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2n2l DESIGNS WITH WEAK MINIMUM ABERRATION1

By Hegang Chen and A. S. Hedayat

Case Western Reserve University and University of Illinois

Since not all 2n−l fractional factorial designs with maximum resolution
are equally good, Fries and Hunter introduced the minimum aberration
criterion for selecting good 2n−l fractional factorial designs with the same
resolution. We modify the concept of minimum aberration and define weak
minimum aberration and show the usefulness of this new design concept.
Using some techniques from finite geometry, we construct 2n−l fractional
factorial designs of resolution III with weak minimum aberration. Further,
several families of 2n−l fractional factorial designs of resolution III and IV
with minimum aberration are obtained.

1. Introduction and definitions. Fractional factorial designs with fac-
tors at two levels are very important in factor screening experiments and many
scientific investigations and the goal of this paper is to contribute to this area
of experiment design. A 2−lth fraction of a 2n factorial design consisting of 2n−l

distinct combinations will be referred to as a 2n−l fractional factorial design.
An important characteristic of a fractional factorial design is its resolution.
A design is of resolution r if no c-factor effect is confounded with any other
effect containing less than r − c factors. Often experimenters prefer to use a
design with the highest possible resolution, but not all 2n−l fractional factorial
designs with maximum resolution are equally good. Fries and Hunter (1980)
introduced the minimum aberration criterion for selecting good 2n−l fractional
factorial designs with the same resolution. In general, the minimum aberra-
tion criterion gives a good measure of the estimation capacity of a fractional
factorial design. Chen and Wu (1991) and Chen (1992) constructed 2n−l frac-
tional factorial designs with minimum aberration for l = 3, 4 and 5. However,
for large n and fixed l�= 3;4;5�, the number of runs N �= 2n−l) in their
designs is very large. Hedayat and Pesotan (1992, 1995) and Wu and Chen
(1992) discussed and presented interesting results which are directly related
to the concept of aberration in designs.

In the following, we introduce some notation and definitions concerning res-
olution and aberration in a design [see Fries and Hunter (1980) and Franklin
(1984) for detailed discussions on these concepts]. We also define and discuss
a new criterion called weak minimum aberration.

A 2n−l fractional factorial design is a design that uses a 2−l fraction of the
whole 2n runs from an experiment based on n factors each at two levels. Fur-
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ther, a fractional factorial design is said to be regular if the set of its treatment
combinations forms a subgroup or a coset of a subgroup. Hereafter, all frac-
tions will be regular fractions. For related additional information concerning
fractional factorial designs, see Raktoe, Hedayat and Federer (1981).

The numbers 1;2; : : : ; n attached to the factors are called letters and a
product (juxtaposition) of any subset of these letters is called a word. The
number of letters in a word is called the length of the word. Associated with
every 2n−l fractional factorial design is a set of l words W1; : : : ;Wl called
generators. The set of distinct words formed by all possible products involving
the l generators gives the defining relation of the fraction. Let D�2n−l� be
a 2n−l fractional factorial design, and let Ai�D� be the number of words of
length i in the defining relation of D�2n−l�. Let W�D� be the vector whose
entries are A1�D�;A2�D�; : : : x

W�D� = �A1�D�;A2�D�; : : : ;An�D��;
where W�D� is referred to as the wordlength pattern of D�2n−l�. With this
notation, the resolution of D�2n−l� is the smallest i with positive Ai�D� in
W�D�.

Definition 1. A 2n−l fractional factorial design is said to have a maxi-
mum resolution R if no other 2n−l fractional factorial design has larger res-
olution than R. Let D1 and D2 be two 2n−l fractional factorial designs with
wordlength patterns W�D1� and W�D2�, and let s be the smallest integer such
that As�D1� 6= As�D2� in these two wordlength patterns. Then D1 is said to
have less aberration than D2 if As�D1� < As�D2�. A 2n−l fractional facto-
rial design is said to have a minimum aberration if no other 2n−l fractional
factorial design has less aberration.

Example 1. There are precisely five different D�29−5� fractional factorial
designs [see Pu (1989)], namely,

D1x I = 12345 = 126 = 237 = 348 = 1239;

D2x I = 12345 = 126 = 137 = 238 = 1239;

D3x I = 12345 = 126 = 137 = 148 = 1239;

D4x I = 12345 = 126 = 147 = 238 = 349;

D5x I = 12345 = 126 = 137 = 148 = 2349:

All these designs have maximum resolution III, but with different wordlength
patterns

W�D1� = �0;0;7;9;6;6;3;0;0�;
W�D2� = �0;0;8;10;4;4;4;1;0�;
W�D3� = �0;0;6;10;8;4;2;1;0�;
W�D4� = �0;0;6;9;9;6;0;0;1�;
W�D5� = �0;0;4;14;8;0;4;1;0�:
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Looking through these wordlength patterns, clearly D5 has minimum aberra-
tion.

Both resolution and minimum aberration are defined under the assump-
tions: (a) lower-order interactions are more important than higher-order in-
teractions, and (b) interactions of the same order are equally important. For
2n−l designs of maximum resolution Rmax, the most important problem is to
minimize the number of words of length Rmax. The numbers of words of length
Rmax + 1, Rmax + 2 or higher are less important. Although combinatorial com-
plexity of the defining relation makes the relation between lengths and estima-
bility less certain, minimizing the number of shortest-length words generally
leads to the estimability of more lower-order interactions, or less stringent
assumptions. For example, if we assume that three-factor and higher-order
interactions are negligible, designs of maximum resolution IV with the mini-
mum number of words of length 4 should be good designs.

The concept of weak minimum aberration is a natural and useful modifica-
tion of minimum aberration and is defined below.

Definition 2. A 2n−l fractional factorial design with maximum resolution
Rmax is said to have a weak minimum aberration if it has the minimum num-
ber of words of length Rmax.

We will use tools and terminology from finite geometry to define fractional
factorial designs. In Section 2, we study the relationship of wordlength pat-
terns between fractional factorial designs and their complementary designs in
the whole factorial. In Section 3, we construct 2n−l fractional factorial designs
of resolution III with weak minimum aberration and several families of 2n−l

fractional factorial designs of resolutions III and IV with minimum aberra-
tion. Finally, in Section 4, we classify several families of 2n−�n−k� designs with
minimum aberration.

2. Some properties of wordlength patterns. Let D�2n−l� be a 2n−l

fractional factorial design. The points inD�2n−l� can be represented as column
vectors as follows:

D�2n−l� = �xx x = Bnu; u ∈ EG�n− l;2��;(1)

where Bn is an n×�n− l� matrix of rank n− l over the finite field GF�2� and
EG�n − l;2� is the Euclidean geometry of dimension n − l over GF�2�. The
matrix Bn is called the factor representation of the fractional factorial design
D�2n−l�. One such matrix Bn can be obtained by writing down the coordinates
of n points of PG�n− l−1;2� as rows, where PG�n− l−1;2� is the projective
geometry of dimension n− l−1 over GF�2�. Then a fractional factorial design
as in (1) is determined by a set of n points of PG�n − l − 1;2�. We note that
D�2n−l� is of resolution at least r if and only if no �r − 1� points of Bn are
dependent.
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Lemma 1. Let Bn be a factor representation of a fractional factorial design
D�2n−l�. The resolution of D�2n−l� is larger than or equal to 3 if and only if
Bn is a set of n distinct points of PG�n− l− 1;2�.

For 2k−1 < n ≤ 2k − 1, the maximum resolution of a 2n−�n−k� fractional
factorial design is equal to III [Bose (1947)]. A 2n−�n−k� fractional factorial
design of resolution III is determined by a subset of n distinct points ofPG�k−
1;2�. Let Bn = �a1; : : : ;an�T be a subset of n distinct points of PG�k − 1;2�.
Such a subset can be obtained by deleting 2k−1−n points from PG�k−1;2�.
Without loss of generality, we can represent all points of PG�k− 1;2� as

a1; : : : ;an︸ ︷︷ ︸
Bn

;an+1; : : : ;a2k−1︸ ︷︷ ︸
Bn

;(2)

where the first n points are all points ofBn andBn denotes all points ofPG�k−
1;2�\Bn = �an+1; : : : ;a2k−1�. Let Dn and Dn be respectively the two fractional
factorial designs corresponding to Bn and Bn as their factor representations.
We call D̄n the complementary design of Dn. Further, let W�Dn� and W�Dn�
be their corresponding wordlength patterns. Constructing a 2n−�n−k� fractional
factorial design of resolution III with weak minimum aberration is equivalent
to deleting 2k − 1− n points from PG�k− 1;2� so that Dn has the minimum
number of words of length 3. Here A3�Dn� in W�Dn� and A3�Dn� in W�Dn�
are the numbers of one-dimensional subspaces of PG�k−1;2� among points of
Bn and Bn (one-dimensional subspaces of projective geometry are also called
lines).

We shall now study the relationship between A3�Dn� and A3�Dn�. Let D
be a fractional factorial design with (2) as its factor representation and W�D�
as its wordlength pattern. A word of length 3 in the defining relation of D
corresponds to three points which form a line ofPG�k−1;2�. Therefore,A3�D�
in W�D� is the number of lines of PG�k− 1;2�, namely,

A3�D� =
�2k − 1��2k − 2�
�22 − 1��22 − 2� :

All lines of PG�k− 1;2� can be classified as one of the following three types:

1. Those lines containing one point from Bn and two points from Bn.
2. Those lines containing one point from Bn and two points from Bn.
3. Those lines containing three points from Bn or from Bn.

Each pair of n points in Bn determines a line, but these
(
n
2

)
lines are not all

distinct. Indeed,
(3

2

)
A3�Dn� pairs out of A3�D� lines of PG�k− 1;2� in Bn are

duplicated. Therefore, the number of lines of type 1 is
(
n

2

)
−
(

3
2

)
A3�Dn�:(3)
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Similarly, the number of lines of type 2 is
(

2k − 1− n
2

)
−
(

3
2

)
A3�Dn�;(4)

and the number of lines of type 3 is

A3�Dn� +A3�Dn�:(5)

Since the sum of (3), (4) and (5) is equal to the total number of lines in PG�k−
1;2�, that is,

(
n

2

)
−
(

3
2

)
A3�Dn� +

(
2k − 1− n

2

)
−
(

3
2

)
A3�Dn� +A3�Dn� +A3�Dn�

= �2
k − 1��2k − 2�
�22 − 1��22 − 2� ;

we can conclude the following relation between A3�Dn� and A3�Dn�:

A3�Dn� =
1
2

[(
n

2

)
+
(

2k − 1− n
2

)
− �2

k − 1��2k − 2�
�22 − 1��22 − 2�

]
−A3�Dn�:(6)

From (6), we have the following lemma.

Lemma 2. Let the n rows of Bn be an n-subset of PG�k − 1;2� and Bn =
PG�k− 1;2�\Bn. Then Bn contains the minimum number of lines of PG�k−
1;2� among all n-subsets of PG�k− 1;2� if and only if Bn contains the maxi-
mum number of lines among all �2k − 1− n)-subsets of PG�k− 1;2�.

For n = 2k−1, Bose (1947) chose Bn = PG�k − 2;2� [embedded in PG�k −
1;2�]. The design Dn corresponding to Bn as its factor representation has
resolution IV.

Let M be an m-subset of PG�k−1;2�. The rank of M, denoted by rank�M�,
is the maximal number of independent points of M. Let A3�M� denote the
number of lines in M. To search for an m-subset containing the maximum
number of lines, the following lemmas will show that we only need to consider
m-subsets with the minimum rank.

If M is a subset with rank p+ 1 (≤ k), then M can be represented as

M =H ∪ �a;a + b1; : : : ;a + bf�;(7)

where H is a subset of PG�p− 1;2� [embedded in PG�k− 1;2�] with rank p,
a ∈ PG�k− 1;2�\PG�p− 1;2� and b1; : : : ;bf ∈ PG�p− 1;2�.

Lemma 3. LetM be anm-subset ofPG�k−1;2� with rank p+1 and having
a form as in (7). Then there exists an m-subset M′ of PG�k− 1;2�:

M′ =H′ ∪ �a;a + b1; : : : ;a + bt�;(8)

whereH′ is a subset ofPG�p−1;2� with rank p, a ∈ PG�k−1;2�\PG�p−1;2�
and b1; : : : ;bt ∈H′, such that M′ has at least as many lines as M.
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Proof. Let M have the representation as in (7), where b1; : : : ;bt ∈ H
and bt+1; : : : ;bf ∈ PG�p − 1;2�\H. Let H0

1 = �a;a + b1; : : : ;a + bt�, H0
2 =

�a + bt+1; : : : ;a + bf� and H0 =H0
1 ∪H0

2. Consider

M′ =H′ ∪ �a;a + b1; : : : ;a + bt�;
where H′ = H ∪ �bt+1; : : : ;bf� is a subset of PG�p − 1;2� with rank p. All
lines in M can be classified into two classes. One class consists of all lines
with points in H. Clearly, M′ preserves all these lines. The other class of lines
consists of lines with two points from H0 and one point from H. Here M′

preserves all lines in M containing two points from H0
1 and one point from H.

Lines in M containing two points from H0
2 and one point from H correspond

to lines in M′ containing two points from �bt+1; : : : ;bf� and one point from
H. Lines in M containing one point from H0

1\�a�, one point from H0
2 and one

point from H correspond to lines in M′ with one point from �b1; : : : ;bt�, one
point from �bt+1; : : : ;bf� and one point from H. Thus there are at least as
many lines in M′ as there are in M. Consequently, A3�M� ≤ A3�M′�. 2

From Lemma 3, it is sufficient to consider the representation given in (8)
for counting the number of lines. It is easy to argue that, for m = 2r + q,
0 ≤ q < 2r, the rank of any m-subset is at least r + 1. However, if the
rank exceeds r + 1, then the following lemma gives additional information
about M.

Lemma 4. Let M be an m-subset of PG�k − 1;2�, m = 2r + q and 0 ≤
q < 2r, r < k. If the rank of M is larger than r+1, then there is an m-subset
of PG�k − 1;2� with smaller rank whose number of lines is greater than the
number of lines in M.

Proof. Let rank�M� = p+ 1 > r+ 1. By Lemma 3, we may assume that

M =H ∪ �a;a + b1; : : : ;a + bt�;
whereH is a subset ofPG�p−1;2� with rank p, a ∈ PG�k−1;2�\PG�p−1;2�
and b1; : : : ;bt ∈ H. Lines in M can be classified into two classes. One class
contains all lines in H and another class contains all lines containing two
points from �a;a + b1; : : : ;a + bt� and one point from H. Since rank�M� >
r+ 1, PG�p− 1;2�\H 6= \, there are at least two points s1

0, s2
0 ∈H such that

c0 = s1
0 + s2

0 ∈ PG�p− 1;2�\H. Consider the following process. Form the set

M0 =H ∪ �c0;c0 + b1; : : : ;c0 + bt�;
with c0;c0 + b1; : : : ;c0 + bt0 6∈ H and c0 + bt0+1; : : : ;c0 + bt ∈ H for some t0
(≤ t). Therefore, M0 can be represented as

M0 =H ∪ �c0;c0 + b1; : : : ;c0 + bt0�:
We observe that M0 preserves all lines of the first class in M and its rank
is p.
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If t = t0, we shall argue that M0 has more lines than M. All lines of the
second class in M correspond to lines in M0 which contain two points from
�c0;c0+b1; : : : ;c0+bt0� and one point from H. Further, M0 has at least one
more line, namely, �s1

0; s
2
0;c0�. Consequently, A3�M0� > A3�M�.

If t > t0, the number of points in M0 is less than m. We shall now consider
the lines in the second class in M and relate these lines to those in M0. The
lines in the second class in M can be conveniently classified into the following
two types:

(a) Lines formed by �a;a + bi;bi�, i = 1; : : : ; t.
(b) Lines formed by �a + bi;a + bj;bi + bj�, where bi + bj ∈H.

Let us now go back to M0. There are two possibilities for c0:

(i) c0 is not a sum of two points from �b1; : : : ;bt�. All lines of type (a)
correspond to lines in M0 formed by �c0, c0+bi, bi�. The lines of type (b) can
be further classified into the following three cases:

(b1) Those lines �a + bi;a + bj;bi + bj� with 1 ≤ i; j ≤ t0.
(b2) Those lines �a + bi;a + bj;bi + bj� with 1 ≤ i ≤ t0, t0 + 1 ≤ j ≤ t.
(b3) Those lines �a + bi;a + bj;bi + bj� with t0 + 1 ≤ i; j ≤ t.

The lines of type (b1) correspond to distinct new lines �c0+bi;c0+bj;bi+bj�
in M0. The lines of type (b3) have not been covered in M0.

The lines of type (b2) correspond to the new lines �c0+bi;c0+bj;bi+bj�
in M0 which may not be distinct. There are no more than two distinct lines
of type (b2) in M corresponding to the same line in M0. Suppose that there
are two lines of type (b2), �a+ bi;a+ bj;bi + bj�, �a+ bi′;a+ bj′;bi′ + bj′�,
1 ≤ i; i′ ≤ t0 and t0 + 1 ≤ j; j′ ≤ t, corresponding to the same line in M0,
that is, �c0 + bi;c0 + bj;bi + bj� = �c0 + bi′;c0 + bj′;bi′ + bj′�. Since c0 +
bj;bi+bj;c0+bj′;bi′+bj′ ∈H and c0+bi;c0+bi′ ∈M0\H, we have bi = bi′ ,
c0+bj = bi′+bj′ and c0+bi = bj+bj′ ∈M0\H. Therefore, we can assume that
there is a new line of type (b3) �a+bj;a+bj′;bj+bj′� which did not exist in
M. The lost line �a+bi′;a+bj′;bi′+bj′� will be compensated in the following
process by corresponding to the new line of type (b3) �a+bj;a+bj′;bj+bj′�.

To cover the remaining lines in (b3) and the new lines of type (b3) resulting
from the indistinctness of the corresponding lines in M0 of the lines of type
(b2), we add �t − t0� more point(s) to M0 such that the new m-subset with
rank p not only covers those lines which are not covered yet, but also has at
least one more additional line than those in M. Since rank�M0� = p ≥ r+ 1,
PG�p − 1;2�\M0 6= \, there are at least two points s1

1, s2
1 ∈ M0 such that

s1
1 + s2

1 ∈ PG�p − 1;2�\M0. Let c1 = s1
1 + s2

1 + bt0+1, and now build M1 from
M0 by

M1 =M0 ∪ �c1 + bt0+1; : : : ;c1 + bt�:
If all c1+bt0+1; : : : ;c1+bt are in PG�p− 1;2�\M0, those lines which are not
covered correspond to those lines in M1 formed by �c1 + bi, c1 + bj, bi + bj�,
where bi + bj ∈ H or M0\H and t0 < i; j ≤ t. In this case, M1 has at least
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one more additional line, namely, �s1
1; s

2
1;c1 + bt0+1�, than M. Otherwise, say,

c1 + bt0+1; : : : ;c1 + bt1 ∈ PG�p − 1;2�\M0 and c1 + bt1+1; : : : ;c1 + bt are in
M0 or 0. In this case, we build M1 as follows:

M1 =M0 ∪ �c1 + bt0+1; : : : ;c1 + bt1�:
If there is a bi such that c1 + bi = 0, w.l.o.g. say i = t1 + 1, then bt1+1 = c1 =
s1

1+s2
1+bt0+1. Since bt1+1+bi = c1+bi ∈M1\M0 for t0+1 ≤ i ≤ t1, there are

no remaining lines of the form �a+ bi;a+ bt1+1;bt1+1 + bi�. Thus it does not
affect the process. Clearly, �M1� > �M0� (M1 contains at least one more point,
namely, s1

1+s2
1 = c1+bt0+1�. The lines uncovered in M1 are similar to those at

the first step, that is, the lines containing two points from �a+bt1+1; : : : ;a+bt�
and one point from M0 or M1\M0 (which resulted from the indistinctness of
the corresponding lines in M1).

To cover all these lines, we repeat the same process on M1. After v steps,

Mv =Mv−1 ∪ �cv + btv−1+1; : : : ;cv + bt�;
where �Mv� =m, rank�Mv� = p and, consequently, A3�Mv� > A3�M�.

(ii) c0 is a sum of two points from �b1; : : : ;bt�, c0 has to be a sum of two
points from �bt0+1; : : : ;bt� and t > t0 + 1. It is possible that there are several
pairs �b1i;b2i�, i = 1; : : : ; h, such that the sum of each pair is equal to c0
(all these pairs are distinct). Since c0 = b1i + b2i , two lines of type (a) �a;a+
b1i;b1i� and �a;a + b2i;b2i� in M correspond to one line �c0;c0 + b1i;b1i� =
�c0;c0 + b2i;b2i� in M0. Similarly, we can assume there is a new line of type
(b3) �a+b1i;a+b2i;b1i +b2i� which did not exist in M. The lost lines in the
first step can be compensated in the following process by corresponding to the
new lines of the form �a + b1i;a + b2i;b1i + b2i�, i = 1; : : : ; h. By the same
argument as in (i), the lemma is established. 2

3. Main results. From Lemma 4, we can see that m-subsets containing
the maximum number of lines must have the minimum rank. To search for the
m-subsets containing the maximum number of lines, we only need to consider
all m-subsets of PG�r;2�, 2r ≤ m < 2r+1. By applying Lemma 2, the follow-
ing theorem provides one structure of an m-subset containing the maximum
number of lines.

Theorem 1. Let m = 2r + q and 0 ≤ q < 2r, r < k. Then the maximum
number of lines in an m-subset of PG�k− 1;2� is

�2r − 1��2r − 2�
�22 − 1��22 − 2� +

(
q+ 1

2

)
:(9)

One structure of an m-subset of PG�k−1;2� containing the maximum number
of lines is

M = PG�r− 1;2� ∪ �a;a + a2r−q; : : : ;a + a2r−1�;(10)

where PG�r− 1;2� = �a1; : : : ;a2r−1�, and a 6∈ PG�r− 1;2�.
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Proof. By Lemma 4, we consider all m-subsets of PG�r;2�. The points of
PG�r;2� can be partitioned as follows:

PG�r− 1;2�;a;a +PG�r− 1;2�;(11)

where PG�r− 1;2� = �a1; : : : ;a2r−1�, a+PG�r− 1;2� = �a+ ai�ai ∈ PG�r−
1;2�� and a 6∈ PG�r − 1;2�. An m-subset M of PG�r;2� can be obtained by
deleting 2r − 1− q points in (11). Let M = PG�r;2�\M, M = �a+ a1; : : : ;a+
a2r−1−q�. Note that M contains no lines, that is, A3�M� = 0. By Lemma 2,
M in (10) contains the maximum number of lines among all m-subsets of
PG�k−1;2�. There are �2r−1��2r−2�/�22−1��22−2� lines inPG�r−1;2�; other
lines in M are those containing two points from �a;a + a2r−q; : : : ;a + a2r−1�
and one point from PG�r− 1;2�. The number of lines of the latter type in M
is
(
q+1

2

)
. The result (9) is the sum of these two numbers. 2

Remark. The set (10) is a structure of an m-subset of PG�k − 1;2� con-
taining the maximum number of lines. However, this structure is not unique.
For convenience, a point of PG�k − 1;2� is denoted by i1i2 : : : il if the i1th,
i2th,: : : ,ilth coordinates of this point are 1 and all others are 0. For example,
when k = 4, the following two 10-subsets both contain the maximum number
of lines:

M10 = �1;2;3;123;12;23;4;34;234;1234�
and

M∗10 = �1;2;3;13;12;23;123;4;14;1234�:
Here M∗10 has a structure as in (10), and M10 does not have a structure as
in (10). The following two D�221−16� designs, D6 and D7, are obtained by
deleting M10 and M∗10 from PG�3;2�, respectively:

D6x I = 1256 = 1357 = 1458 = 2359 = 245t10 = 345t11 = 123t12

= 124t13 = 134t14 = 234t15 = 12345t16 = 45t17

= 35t18 = 25t19 = 15t20 = 1234t21;

D7x I = 1256 = 1357 = 1458 = 2359 = 245t10 = 345t11 = 123t12

= 124t13 = 134t14 = 234t15 = 12345t16 = 24t17

= 34t18 = 1245t19 = 1345t20 = 2345t21;

where t10; : : : ; t21 are factors 10; : : : ;21. The wordlength patterns of D6 and
D7 are

W�D6� = �0;0;40;220;641;1608;3640;6470; : : :�;
W�D7� = �0;0;40;221;640;1600;3648;6498; : : : ; �:

While both D6 and D7 have weak minimum aberration, D6 has minimum
aberration.
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In general, the fractional factorial design with factor representation ob-
tained by deleting Bn with a structure as in (10) from PG�k− 1;2� has weak
minimum aberration. To search for minimum aberration designs, it is impor-
tant to have a complete characterization of subsets with the maximum number
of lines. This problem is currently under investigation.

Theorem 2. For n = 2k − 2r − 1 − q, r < k and 0 ≤ q < 2r, and m =
2r + q, the 2n−�n−k� fractional factorial design Dn whose factor representation
is obtained by deleting all points of an m-subset with structure as in (10) from
PG�k− 1;2� has weak minimum aberration. The minimum number of words
of length 3, A3�Dn�, is equal to

1
3 ��2k−1 − 1��2k − 3 · 2r − 1� + 3�2r − 2k−1�q+ �4r − 1��:(12)

Proof. Let us reconsider Bn and Bn in Section 2, m = 2k− 1−n = 2r+q
and n = 2k − 2r − 1 − q. Assume that Bn is an m-subset with structure (10)
containing the maximum number of lines, that is, A3�Dn� is equal to (9). From
(6),

A3�Dn� =
1
2

[(
2k − 2r − q− 1

2

)
+
(

2r + q
2

)
− �2

k − 1��2k − 2�
�22 − 1��22 − 2�

]

−�2
r − 1��2r − 2�
�22 − 1��22 − 2� −

(
q+ 1

2

)
:

Upon simplification, we obtain (12). 2

Theorem 3. For n = 2k− 2r, r < k, the 2n−�n−k� fractional factorial design
whose factor representation is obtained by deleting all points of PG�r − 1;2�
from PG�k − 1;2� has minimum aberration. Specifically, for n = 2k−1, the
design is of resolution IV.

Proof. Since Bn = PG�r− 1;2� is the only �2r − 1�-subset of rank r, the
result follows by Theorem 1. 2

4. Classification of 2n2�n2k� fractional factorial designs with mini-
mum aberration. Let Bn be an n-subset of PG�k− 1;2� and Bn = PG�k−
1;2�\Bn, and let Dn and Dn be their corresponding fractional factorial de-
signs. If Bn with the maximum number of lines is unique, the design Dn has
minimum aberration.

As indicated in the remark in Section 3, a subset with a maximum number
of lines is not unique. To further identify designs with less aberration, Chen
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(1993) studied the relationship between A4�Dn� in W�Dn� and A4�Dn� in
W�Dn� and obtained the following result:

A4�Dn� =
1
3

[
2A3�Dn� −A3�Dn� + 2k−2�2k − n− 1��2k − n− 2�

+
(
n

3

)
− 2

(
2k − n

3

)
− �2

k−2 − 1��2k − 1��2k − 2�
�22 − 1��22 − 2�

]
+A4�Dn�:

(13)

From (13), we see thatA4�Dn� is minimized if and only ifA4�Dn� is minimized.
If Bn with the maximum number of lines is not unique, we should choose Bn
such that A4�Dn� is minimized among �2k−1−n�-subsets of PG�k−1;2� with
the maximum number of lines. If the �2k − 1 − n�-subset Bn with maximum
number ofA3�Dn� and minimum number ofA4�Dn� is unique, then the design
Dn with Bn as its factor representation has minimum aberration.

It is easy to see that the factor representation obtained by deleting one or
two point(s) from PG�k − 1;2� is unique up to equivalence; hence the cor-
responding design has minimum aberration. Pu (1989) was first to classify
all m-subsets of minimum rank for m ≤ 15. The following m-subsets Mm,
m = 3; : : : ;9, with maximum A3�Mm� are unique up to equivalence:

m = 3

M3 = �1;2;12�;

m = 4

M4 = �1;2;3;23�;

m = 5

M5 = �1;2;3;12;13�;

m = 6

M6 = �1;2;3;12;13;23�;

m = 7

M7 = PG�2;2�;

m = 8

M8 = �1;2;3;4;13;23;12;123�;

m = 9

M9 = �1;2;3;4;1234;13;23;12;123�:

Deleting these subsets from any PG�k− 1;2� yields subsets corresponding to
designs with minimum aberration.
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The following Mm (without “*”) with maximum A3�Mm� and minimum
A4�Mm� are unique up to equivalence:

m = 10

M10 = �1;2;3;4;1234;12;23;34;123;234�;
M∗10 = �1;2;3;4;1234;12;23;13;14;123�;

m = 11

M11 = �1;2;3;4;1234;12;13;14;23;24;34�;
M∗11 = �1;2;3;4;1234;14;23;24;34;234;123�;

m = 12

M12 = �1;2;3;4;1234;12;13;14;23;124;234;134�;
m = 13

M13 = �1;2;3;4;1234;12;13;14;23;24;34;123;124�;
m = 14

M14 = �1;2;3;4;1234;12;13;14;23;24;34;123;124;234�;
m = 15

M15 = PG�3;2�:
Each of the Mm subsets with “*” has the maximum number of A3�Mm�, but
its number of A4�Mm� is not minimized. Deleting these subsets from any
PG�k − 1;2� yields subsets corresponding to designs with weak minimum
aberration. The designs derived byMm without “*” have minimum aberration.
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