ing data follow an homoscedastic error model. If the density function g of the
X ’s is constant on the range II X ; II of future calibrations, then a value of ci

Ž .which guarantees statement 9 is given by

a 1 l1r2 q 1 y dŽ .y1c s sx 1 y q s q d ,0 h1r2 1r2ž / y1' ž /2 gnh 0 2 log hŽ .
2 Ž . 2 Ž . Ž . X Ž .where s s Var e , s s Var « and g j ' g , ;j g II . q u s log 2 y0

< < yblog log u , h s n , 1r5 - b - 1r2 and l, d are as in Lemma 3.h

The proof is given in the Appendix.

4.2. An illustrative example. We now illustrate the multiple-use proce-
dure applied to a radiocarbon dating problem. The data set comes from Clark
wŽ . x1975 , Tables 2 and 3 . The calibration experiment consists of 192 replicate
radiocarbon measurements on 83 tree-ring dated samples of wood. All dates

w xare measured in years before present and rescaled to lie on 0, 1 for the
Žanalysis. From inspection of the histogram of the tree-ring dates see Figure

. Ž . Ž . y12 , we propose g x s g I q gr10 I with g s 0.19 as den-�0 F x F 0.14 �0.1F x F14
sity function for the X . A Kolmogorov test does not reject this hypothesis.i

w xFIG. 2. Histogram of the tree-ring dates rescaled to lie on 0, 1 .
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Calculation of c, the cutoff value, depends on the choice of K, h and the
estimates of the variances that are used. We assume s s s and use the Hall,

Ž .Kay and Titterington 1990 estimate
2

ny2 ' '1 5 q 1 1 5 y 1
2s s Y y Y y Y .ˆ Ý i iq1 iq2ž /n y 2 4 2 4is1

'This estimate is n -consistent and does not alter the conclusion of Proposi-
3 2Ž . Ž .tion 3. Our choice for K is the Epanechnikov kernel K u s 1 y u if4

< < Ž .u F 1, and 0 elsewhere. The bandwidth is subjectively set to 0.08 500 years .
The errors e are suppose to be Gaussian. The simultaneous calibrationj
intervals are displayed in Figure 3 for selected radiocarbon dates ranging
from 600 to 5000 by steps of 50. On this range, the X are assumed to bei
uniformly distributed. Considering a restricted range also allows us to avoid
edge effects. The entire calculation used 3 minutes on a Sun 630MP com-
puter.

Although several problems of real practical importance have not been
considered here, the fact that a crude application of the proposed procedure
gives quite reasonable numerical results is encouraging. Our tolerance inter-

FIG. 3. Simultaneous tolerance intervals for calibration of radiocarbon dates. Calendar dates are
on the x-axis and radiocarbon dates are on the y-axis. Dates are measured in years before present.
The solid line connects the estimates of the calendar dates corresponding to the selected radiocar-
bon dates.
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vals are somewhat longer than the pointwise confidence intervals reported by
Clark, but this may indicate the cost of having guaranteed that at least 1 y d
of the intervals will have a conditional probability of at least 1 y a of
containing the true j .j

5. Discussion. In this paper we have developed a tolerance interval
methodology for calibration. The multiple-use procedure has the advantage of
being quick and simple to compute: calculation of one factor c directly yields
the desired calibration sets. Our procedure is centered around the process Hn
and the Bickel and Rosenblatt approximation for the distribution of its
maximum deviation. Consequently, the calibration sets are approximate in

Ž .nature, and the coverage probabilities a , d involved in the uncertainty
Ž .statement 9 are nominal levels. In contrast to this approach, the method of

Knafl, Sacks, Spiegelman and Ylvisaker needs no asymptotic justification.
However, the error due to interpolation from the grid G must be compensated
by enlarging the width of the confidence band, so their procedure is obviously
designed to be conservative: the actual coverage probabilities exceed the
nominal levels. Simulation studies are necessary to compare both procedures
in terms of actual coverage probabilities and lengths of intervals.

We do not consider here the problems of bandwidth selection and bias
correction that have to be made in practice. In the nonparametric regression
setting, available methods for choosing h include minimization of an error
criterion for the regression function. Ideally, in the calibration context, a
more appropriate selection rule would be based on the mean squared error for

ˆthe estimate j which is being considered or would be designed to minimize
the length of the confidence intervals.

The proposed calibration method was also motivated by the desire to
introduce robust estimation techniques into calibration. We have shown in

ˆ Ž .Section 3 that the estimate j obtained from 3 with a bounded C-function is
Ž .robust in the minimax sense of Huber 1964 . In practical applications, it

seems likely that the robustness properties displayed in pointwise estimation
will extend to the multiple-use case. From a theoretical point of view, the
meaning of robustness in terms of asymptotic efficiency remains to be made
precise in the multiple-use case.

APPENDIX

PROOF OF LEMMA 3. We show successively that the three last terms on the
Ž .r.h.s. of 8 are negligible, uniformly in j .

Ž . Ž .i From the proof of Lemma 2 and Assumption A6 ,

1r2 y1r2 2y1< < < <nh sup v j « j s O nh log n C a a.s.Ž . Ž . Ž . Ž . Ž . Ž .Ž .n n
jgII

Ž . Ž .ii To derive the uniform convergence in probability of u j sn
Ž .1r2 y1Ž . Ž . Ž .nh v j t j to 0, we first show that u j ª 0 in probability for all j ,n n
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Ž .Ž .which stems from Markov’s inequality and assumption M b . The tightness
Ž Ž .of the process u is a consequence of the moment condition E u j yn n 1

Ž ..2 < < 2u j F C j y j , where C is a constant, which is proved by standardn 2 1 2
arguments.

Ž . 1r2 <Ž y1 y1.Ž . Ž . <iii It remains to show that h sup v y v j r j ª 0 inj g II n n
probability. Let h s nyb . Applying the result of Lemma 1 together with

Ž . Ž .Ž . 1r2 <Ž y1 y1.Ž . Ž . <assumptions A6 and M b we can write h sup v y v j r jj g II n n
ŽŽ .1r2 yb .F O log n n , which tends to 0. I

PROOF OF PROPOSITION 3. First note that

H j , Z s H j , r j y g j e .Ž . Ž . Ž .Ž .n j n j n j j

Then,
y1

< <P CC Z 2 j s P g j H j , Z F c� 4Ž . Ž . Ž .Ž .j j n j n j jž /
y1

s P e y g j H j , r j F c .Ž . Ž .Ž . Ž .j n j n j jž /
�Ž . 4Given EE s X , Y , i s 1, . . . , n , we findi i

y1
< <P g j H j , Z F c EEŽ . Ž .Ž .n j n j jž /

y1
G P yc q g j H j , r jŽ . Ž .Ž . Ž .n j n j jž

y1
F e F y g j H j , r j q c EEŽ . Ž .Ž . Ž .n j n j j /

y1
s 2 x c y g j H j , r j y 1.Ž . Ž .Ž . Ž .n j n j jž /

Ž .Thus, to satisfy 9 as n ª `, we choose c ) 0 such that

ay1y1r2 1r2 1r2 < <P inf x c y nh l v j g j D j G 1 yŽ . Ž . Ž . Ž .Ž .ž /n n½ 510Ž . 2jgJ

G 1 y d

where

H j y H jŽ . Ž .n1r2D j s nhŽ . Ž .n 1r2 1r2l v jŽ .
Ž .is the normalized deviation of H from H studied in Section 2 and H j sn n

Ž Ž .. < Ž . Ž . <H j , r j . It is a well known result that sup g j y g j sn II n
ŽŽ .y1r2 Ž y1.1r2 . Ž .y1r2 1r2 Ž . y1Ž . Ž .O nh log h . Therefore, nh v j g j D j andP n n

Ž .y1r2 1r2Ž . y1Ž . Ž .nh v j g j D j have the same limiting distribution. c can ben
chosen such that

l1r2 v1r2 j aŽ . y1< <P inf c y D j G x 1 y G 1 y d .Ž .n1r2 ž /½ 5ž / 2j nh g jŽ . Ž .
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Ž Ž ..y1 Ž . 2Since we consider the case of homoscedastic errors, g j v j s s , ;j g II.
Ž .Then the uncertainty statement 9 will be established with a choice of c

satisfying

1r2y1 < <P 2 log h sup D j y dŽ .Ž . n nž /½
jgII

1r2nh aŽ .1r2y1 1r2 y1F 2 log h g c q sx y d s 1 y dŽ . 0 0 n1r2 ž /ž / 5ž /2l s

if g ' g on the subinterval of future calibrations. Proposition 3 now follows0
from Lemma 3. I
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