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ON AVERAGE DERIVATIVE QUANTILE REGRESSION

BY PROBAL CHAUDHURI,1 KJELL DOKSUM 2 AND ALEXANDER SAMAROV3

Indian Statistical Institute, University of California, Berkeley,
and University of Massachusetts and MIT

Ž .For fixed a g 0, 1 , the quantile regression function gives the a th
Ž .quantile u x in the conditional distribution of a response variable Ya

given the value X s x of a vector of covariates. It can be used to measure
the effect of covariates not only in the center of a population, but also in
the upper and lower tails. A functional that summarizes key features of
the quantile specific relationship between X and Y is the vector b ofa

weighted expected values of the vector of partial derivatives of the quan-
Ž .tile function u x . In a nonparametric setting, b can be regarded as aa a

vector of quantile specific nonparametric regression coefficients. In sur-
Žvival analysis models e.g., Cox’s proportional hazard model, proportional

.odds rate model, accelerated failure time model and in monotone trans-
formation models used in regression analysis, b gives the direction of thea

parameter vector in the parametric part of the model. b can also be useda

to estimate the direction of the parameter vector in semiparametric single
index models popular in econometrics. We show that, under suitable
regularity conditions, the estimate of b obtained by using the locallya

Ž . 1r2polynomial quantile estimate of Chaudhuri 1991a is n -consistent and
asymptotically normal with asymptotic variance equal to the variance of
the influence function of the functional b . We discuss how the estimate ofa

b can be used for model diagnostics and in the construction of a linka

function estimate in general single index models.

1. Introduction. The quantile regression function is defined as the a th
Ž . Ž < .quantile u x in the conditional distribution F y x of a response variablea Y <X

Y given the value X s x of a d-vector of covariates: for fixed a , 0 - a - 1,
Ž . � Ž < . 4u x s inf y: F y x G a . It has the advantage, over the commonly useda Y <X

mean regression, that by considering different a , it can be used to measure
the effect of covariates not only in the center of a population, but also in the
upper and lower tails. For instance, the effect of a covariate can be very
different for high- and low-income groups. Thus, in the 1992 presidential
election, the Democrats produced data showing that between 1980 and 1992
there was an increase in the number of people in the high-salary category as
well as the number of people in the low-salary category. This phenomena
could be demonstrated by computing the a s 0.90 quantile regression func-
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Ž .tion u x of salary Y as a function of the covariate x s time and compar-0.90
Ž .ing it with the a s 0.10 quantile regression function u x . An increasing0.10

Ž . Ž .u x and a decreasing u x would correspond to the Democrats’ hypoth-0.90 0.10
esis that ‘‘the rich got richer and the poor got poorer’’ during the Republican
administration. The U.S. Government yearly conducts a sample survey of

w Ž .xabout 60,000 households the yearly Current Population Survey CPS from
Ž .which estimates of various quantiles can be obtained. Rose 1992 reported

data for 1979 and 1989, and there the 10th percentile and the 90th percentile
of the family income indeed show opposite trends over time. Recently,

Ž .Buchinsky 1994 , using linear parametric quantile regression, reported an
extensive study of changes in U.S. wage structure during 1963]1987. Simi-
larly, in survival analysis, it is of interest to study the effect of a covariate on
high-risk individuals as well the effect on median and low-risk individuals.

Ž . Ž . Ž .Thus one can be interested in the quantiles u x , u x and u x of the0.1 0.5 0.9
survival time Y given a vector x of covariates. Quantile regression is also
useful in marketing studies as the influence of a covariate may be very
different on individuals who belong to high-, median- and low-consumption

Ž .groups. Hendricks and Koenker 1992 studied variations in electricity con-
sumption over time using some nonparametric quantile regression tech-
niques.

1.1. Nonparametric quantile regression coefficients. Statistical literature
Ž .frequently focuses on the estimation of the mean conditional response m x s

Ž < . Ž .E Y x . In linear statistical inference, the partial derivatives ­m x r­ x ,i
Ž .where x s x , . . . , x , are assumed to be constant and are called regression1 d

coefficients. They are of primary interest since they measure how much the
mean response is changed as the ith covariate is perturbed while other
covariates are held fixed. However, this does not reveal dependence on the

wcovariates in the lower and upper tails of the response distribution see, e.g.,
Ž . xEfron 1991 for a detailed discussion of this latter issue . The quantile

dependent regression coefficient curves can be defined as

u X x s ­u x r­ x , i s 1, . . . , d ,Ž . Ž .a i a i

which measure how much the a th response quantile is changed as the ith
covariate is perturbed while the other covariates are held fixed. We consider

Ž . Ž X Ž .the nonparametric setting where the gradient vector =u x s u x , . . . ,a a 1
X Ž ..u x is estimated using some appropriate smoothing technique, and we willad

focus on the average gradient vector

b s b , . . . , b s E =u X .Ž . Ž .Ž .a a 1 a d a

The vector b , which gives a concise summary of quantile specific regressiona

Ž .effects, will be called the vector of nonparametric quantile regression coef-
ficients. Note that b gives the average change in the quantile of thea i
response as the ith covariate is perturbed while the other covariates are held
fixed. Note also that in the linear model Y s Ýd g X q « , the vector bjs1 j j a

Ž .coincides with the vector g s g , . . . , g of regression coefficients.1 d
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TABLE 1
Ž . 1Quartiles of salaries in thousands of dollars of statistics professors 1991]1992

Hx 2 5 8 11 14 17 20 23 25

ˆ Ž .u x 50.1 51.5 56.7 54.5 55.5 56.0 60.5 60.6 54.80.25

ˆ Ž .u x 54.0 62.2 63.8 61.5 62.8 69.0 70.9 66.9 62.20.50

ˆ Ž .u x 61.9 71.4 71.8 72.4 75.7 77.7 76.9 80.6 83.40.75

n 79 69 48 65 63 52 30 27 26x

1 x is the number of years as full professor, n is the sample size. Ý n s 469.x x

We next consider two examples which illustrate quantile specific regres-
sion effects when the covariate is real valued.

Ž .EXAMPLE 1.1. From Bailar 1991 , we get Table 1 which gives the first,
middle and third quartiles of statistics professors’ salaries for the academic
year 1991]1992. Departments of biostatistics and colleges of education were
excluded. The explanatory variable x is the number of years in the rank of
full professor. From Table 1 and Figure 1, we see somewhat different trends
over time in the three quartiles. Note that there is nonlinearity and some
heteroscedasticity in this data set. Table 2 illustrates the quantile regression

FIG. 1. Quartiles of salaries of statistics professors 1991]1992 as a function of number of years
as full professor.
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TABLE 2
Quartile specific rates of change in salaries of statistics professors as seniority increases1

H ˆx 2–5 5–8 8–11 11–14 14–17 17–20 20–23 23–25 ba

X̂ Ž .u x 0.47 1.73 y0.73 0.33 0.17 1.5 0.03 y1.93 0.310.25
X̂ Ž .u x 2.73 0.53 y0.77 0.43 2.07 0.63 y1.33 y1.57 0.670.50
X̂ Ž .u x 3.17 0.13 0.20 1.1 0.67 y0.27 1.23 0.93 1.010.75

Ž .p x 0.18 0.14 0.14 0.16 0.14 0.10 0.07 0.08ˆ
1 Ž .p x is the proportion of people in the indicated category.ˆ

coefficient curves for a s 0.25, 0.5, 0.75 and gives the estimated nonparamet-
ric quantile regression coefficients

ˆ ˆ ˆb , b , b s 0.31, 0.67, 1.01 ,Ž .ž /0 .25 0 .5 0 .75

X̂ Ž . Ž .computed as a weighted average of u x using the weights p x , where theˆa

Ž .p x are the relative frequencies of data points in the bins indicated in theˆ
top rows. Again, these coefficients reveal a big difference in the effects of the
covariate on the three quantiles.

EXAMPLE 1.2. We next consider a model where the quantile regression
coefficient vector reveals interesting aspects of the relationship between X
and Y in the tails of the response distribution as well as the center. Consider
the heteroscedastic model

lY s m X q t m X « ,Ž . Ž .
where « and X are independent, « has continuous distribution function F ,«

the mean of « is zero and t and l are real parameters. The log normal and
Ž . dgamma regression models are of this form with l s 1 and m x s Ý x g ,js1 j j

1 wwhile the Poisson regression model is of this form with l s cf. Carroll and2
Ž . xRuppert 1988 , page 12 . Let e be an a th quantile of F , thena «

l
u x s m x q t m x eŽ . Ž . Ž .a a

ly1
=u x s =m x q tl m x = x eŽ . Ž . Ž . Ž .a m a

ly1
b s E =m X q tlE m X =m X e .Ž . Ž . Ž .Ž . � 4a a

When l s 0, the quantile regression coefficient vector b is, for any fixed a ,a

Ž .equivalent to the average derivative functional of Hardle and Stoker 1989 .¨
Ž . Ž .Note that this model gives dramatically different u x , =u x and b fora a a

Ž .different a . For instance, if F s F, the N 0, 1 distribution, d s t s l s 1«

Ž . w y1Ž .xand m x s g q g x, we have b s 1 q F a g . Thus the quantile re-1 2 a 2
gression coefficients turn out to be

b s y0.282g , b s g , b s 2.282g .0 .1 2 0 .5 2 0 .9 2
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This model, with g ) 0, nicely captures the ‘‘the rich get richer and the poor2
get poorer’’ hypothesis.

1.2. Survival analysis and transformation models. Many models in
statistics, in particular in survival analysis, can be written in the form of a
transformation model

d

1.1 h Y s X g q « ,Ž . Ž . Ý j j
js1

Ž .where Y is survival time, X s X , . . . , X is a vector of covariates, g s1 d
Ž .g , . . . , g is a vector of regression coefficients, « is a residual independent of1 d
X and h is an increasing function specific to the model being considered. For

Ž .instance, Cox’s proportional hazard model is of this form with h y s
� w Ž .x4log ylog 1 y F y , and there the distribution F of « is equal to the0 «

� � 44extreme value distribution 1 y exp yexp t . Here F is an unknown contin-0
uous distribution function referred to as the baseline distribution: it is the

Ž .distribution of Y when the g ’s are all zero. Dabrowska and Doksum 1987i
Ž .considered the estimation of u x in this model. Similarly, the proportionala

Ž . Ž . w Ž . � Ž .4xodds rate model is of the form 1.1 with h y s log F y r 1 y F y and0 0
w � 4x Ž .F s the logistic distribution 1r 1 q exp yt . See Doksum and Gasko 1990«

for the details and history of these two and similar models. A third important
Ž .survival analysis model of the form 1.1 is the accelerated failure time model

Ž .where h y s log y and F is unknown. In the above three models, the first«

two have unknown h and known F , while the third has known h and«

Ž .unknown F . Other models of the form 1.1 have parametric h and F . For« «

Ž . Ž .instance, Box and Cox 1964 and Bickel and Doksum 1981 have h equal to
a power transformation and let F depend on a scale parameter. Box and Cox«

consider normal F while Bickel and Doksum consider robustness questions«

for more general F .«

Ž .We consider model 1.1 with both h and F unknown, and assume that h«

is continuous and strictly monotone and F is continuous. Since h is un-«

known, g is only identifiable up to a multiplicative constant; in other words,
only the direction of g is identifiable. We drop the assumption that X and «
are independent and add instead a weaker assumption that the conditional
quantile e of « given X s x does not depend on x. Then, using the notationa

g s hy1,

T Tu x s g x g q e and b s c g , where c s E g 9 X g q e .Ž . Ž . Ž .a a a a a a

It follows that b has the same direction as g , and we may without loss ofa

Ž . Ž .generality estimate b . Note further that b rb s g rg so that b anda a i a j i j a i
b give the relative importance of the covariates X and X . One implicationa j i j
of this is that the coefficients in the Cox model can be given an interpretation
similar to the usual intuitive idea of what regression coefficients are: the Cox

Ž .regression coefficients give the average change in a quantile e.g., median
survival time as the ith covariate is perturbed while the others are held fixed.
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The quantile regression vector b is a unifying concept that represents thea

coefficient vectors in the standard linear model, the Cox model, the propor-
tional odds rate model, the accelerated failure time model and so on.

< < < <REMARK 1.1. Let d s b r b , where ? is the Euclidean norm. In modela a a

Ž .1.1 , d s d does not depend on a as long as « and X are independent, and da

represents the direction of g so that estimates of d obtained at grid pointsa

a , . . . , a can be combined into an estimate of d by computing their weighted1 k
average. Conversely, if d / d for two different values of a , then the modela a1 2
Ž .1.1 with X independent of « does not hold, which suggests that the condi-

Žtional quantile approach can also be used for model diagnostics see Sec-
.tion 3 .

REMARK 1.2. We obtain an estimating equation for g s hy1 by introduc-
d Ž .ing Z s Ý X b and noting that, if we let j Z denote the a th quantilejs1 j a j a

in the conditional distribution of Y given Z, then g can be expressed as

g Z s j c Z y «Ž . Ž .Ž .a a a

and we can estimate the shape of g and h using an estimate of the a th
Ž . Žquantile function j Z note that g is identifiable up to a location and scalea

.transformation of its argument .

1.3. Reduction of dimensionality and single index models. Nonparametric
Ž .estimation of the gradient vector =u x is subject to the ‘‘curse of dimension-a

ality’’ in the sense that accurate pointwise estimation is difficult with the
sample sizes usually available in practice because of the sparsity of the data
in subsets of Rd even for moderately large values of d. An important
semiparametric regression class of models is projection pursuit regression,

wwhich has been used by a number of authors e.g., Friedman and Tukey
Ž . Ž .x1974 , Huber 1985 while analyzing high-dimensional data in an attempt to
cope with the ‘‘curse of dimensionality.’’ The one-term projection pursuit
model, which gives the first step in projection pursuit regression, has the
form

1.2 Y s g g T X q « ,Ž . Ž .
Ž .where g is a d-dimensional parameter vector the projection vector , «

denotes random error, and g is a smooth real-valued function of a real
wŽ . xvariable. Stigler 1986 , pages 283]290 pointed out that Galton used a

projection pursuit type analysis while computing ‘‘mid-parents’ heights’’ in
course of his analysis of the data on the heights of a group of parents and

Ž .their adult children in the late nineteenth century. Note that when 1.2
Ž . Ž T . Ž . Ž .holds, we must have u x s g g x q e x , where e x is the a th quantilea a a

Ž .in the conditional distribution of « given X s x. Therefore, if e x is aa

Ž .constant free from x for some 0 - a - 1, the gradient vector =u x will bea

equal to a scalar multiple of g for all x. Consequently, an estimate of b givesa

< <y1an estimate of the projection direction g g . Note that when the smooth
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Žfunction g is completely unspecified, only the direction of g and not its
. Ž .magnitude is identifiable as in the transformation model 1.1 .

In recent econometric literature, there is a considerable interest in the
w Ž .so-called single index model see, e.g., Han 1987 , Powell, Stock and Stoker

Ž . Ž . Ž .x1989 , Newey and Ruud 1994 , Sherman 1993 defined by

1.3 Y s f g T X, « ,Ž . Ž .
where « is a random error independent of X, and f, which is a real-valued
function of two real variables, is typically assumed to be monotonic in both of

Ž .its arguments. Duan and Li 1991 considered a very similar model in their
regression analysis under link violations. They did not assume any mono-
tonicity condition on the unknown link function f. Their sliced inverse
regression approach for estimating the direction of g is applicable under the
assumption of elliptic symmetry on the distribution of the regressor and the

Ž .independence between X and « . Hardle and Stoker 1989 and Samarov¨
Ž . Ž .1993 investigated procedures for estimating the direction of g in 1.2 and
Ž .1.3 , using estimates of the gradient of the conditional mean of Y given
X s x. Their approach requires neither the elliptic symmetry of the regres-
sors nor the monotonicity of f. However, the use of the conditional mean of
the response makes the procedure nonrobust, and it does not allow for the

Ž . Ž .estimation of the function f in 1.3 see Section 3 on the estimation of f .
It is important to note that most of these earlier approaches require

independence between the errors « and the regressor X, thus imposing a
strong homoscedasticity condition. The approach of this paper allows one to
weaken this assumption and only requires that, for some 0 - a - 1, the a th

Ž .conditional quantile e x is a constant free from x, which is some kind of aa

centering assumption for the distribution of the error « . It was considered, for
Ž .example, by Manski 1988 in the context of binary response models, who

called this assumption quantile independence. Typically one would center the
Ž . Ž .conditional distribution of the response at u x , and in that case e x is0.5 0.5

assumed to be a constant free from x, which can be taken as zero without loss
of generality. This centering device allows one to work under possible depen-
dence between the covariate X and the error « .

Ž . Ž . Ž .Note that model 1.1 is a special case of model 1.3 , and model 1.2 is not
Ž .a special case of model 1.3 unless g is assumed to be monotonic. We will

drop the assumption of monotonicity of f with respect to its first argument
and assume that f is strictly increasing in its second argument. Note that

Ž . Ž T .this will cover i the regression model with product error Y s ec g X ,
Ž .where c is smooth and positive, ii the heteroscedastic one-term projection

Ž T . Ž T .pursuit model Y s g g X q ec g X , where g is smooth and c is smooth
Ž .and positive and iii the heteroscedastic one-term projection pursuit model

with transformation

h Y s c g T X q ec g T X ,Ž . Ž . Ž .1 2

where c is smooth, h is smooth and monotonic and c is smooth and1 2
positive.
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Ž .In model 1.3 with f monotonic only in its second argument,

u x s f g Tx, e x ,Ž . Ž .� 4a a

Ž . Ž .and if there exists 0 - a - 1 such that e x is a constant free from x, =u xa a

will again be a scalar multiple of g for all x. Hence, an estimate for b can bea

used to estimate the direction of g in this case too.
The rest of the paper is organized as follows. In the next section we

consider nonparametric estimation of the average gradient functional b . Wea

report some results from a numerical study to illustrate the implementation
of the methodology and discuss large sample statistical properties of the
estimate of b in detail. A discussion of efficiency, diagnostic applications anda

Ž .estimation of the link function in model 1.3 are given in Section 3 while
Section 4 contains the proofs.

Ž . Ž .2. Estimation and main results. Let X , Y , . . . , X , Y be n inde-1 1 n n
Ž . d 1pendent random vectors distributed as X, Y , X g R , Y g R . For fixed

Ž .0 - a - 1, let u x be the conditional a th quantile of Y given X s x and let
Ž .f x denote the density of X. We want to estimate

2.1 b s =u x w x f x dx,� 4Ž . Ž . Ž . Ž .H
Ž .where the dependence of u x and b on a is suppressed as long as it does not
Ž .cause an ambiguity, and w x is a smooth weight function with a compact

Ž .support within the interior of the support of f x .
The weight function is introduced to obtain functionals and estimates that

Ž .are not overly influenced by outlying x values high leverage points . It allows
our functional b to focus on quantile dependent regression effects without

Ž .being unduly influenced by the tail behavior of f x . It also reduces boundary
effects that occur in nonparametric smoothing. The weight function does not
alter the fact that b has the same direction as g in the single index model
with an unknown monotonic link. In a more general nonparametric setting,
we would recommend using a smooth weight function which equals one
except in the extreme tails of the X distribution.

We will consider two estimators of b. The first one is the direct plug-in
estimator

ˆ y1 ˆ2.2 b s n =u X w X ,Ž . Ž . Ž .� 4Ý1 i i

Ž̂ .where =u X is a nonparametric estimator of the gradient of the conditionali
Ž .quantile u x at x s X . The second estimator is based on the observationi

Ž .that, under the above assumptions on the weight function w x , integration
by parts gives:

b s y u x = w x f x dx,� 4Ž . Ž . Ž .H
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the sample version of which gives:

n ˆ ˆ1 =w X f X q w X =f XŽ . Ž . Ž . Ž .i i i iˆ ˆb s y u XŽ .Ý2 i ˆn f XŽ .is1 i2.3Ž .
n1 ˆˆs y u X =w X q w X ll X ,Ž . Ž . Ž . Ž .½ 5Ý i i i in is1

ˆ ˆ ˆ ˆ ˆŽ . Ž . Ž .where ll X s =f X rf X , and f and =f are some nonparametric estima-i i i
tors of the density and its gradient. We will use here leave-one-out kernel
estimators

1 X y Xj iˆ2.4 f X s W ,Ž . Ž . Ýi d ž /hn y 1 hŽ . nn j/i

and
1 X y Xj iŽ1.ˆ2.5 =f X s W ,Ž . Ž . Ýi dq1 ž /hn y 1 hŽ . nn j/i

where W: Rd ª R1 and W Ž1.: Rd ª Rd are multivariate kernels for the
Ž .density and its gradient, respectively, and h is a scalar bandwidth suchn

ˆthat h ª 0 as n ª `. The bandwidth in =f does not have to be same as thatn
ˆŽ .in f cf. Lemma 4.3 .

While various nonparametric estimators of conditional quantiles could be
Ž . Ž .used in 2.2 and 2.3 , including kernel, nearest neighbor, and spline estima-

w Ž . Ž .tors see, e.g., Truong 1989 , Bhattacharya and Gangopadhyay 1990 ,
Ž . Ž .xDabrowska 1992 , Koenker, Ng and Portnoy 1992, 1994 , we will consider

w Ž .xhere the locally polynomial estimators cf. Chaudhuri 1991a, b . The reason
ˆ ˆis that in order to develop asymptotic results for b and b , we need to1 2

consider local polynomials in d variables with arbitrary degrees, and Chaud-
Ž .huri’s results provide Bahadur-type expansions of estimators of u x as well

Ž .as estimators of =u x which can be readily adapted for our purposes.
Consider a positive real sequence d ª 0, which will be chosen moren

Ž . dexplicitly later. Let C X be a cube in R centered at X with side lengthn i i
Ž .2d , and let S X be the index set defined byn n i

S X s j: 1 F j F n , j / i , X g C X and N X s a S X .Ž . Ž . Ž . Ž .� 4 Ž .n i j n i n i n i

Ž .For u s u , . . . , u , a d-dimensional vector of nonnegative integers, set1 d
w xu s u q ??? qu . Let A be the set of all d-dimensional vectors u with1 d

w xnonnegative integer components such that u F k for some integer k G 0.
Ž . Ž . Ž . Ž .Let s A s a A and let c s c be a vector of dimension s A . Also,u u g A

d Ž . wŽgiven X , X g R , define P c, X , X to be the polynomial Ý c X y1 2 n 1 2 u g A u 1
. xu Ž d u d u iX rd here, if z g R and u g A, we set z s Ł z with the conven-2 n is1 i

0 . Ž .tion that 0 s 1 . Let c X be a minimizer with respect to c ofˆn i

2.6 r Y y P c, X , X ,Ž . � 4Ž .Ý a j n i j
Ž .jgS Xn i
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Ž . < < Ž . Ž .where r s s s q 2a y 1 s. Since 0 - a - 1, r s tends to infinity asa a

< < ws ª `, and so the above minimization problem always has a solution see
Ž .Chaudhuri 1991a, b for more on the uniqueness and other properties of the

ˆx Ž . Ž .solution of this minimization problem . We now set u X s c X andˆi n, 0 i
Ž̂ . Ž . Ž . Ž .=u X s c X rd , where c X and c X are the components of theˆ ˆ ˆi n, 1 i n n, 0 i n, 1 i

Ž .minimizing vector of coefficients c X corresponding to the zero and firstˆn i
degree coefficients, respectively.

Ž . Ž .Note that 2.6 defines a leave-one-out estimator, that is, c X does notˆn i
involve Y . This simplifies the use of the conditioning argument at variousi
places in the proofs in Section 4. It may be pointed out however that even if

Ž .c X is allowed to involve all the data points including the ith one, theˆn i
ˆ ˆasymptotic behavior of the resulting estimates b and b remains the same.1 2

As a matter of fact, the leave-one-out and the non-leave-one-out versions of
the estimates of b are asymptotically first-order equivalent in the sense that
their difference converges to zero at a rate faster than ny1r2.

2.1. Some numerical results. We consider Boston housing data that has
wbeen analyzed by several statisticians in the recent past see, e.g., Doksum

Ž .and Samarov 1995 for a recent analysis of the data and other related
xreferences . There are n s 506 observations in the data set and the response

Ž .variable Y is the median price of a house in a given area. We focus on three
important covariates: RM s average number of rooms per house in the area,
LSTAT s the percentage of population having lower economic status in the
area and DIS s weighted distance to five Boston employment centers from
houses of the area. One noteworthy feature of the data is that the Y-values

Žlarger or equal to $50,000 have been recorded as $50,000 the data was
.collected in early 70’s . Such a truncation in the upper tail of the response

variable makes quantile regression, which is not influenced very much by
extreme values of the response, a very appropriate methodology.

We computed normalized nonparametric quantile regression coefficients
ˆ ˆ ˆ y1< <d s b b using locally quadratic quantile regression. All covariates werea a a

standardized so that each of them has zero mean and unit variance. For
Ž .weighted averaging, we used the weight function defined as: w z , z , z s1 2 3

Ž . Ž . Ž . Ž . < < Ž . w �Žw z w z w z , where w z s 1 if z F 2.4, w z s 1 y z q0 1 0 2 0 3 0 0
. 42 x2 Ž . w �Ž . . 42 x22.4 r0.2 if y2.6 F z F y2.4, w z s 1 y z y 2.4 r0.2 if 2.4 F z F0

Ž .2.6 and w z s 0 for all other values of z. We considered estimation of b0 a

with varying choices of the bandwidth d in order to get a feeling for then
ˆeffect of bandwidth selection on the resulting estimates. d was observed toa

be fairly stable with respect to different choices of the bandwidth d as wen
tried 1.0, 1.2 and 1.4 as values for d . Table 3 summarizes the results forn
d s 1.2. The local quadratic fit requires the local fitting of ten parameters.n

Ž .For three points near the boundary in x space with positive w x , there were
not enough data points in the d neighborhood to do a local quadratic fit. Forn

w Ž .these three points we doubled d see, e.g., Rice 1984 for a similar approachn
xto the boundary problem .
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TABLE 3
Normalized nonparametric quantile regression coefficients for Boston housing data

a 0.10 0.25 0.50 0.75 0.90

RM 0.438 0.443 0.533 0.553 0.505
LSTAT y0.676 y0.848 y0.844 y0.814 y0.812
DIS 0.593 0.291 0.066 y0.178 y0.292

The following conclusions are immediate from the figures in Table 3. First,
LSTAT appears to be the most important covariate for all percentile levels by
comparing the absolute values of the normalized coefficients. This observation

Ž .is in conformity with the findings reported in Doksum and Samarov 1995 .
Second, covariates do seem to have different effects on different percentiles of
the conditional distribution of the response. In particular, the sign of the
coefficient of DIS changes from positive to negative as we move from lower
percentiles to upper ones.

2.2. Asymptotic behavior of the estimators. In this section we give results
ˆ ˆon the asymptotic behavior of the estimators b and b . We find that by1 2

Ž . Ž .assuming certain smoothness conditions on f x and u x and by using local
polynomials of sufficiently high degree, we can establish the asymptotic

ˆ' Ž .normality of n b y b , j s 1, 2, in a nonparametric setting. Moreover, wej
ˆ ˆshow that b and b have the same influence function and this influence1 2

function equals the influence function of the functional b, which indicates
that, with additional regularity conditions, asymptotic nonparametric effi-

ˆ ˆciency can be achieved. We also investigate how much efficiency b and b1 2
lose in parametric models by comparing them with the Koenker and Basset
Ž .1978 quantile regression estimator in a linear model, and find that the
efficiency loss is small.

Ž . Ž . Ž .In what follows, the asymptotic relations such as a s O 1 , o 1 , O 1 orp
Ž .o 1 , applied to a vector a, will be understood componentwise. We will alsop

Ž . Ž . Ž . Ž .use notation r X s O a and r X s o a , with a real sequence a ,n L n n L n n2 2
Ž Ž . .2meaning that, as n ª `, E r X ra is bounded and converges to zero,n n

respectively.
Let V be an open convex set in Rd. We will say that a function m:

Rd ª R1 has the order of smoothness p on V with p s l q g , where l G 0 is
Ž . Ž .an integer and 0 - g F 1 and will write m g H V , if i partial derivativesp

u Ž . wu x Ž . u1 u dD m x [ ­ m x r­ x ??? ­ x exist and are continuous for all x g V and1 d
w x Ž .u F l, ii there exists a constant C ) 0 such that

gu u < < w xD m x y D m x F C x y x for all x , x g V and u s l.Ž . Ž .1 2 1 2 1 2

The orders of smoothness p , j s 1, . . . , 4, in Conditions 1 through 4 will bej
specified later.
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Ž .CONDITION 1. The marginal density f x of X is positive on V and f g
Ž .H V .p1

CONDITION 2. The weight function w is supported on a compact set with
Ž . Ž .nonempty interior, supp w ; V and w g H V .p2

Ž < . Ž .CONDITION 3. The conditional density f e x of « s Y y u X given X s« <X
Ž .x, considered as a function of x, belongs to H V for all e in a neighborhoodp3

Ž .of zero zero being the a th quantile of the conditional distribution . Further,
the conditional density is positive for e s 0 for all values of x g V, and its
first partial derivative w.r.t. e exists continuously for values of e in a
neighborhood of zero for all x g V.

Ž .CONDITION 4. The conditional a th quantile function u x of Y given
Ž . Ž .X s x has the order of smoothness p , that is, u x g H V .4 p4

w xCondition 4 implies that for every x g V, k s p , and all sufficiently4
Ž .large n, u x q td can be approximated by the k-order Taylor polynomialn

2.7 u U x q td , x s c x tu ,Ž . Ž . Ž .Ýn n n , u
ugA

Ž . Ž .y1 uŽ . wu xwith the coefficients c x s u! D x d , where u!s u ! ??? u !, and then, u n 1 d
Ž . Ž . U Ž .remainder r td , x s u x q td y u x q td , x satisfies the inequalityn n n n

p4< <2.8 r td , x F C t d ,Ž . Ž . Ž .n n

< <uniformly over t F 1 and x g V.

CONDITION 5. Let k9 G 1 be an integer

Ž . d 1a The kernel W: R ª R is a bounded continuous function with bounded
w x dvariation on its support, which is contained in the unit cube y1, 1 . Fur-

Ž . Ž . Ž .ther, W t s W yt , HW t dt s 1 and

u w xW t t dt s 0 for u F k9.Ž .H
Ž . Ž1.Ž . Ž1. d db The components W t , n s 1, . . . , d, of the kernel W : R ª R aren

Žbounded continuous functions with bounded variation on their support con-
w x d . Ž1.Ž . Ž1.Ž .tained in y1, 1 , W t s yW yt andn L n

W Ž1. t tu dt s yd dŽ .H n 1wux 1un

w xfor u F k9, where d is the Kronecker delta.ab

Ž xTHEOREM 2.1. Let g be a real number in 0, 1 . For the plug-in estimator
b̂ , assume that Conditions 1, 2 and 3 hold with p s p s p s 1 q g ,1 1 2 3
Condition 4 holds with p ) 3 q 3dr2, that the order of the polynomial in4
Ž . w x Ž .2.6 is k s p and that the bandwidth d in the definition 2.6 of the4 n
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conditional quantile estimator is such that

1 1
yk2.9 d 7 n with - k - .Ž . n 2 p y 1 4 q 3dŽ .4

ˆFor the by parts estimator b , assume that Conditions 1, 2 and 4 hold with2
p s p s p s p ) 3 q 2 d and Condition 3 holds with p s g and Condition1 2 4 3

w x5 holds with k9 s p . Let q be a real number such that 3dr2 - q F p and
Ž . w xsuppose that the order of the polynomial in 2.6 is k s q . Assume also that

1 1
yk2.10 d 7 n with - k -Ž . n 2 q 3d

Ž . Ž .and the bandwidth h of the kernel estimators 2.4 , 2.5 is chosen such thatn

1 1
yt2.11 h 7 n with F t F .Ž . n 2 p y 1 4 d q 1Ž . Ž .

Then for j s 1, 2, as n ª `,
n1ˆ � 4b y b s w X =u X y a y 1 « F 0Ž . Ž . Ž .Ýj i i in is1

=w X q w X l XŽ . Ž . Ž .i i i y1r2= y b q o n ,Ž .pf u X ¬X� 4Ž . .Y <X i i

2.12Ž .

Ž . Ž . Ž . Ž . � 4where « s Y y u X , l X s =f X rf X and 1 ? is the indicator function.i i i

REMARK 2.1. Note that the nonparametric estimates of the quantile sur-
Ž . Ž . y1r2face u x and its derivative =u x converge at a rate slower than n .a a

ŽTheir rates of convergence are quite slow when the number of covariates i.e.,
. y1r2the dimension of X is large. We obtain n rate of convergence for the

estimate of the vector of quantile regression coefficients b even in a nonpara-
metric setting. The weighted averaging of the derivative estimates leads to a
concise summary of the quantile specific relationship between the response Y
and the covariate X and enables us to escape the ‘‘curse of dimensionality’’
that occurs in nonparametric function estimation at least asymptotically. To
achieve this, we need to assume in Condition 4 that the degree of smoothness

Ž .p of u x grows with the dimensionality d, as required by Lemmas 4.1 and4
4.3.

ˆREMARK 2.2. Note that even though both estimators b , j s 1, 2, have thej
same asymptotic expansion, the first one needs less smoothness of the

Ž . Ž .marginal density f x and the weight function w x in Conditions 1 and 2,
Ž .respectively. Also, the second one requires nonparametric estimation of f x

and its derivative. We hope to make a comparison of the finite sample
ˆ ˆperformance of b and b in terms of their mean square error in a separate1 2

paper.
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3. Discussion.

ˆEfficiency considerations. Theorem 2.1 shows that the estimators b , j sj
Ž .1, 2, are, using the terminology of Bickel, Klaassen, Ritov and Wellner 1994 ,

asymptotically linear with the influence function

=w X q w X l XŽ . Ž . Ž .
� 43.1 IF X, Y s w X =u X y a y « F 0 y b ,Ž . Ž . Ž . Ž . Ž .a f u X ¬ XŽ .Ž .Y <X

Ž Ž ..and hence are asymptotically normal with covariance matrix Var IF X, Y .a

Ž .A straightforward computation shows that IF x, y is, in fact, the efficienta

influence function; that is, coincides with the influence function of the func-
tional b, so that Proposition 3.3.1 of Bickel, Klaassen, Ritov and Wellner
Ž . w1994 implies that, under additional regularity conditions such regularity

Ž .xconditions have been discussed in Newey and Stoker 1993 guaranteeing
ˆpathwise differentiability of the functional b, the estimators b , j s 1, 2, arej

asymptotically efficient in the class of regular estimators.
ˆNote that the asymptotic efficiency of nonparametric estimators b of thej

functional b does not imply their efficiency as estimates of the coefficients g
Ž . Ž . Ž . Ž .in the semiparametric models 1.1 ] 1.3 , cf. Klaassen 1992 , Horowitz 1993 ,

Ž . Ž .xKlein and Spady 1993 , Bickel and Ritov 1994 . Example 3.1 demonstrates
that the loss in efficiency of our nonparametric estimates, when applied to
some parametric models, may not be very large. Even though the estimators
b̂ will not typically be fully efficient in specific parametric versions of modelsj 'Ž . Ž .1.1 ] 1.3 , the fact that they are n consistent means that they can serve as
initial estimators for various one-step and other improved estimators in those

Ž . Ž .models; see Klaassen 1992 and Bickel, Klaassen, Ritov and Wellner 1994 .

Ž .EXAMPLE 3.1. Consider the transformation model 1.1 , where X and « are
independent, h is increasing and differentiable, and X is multivariate normal
Ž . Ž . � Ž Ž ..4y1 Ž . y1Ž .N m, S . In this case =u x s g h9 u x , l x s yS x y m anda a

Ž Ž . . Ž . Ž Ž ..f u x ¬ x s f e h9 u x , where e is the a th quantile of « . We haveY <x a « a a a
ˆ ˆŽ . Ž .from 2.12 that the asymptotic variance]covariance matrix of b and b is1 2

a 1 y a yw X Sy1 X y m q =w XŽ . Ž . Ž . Ž .
E2 ½ 5h9 u Xnf e Ž .Ž . Ž .a« a

Ty1yw X S X y m q =w XŽ . Ž . Ž .
= ½ 5h9 u XŽ .Ž .a

w XŽ .
T y1q gg n Var .½ 5h9 u XŽ .Ž .a

Ž .If we take w x equal to one except in the extreme tails of the density of X,
then, to a very close approximation, this asymptotic variance]covariance



ON AVERAGE DERIVATIVE QUANTILE REGRESSION 729

matrix is equal to
y2 T2 y1 y1a 1 y a rnf e E h9 u X S X y m X y m S� 4Ž . Ž . Ž . Ž . Ž .� 4 Ž .« a a

1
T y1q gg n Var .ž /h9 u XŽ .Ž .a

Ž .In the case when h y s y, we have b s g and this expression reduces toa

a 1 y aŽ . y1S ,2nf eŽ .« a

which we recognize as the asymptotic variance]covariance matrix of the
quantile regression estimate of the coefficient vector in the linear model; see

Ž .Koenker and Basset 1978 . This means that our estimator, which is con-
structed without knowing h, is nearly as efficient in this case as the

Ž .Koenker]Basset estimator which uses the linearity of h y . We also note that
Ž .for this model and the same weight function w x , the asymptotic

ˆvariance]covariance matrix of the Hardle]Stoker estimator b of¨ HS
� Ž . Ž .4 w Ž . Ž .x 2 y1 y1E w X =m X s g recall that m X s E Y ¬ X is equal to s n S . There-«

fore, the asymptotic efficiency of our estimator of g relative to the
Hardle]Stoker estimator is¨

s 2 f 2 eŽ .« « a
,

a 1 y aŽ .
which is equal to the relative asymptotic efficiency of the sample a-quantile
estimator vs. the sample mean, which may be greater or less than one
depending on a and the distribution of « .

Ž . Ž .The choice of bandwidth. Note that the choices 2.9 and 2.10 of the
bandwidth d ‘‘undersmooth’’ compared to the optimal nonparametric func-n

yŽ2 pqd .y1 w Ž .xtion estimation bandwidth d 7 n cf. Chaudhuri 1991a, b . Then
undersmoothing is needed to make the bias of the estimators of the order
Ž y1r2 .o n ; the variance attains the order 1rn because of the averaging over

Ž . Ž .different X ’s. As long as the bandwidth d satisfies conditions 2.9 or 2.10 ,i n
the choice of bandwidth only has a second-order effect on the mean squared

ˆŽ .error MSE of b , j s 1, 2. In the case of average derivative estimation of gj
Ž . Ž .in model 1.2 , Hardle, Hart, Marron and Tsybakov 1992 and Hardle and¨ ¨
Ž .Tsybakov 1993 have used the second order term in the MSE to obtain an

expression for the asymptotically optimal bandwidth. Note that in their
approach also, undersmoothing is needed to obtain the desired asymptotic

Ž .results. Recently, Hardle, Hall and Ichimura 1993 have investigated simul-¨
Ž .taneous estimation of the optimal bandwidth and the vector g in model 1.2 .

Estimating the ‘‘link ’’ functions in semiparametric models. Assume now
Ž . Ž .that in the semiparametric models 1.1 ] 1.3 , for a given 0 - a - 1, the

Ž .conditional a-quantile of « given x is constant in x, that is, e x s e . Seta a
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T Ž .Z s g X, and denote by j z the conditional a th quantile of Y given Z s z.a

Ž . y1Ž . Ž . Ž . Ž .Then we have j z s h z q e in model 1.1 , j z s g z q e in modela a a a

Ž . Ž . Ž . Ž .1.2 and j z s f z, e in model 1.3 . So, after getting an estimate of thea a

direction of g , one can project the observed X’s on that estimated direction
and then use those real-valued projections to construct nonparametric esti-

Ž . Ž . Ž . Žmates of h, g and f in model 1.1 , 1.2 and 1.3 , respectively keeping in
.mind the identifiability constraints in each of these models . This can be

viewed as dimensionality reduction before constructing nonparametric esti-
Ž . Ž . Ž .mates of the functional parameters in the models 1.1 , 1.2 and 1.3 . Under

ˆ Ž .suitable regularity conditions, it is easy to construct an estimate j z ofa

Ž . Ž y2r5.j z that will converge at the rate O n , which is the usual rate fora p
nonparametric pointwise estimation of a function of a single real variable.
Properties of some nonparametric estimates of the conditional quantile func-

Ž .tion j z constructed following the above strategy will be investigated ina

Ž .detail in a separate paper. Note, however, that such estimates of j z area

not necessarily monotonic and one needs to establish asymptotic results for
isotonic versions of the estimates. Nonparametric estimates of an unknown

Ž .monotone transformation in regression models similar to 1.1 can be found in
Ž . Ž . Ž . Ž .Doksum 1987 , Cuzick 1988 , Horowitz 1993 and Ye and Duan 1994 .

Model diagnostics. The nonparametric estimates of the average deriva-
Ž .tives of conditional quantiles or quantile regression coefficients b lead toa

wsome useful model diagnostic techniques cf. related works on heteroscedas-
Ž .ticity by Hendricks and Koenker 1992 and Koenker, Portnoy and Ng

Ž .x1992 . Note first that if conditions in Section 2 hold for several conditional
Ž . Ž .quantiles u x , . . . , u x , where 0 - a - a - ??? - a - 1, Theorem 2.1a a 1 2 k1 k

implies that our estimates of b , . . . , b are jointly asymptotically normal.a a1 k

Using the asymptotic normal distribution of estimators of b , . . . , b , we cana a1 k
Ž .construct asymptotic tests of their equality when d s dim X s 1, and

thereby test homoscedasticity in such situations as mentioned in Example 2
in Section 1.

Ž . Ž .In the models 1.1 ] 1.3 in the presence of strong homoscedasticity, that
Ž .is, when « and X are independent, =u x will be proportional to the parame-a

Ž .ter vector g for all a and x, and hence the estimated directions of =u x ’s fora

different values of a and x should be closely aligned, and so should be the
estimates of quantile regression coefficients b for different a ’s. Using againa

the joint asymptotic normality of the estimates of b for j s 1, . . . , k, we cana j
Ž . Ž .construct asymptotic tests of homoscedasticity for the models 1.1 ] 1.3 by

testing the hypothesis of identical directions of b ’s.a j

Further diagnostic information can be obtained by using nonparametric
estimates of the d = d matrix functional

T
3.2 G s Ew X =u X =u X ,� 4 � 4Ž . Ž . Ž . Ž .a a a

wwhich can be estimated in a way essentially similar to b asymptotica

Ž . xproperties of the estimates of 3.2 will be considered in a separate paper . In
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Ž .particular, the validity of the single index models 1.3 can be tested by
testing that the rank of G is one. More generally, G can be used to identifya a

the linear subspace spanned by the vectors g , j s 1, . . . , k in the generalj
Ž . Ž T T .dimensionality reduction or multiple index model Y s G x g , . . . , x g , «1 k

Ž .of Li 1991 . Just note that, provided the function G is monotonic in « and
the a th conditional quantile of « given X is free from X, this subspace
coincides with the subspace of those eigenvectors of G which have nonzeroa

w Ž .xeigenvalues cf. Samarov 1993 .

Further work. A number of important issues remains to be addressed:

Ž .i The finite sample size performance of the estimators has to be investi-
gated using Monte Carlo methods. This would include an investigation of

ˆ ˆbandwidth selection rules for the smoothers used in b and b as well as a1 2
ˆ ˆcomparison of the mean squared errors of b and b .1 2

Ž .ii Statistical properties of the estimates of the link function in models
Ž . Ž . Ž .1.1 , 1.2 and 1.3 remain to be fully investigated. In particular, the esti-

Ž .mates of j z mentioned earlier in this section which converge at the ratea

Ž y2r5.O n are not necessarily monotone. We need to establish asymptoticp
results for the isotonic versions of our estimators.

Ž .iii While Example 3.1 suggests that the loss in efficiency of our nonpara-
metric estimators, when applied to some parametric models, may be not very

ˆlarge, it is of interest to find out how close the asymptotic variance of b is toa

Ž . Ž .the asymptotic efficiency bounds in the semiparametric models 1.1 , 1.2 and
Ž .1.3 .

Ž .iv In our examples of transformation model, we included some important
models used in survival analysis. We are currently working on extending the

Ž .results of this paper to censored data; see Dabrowska 1992 .

4. Proofs. We will first prove three lemmas. The first lemma is an
extension of the Bahadur-type representation for the local polynomial condi-
tional quantile estimators and their derivatives given in Theorem 3.3 in

Ž .Chaudhuri 1991a , which is uniform in the conditioning variables and does
Ž .not assume the independence between X and the residual « s Y y u X .

Ž . Ž Ž .. Ž .Denote by c x s c x the s A -vector of Taylor coefficients inn n, u u g A
Ž . Ž . � Ž . 42.7 and let I w s i: X g supp w , i s 1, 2, . . . , n .i

LEMMA 4.1. Assume that the density of X is positive and continuous on V
and the weight function w has a compact support in V. Then, under Condition

w x3 with p s g , g ) 0, and Condition 4 with p ) 0 and k s p , we have3 4 4

y1c X y c X s N X G X� 4Ž . Ž . Ž . Ž .ˆn i n i n i n i

n
U= b d , X y X a y 1 Y F u X , X� 4Ž . Ž .Ý ž /n j i j n j i

js1, j/i

4.1Ž .

< <=1 X y X F d q R X ,Ž .� 4j i n n i
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Ž .where the s A -vector
uywux w x4.2 b d , X y X s d X y X , u F kŽ . Ž . Ž .½ 5n j i n j i

Ž . Ž .has naturally ordered components, G is the s A = s A matrixn

u v <dH t t f 0 X q d t f X q d t dtŽ .Ž .wy 1, 1x « <X i n i nu , vG X s q s ,Ž .n i n½ dH f X q d t dtŽ .wy 1, 1x i n
4.3Ž .

w x w xu F k , v F k ,5
U Ž . Ž . Ž .u x , x is defined in 2.7 and the remainder term R X satisfiesn 1 2 n i

3r4y3Ž1yk d .r4 w xmax R X s O n log n almost surely as n ª `,Ž . Ž .n i
Ž .igI w

yk Ž .provided that d 7 n with 1r 2 p q d - k - 1rd.n 4

REMARK 4.1. Under the conditions of Lemma 4.1, we have

y1 y1r2i max d R X s o n almost surely as n ª `,Ž . Ž . Ž .n n i
Ž .igI w

provided that d 7 nyk withn

4.4 1r 2 p q d - k - 1r 4 q 3dŽ . Ž . Ž .4

and

y1r2ii max R X s o n almost surely as n ª `,Ž . Ž . Ž .n i
Ž .igI w

provided that d 7 nyk withn

4.5 1r 2 p q d - k - 1r3d.Ž . Ž .4

ˆŽ . Ž .The item i will be used for the plug-in estimator b and ii for the by parts1
ˆestimator b .2

PROOF OF LEMMA 4.1. The proof, which is based on modifications and
Ž .extensions of the corresponding proofs in Chaudhuri 1991a, b , will be

presented in steps. We will provide only the main ideas and skip technical
details, which are fairly routine in view of the proofs already documented in

Ž .Chaudhuri 1991a, b .
yk Ž .Step 1. Let d 7 n , where 0 - k - 1rd , and for a pair of positiven

constants c - c define the event E as1 2 n

E s c n1yk d F N X F c n1yk d for all X g supp w .Ž . Ž .� 4n 1 n i 2 i

Then in view of the conditions assumed on the marginal density of X and the
weight function w, it follows by a straightforward modification of the argu-

Ž .ments used in the proofs of Theorem 3.1 in Chaudhuri 1991a and Theorem
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Ž .3.1 in Chaudhuri 1991b that it is possible to choose the constants c and c1 2
so that

Pr lim inf E s 1.Ž .n

Ž c .In fact, Pr lim sup E converges to zero at an exponential rate.n
Step 2. For a constant K ) 0, let F be the event defined as1 n

1r2yŽ1yk d .r2F s c X y c X F K n log n for all X g supp wŽ . Ž . Ž . Ž .ˆ� 4n n i n i 1 i

Ž .and k ) 1r 2 p q d . Once again, in view of the conditions assumed on the4
conditional density of the error « given X, simple modifications of the

Ž .arguments used in the proofs of Theorem 3.2 in Chaudhuri 1991a and
Ž .Theorems 3.2 and 3.3 in Chaudhuri 1991b yield the following. There exists a

choice of K such that1

Pr lim inf F s 1.Ž .n

Ž c.In fact, here also Pr lim sup F converges to zero at an exponential rate.n
Ž .Observe that Fact 6.5 in Chaudhuri 1991a and Fact 5.2 in Chaudhuri

Ž .1991b , which play very crucial roles, were stated in a setup in which the
error « and the regressor X are independent. However, as long as the
conditional distribution of « given X satisfies Condition 3 the main implica-
tions of those facts remain unaltered and they can be restated to serve our
purpose.

Step 3. Finally, some routine modifications and extensions of the argument
Ž .used in the proof of Theorem 3.3 in Chaudhuri 1991a exploiting Bernstein’s

Ž . winequality and Theorems 3.1 and 3.3 in Koenker and Bassett 1978 see
Ž .xFacts 6.3 and 6.4 in Chaudhuri 1991a yield the following

3r4y3Ž1yk d .r4 w xmax R X s O n log n almost surely as n ª `,Ž . Ž .n i
Ž .igI w

Ž .provided that k ) 1r 2 p q d . This completes the proof of Lemma 4.1. I4

Before stating Lemma 4.2 and its proof, we need to introduce some
Ž . Ž .notation. Let Q be the s A = s A matrix with a typical entry q su, v

u v w Ž xdH t t dt, where u, v g A cf. Chaudhuri 1991a, b . Denote by e ,wy 1, 1x i
1 F i F d, the ith column of the d = d identity matrix. Denote by QU thei
Ž . Ž . U uqvqe ids A = s A matrix with a typical entry q s H t dt, u, v g A.u, v, i wy1, 1x

Note that matrices Q and QU can be written asi

T4.6 Q s b 1, t b 1, t dt.Ž . Ž . Ž .H
dw xy1, 1

and

TU4.7 Q s t b 1, t b 1, t dt,Ž . Ž . Ž .Hi i
dw xy1, 1

respectively.
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Ž . d Ž .dSet p X s d H f X q d t dt. Note that under condition 1 with p sn n wy1, 1x n 1
1 q g , g ) 0, we have for X g V,

p XŽ .n 1qg4.8 s f X q O d .Ž . Ž . Ž .L nd 22dŽ .n

Ž i. Ž . Ž .We will denote by f 0, x the first order partial derivative of f 0, x« , X « , X
w.r.t. the ith coordinate of x.

Ž . < Ž . Ž . < ŽŽ .1r2 .LEMMA 4.2. a max N X y np X s O n log n almost1F iF n n i n i
surely as n ª `.

Ž .b If Conditions 1 and 3 hold with p s p s 1 q g , g ) 0, we have for1 3
X g V the following expansion

y1 y1 y2d y1d p X G X s f 0, X Q y d f 0, X� 4 � 4 � 4Ž . Ž . Ž . Ž .n n n « , X n « , X

d
Uy1 y1 Ž i.= Q Q Q f 0, X q r X ,Ž . Ž .Ý i « , X n

is1

4.9Ž .

Ž . Ž 1qg . Ž .where r X s O d , with O ? interpreted here componentwise.n L n L2 2

Ž .PROOF. Part a follows immediately from Bernstein’s inequality, since
Ž . Ž Ž . .np X s E N X ¬ X .n i n i i

Ž . Ž . wTo prove part b , note that the numerator of a typical entry of G X seen
Ž .x4.3 has an expansion of the form

tu tv f 0, X q d t dtŽ .H « , X n
dw xy1, 1

d
U Ž i. 1qgs f 0, X q q d q f 0, X q O d ,Ž . Ž . Ž .Ý« , X u , v n u , v , i « , X L n2

is1

and use von Neumann expansion for the inverse matrix; see, for example,
Ž .Stuart and Sun 1990 . I

ˆThe next lemma will be used only for the by parts estimator b .2

Ž . Ž .LEMMA 4.3. a Assume that the density f x of X is positive and continu-
ous on V and the weight function w has a compact support in V. Then, under
Condition 3 with p s 1 q g , g ) 0, Condition 4 with p ) dr2, and3 4

4.10 d 7 nyk with 1r 2 p q d - k - 1r 2 d ,Ž . Ž . Ž .n 4

we have

y1r4ˆmax u X y u X s o n .Ž . Ž . Ž .n i i p
Ž .igI w
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Ž . Ž . w xb Under Condition 1 with p ) d and Condition 5 with k s p and1 1

1 1
yt4.11 h 7 n , - t - ,Ž . n 4 p 4d1

Ž .we have for the density estimator 2.4 ,

y1r4ˆmax f X y f X s o n .Ž . Ž . Ž .i i p
Ž .igI w

Ž . w xc Under Condition 1 with p ) d q 2 and Condition 5 with k s p and1 1

1 1
yt4.12 h 7 n , - t - ,Ž . n 4 p y 1 4 d q 1Ž . Ž .1

Ž .we have for the estimator 2.5 ,

y1r4ˆmax =f X y =f X s o n .Ž . Ž . Ž .i i p
Ž .igI w

Ž .PROOF. Claim a follows from Step 2 in the proof of Lemma 4.1. Next, it
Ž . Ž .follows from Theorem 3.1.12, claim i , in Prakasa Rao 1983 that

1r2log log nŽ .ˆ ˆsup f x y Ef x s O almost surely as n ª `.Ž . Ž . d 1r2ž /h nxgV n

ˆ p1< Ž . Ž . < Ž .Combining this result with sup Ef x y f x s O h , which is ob-x g V n
tained, under Conditions 1 and 5, by applying the standard Taylor expansion

w Ž .xargument see, e.g., Lemma 1 in Samarov 1993 , and choosing h as inn
Ž . Ž .4.11 , we get the claim b .

Ž . Ž .Applying the proof of claim i of Theorem 3.1.12 from Prakasa Rao 1983
Ž̂ .to the components of the vector =f x , we get

1r2log log nŽ .ˆ ˆsup =f x y E=f x s OŽ . Ž . Ždq1. 1r2ž /4.13Ž . h nxgV n

almost surely as n ª `.
ˆŽ . Ž .Applying the argument of claim b to the components of =f x , we get

ˆ p1y1< Ž . Ž . < Ž . Ž . Ž .sup E=f x y =f x s O h , which, together with 4.13 and 4.12 ,x g V n
Ž .proves claim c . I

ˆ Ž .PROOF OF THEOREM 2.1 FOR b . Setting w s w X , we have1 i i

n1ˆ ˆb y b s w =u X y =u XŽ . Ž .Ž .Ý1 i i in is1

n1
q w =u X y b ,Ž .Ý i in is1

4.14Ž .

Ž .and to prove the asymptotic expansion 2.12 it is sufficient to obtain the
n T ˆŽ . Ž Ž . Ž ..corresponding scalar expansion for 1rn Ý w a =u X y =u X with anis1 i i i
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arbitrary d-vector a. For two positive constants c - c define the event3 4
Ž . � d Ž . d4D X s c nd F N X F c nd . Note that there exist appropriate choicesn i 3 n n i 4 n

� � cŽ .4 4for c and c such that Pr max 1 D X ) 0 converges to3 4 1F iF n, X g suppŽw . n ii

zero at an exponential rate in view of Bernstein inequality, and we therefore
have

n1
T ˆw a =u X y =u XŽ . Ž .Ž .Ý i n i in is1

n1
T y1r2ˆs w a =u X y = X 1 D X q o n .� 4Ž . Ž . Ž . Ž .Ž .Ý i n i i n i pn is1

4.15Ž .

Ž .Applying now Lemma 4.1 to the right-hand side of 4.15 , we have
n1

T ˆw a =u X y =u X 1 D X� 4Ž . Ž . Ž .Ž .Ý i n i i n in is1

n1 wi T y1s A G XŽ .Ý n ind N XŽ .n n iis1

n
U= b d , X y X a y 1 Y F u X , X� 4Ž . Ž .Ý ž /n j i j n j i

js1, j/i

4.16Ž .

< <= 1 X y X F d 1 D X� 4Ž .� 4j i n n i

n1
T y1r2q w A R X 1 D X q o n ,� 4Ž . Ž . Ž .Ý i n i n i pndn is1

Ž . T Ž T . Ž .where the s A vector A s 0, a , 0, . . . , 0 selects in expansion 4.1 the
terms corresponding to the first-order partial derivatives of u .

Ž .It follows from Remark 4.1 that, when d is chosen as in 4.4 ,n

n1
T y1r24.17 w A R X 1 D X s o n .� 4Ž . Ž . Ž . Ž .Ý i n i n i pndn is1

U Ž .We will next replace u X , X in the leading term in the right-hand siden j i
Ž . Ž . Uof 4.16 with u X and will denote the resulting expression U . The errorj n

Ž y1r2 .which results from this replacement is of the order o n in view of thep
Ž .fact that the smallest eigenvalue of G x is bounded away from zero uni-n

Ž . Ž . Ž .formly over x g supp w as n ª `, 2.8 and of the left inequality in 2.9 .
Writing now UU asn

UU s U q J ,n n n

U Ž .where U is obtained from U by replacing N X with its conditionaln n n i
Ž . � Ž .4expectation np X and then dropping 1 D X , we show that J sn i n i n

Ž y1r2 . Ž . Ž .o n . Note first that, using part a of Lemma 4.2 and 4.8 , we havep

1 1
y3r2 y2 d'max w y 1 D X s O n d log n ,� 4Ž . Ž .i n i n½ 5N X np X1FiFn Ž . Ž .n i n i
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almost surely as n ª `. Next, by Bernstein’s inequality
n

< <max b d , X y X a y 1 Y F u X 1 X y X F d 1 D X� 4Ž .� 4� 4Ž . Ž .Ý ž /n j i j j j i n n i
1FiFn js1, j/i

d's O nd log n ,ž /n

< y1Ž . <almost surely as n ª `. Since G x remains uniformly bounded for x gn
Ž . � � cŽ .4 4supp w and Pr max 1 D X ) 0 goes to zero at an expo-1F iF n, X g suppŽw . n ii

Ž . Ž y1r2 .nential rate, we obtain, using also 2.9 , J s o n .n p
Observe now that U is a U-statistic with the kernel dependent on n:n

U s j Z , ZŽ .Ýn n i j
1Fi-jFn

with
Z s X , Y , j Z , Z s h Z , Z q h Z , Z ,Ž . Ž . Ž . Ž .i i i n i j n i j n j i

1 y1Th z , z s w x A np x G x� 4Ž . Ž . Ž . Ž .n 1 2 1 n 1 n 1ndn

< <= b d , x y x a y 1 y F u x 1 x y x F d ,� 4� 4Ž . Ž .Ž .n 2 1 2 2 2 1 n

Ž .where z s x , y , k s 1, 2.k k k
To analyze U , we note first that the standard conditioning argument givesn
Ž . Ž . wEj Z , Z s Eh Z , Z s 0. The usual Hoeffding decomposition of U see,n i j n i j n

Ž .xe.g., Serfling 1980 now gives
n n y 1Ž .2 2 2E U y P s Ej Z , Z y 2 Eg ZŽ . Ž . Ž .Ž .n n n 1 2 n2

4.18Ž .
n n y 1Ž .

2F Ej Z , Z ,Ž .n 1 22
where P is the projection of U ,n n

n

4.19 P s n y 1 g ZŽ . Ž . Ž .Ýn n i
is1

and
4.20 g z s Ej z, Z s Eh Z, z .Ž . Ž . Ž . Ž .n n n

2Ž . Ž . Ž .We evaluate first Ej Z , Z in 4.18 . Conditioning on X , X , we have:n 1 2 1 2

Ej 2 Z , Z F 4Eh 2 Z , ZŽ . Ž .n 1 2 n 1 2

4 22s Ew X a y 1 Y F u X� 4Ž . Ž .Ž .1 2 22 2n dn

2y1T < <= A np X G X b d , X y X 1 X y X F d� 4� 4Ž . Ž . Ž .ž /n 1 n 1 n 2 1 2 1 n4.21Ž .
4a 1 y a 2Ž . y12 Ts Ew X A np X G X b d , X y X� 4Ž . Ž . Ž . Ž .ž /1 n 1 n 1 n 2 12 2n dn

< <= 1 X y X F d .� 42 1 n
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Ž . Ž .Applying 4.8 , the fact that the smallest eigenvalue G x is bounded awayn
Ž .from zero, as n ª `, uniformly over x g supp w , and that each component

Ž . � < < 4 2Ž .of b d , X y X 1 X y X F d is bounded by 1, we get Ej Z , Z sn 2 1 2 1 n n 1 2
Ž 4 dq2 . Ž .O 1rn d , which together with 4.18 impliesn

12E U y P s OŽ .n n 2 dq2ž /n dn

Ž .and, hence, under 2.9 ,

1
4.22 U s P q o .Ž . n n p 1r2ž /n

Ž .To complete the proof, we need to extract from the projection P in 4.19n
the part which is free from n, that is, to show that

n

V s Var n y 1 g ZŽ . Ž .Ýn n iž
is1

4.23Ž . nn y 1Ž .
T y1y a y 1 Y F u X a M X s o n ,� 4Ž . Ž . Ž .Ž .Ý i i i2 /n is1

where

w x f x w x f xŽ . Ž . Ž . Ž .
M x s y= y =f 0, xŽ . Ž .« , X 2ž /f 0, x f 0, xŽ . Ž .« , X « , X

4.24Ž .
= w x f xŽ . Ž .Ž .

s y .
f 0, xŽ .« , X

We have
2n n y 1Ž .

� 4V s Var a y 1 « F 0Ž .n 14 žn

1 y1T= w x A p x G x b d , X y x� 4Ž . Ž . Ž . Ž .H n n n 1dn

t< <=1 X y x F d f x dx y a M X� 4 Ž . Ž .1 n 1 /
4.25Ž .

2n y 1 a 1 y aŽ . Ž .
s 3n

1 y1T= E w x A p x G x b d , X y x� 4Ž . Ž . Ž . Ž .H n n n 1ž dn

2

T< <=1 X y x F d f x dx y a M X .� 4 Ž . Ž .1 n 1 /
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Using now Lemma 4.2 and making a change of variables x s X y td , in1 n
Ž .the integral in 4.25 , we get

1 y1T < <w x A p x G x b d , X y x 1 X y x F d f x dx� 4� 4Ž . Ž . Ž . Ž . Ž .H n n n 1 1 ndn

1 f X y tdŽ .1 ns w X y td K t dtŽ . Ž .H 1 n
dd f 0, X y tdŽ .w xy1, 1n « , X 1 n

f x y td w X y tdŽ . Ž .1 n 1 nyH 2d f 0, X y tdŽ .w xy1, 1 « , X 1 n

4.26Ž .

d
Ž i. g= L t f 0, X y td dt q O d ,Ž . Ž . Ž .Ý i « , X 1 n L n2

is1

Ž . T y1 Ž . Ž . T y1 U y1 Ž . Ž .where K t s A Q b 1, t and L t s A Q Q Q b 1, t . Note that 4.6i i
implies that

4.27 K t bT 1, t dt s AT ,Ž . Ž . Ž .H
dw xy1, 1

Ž .that is, K t is a multivariate kernel of the order k for the first derivative.
Ž . Ž .Similarly, 4.6 and 4.7 imply that

L t bT 1, t dt s AtQy1 QU s a , 0, . . . , 0, c ,Ž . Ž . Ž .H i i i k
d4.28Ž . w xy1, 1

i s 1, . . . , d ,

where a is the ith component of the d-vector a and c is a vector filling ini k
T Ž .the components corresponding to the components of b 1, t with the powers

u w x Ž . Ž .t with u s k. Equation 4.28 means that the functions L t , i s 1, . . . , d,i
are multivariate kernels of the order k y 1.

Ž . Ž .We next expand the multiplier of K t in 4.26 into the first-order Taylor
Ž .expansion and the multipliers of L t into their zero-order Taylor expan-i

Ž g .sions, note that the remainders, in both cases, are of the order O d , andL n2
Ž . Ž . Ž . Ž . Ž .apply 4.27 and 4.28 : 4.23 then follows from 4.25 and 4.26 .

Combining now all of the above results, we obtain the needed expansion
n T ˆŽ . Ž Ž . Ž ..for 1rn Ý w a =u X y =u X with an arbitrary d-vector a:is1 i i i

n1
T ˆw a =u X y =u XŽ . Ž .Ž .Ý i i in is1

n1
T y1r2� 4s a y 1 « F 0 a M X q o n ,Ž . Ž .Ž . .Ý i i pn is1

ˆwhich completes the proof of the Theorem for b . I1
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ˆ ˆPROOF OF THEOREM 2.1 FOR b . This is similar to that for b , and we will2 1
only indicate the differences. We have

n1ˆ ˆb y b s y u X y u X =w q w l XŽ . Ž . Ž .Ž .Ž .Ý2 i i i i in is1

n1 ˆ ˆy u X w l X y l XŽ . Ž . Ž .Ž .Ý i i i in is1

4.29Ž .

n1 = w X f XŽ . Ž .Ž .
y u X =w q w l X q Eu X ,Ž . Ž . Ž .Ž .Ý i i i in f XŽ .is1

Ž .and we need to obtain expansions for the first two sums in 4.29 , which we
will denote by I and I , respectively. To obtain the expansion for I we1 2 1
repeat the arguments given in the proof of Theorem 2.1 with the following
modifications:

Ž . Ž .i w is replaced with the vector =w q w l X .i i i i
Ž . Ž . Tii In 4.16 the factor 1rd is dropped and the vector A is replaced withn

Ž . T Ž . T Ž .the s A -vector a s 1, 0, . . . , 0 and the d-vector a becomes 1, 0, . . . , 0 .
Ž . w x w xiii Lemma 4.1 is applied with k s q instead of k s p and, accord-4

Ž .ingly, q replaces p in 4.5 .4
Ž . Ž .iv The kernel K t becomes here a k-order for the function itself and not

Ž .for its derivative, and only the first term of the expansion in part b of
Ž .Lemma 4.2 is used in 4.26 , so that the kernels L do not appear at all.i

Ž . Ž . Ž .v The function M x in 4.24 here becomes
<M x s =w x q w x l x rf 0 x .Ž . Ž . Ž . Ž . Ž .Ž . « <X

Ž .With these modifications, we obtain, using 2.10 ,
n1 =w X q w X l XŽ . Ž . Ž .i i i� 4I s y a y 1 « F 0Ž .Ý1 i <n f 0 XŽ .« <X i4.30 is1Ž .

q o ny1r2 .Ž .p

Ž .For I we have, using Lemma 4.3 and the assumption 2.11 ,2

n1 ˆI s y u X w =f X y l X f X rf XŽ . Ž . Ž . Ž . Ž .Ž .Ý2 i i i i i in is1

n1 ˆ ˆy u X y u X w l X y l XŽ . Ž . Ž . Ž .Ž . Ž .Ý n i i i i in is1

n1 ˆ ˆy u X w =f X y l X f XŽ . Ž . Ž . Ž .Ž .Ý i i i i in is1

4.31Ž .

ˆ ˆ= f X y f X r f X f XŽ . Ž . Ž . Ž .Ž . Ž .i i i i

n1
y1r2ˆ ˆs y u X w =f X y l X f X rf X q o n .Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ý i i i i i i pn is1
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ˆ ˆŽ . Ž . Ž . Ž . Ž .Plugging into 4.31 the expressions 2.4 and 2.5 for f X and =f X , wei i
˜Ž .see that the leading term in the right-hand side of 4.31 is a U-statistic Un

with the kernel dependent on n:

Ũ s h X , X q h X , X ,˜ ˜Ž . Ž .Ýn n i j n j i
1Fi-jFn

where

u X w 1 X y XŽ .i i j iŽ1.h X , X s y W˜ Ž .n i j d ž /ž h hn n y 1 h f XŽ . Ž . n nn i

X y Xj iyl X W .Ž .i ž / /hn

Ž . Ž .The mean of the kernel m s Eh X , X s Eh X , X is˜ ˜n n 1 2 n 2 1

˜m s EE h X , X ¬ XŽ .Ž .n n 1 2 1

u X w XŽ . Ž .1 1s E dn n y 1 h f XŽ . Ž .n 1

1 X y X X y X2 1 2 1Ž1.= E W y l X W XŽ .1 1ž / ž /ž /ž /h h hn n n

4.32Ž .

u X w X 1Ž . Ž .1 1 Ž1.s E W t y l X W tŽ . Ž . Ž .H 1ž /dn n y 1 f X hŽ . Ž . w xy1, 11 n

=f X q t h dt.Ž .1 n

wUsing now the usual Taylor expansion argument see, e.g., Lemma 1 in
Ž .x Ž . Ž .Samarov 1993 and Conditions 1 and 5 , we obtain

h py1
n

4.33 m s O .Ž . n ž /n n y 1Ž .
˜The projection of U isn

n
˜4.34 P s n y 1 g X y 2m ,Ž . Ž . Ž .Ž .˜Ýn n i n

is1

Ž . Ž . Ž . Ž .with g x s Eh x, X q Eh X, x . Repeating the argument given in 4.32˜ ˜ ˜n n n
Ž . Ž . Ž py1 Ž Ž ...and 4.33 , we get for the first term Eh x, X s O h r n n y 1 uni-˜n n

Ž .formly over x g supp w , while its second term is

1
Eh X, x s yŽ .˜n dn n y 1 hŽ . n

=
u X w X 1 x y X x y XŽ . Ž .

Ž1.E W y l X .Ž .ž / ž /ž /ž /f X h h hŽ . n n n
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Relying here again on the same Taylor expansion and higher order kernel
Ž . Ž . Ž . Ž . Ž . Ž .argument as in 4.32 and 4.33 and using Conditions 1 , 2 , 4 and 5 , we

Ž . Ž .obtain from 4.34 , using again 4.33 ,
n1

py1˜4.35 P s = w X u X q w X u X l X q O h .Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž . Ž .Ýn i i i i i p nn is1

Ž . Ž .As in the cases 4.18 ] 4.21 , we have

2˜ ˜E U y Pž /n n

2
n2F 2n n y 1 Eh X , X q mŽ . Ž .˜n 1 2 nž /ž /2

2
u X w X 1Ž . Ž .1 1s E 2 dž /f X n n y 1 hŽ . Ž .1 n

2
1 x y X x y X1 1Ž1.= W y l X W f x dxŽ . Ž .H 1ž / ž /ž /h h hn n n

qO h2Ž py1.Ž .n
4.36Ž .

2
1 u X w XŽ . Ž .1 1F Ed ž /f Xn n y 1 h Ž .Ž . 1n

21
Ž1.= W t y l X W t f X q t h dtŽ . Ž . Ž . Ž .H 1 1 nž /d hw xy1, 1 n

qO h2Ž py1.Ž .n

1
2Ž py1.s O q O h .Ž .n2 dq2ž /n hn

Ž . Ž . Ž .Choosing now h as in 2.11 , we obtain, combining 4.31 through 4.36 ,n

n1
y1r2I s = w X u X q w X u X l X q o n ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ý2 i i i i i pn is1

Ž . Ž .which together with 4.29 and 4.30 completes the proof of Theorem 2.1 for
b̂ . I2
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