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Ž .Undirected graphs and acyclic digraphs ADG’s , as well as their
mutual extension to chain graphs, are widely used to describe dependen-
cies among variables in multivariate distributions. In particular, the
likelihood functions of ADG models admit convenient recursive factoriza-
tions that often allow explicit maximum likelihood estimates and that are
well suited to building Bayesian networks for expert systems. Whereas
the undirected graph associated with a dependence model is uniquely
determined, there may be many ADG’s that determine the same depen-

Ž .dence i.e., Markov model. Thus, the family of all ADG’s with a given set
of vertices is naturally partitioned into Markov-equivalence classes, each
class being associated with a unique statistical model. Statistical proce-
dures, such as model selection or model averaging, that fail to take into
account these equivalence classes may incur substantial computational or
other inefficiencies. Here it is shown that each Markov-equivalence class
is uniquely determined by a single chain graph, the essential graph, that
is itself simultaneously Markov equivalent to all ADG’s in the equivalence
class. Essential graphs are characterized, a polynomial-time algorithm for
their construction is given, and their applications to model selection and
other statistical questions are described.

1. Introduction. The use of directed graphs to represent possible depen-
Ž .dencies among statistical variables dates back to Wright 1921 and has

generated considerable research activity in the social and natural sciences.
Since 1980, particular attention has been directed to graphical Markov
models specified by conditional independence relations among the variables,
that is, by the Markov properties determined by the graph. Both directed and
undirected graphs have found extensive applications, the latter in such areas

Ž .as spatial statistics and image analysis. Recent books by Whittaker 1990
Ž .and Lauritzen 1996 conveniently summarize the statistical perspective on

these developments.
Ž .Graphical Markov models determined by acyclic directed graphs ADG’s

admit especially simple statistical analyses. In particular, ADG models admit
convenient recursive factorizations of their joint probability density functions
w Ž .xLauritzen, Dawid, Larson and Leimer 1990 , provide an elegant framework
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w Ž .xfor Bayesian analysis Spiegelhalter and Lauritzen 1990 and, in expert
wsystem applications, allow simple causal interpretations Lauritzen and

Ž .xSpiegelhalter 1988 . In the multinomial and multivariate normal cases, the
Žlikelihood function i.e., both the joint probability density function and the

.parameter space factorizes and admits explicit maximum likelihood esti-
w Ž .mates, which exist with probability 1 Lauritzen 1996 , Andersson and

Ž .x Ž .Perlman 1996 . Furthermore, the only undirected graphical UDG models
with these properties are the decomposable models, that is, the UDG models

wthat have the same Markov properties as ADG models Dawid and
Ž . Ž .xLauritzen 1993 , Andersson, Madigan and Perlman 1996 .

For these reasons, ADG models have become popular across an extraordi-
nary range of applications; see, for example, Lauritzen and Spiegelhalter
Ž . Ž . Ž . Ž .1988 , Pearl 1988 , Neapolitan 1990 , Spiegelhalter and Lauritzen 1990 ,

Ž .Spiegelhalter, Dawid, Lauritzen and Cowell 1993 , Madigan and Raftery
Ž . Ž .1994 and York, Madigan, Heuch and Lie 1995 . Indeed, the vibrant ‘‘uncer-

Ž .tainty in artificial intelligence’’ UAI community focuses much of its effort on
ADG models.

Much of this applied work has adopted a Bayesian perspective: experts
specify a prior distribution on competing ADG models. These prior distribu-

Ž .tions are combined with likelihoods typically integrated over parameters to
give posterior model probabilities. Model selection algorithms then seek out
the ADG models with highest posterior probability, and subsequent inference

wproceeds conditionally on these selected models Cooper and Herskovits
Ž . Ž . Ž .1990 , Buntine 1994 , Spiegelhalter, Dawid, Lauritzen, and Cowell 1993 ,

Ž . Ž .xHeckerman, Geiger and Chickering 1994 , Madigan and Raftery 1994 .
Non-Bayesian model selection methods proceed in a similar manner, replac-
ing posterior model probabilities by, for example, penalized maximum likeli-

w Ž .xhoods Chickering 1995 .
Ž .Heckerman, Geiger and Chickering 1994 highlighted a fundamental

problem with this general approach. Because several different ADG’s may
determine the same statistical model, that is, may determine the same set of
conditional independence restrictions among a given set of random variates,
the collection of all possible ADG’s for these variates naturally coalesces into
one or more classes of Markov-equivalent ADG’s, where all ADG’s within a
Markov-equivalence class determine the same statistical model. Model selec-
tion algorithms that ignore these equivalence classes face three main diffi-
culties.

1. Repeating analyses for equivalent ADG’s leads to significant computa-
tional inefficiencies.

2. Ensuring that equivalent ADG’s have equal posterior probabilities imposes
severe constraints on prior distributions.

3. Weighting individual ADG’s in Bayesian model averaging procedures to
achieve specified weights for all Markov-equivalence classes is impractical
without an explicit representation of these classes.
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Treating each Markov-equivalence class as a single model would overcome
Ž .these difficulties. As Heckerman, Geiger and Chickering 1994 have pointed

out, however, a tractable characterization of these equivalence classes has
not been available. In the present paper we show that for every ADG D, the

w xequivalence class D can be uniquely represented by a certain Markov-
equivalent chain graph DU1, the essential graph associated with the equiva-
lence class.2 Furthermore, we present an explicit characterization of those
graphs G such that G s DU for some ADG D, then we apply this characteri-
zation to obtain a polynomial-time algorithm for constructing DU from D.
This characterization and construction lead to more efficient model selection
and model averaging procedures for ADG models, based on essential graphs.
Such procedures are discussed briefly in Section 7 and at greater length in

Ž .Madigan, Andersson, Perlman and Volinsky 1996 .
We suggest, therefore, that graphical modelers, both Bayesian and non-

Bayesian, may wish to focus their attention on the class of essential graphs
rather than ADG’s.

Some basic definitions, terminology and results concerning graphs, graphi-
cal Markov models and their Markov equivalence are summarized in Appen-
dices A and B, which the reader might review first. In Section 2 the essential
graph DU associated with an ADG D is formally defined and illustrated.
Section 3 introduces the notions of irreversible, protected, and strongly
protected arrows and relates these to the essential arrows of D, that is, the
arrows of DU.

In Section 4 we show first that DU is a chain graph, each of whose chain
Ž . X w xcomponents induces a chordal UDG Proposition 4.1 . Every D g D can be

U Ž .recovered from D by orienting the edges of each chordal chain component
U Ž . Uof D in all possible ‘‘perfect’’ ways Proposition 4.2 . The chain graph D is

Ž .itself Markov equivalent to D Proposition 4.3 .
Theorem 4.1, the main result of Section 4, applies Proposition 4.1 to obtain

an explicit characterization of those graphs G that can occur as the essential
graph DU for some ADG D. Corollaries 4.1 and 4.2 characterize those UDGs
and digraphs that can occur as essential graphs DU for some ADG D. These
results in turn lead to Proposition 4.5, which can be applied to establish the
irreducibility of certain Markov chains used for Monte Carlo search proce-

Ž .dures over the space of essential graphs see Section 7 .
A polynomial-time algorithm for constructing DU from D is presented in

Section 5.3 The validity of our algorithm is established in Theorem 5.1 by
means of our characterization of essential graphs. In Section 6 we exhibit all
essential graphs on four or fewer vertices and note that the number of
essential graphs is substantially smaller than the number of ADG’s.

In Section 7 we indicate how the Markov-equivalence classes and their
associated essential graphs can be used to overcome the three difficulties
listed above that complicate model selection and model averaging for ADG
models. We also briefly discuss model-search procedures based on equivalence
classes and essential graphs.
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Markov dependence models determined by chain graphs recently were
Ž .introduced and developed by Frydenberg and Lauritzen 1989 , Lauritzen

Ž . Ž .and Wermuth 1989 and Frydenberg 1990 ; also see Andersson, Madigan
Ž .and Perlman 1996 . The introduction of chain graphs followed earlier work

Ž . Ž .in this direction by Goodman 1973 , Asmussen and Edwards 1983 and
Ž .Kiiveri, Speed and Carlin 1984 . Chain graphs provide much of the focus for

current research on modeling statistical dependence; see, for example,
Ž . Ž .Wermuth and Lauritzen 1990 and Cox and Wermuth 1993, 1996 . The fact

that the essential graph DU associated with an ADG D is a chain graph that
is Markov equivalent to D allows us to conduct statistical inference in the
space of essential graphs, rather than in the larger space of individual ADG’s;

Ž .see Section 7, especially 7.2 .

2. Markov equivalence of acyclic digraphs: the essential graph DU.
Our development begins with a well-known graph-theoretic criterion for the
Markov equivalence of ADG’s, given in Theorem 2.1. This was discovered by

wŽ Ž . xVerma and Pearl 1990, Theorem 1; 1992 , Corollary 3.2 and, indepen-
wŽ . xdently, by Frydenberg 1990 , Theorem 5.6 for the more general class of

wŽ .chain graphs; also see Andersson, Madigan and Perlman 1996 , Theorem
x3.1 . Frydenberg’s result is stated as Theorem B.1 of our Appendix B. For

completeness, in Appendix B we also present a direct proof of Theorem 2.1,
different from that of Verma and Pearl.

THEOREM 2.1. Two ADG’s are Markov equivalent if and only if they have
Ž .the same skeleton and the same immoralities see Figure 1 .

We say that two ADG’s D and D are graphically equivalent, and write1 2
D ; D , if they have the same skeleton and the same immoralities. By1 2
Theorem 2.1, D and D are Markov equivalent if and only if they are1 2
graphically equivalent; thus we shall use the term equivalent for both

w xnotions. The equivalence class containing D is denoted by D .
While Theorem 2.1 provides a practical criterion for deciding whether two

given ADG’s are Markov equivalent, it does not directly yield a characteriza-
w xtion of the entire equivalence class D for a given ADG D. Consider, for

example, the following question regarding the nontransitive ADG D in1
w x wFigure 2: does D contain a transitive ADG? For the statistical relevance of1

b b b b

6 6 6 6
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Ž .FIG. 1. The four ADG’s with the same skeleton as D and the immorality b, d, c . The ADG’s1
D , D , and D have no other immoralities, hence are Markov equivalent by Theorem 2.1. The1 2 3

Ž .ADG D has the additional immorality b, a, c , hence is not Markov equivalent to the others.4
w x � 4Thus, D s D , D , D .1 1 2 3
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3 Ž .FIG. 2. The 2 s 8 possible digraphs with the same skeleton as D and the immorality b, d, c .1
Of these 8, D , D , and D are not acyclic, while D and D are acyclic but possess the additional5 6 7 4 8

Ž . w x � 4immorality b, a, c , so D s D , D , D .1 1 2 3

Ž . xthis question, see Andersson, Madigan, Perlman and Triggs 1995 . Theorem
2.1 does not allow us to answer this question by direct inspection of D ;1

w xinstead, we must first determine all members of D , then check each1
Ž .member for transitivity, as follows. Since b, d, c is an immorality in D , the1

arrows b ª d and c ª d are essential in D , that is, these arrows must1
w xoccur in each member of D . The other three edges of D can be oriented in1 1

23 s 8 possible ways, as shown in Figure 2; of these eight digraphs, only five
Ž .are acyclic, and of these five, only three D , D , D possess the same1 2 3

w x � 4 w ximmorality as D and no other. Thus, D s D , D , D ; hence D does1 1 1 2 3 1
contain a transitive ADG, namely D .3

Since the number of possible orientations of all arrows that do not partici-
pate in any immorality of an ADG D grows exponentially with the number of
such arrows, hence superexponentially with the number of vertices, determi-

w xnation of the equivalence class D by exhaustive enumeration of possibili-
ties, as in the preceding example, rapidly becomes computationally infeasible
as the size of D increases. A closer examination of this example reveals,

w xhowever, that the arrow a ª d occurs in every member of D , hence is an1
essential arrow of D even though it is not involved in any immorality of D .1 1
Had we been able to identify all three essential arrows of D directly from D1 1
itself, it would not have been necessary to consider D ]D in order to5 8

w x w xdetermine D . On the other hand, it appears necessary to determine D1 1
before we can identify the essential arrows of D .1

Fortunately, this is not the case. A main purpose of the present paper is to
Ž .develop a polynomial-time algorithm Section 5 for determining all essential

arrows of an ADG D. This is done by introducing and characterizing the
essential graph DU associated with D. Furthermore, questions such as the

w xexistence of a transitive member of D can be answered by a polynomial-time
U w xinspection of D itself, without the need for an exhaustive search of D

w Ž .xAndersson, Madigan, Perlman and Triggs 1996 .
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DEFINITION 2.1. The essential graph DU associated with D is the graph

U X < XD [ D D D ; D ,Ž .
U X w xthat is, D is the smallest graph larger than every D g D .

Thus, DU is the graph with the same skeleton as D, but where an edge is
U Ž .directed in D iff it occurs as a directed edge that is, arrow with the same

X w x U Žorientation in every D g D ; all other edges of D are undirected. See
. Ž . UFigure 3 for examples. The directed edges that is, arrows in D are called

the essential arrows of D. Clearly, every arrow that participates in an
immorality in D is essential, but D may contain other essential arrows as
well, for example, the arrow a ª d in the second graph in Figure 3 and the

Ž . 4arrows a ª d and b ª d verify in the third graph in Figure 3. We will
U Ž .show that D is a chain graph Proposition 4.1 that is itself Markov

Ž . Uequivalent to D Proposition 4.3 , so that D contains the same statistical
5 Ž Uinformation as D. Note that D and D have the same skeleton and

U U .immoralities, so that D ; D iff D s D . The complete characterization of1 2 1 2
essential graphs in Theorem 4.1 involves further restrictions on the configu-

Ž .rations of arrows and lines equivalent to undirected edges that can occur
in DU.

3. First characterization of the essential arrows of D. By Defini-
tion 2.1, an arrow a ª b in an ADG D is essential iff a ª b g DX for each

X w xD g D . Proposition 3.1 shows that, in addition, a ª b must be protected in
X w x Xeach D g D , that is, must occur in each D in at least one of the three

Ž . Ž . Ž .configurations a , b and c shown after Definition 3.2.
To begin, note that an essential arrow a ª b must be irreversible in D.

DEFINITION 3.1. Let G be a chain graph. An arrow a ª b g G is irre-
versible in G if changing a ª b to a ¤ b either creates or destroys an
immorality or creates a directed cycle.

To determine whether an arrow a ª b is irreversible in G according to
Definition 3.1, global knowledge of G is required, since directed cycles of
arbitrary length must be considered. For a characterization of irreversibility
to be computationally feasible, however, it must be local, that is, must only
require consideration of directed cycles of bounded length. For an ADG D,

6

bc

6

b b

6 6

6

6 6

a a d a dd6 6

c c

FIG. 3. Three examples of essential graphs DU. In the first example, D is the ADG D of Figure 1.1
U ŽIn the second example, D is the ADG D of Figure 2. In the third example, D s D see Corollary1

.4.2 .
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Ž .Lemma 3.1 i shows that in fact only directed cycles of length 3 need be
considered. The following definition is required.

DEFINITION 3.2. Let G be a graph. An arrow a ª b g G is protected in G
Ž . Ž . � 4if pa a / pa b _ a .G G

It is easy to see that a ª b is protected in G if and only if a ª b occurs in
at least one of the following six configurations as an induced subgraph of G.

6 6 6

a : a b a9 : a b a0 : a bŽ . Ž . Ž .6 6 6

6

c c c6 6 6

b : a b c : a b d9 : a bŽ . Ž . Ž .6

6

66

ccc

Ž . Ž . Ž . Ž X .If G is a chain graph, then only a , b , c or d can occur; if G ' D is an
Ž . Ž . Ž .ADG, then only a , b or c can occur. For a general graph G, a ª b is

Ž .protected in G iff a ª b is protected in the directed graph D G obtained by
Ž . w Ž . Ž .xdeleting all undirected edges lines in G since pa a s pa a .G DŽG .

The arrow a ª b is irreversible in a chain graph G if and only if either
Ž . Ž .a ª b occurs in configuration a or b as an induced subgraph of G or else

a ª b blocks some directed cycle in G. If a ª b is protected in a chain graph
G, then clearly it is irreversible in G. If G ' D is an ADG, then the converse
is also true.

LEMMA 3.1. Let D be an ADG.

Ž .i An arrow a ª b is irreversible in D if and only if it is protected in D.
Ž . Xii An arrow a ª b is reversible in D if and only if the digraph D

obtained from D by replacing a ª b by a ¤ b is acyclic and DX ; D.

Ž .PROOF. i Suppose that a ª b is irreversible in D by virtue of blocking
some directed cycle in D:

6

a b .6

6 c

If no edge a ??? c is present in D then a ª b already occurs in configuration
Ž .b as an induced subgraph of D. If an edge a ??? c is present in D then either

6 6

a b or a b6

6

6 6

6 6c c

occurs in D. The first case is impossible since it contains a directed cycle.
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Ž .Thus the second must hold, so a ª b occurs in configuration c in D. Thus
a ª b is protected in D.

Ž .ii This assertion is immediate. I

Ž .Lemma 3.1 i is not true for a general chain graph G; the following chain
graph provides a counterexample:

6

a b

6

d.c

PROPOSITION 3.1. Let D be an ADG. An essential arrow a ª b of D is
X w xprotected in every D g D .

PROOF. If a ª b is an essential arrow of D then clearly a ª b is irre-
X w x Ž .versible in every D g D ; hence, by Lemma 3.1 i , a ª b is protected in

X w xevery D g D . I

In Proposition 3.1, it is possible a priori that the third vertex c in the
Ž . Ž . Ž .protecting configuration a , b or c for the essential arrow a ª b g D may

X Ž X.vary with D , that is, c s c D . In fact this is not the case, but the notion of
‘‘protected’’ must be extended.

DEFINITION 3.3. Let G be a graph. An arrow a ª b g G is strongly
protected in G if a ª b occurs in at least one of the following four configura-
tions as an induced subgraph of G:

c1
66 6 6 6

a : a b b : a b c : a b d : a b c / c .Ž . Ž . Ž . Ž . Ž .1 26 6

6

66

c2c cc

Ž . Ž X.Since d « d , ‘‘strongly protected’’ implies ‘‘protected’’, while if G ' D is
an ADG, then ‘‘strongly protected’’ is equivalent to ‘‘protected.’’ For a chain
graph G, the definition of ‘‘strongly protected’’ differs from ‘‘protected’’ only in

Ž . Ž X.that d replaces d , but this difference is significant: by Theorem 4.1, every
U U Žessential graph D must be a chain graph and every arrow in D i.e., every

. U Žessential arrow of D must be strongly protected in D see the examples in
.Figure 3 . This characterization provides the basis for the polynomial-time

U Ž .algorithm in Section 5 for constructing D from D. Also see Remark 5.1.
ŽIn Corollary 4.2, it is shown that every arrow of an ADG D is essential i.e.,

U .D s D if and only if every arrow of D is protected in D. The third graph in
Figure 3 provides an example.
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The final lemma will be needed for the proof of Theorem 2.1 in Appendix B.

LEMMA 3.2. Let D, DX be two ADG’s such that D ; DX but D / DX. Then
X w xthere exists a finite sequence D ' D , . . . , D ' D such that each D g D1 k i

and each consecutive pair D , D differ in exactly one edge.i iq1

PROOF. By the definition of equivalence, D and DX have the same vertex
� 4set V and the same skeleton. Let F [ a ª b , . . . , a ª b / B denote the1 1 n n

set of edges in D that occur with the opposite orientation in DX. By Lemma
Ž .3.1 ii and induction, it suffices to show that at least one a ª b is reversiblei i

in D.
Suppose, to the contrary, that each a ª b g F is irreversible in D, hence

Ž . U � 4by Lemma 3.1 i is protected in D. Let b be a minimal element of b , . . . , b1 n
Ž .with respect to the partial ordering V, F determined by the ADG D: a F b

if and only if a s b or there exists a path from a to b in D. Let aU be a
� < U 4 U U U Umaximal element of a g V a ª b g F . Since a ª b g F, a ª b cannot

occur in an immorality in D. Thus, because aU ª bU is protected in D,
U U Ž .a ª b g F must occur in D either in configuration a as an induced

U Ž .subgraph of D with c ª a g F, or else in configuration c with either
aU ª c g F or c ª bU g F. But the first two possibilities violate the minimal-
ity of bU, while the third violates the maximality of aU. This completes the
proof. I

4. Characterization of the essential graph DU. Theorem 4.1, the
main result of this section, gives necessary and sufficient conditions for a

Ž . Ugraph G ' V, E to be the essential graph D for some ADG D. We begin by
Žshowing that such a G must be a chain graph. Most proofs are deferred to

.the end of this section.
UU X w xLet D denote the smallest chain graph larger than every D g D . That

is, DUU is the graph obtained from DU by converting to undirected edges
Ž . Uthat is, lines all those directed edges in D that participate in a directed
cycle in DU. Note that this can be done in a single step: suppose that the
arrow a ª b occurs in a directed cycle in DU and that, after converting
a ª b into a line, a second arrow c ª d g DU now becomes part of a directed
cycle:

6b d66

6 6 ca

Ž .possibly a s c or b s d . Then c ª d was already part of a directed cycle in
DU before a ª b was converted to a line.

Clearly D : DU : DUU. In fact, the second inclusion is an equality.
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Ž . U UU UPROPOSITION 4.1. i D s D , hence D is a chain graph.
Ž . Ž U . Ž U .ii For each chain component t g T D , the induced UDG D ist

chordal.

X w x UNext, every ADG D g D can be recovered from the essential graph D .

PROPOSITION 4.2. A digraph DX is acyclic and equivalent to the ADG D if
X U Ž .and only if D is obtained from D by orienting the edges of each chordal

Ž U . Uchain component D of D in any perfect way.t

PROPOSITION 4.3. Let D be an ADG and DU its essential graph. Then D
and DU are Markov equivalent.

Ž U . Ž .THEOREM 4.1 Characterization of D . A graph G ' V, E is equal to
DU for some ADG D if and only if G satisfies the following four conditions.

Ž .i G is a chain graph.
Ž .ii For every chain component t of G, G is chordal.t

Ž .iii The configuration a ª b c does not occur as an induced subgraph
of G.

Ž .iv Every arrow a ª b g G is strongly protected in G.

Since both UDG’s and ADG’s are chain graphs, Theorem 4.1 immediately
yields the following two corollaries.

COROLLARY 4.1. Let G be a UDG. Then G s DU for some ADG D if and
only if G is chordal.

COROLLARY 4.2. Let G be a digraph. Then G s DU for some ADG D if and
only if G is an ADG and every arrow of G is protected in G; in this case
G s D s DU.

PROOF. Apply Theorem 4.1 and the fact that an arrow is protected in an
ŽADG if and only if it is strongly protected in the ADG. Note that the chain

.components of an ADG are just its vertices, hence trivially are chordal.

The following is an example of an ADG D such that D s DU :

6

a b6

66

cd

Clearly, each arrow of D is protected in D.
Ž .Let G ' V, E be a chain graph. An arrow a ª b is an initial arrow of G

� X < X 4if a is minimal in a g V ' b g V 2 a ª b g E with respect to the pre-
Ž .ordering V, F determined by G. Note that G has no initial arrows iff G is a
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Ž .UDG. Clearly an initial arrow a ª b cannot occur in configuration a in G,
so, if G s DU for some ADG D, then Theorem 4.1 implies that a ª b must

Ž . Ž . Ž . Uoccur in configuration b , c or d as an induced subgraph of G. Because D
is determined by the immoralities of D, one might speculate that in this case,

Ž . Ž .every initial arrow of G must in fact occur in configuration b or d as an
induced subgraph of G, but this is not true in general: consider the initial

Ž . Uarrow a ª b of the chain graph in fact, ADG G ' D ' D in the figure in
the preceding paragraph. It is almost true, however, as seen by the following
result, which provides a useful necessary condition for determining whether a
given graph G is an essential graph.

PROPOSITION 4.4. Suppose that G s DU for some ADG D. For every initial
arrow a ª b of G, there exists a vertex c g V such that a ª c is also an initial

Ž . Ž .arrow of G and a ª c occurs in configuration b or d as an induced
subgraph of G.

Ž U .COROLLARY 4.3. An ADG D has no essential arrows i.e., D is a UDG if
and only if D has no immoralities.

U Ž . Ž .PROOF. If D is moral then so is D , hence configurations b and d
cannot occur in DU. Proposition 4.4 implies that DU has no initial arrows,
hence DU is a UDG. The converse is trivial. I

REMARK 4.1. An initial arrow in DU need not be initial in D, or vice
versa. Consider the following ADG D:

6 6

d a b6

c .

Then a ª b is initial in the associated essential graph DU :

6

d a b6

c

but not in D, whereas d ª a is initial in D but does not occur in DU.

The final result of this section can be applied to establish the irreducibility
of certain Markov chains used for Monte Carlo search algorithms over the
space of essential graphs; see Section 7.

PROPOSITION 4.5. Let G and H be two essential graphs with the same
vertex set V. Then there exists a finite sequence G ' G , . . . , G ' H of es-1 k
sential graphs with vertex set V such that each consecutive pair G , G dif-i iq1
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Ž . Ž .fer by either i exactly one line a b, or ii exactly one arrow a ª b, or
Ž .iii exactly two arrows that form an immorality: a ª b ¤ c.

We turn to the proofs. The proof of Proposition 4.1 requires the following
five facts.

FACT 1. The configuration a ª b c cannot occur as an induced sub-
graph of DU.

U ŽPROOF. If a ª b c occurs as an induced subgraph in D requiring
.that a and c are not linked , then a ª b ¤ c must occur as an immorality

in some DX ; D, hence b ¤ c must be an essential arrow, contradicting
Ub c g D . I

6 U w xFACT 2. If a b occurs in D , then there exist D , D g D such that1 2

c6 6

a b occurs in D and a b occurs in D .1 2

6 6

6

6

c c

X w xPROOF. Any D g D must contain either

6 6 6

1 : a b or 2 : a b or 3 : a bŽ . Ž . Ž .

6

6

66

6 6

.c c c

Ž . X w x UIf 1 were to occur in no D g D , then necessarily c ª b g D , contradict-
Ž . w x Ž .ing the hypothesis. Thus 1 must occur in some D g D . Similarly, 2 must1

w xoccur in some D g D . I2

UU Ž U .FACT 3. D has the same immoralities as D hence, as D .

PROOF. Recall that DUU is obtained by converting all arrows that occur in
directed cycles in DU into lines. It is evident that DU has the same immorali-
ties as D. Since DU : DUU, DUU can have the same or fewer immoralities
than DU. We shall show it impossible that an immorality a ª b ¤ c occurs in

U UUD while a b g D .
If this were to happen, then a ª b would be part of a directed cycle

Ž . Ua, b ' b , b , . . . , b ' a in D , where k G 2 and where each edge b ??? b0 1 k iy1 i
Žin the cycle occurs as either b b or b ª b , 1 F i F k. In particular,iy1 i iy1 i

.b / a, c. See the figure:1

6

6b ' a b ' b c .k 0

6

b

6

1
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U w xCase 1. Suppose that b b g D . Then there exist ADG’s D , D g D1 1 2
such that b ª b g D and b ¤ b g D . Since neither a ª b ¤ b nor1 1 1 2 1
b ª b ¤ c can occur as an immorality in D , there must be edges a ??? b1 1 1
and c ??? b in D . To avoid a cycle, necessarily a ª b g D and c ª b g D ,1 1 1 2 1 2
so a ª b ¤ c forms an immorality in D , hence also in DU. Thus we have a1 2

Ž . Ushorter directed cycle a, b , . . . , b ' a in D such that the immorality1 k
U UUa ª b ¤ c occurs in D but a b g D .1 1

Case 2. Suppose that b ª b g DU. Since D contains no directed cycles, at1
Ž .least one edge in the cycle a, b ' b , b , . . . , b ' a must be undirected in0 1 k

U UD . Consider the smallest i such that b b g D . This i satisfiesiy1 i
U2 F i F k and b ª b b occurs in D . By Fact 1, there must be aniy2 iy1 i

U U X w xedge b ??? b in D . But b ¤ b f D , since there is some ADG D g Diy2 i iy2 i
containing b ª b that consequently would contain a directed triangle.iy1 i

U UTherefore, either b b g D or b ª b g D , again producing aiy2 i iy2 i
Ž . Ushorter directed cycle a, b , . . . , b , b , . . . , b ' a in D such that the0 iy2 i k

U UUimmorality a ª b ¤ c occurs in D but a b g D .0 0
Thus, Cases 1 and 2 together allow us to proceed by induction to reduce to

the case where the immorality a ª b ¤ c occurs in DU but a ª b occurs in a
Ž . U Ž .directed triangle a, b, d in D necessarily, d / c . The only type of directed

Ž . Utriangle a, b, d in D that does not imply the contradictory existence of an
X w x Ž . XADG D g D such that a, b, d comprises a directed triangle in D is

pictured here:

66

a b c

.d
w xBy Fact 2, there exist ADG’s D , D g D with a ª d, b ª d in D and1 2 1

Ža ¤ d, b ¤ d in D . Thus there must be an edge c ??? d in D . Otherwise2 2
d ª b ¤ c would form an immorality in D , forcing d ª b g DU, contradict-2

U .ing the occurrence of the undirected edge d b in D . Since the edge
c ??? d must be present in D also, it must be oriented there as c ª d1
w Ž . xotherwise c, b, d would form a directed triangle . Thus the configuration

66

a b c

6 66
d

must occur in D . This produces the immorality a ª d ¤ c in D , forcing1 1
a ª d g DU, contradicting the occurrence of a}d in DU. This establishes
Fact 3. I

FACT 4. DU and DUU have no undirected chordless k-cycles, k G 4.

PROOF. If an undirected chordless k-cycle, k G 4, occurs in DU or in DUU,
then D must have at least one immorality in this cycle. This immorality must
also occur in DU, hence, by Fact 3, also in DUU, contradicting the assumption
that the cycle is undirected. I
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FACT 5. The configuration a ª b c cannot occur as an induced sub-
UU Ž .graph of D i.e., a and c are not linked .

UUPROOF. Suppose that a ª b c occurs as an induced subgraph in D .
U X X w x XThen a ª b g D and hence a ª b g D for all D g D . Thus b ¤ c f D

X w x Ž Xfor all D g D otherwise a ª b ¤ c forms an immorality in D , hence in
UU . X w xD by Fact 3 , so a ª b ª c occurs as an induced subgraph in all D g D ,

U Žhence also in D . Therefore b ª c must be part of a directed cycle b, c '
. U Ž .c , c , . . . , c ' b in D see the following figure , k G 2, where, for 1 F i F k,0 1 k

Ž .the edge c ??? c is either c c or c ª c . Note that c / a, b.iy1 i iy1 i iy1 i 166

a b ' c c ' ck 0

6

c

6

1

U w xCase 1. Suppose that c c g D . Then there exist ADG’s D , D g D1 1 2
such that c ª c g D and c ¤ c g D . Therefore there must be an edge1 1 1 2

Ž .b ??? c in D else c ¤ c participates in an immorality , hence also in D1 2 1 1
and DU. To avoid a directed cycle, this edge must appear as b ª c in D . If1 1

w Ž .there were an edge a ??? c in D , it must be a ª c otherwise a, b, c1 1 1 1
xwould comprise a directed triangle in D , which would imply the immorality1

Ua ª c ¤ c in D , contradicting c c g D . Thus, there is no edge connect-1 1 1
ing a and c in D , hence none in DU. Therefore the edge b ??? c cannot1 1 1

U Ž . Ž .occur in D as b c by Fact 1 or as b ¤ c since b ª c g D , hence1 1 1 1
b ª c g DU. Thus a ª b ª c also occurs as an induced subgraph in DU, so1 1

Ž . Ub ª c occurs in a shorter directed cycle b, c , . . . , c ' b in D .1 1 k
Case 2. Suppose that c ª c g DU. Consider the smallest i G 2 such that1

U Uc c g D . Thus c ª c c occurs in D , so by Fact 1, thereiy1 i iy2 iy1 i
U Umust be an edge c ??? c in D . As in Case 2 of Fact 3, either c c g Diy2 i iy2 i

or c ª c g DU. Thus a ª b ª c occurs as an induced subgraph in DU,iy2 i 0
Ž .hence b ª c occurs in a shorter directed cycle b, c , . . . , c , c , . . . , c ' b0 0 iy2 i k

in DU.
Cases 1 and 2 together allow us to proceed by induction to reduce to the

situation where a ª b ª c occurs as an induced subgraph in DU but b ª c
Ž . Uparticipates in a directed triangle b, c, d in D :

66

a b c6

6

d
Ž . Unecessarily, d / a . The only such directed triangle in D that does not

X w x Ž .imply the existence of an ADG D g D , such that b, c, d comprises a
directed triangle in DX, is pictured here:

66

a b c

.d
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w xBy Fact 2, there exist ADG’s D , D g D with b ª d ¤ c in D and1 2 1
Žb ¤ d ª c in D . Thus there must be an edge a ??? d in D otherwise2 2

a ª b ¤ d would form an immorality in D , forcing b ¤ d g DU, contradict-2
U .ing the occurrence of the undirected edge b d g D . The edge a ??? d also

Ž .must be present in D , where it must be oriented as a ª d so that a, b, d1
does not form a directed triangle. Thus the configuration66

a b c

6 66
d

must occur in D . This produces the immorality a ª d ¤ c in D , forcing1 1
Ud ¤ c g D , contradicting the occurrence of the undirected edge d c in

DU. Fact 5 is proved. I

Ž . U UUPROOF OF PROPOSITION 4.1. i We know that D : D . To show that
DU s DUU, it suffices to show that if an undirected edge a}b g DUU, then
also a}b g DU.

UU UUŽ .Let t be the unique chain component of D such that a b g D .t

Ž UU . Ž . Ž UU .By Fact 4, D is a chordal UDG. Therefore see Appendix A Dt t

admits two perfect directed versions, D and D , such that a ª b g D and1 2 1
a ¤ b g D .2

Now assign perfect orientations to the edges within all other chain compo-
nents of DUU, obtaining two directed graphs, DX and DY. These have the same

U UU Ž .skeleton as D, D and D and satisfy the following conditions: 1 all
UU X Y Ž . Ž X.arrows in D also occur as arrows in D and D ; 2 D s D andt 1

Y X YŽ .D s D , so a b g D j D .t 2
Both DX and DY are acyclic. For, if DX or DY has a directed cycle, at least

UU Žone of the arrows in this cycle must be an arrow in D otherwise the cycle
must lie entirely within one chain component of DUU, hence cannot be

.directed . Thus if we convert back into lines all arrows in this cycle that came
from lines in DUU, at least one arrow remains, giving a directed cycle in DUU,
contradicting its chain graph property.

Next, DX and DY have the same immoralities as D, DU and DUU, so DX and
Y w x X Y UUD g D . To see this, begin by noting that, since D and D : D , every

immorality in DUU must also occur in DX and DY. Suppose that a ª b ¤ c is
an immorality in DX or DY. This immorality could not have arisen from the

UUconfiguration a b c in D , since the edges within each chain compo-
nent of DUU are perfectly oriented in DX and DY, nor, by Fact 5, could it have

UUarisen from the configurations a ª b c or a b ¤ c in D . Thus the
immorality a ª b ¤ c must also occur in DUU.

X Y X Y Uw xFinally, since D and D g D , necessarily D j D : D . But a b g
X Y U Ž . Ž .D j D , hence a b g D . This completes the proof of i . Part ii follows

from Fact 4. I

PROOF OF PROPOSITION 4.2. Since DU s DUU, the ‘‘if ’’ assertion is estab-
lished in the proof of Proposition 4.1. To verify ‘‘only if,’’ suppose that
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X w x U X XD g D . Then any arrow in D also occurs in D , while D can have no
U Ž X Uimmoralities within any chain component of D since D and D have the

. Xsame immoralities , hence the restriction of D to each chain component of
DU is perfect. I

PROOF OF PROPOSITION 4.3. By Proposition 4.1, DU is a chain graph. Since
D and DU have the same skeleton, by Theorem B.1 of Appendix B it suffices
to show that D and DU have the same minimal complexes. By Fact 3, they
have the same immoralities. By Fact 1, DU can have no minimal complexes
other than immoralities; trivially, neither can D, since it is an ADG. I

Ž . Ž .PROOF OF THEOREM 4.1 ‘‘only if ’’ . Proposition 4.1 implies properties i
Ž . Ž . Ž .and ii , while iii follows from Fact 1. Property iv will be established by

wmeans of the following two facts regarding the essential arrows of D. See
Ž . Ž . Ž X. xSection 3 for the definitions of configurations a ] d and d .

FACT 6. Every essential arrow a ª b of D occurs in at least one of the
Ž . Ž . Ž . Ž X. Uconfigurations a , b , c or d as an induced subgraph of D . Thus, a ª b

is irreversible in DU.

U Ž . Ž . Ž . Ž X .PROOF. Suppose that a ª b g D but satisfies neither a , b , c nor d
U Ž . Uin D . Consider the two distinct chain components t and t of D thata b

Ž .contain a and b, respectively. By property ii , we can construct a directed
graph DX from DU by assigning arbitrary perfect orientations to the edges of
Ž U .D for every chain component t other than t and t , and by assigningt a b

Ž . Ž .perfect orientations starting at a resp., b to the edges within t resp., t ,a b
Ž . Ž .so that all edges within t t that involve a b are oriented outward from aa b

Ž . Ž . X X w xb see the following figure . By Proposition 4.2, D is an ADG and D g D .

Now construct another directed graph DY, which is identical to DX except
that a ª b g DX is changed to a ¤ b in DY. Then DY is also acyclic, for if it
were to contain a directed cycle, then this cycle must include a ¤ b, hence
must include a subgraph a ¤ b ¤ c of DY with c / a. Necessarily c f t ,b
since all arrows of DY within t are oriented outward from b, so b ¤ c g DU.b

U Ž . UThus a ª b ¤ c occurs in D , so, since a ª b cannot satisfy b in D , there
Umust be an edge a ??? c in D . This edge cannot be a ª c or a c,
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Ž . Ž X. Uotherwise a ª b would satisfy c or d in D , hence it must appear as
a ¤ c in DU. Thus a ¤ c must also occur in DY, so the assumed directed
cycle in DY must have contained at least four vertices. Therefore, removing
the vertex b from this cycle leaves another directed cycle in DY, which must
also occur in DX since DX and DY coincide except for the edge a ??? b. This is a
contradiction, so we conclude that DY is acyclic.

We shall show that DY has the same immoralities as DX. If an immorality
c ª a ¤ b is created in DY when a ª b is changed to a ¤ b, necessarily
c f t , since all arrows of DY within t are oriented outward from a.a a
Therefore c ª a g DU, hence c ª a ª b occurs as an induced subgraph in

U Ž . UD , contradicting the assumed nonoccurrence of a in D . Next, no immoral-
X X Ž X.U Uity a ª b ¤ c can occur in D , since D and D s D have the same

Ž . U X Yimmoralities and b is assumed not to occur in D . Thus D and D have the
same immoralities.

Y X Y U X Yw xIt follows that D g D , whereby D j D : D . But a b g D j D ,
U Uhence a b g D , contradicting the assumption that a ª b g D and

thereby establishing Fact 6. I

FACT 7. Every essential arrow of D is strongly protected in DU.

U Ž . Ž . Ž . Ž .PROOF. Suppose that a ª b g D but satisfies neither a , b , c nor d
U Ž X .in D . By Fact 6, a ª b occurs in configuration d for some c / a, b. Define

� X < Xthe chain components t and t as above, and define s s c g t c ª b ga b a a
U4D :

Ž X.By d , a and c g s . We assert that G is a complete subgraph of G ina s ta a

G ' DU.
ULet c , c be two distinct vertices in s ; it must be shown that c c g D .1 2 a 1 2

Suppose first that c s a. Then an edge a ??? c must occur in DU, or else2 1
UŽ .a ª b would satisfy b in D . Since c g s , this edge must be a c . Next,1 a 1

U Usuppose that a / c , c . By the first case, a c g D and a c g D .1 2 1 2
U Ž .Therefore an edge c ??? c must occur in D , else a ª b would satisfy d in1 2

UD . Since c , c g t , this edge must be c c .1 2 a 1 2
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X U ŽConstruct a directed graph D from D as follows see the following
.figure .

Ž . Ui For each chain component t of G ' D other than t or t , orient thea b
edges of G perfectly.t

Ž .ii Assign a perfect orientation to the edges of G starting at b.t b
Ž . Ž .iii Assign a perfect orientation to the edges of G so that a any edgeta

Ž .a c with c g s becomes a ¤ c, and b any edge a d with d g t _ sa a a
becomes a ª d.

It must be shown that such an orientation exists for G . Let c , . . . , c ' at 1 qa

be any ordering of the vertices in s such that a occurs last. Starting at c ,a 1
order the edges of G by applying maximum cardinality search. The com-ta

pleteness of G ensures that MCS can reproduce the initial sequencesa

c , . . . , c . The resulting perfect orientation of the edges within G deter-1 q t a
Ž . Ž .mined by this perfect ordering clearly satisfies a and b .

X X w xBy Proposition 4.2, D is an ADG and D g D . Now construct a directed
graph DY which is identical to DX except that a ª b g DX is changed to
a ¤ b in DY. If DY were to contain a directed cycle, then this cycle must
include a ¤ b, hence must include a subgraph a ¤ b ¤ c of DY with c / a.

Ž . U UBy ii , c f t , so b ¤ c g D . Thus a ª b ¤ c occurs in D , so, since a ª bb
Ž . U Ucannot satisfy b in D , there must be an edge a ??? c in D . This edge

Ž . Ucannot be a ª c, otherwise a ª b would satisfy c in D , hence must appear
U Uas either a c or a ¤ c in D . If a c g D then c g t , hence c g s ; bya a

Ž . X Y Ua , this implies that a ¤ c g D and therefore a ¤ c g D . If a ¤ c g D ,
then again a ¤ c must occur in both DX and DY. In either case, the assumed
directed cycle in DY cannot consist of the three vertices a, b and c alone,
hence must have at least four distinct vertices. Furthermore, since a ¤ c g
DY, removing b from this directed cycle leaves a shorter directed cycle in DY

which must also occur in DX since DX and DY coincide except for the edge
a ??? b, contradicting the acyclicity of DX. Thus DY is acyclic.

Now we show that DY has the same immoralities as DX. If a new immoral-
ity c ª a ¤ b is created in DY when a ª b is changed to a ¤ b, then
c ª a ª b occurs in DX. Necessarily c f s , for otherwise an edge c ??? ba

U Ž . Xwould occur in D . Also c f t _ s , otherwise, by b , c ¤ a g D . Thusa a
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c f t , so c ª a g DU. Therefore c ª a ª b occurs in DU as an induceda
U Ž .subgraph of D , contradicting the assumed nonoccurrence of a . Next, no

X X Ž X.U Uimmorality a ª b ¤ c can occur in D , since D and D s D have the
Ž . U X Ysame immoralities and b is assumed not to occur in D . Thus D and D

have the same immoralities, so DX ; DY.
Y X Y U X Yw xIt follows that D g D , hence D j D : D . But a b g D j D , hence

U Ua b g D , contradicting the assumed occurrence of a ª b in D . This
establishes Fact 7 and thereby completes the proof of the ‘‘only if ’’ assertion
of Theorem 4.1. I

Ž . Ž . Ž . Ž .‘‘if ’’. Let G ' V, E be a graph that satisfies properties i ] iv of Theo-
rem 4.1. It must be shown that G s DU for some ADG D. Let D be a digraph
obtained from G by assigning arbitrary perfect orientations to the edges

Ž .within each chordal chain component of G. Note that D : G. We shall show
that D is an ADG and that G s DU.

Suppose first that D contains a directed cycle. It cannot lie entirely within
one chain component of G, hence at least one of its arrows is also an arrow in

Ž .G. Therefore it determines a directed cycle in G, contradicting property i .
Thus D is an ADG.

U Ž . XTo show that G : D , let D G be the collection of all ADG’s D con-
structed from G by assigning perfect orientations to the edges within each

Ž Xchain component of G that is, all ADG’s D constructed in the same manner
X X X. Ž < Ž ..as D . Clearly G = D , so G = j D D g D G . Furthermore, any line a

Ž .b g G lies in G for some chain component t of G. By property ii , there existt

two perfect orientations of the edges in G , one with a ª b and one witht

Ž X < X Ž .. Ž . Ž .a ¤ b, so G s D D D g D G . By properties ii and iii , no immorality in
DX or D can involve an arrow that had been a line in G, that is, an arrow that
lies within a chain component of G. Thus any immorality in DX or D is an

X Ž X < X Ž ..immorality in G and conversely, so D ; D. Therefore D D D g D G :
Ž X < X . U U UD D D ; D ' D , so G : D . It remains to show that G s D .
For this, it suffices to show that

U<� 4A [ a g V ' b g V 2 a ª b g G and a b g D s B.

Ž .If not, let a be a minimal element of A with respect to the preordering V, F
determined by the chain graph G. Since a g A,

< U� 4B [ b g V a ª b g G and a}b g D / B.

Let b be a minimal element of B; then a ª b g G and a}b g DU. By
Ž . Ž . Ž . Ž .property iv , a ª b occurs in at least one of the configurations a , b , c or

Ž . Ž .d as an induced subgraph of G. If a were to occur in G, then, since a is
U Uminimal in A, c a f D , hence c ª a g D . But then c ª a b occurs

U Ž .as an induced subgraph of D , which is impossible by Fact 1. If b were to
occur in G, then it must also occur in D, so a ª b g DU, which is also

Ž .impossible. If c were to occur in G, then the minimality of b implies that
U Ua c f D . Since G : D , one of the following two directed triangles must
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occur in DU, again impossible:

a b or a b

6 6

6

.c c
Ž . UIf d were to occur in G, then D would contain two directed triangles, also

impossible. Thus A s B, hence G s DU. The proof of Theorem 4.1 is com-
plete. I

PROOF OF PROPOSITION 4.4. By hypothesis, the set
X < X� 4B [ b g V a ª b g G

is nonempty. Let c be any minimal element of B with respect to the
Ž .preordering V, F determined by the chain graph G. Since a ª c is an

Ž .initial arrow of G, it cannot occur in configuration a in G, nor can it occur in
Ž . Ž .configuration c , by the minimality of c. By Theorem 4.1 iv , therefore, a ª c

Ž . Ž .must occur in configuration b or d as an induced subgraph of G. I

PROOF OF PROPOSITION 4.5. It suffices to establish the result when H has
Ž .no edges, that is, H s V, B . First assume that G contains at least one line

Ž .that is, undirected edge , so G ' G has at least one chain component t with1
at least two vertices. Since G is chordal, it has at least one simplicial vertext

w Ž . x Ž .a cf. Blair and Peyton 1993 , Lemma 2.2 ; since G is connected, bd a / B.t G
Ž .Choose any b g bd a , so that a b g G, then remove the line connectingG

Ž .a and b to produce a graph G . Since a was simplicial in G , G is also2 t 2 t

chordal. Because G is an essential graph, it is now straightforward to verify1
that G satisfies the conditions of Theorem 4.1, hence G is also an essential2 2

Ž .graph. Continue this process i of single line removal until reaching an
wessential graph G with no lines. A related argument appears in Lemma 5 ofj

Ž . xFrydenberg and Lauritzen 1989 .
Ž .If G has no arrows that is, no directed edges , then G s H and we arej j

Ž .done. Otherwise, we can reach H ' V, B by removing arrows from the
Ž . Ž . Ž .ADG G according to ii or iii as follows. Let B / B be the set of allj

terminal vertices of G , that is, the set of all b g V such that b is maximal inj
Ž .V with respect to the preordering V, F determined by the chain graph G .j

Since G has at least one arrow, there must exist at least one b g B such thatj
� < 4 � < 4 Ž .A [ a g V a ª b g G / B. Define A [ a g V a is minimal in A / B .j 0

By Corollary 4.2, every arrow in G is protected in G . If A contains only onej j 0
vertex a, the minimality of a and the maximality of b imply that removal of
the arrow a ª b cannot leave any other arrow unprotected in the resulting
ADG. If A contains two or more vertices, their minimality implies that no0
two are adjacent in G . As in the first case, it follows that the arrows thatj
these vertices form with b can be removed singly, until only two remain, and
then either singly or as a pair,6 in such a way that after each removal all
remaining arrows are protected in the resulting ADG. Again by Corollary 4.2,
each such ADG is an essential graph. This process can be continued until A0
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is exhausted, so that b becomes an isolated vertex in the resulting essential
graph. Now consider the set of terminal vertices in this new essential graph
and repeat the arrow removal process. Eventually all arrows can be removed
and H will be reached. The proof is complete. I

5. Construction of the essential graph DU. We now present a polyno-
mial-time algorithm to construct the essential graph DU from an ADG D '
Ž .V, E . This algorithm does not require an exhaustive search over the entire

w xequivalence class D .

THE CONSTRUCTION ALGORITHM. Define G [ D. For i G 1, convert every0
arrow a ª b g G that is not strongly protected in G into a line a b,iy1 iy1
obtaining a graph G . Stop after k steps, where k G 0 is the smallesti

< <nonnegative integer such that G s G . Necessarily, k F E .k kq1
This algorithm produces a sequence G , . . . , G of graphs such that0 k

5.1 D ' G ; ??? ; G s G .Ž . 0 k kq1

Since both arrows of an immorality are strongly protected, each G has thei
U < <same immoralities as D and D . Let n s V . Because the determination of

the set of arrows that are not strongly protected in G requires at mostiy1
Ž 4. < < Ž 2 .O n operations and because E s O n , this algorithm requires at most
Ž 6.O n operations, although it can be implemented in a more efficient fashion.

THEOREM 5.1. The Construction Algorithm is valid: G s DU.k

Ž .PROOF. If k s 0 i.e., if every arrow of D is protected in D then the result
follows from Corollary 4.2. Thus we may assume that k G 1.

U Ž .We begin by showing that G : D . First, by 5.1 , a ª b g G « a ª b gk k
U U UD « a ¤ b f D « either a ª b g D or a b g D . It remains to show

Uthat a b g G « a b g D . We shall accomplish this by proving thatk

U<B [ b g V ' a g V 2 a b g G and a ª b g D s B.� 4k

Suppose that B / B. Let b be a minimal element of B with respect to the0
Ž . Upreordering V, F determined by the chain graph D . Therefore

U<A [ a g V a b g G and a ª b g D / B.� 40 k 0

Ž . � 4For a g A, let i a g 1, . . . , k be the unique integer such that a ª b g0
Ž .G but a b g G . Choose a g A to minimize i a over A. Thus, foriŽa.y1 0 iŽa. 0

no a g A is a ª b converted to a b before a ª b is converted to0 0 0 0
a b in the sequence G , G , . . . , G . Therefore, a and b satisfy the0 0 0 1 k 0 0
following four properties.

UŽ .P1 a b g G and a ª b g D .0 0 k 0 0
Ž .P2 a ª b g G but a b g G , that is, a ª b is not0 0 iŽa .y1 0 0 iŽa . 0 00 0

strongly protected in G .iŽa .y10UŽ .P3 If a ª b g D but a b g G , then a ª b g G .0 0 k 0 iŽa .y10U UŽ .P4 If b - b in D , then for each a g V either a b f G or a ª b f D .0 k



S. A. ANDERSSON, D. MADIGAN AND M. D. PERLMAN526

Ž . UBy Theorem 4.1 iv , a ª b g D must occur in at least one of the0 0
following four configurations as an induced subgraph of DU :

6 6

a : a b b : a bŽ . Ž .0 0 0 06 6

c c
c1

66 6c : a b d : a c / c .Ž . Ž . Ž .0 0 1 2

6

b0 06 6

c c2

However, each of these four possibilities leads to a contradiction.

Ž . U Ž .a If c ª a ª b occurs as an induced subgraph of D , apply P4 with0 0
b s a and a s c to conclude that c a f G . But c ª a g0 0 k 0

U Ž .D « c ª a g D ; G , hence c ª a g G . By 5.1 , c ª a g G , so by0 k 0 k 0 iŽa .y10
Ž .P2 , c ª a ª b occurs as an induced subgraph of G . This implies0 0 iŽa .y10

Ž .that a ª b is strongly protected in G , which contradicts P2 .0 0 iŽa .y10
Ž . Ub The occurrence of the immorality a ª b ¤ c in D implies its occur-0 0

rence in D ' G . Thus both a ª b and b ¤ c are strongly protected in G ,0 0 0 0 0
Ž .hence in G , . . . , G . Therefore a ª b g G , which contradicts P1 .1 ky1 0 0 k

Ž . Ž .c Here, necessarily c ª b g D. By 5.1 , either c ª b g G or c0 0 k
Ž .b g G . In the first case, c ª b g G ; in the second case, apply P30 k 0 iŽa .y10

Ž .with a s c to reach the same conclusion. Together with P2 , this implies that
one of the following three configurations must occur in G :iŽa .y106 6 6

a b or a b or a b .00 0 0 0 06

6

66 6

cc c
The first configuration is impossible, since a ª c g DU « a ª c g D :0 0
G . The second configuration is impossible, for otherwise a ª b isiŽa .y1 0 00

Ž .strongly protected in G , contradicting P2 . If the third configurationiŽa .y10
Ž .holds, apply P4 with b s c and a s a to deduce that a c f G , which0 0 k

contradicts the fact that a c g G in this configuration.0 iŽa .y10
Ž . Ud If this configuration occurs as an induced subgraph of D , then the

immorality c ª b ¤ c must occur in D and hence in G , . . . , G . Together1 0 2 1 k
Ž .with P2 , this implies that

c1

66

a b06

c2

occurs in G but that a ª b is not strongly protected in G .iŽa .y1 0 0 iŽa .y10 0

Therefore, one of the following three configurations must occur as an induced
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subgraph of G :iŽa .y10

c c1 1

6 6

c1

66 66 6 6

a b or a b or a b .0 0 0 0 0 06 666 6

c2c c2 2

In the first case the immorality c ª a ¤ c occurs in D and therefore in1 0 2
U UD , contradicting the assumed occurrence of c a c in D . In the1 0 2

second case, either c ª a ¤ c or c ª a ª c must occur as an induced1 0 2 1 0 2
subgraph of D. As before, the immorality leads to a contradiction, so c ª1
a ª c must occur as an induced subgraph of D and hence of G , . . . , G .0 2 1 iŽa .y20

Therefore a ª c is strongly protected in G , contradicting the occur-0 2 iŽa .y20

rence of a c in G in this case. The third case is similar to the0 2 iŽa .y10

second.

Ž . Ž . Ž . Ž .Thus, each of the four possible configurations a , b , c or d leads to a
contradiction, so B s B, hence G : DU. It remains to show that G s DU.k k
For this purpose it suffices to show that

X < UB [ b g V ' a g V 2 a ª b g G and a}b g D s B.� 4k

Suppose that BX / B. Let b be a minimal element of BX with respect to0
Ž . Ž U . Žthe partial ordering V, F determined by the ADG D not D . Since

D : G , this partial ordering is compatible with arrows in G , i.e., a ª b gk k
.G « a - b g D. Thus there exists a g V such that a ª b g G and ak 0 k

b g DU.0
Since a ª b g G , a ª b must be strongly protected in G , hence must0 k 0 k

occur in one of the following four configurations as an induced subgraph of
G :k 6 6

a : a b b : a bŽ . Ž .0 06 6

c c
c1

66 6

c : a b d : a b c / c .Ž . Ž . Ž .0 0 1 2

6

66

c2c
Ž .a If c ª a ª b occurs as an induced subgraph of G , then it also occurs0 k

as such in D. The minimality of b then implies that c ª a g DU, hence0
Uc ª a b occurs as an induced subgraph of D , contradicting Fact 1.0

Ž .b The occurrence of the immorality a ª b ¤ c in G implies its occur-0 k
U Urence in D and hence in D , contradicting the fact that a b g D .0

Ž . Ž .c If configuration c occurs in G , the minimality of b implies thatk 0
U U Ua ª c g D . Since G : D and a b g D , one of the following twok 0
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directed triangles must occur in DU, contradicting Proposition 4.1.

a b or a b .0 0

6 6

6

c c
Ž . Ž .d If configuration d occurs as an induced subgraph of G , then thek

configuration
c1

6

a b06

c2

must occur as an induced subgraph of DU. This forces the occurrence of the
configuration

c1

66

a b .06 6

c2
U Ž U . Uin D otherwise D would contain a directed triangle . Since D : D , the

immorality c ª a ¤ c must occur in D and therefore in G , contradicting1 2 k
the assumed occurrence of c a c in G .1 2 k

Ž . Ž . Ž . Ž .Each of the four possible configurations a , b , c or d has led to a
contradiction, so BX s B. Therefore G s DU and the proof of Theorem 5.1 isk
complete. I

REMARK 5.1. The construction algorithm becomes invalid if ‘‘strongly
protected’’ is replaced by ‘‘protected.’’ The following ADG D provides a coun-
terexample:

b

6

b b6
6 6

D : a c D*: a c G9: a c .6 6

6

6

d dd
The valid algorithm produces DU from D after k s 2 steps, while the invalid

version stops at GX after k s 2 steps.

6. A brief catalog of essential graphs. By Theorem 4.1, essential
graphs may be viewed as generalizations of chordal graphs. Darroch,

Ž . Ž .Lauritzen and Speed 1980 give a brief catalog of chordal decomposable
graphs; here we do the same for essential graphs with n F 4 vertices. In
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Table 1 we list all such unlabelled essential graphs,7 together with their
corresponding global Markov properties,8 then we simply enumerate the
corresponding labelled essential graphs DU and the corresponding labelled

X w xADG’s D in the equivalence class D .
In applications, of course, different labelled essential graphs represent

different statistical models, whereas different labelled ADG’s DX correspond-
ing to the same labelled essential graph represent the same statistical model.

Thus, for example, the second essential graph listed in Table 1 corresponds
to one labelled DU : 1}2 and to two labelled DX: 1 ª 2 and 1 ¤ 2. The fifth

Uessential graph in Table 1 corresponds to three labelled D : 1 2 3,
1 3 2, 2 3 1, each representing a different statistical model, and
to nine labelled DX: 1 ª 2 ª 3, 1 ¤ 2 ¤ 3, 1 ¤ 2 ª 3, 1 ª 3 ª 2, 1 ¤ 3 ¤
2, 1 ¤ 3 ª 2, 2 ª 1 ª 3, 2 ¤ 1 ¤ 3, 2 ¤ 1 ª 3, representing the same
three models.

For n s 5 vertices, we have utilized a computer search to find that the
total numbers of labelled essential graphs and labelled ADG’s are 8,782 and

Ž .29,281, respectively. Robinson 1977 gives a recursive formula for the num-
ber of labelled ADG’s, from which it follows that there are 3,781,503 labelled
ADG’s for n s 6 vertices, but at present no formula is available for the
number of labelled essential graphs. It would be of interest to determine the
asymptotic behavior of the ratio of these numbers as n approaches infinity.

7. Model selection and model averaging for acyclic digraphs. By
focusing on Markov-equivalence classes of ADG’s rather than on the individ-
ual ADG’s themselves, data analysts and expert system builders can over-
come several difficulties associated with ADG models. Three such difficulties
were listed in Section 1; here we examine these in more detail and indicate
how the introduction of essential graphs can help to overcome them.

Ž .1. Computational inefficiencies. Heckerman, Geiger and Chickering 1994
Ž .and Chickering 1995 argue that statistical inference for ADG models should

be ‘‘score equivalent’’: in the absence of a priori causal knowledge, Markov-
equivalent ADG’s should have identical posterior model probabilities
Ž . Ž .Bayesian or identical penalized likelihoods non-Bayesian . Under this crite-
rion, therefore, model selection and model averaging algorithms need visit

weach Markov-equivalence class only once. However, standard algorithms e.g.,
Ž . Ž .Madigan and Raftery 1994 , Madigan and York 1995 and Heckerman,
Ž .xGeiger and Chickering 1994 fail to treat each Markov-equivalence class of

ADG’s as a single statistical model and search in the space of ADG’s,
introducing considerable computational inefficiency. For example, an exhaus-
tive search among all ADG’s on four variables would require the calculation
of posterior probabilities for all 543 such ADG’s, whereas a search over the

Ž .space of essential graphs in 1]1 correspondence with the equivalence classes
would require only 185 such calculations. For five variables, the numbers
become 8,782 and 29,281, respectively.
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2. Constraints on prior distributions. For a Bayesian analysis over the
space of all individual ADG models with a fixed vertex set V, score equiva-
lence imposes severe restrictions on the prior distributions that may be used
to represent prior knowledge about the parameters of these models. For any

Ž .individual ADG D, the joint pdf if it exists of a global D-Markovian distribu-
w Ž .tion admits the factorization cf. Lauritzen, Dawid, Larsen and Leimer 1990 ,
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xTheorem 1
< <7.1 f V s Ł f a pa a a g V .Ž . Ž . Ž .Ž .Ž .D

9 Ž < Ž ..For categorical data, where each conditional pdf f a pa a is multinomial,D
Ž .Spiegelhalter and Lauritzen 1990 proposed the now widely accepted conju-

gate family of Dirichlet prior distributions for the parameters occurring in
these conditional multinomial distributions. However, Heckerman, Geiger

Ž .and Chickering 1994 show that score equivalence requires that the sum of
the parameters of all the Dirichlet distributions associated with each a g V
w Ž .xi.e., the Dirichlet distributions for each of the levels of pa a be identicalD
for all a g V. Since these sums behave as ‘‘equivalent sample sizes’’ in
subsequent Bayesian updating, this constraint severely restricts an expert
with more prior knowledge about some variables than others}he must use a
single equivalent sample size for each of the Dirichlet distributions occurring
in the conjugate prior and is therefore unable fully to utilize his prior
knowledge.

This difficulty can be overcome by constructing prior distributions over
Markov-equivalence classes of ADG models, rather than over the individual
ADG models themselves. To accomplish this, represent each equivalence class
w x UD by its essential graph D , then select appropriate prior distributions for
the parameters of the chain graph model determined by DU. More precisely,

Ž . Ž . Žby Theorem 4.1 ii of Frydenberg 1990 , the joint pdf if it exists and is
. Upositive of a global D -Markovian distribution P admits the factorization

< < U
U7.2 f V s Ł f t bd t t g T D ,Ž . Ž . Ž . Ž .Ž .Ž .D
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Ž Ž .. wŽ U . x m
Uwhere, further, each marginal pdf f cl t is global D -UD cl Žt .D

Ž < Ž ..UMarkovian. This in turn implies that each conditional pdf f t bd t isD
Ž U . 10 Ž . Ž U .global D -Markovian. However, by our Theorem 4.1 ii each D ist t

Ž .chordal i.e., decomposable , so therefore we can utilize hyper-Dirichlet distri-
butions as prior distributions for the parameters occurring in these condi-
tional pdfs.11 Since score equivalence is no longer an issue, no constraints are
required on the parameters of these hyper-Dirichlet priors.

Furthermore, although the Dirichlet and hyper-Dirichlet families provide
considerable flexibility for modeling prior knowledge in the Bayesian analysis
of categorical data, more general priors, such as mixtures of Dirichlet distri-
butions, sometimes may be needed to adequately reflect prior knowledge
w Ž . xBernardo and Smith 1994 , page 279 . When working in the space of

Ž .individual ADG models, however, Geiger and Heckerman 1995 show that
the Dirichlet family is the only family of prior distributions that can be used
to achieve score equivalence. Working in the space of Markov-equivalence
classes, conveniently represented by essential graphs, eliminates the issue of
score equivalence and therefore allows the adoption of arbitrary prior distri-
butions on the associated parameters, at least in principle.

Ž .3. Improper model weights. Madigan and Raftery 1994 and others have
argued that basing inference on a single model ignores model uncertainty and

Ž .leads to poorly calibrated predictions. Bayesian model averaging BMA
provides a remedy: current BMA procedures average inferences or predictions
over all models in the class under consideration, or at least over a subset of

wthe models that receive substantial posterior weight see Madigan and York
Ž . x1995 for a review. When applied naively to ADG models, however, BMA
assigns a weight to each Markov-equivalence class that is proportional to its
size. Instead, averaging directly over equivalence classes overcomes this
problem.

A stochastic search scheme over the space of ADG’s based on the
Metropolis]Hastings algorithm has been proposed for Bayesian model aver-

Ž . 12aging by Madigan and York 1995 . As suggested by the final paragraph of
Section 6, the number of essential graphs on n vertices, although substan-
tially smaller than the number of ADG’s, will still be too large in most
applications to allow an exhaustive analysis,13 hence search procedures over
the space of essential graphs also will be required.

Ž .Madigan, Andersson, Perlman and Volinsky 1996 describe several
stochastic search procedures for model selection and model averaging, again
based on the Metropolis]Hastings algorithm, that act directly on essential
graphs rather than ADG’s. Such procedures move through the space of
essential graphs according to a Markov chain whose transition probabilities
are chosen to achieve a desired stationary distribution. Convergence to the
stationary distribution requires that the Markov chain be irreducible and
aperiodic. By Proposition 4.5, irreducibility will hold whenever the chain has
positive probability of moving to any essential graph that differs by at most
two edges from the current essential graph. However, it follows from the proof
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of Proposition 4.5 that in fact irreducibility will hold whenever the chain has
positive probability of moving from the current essential graph G to each
essential graph G9 that has one of the following three properties:

Ž .a G9 differs from G by exactly one edge;
Ž .b G9 is obtained from G by deleting both arrows in an immorality

a ª b ¤ c, where b is a terminal vertex of G and where a and c are the only
parents of b in G;

Ž .c G9 is obtained from G by adding two arrows to form an immorality
a ª b ¤ c, where b is an isolated vertex of G and where a and c are not
adjacent in G.

Aperiodicity can be guaranteed, for example, by ensuring that the chain has
positive probability of remaining in its current state.

Nonstochastic model selection and model averaging schemes based on
essential graphs also can be developed, analogous to those proposed by

Ž . Ž .Heckerman, Geiger and Chickering 1994 and Madigan and Raftery 1994
for ADG’s.

APPENDIX A

Graphs. Our terminology and notation closely follow those of Lauritzen,
Ž . Ž .Dawid, Larsen and Leimer 1990 and Frydenberg 1990 , with one exception

Ž .noted below. A graph G is a pair V, E , where V is a finite set of vertices
U Ž . Ž . �Ž . < 4and E, the set of edges, is a subset of E V ' V = V _ a, a a g V , that

is, a set of ordered pairs of distinct vertices; thus our graphs include no loops
Ž . Ž .or multiple edges. An edge a, b g E whose opposite b, a g E is called an

undirected edge and appears as a line a b in our figures, whereas an edge
Ž . Ž .a, b g E whose opposite b, a f E is called a directed edge and appears as
an arrow: a ª b.14 If G contains only undirected edges, it is an undirected

Ž .graph UDG ; if G contains only directed edges it is a directed graph
Ž .digraph .

Ž .It will be convenient to write ‘‘a ª b g G’’ to indicate that a, b g E but
Ž .b, a f E; in this case we say that the arrow a ª b occurs in G. Similarly,

Ž . Ž .we write ‘‘a b g G’’ to indicate that a, b g E and b, a g E; in this case
we say that the line a b occurs in G. We write ‘‘a ??? b g G’’ to indicate
that there is an edge of some type between a and b in G.

Ž . � < 4For each vertex a g V, define pa a [ b g V b ª a g G , the set ofG
parents of a in G. For any subset A : V, the boundary of A in G is the set

Ž . � <Ž . 4bd A [ b g V _ A b, a g E for some a g A ; the closure of A in G is theG
Ž . Ž .set cl A [ bd A j A.G G

Ž .A subset A : V induces the subgraph G [ A, E , where E [ E lA A A
Ž .A = A .

u Ž .The skeleton G of a graph G ' V, E is its underlying undirected graph,
u Ž u. u �Ž . < Ž . Ž . 4that is, G [ V, E , where E [ a, b a, b g E or b, a g E . Two ver-

Ž . utices a, b are called adjacent in G if a, b g E , or, equivalently, if a ??? b g
G. A vertex a is isolated if it is not adjacent to any b.
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Ž . Ž .Let a, b and c be three distinct vertices of G ' V, E . The triple a, b, c
is called an immorality of G if the induced subgraph G is a ª b ¤ c;�a, b, c4

Ž .that is, if the ‘‘parents’’ a and c of b are ‘‘unmarried’’ i.e., nonadjacent .
Ž . Ž .A graph G ' V , E is said to be larger than a graph G ' V , E ,2 2 2 1 1 1

Ž .u Ž .udenoted by G : G , if V : V and E : E . Thus, if G s G , then1 2 1 2 1 2 1 2
Ž .G : G iff G and G differ only in that some directed edges arrows in G1 2 1 2 1

Ž .may be converted into undirected edges lines in G . We write G ; G if2 1 2
G : G but G / G .1 2 1 2

� Ž . < 4The union of a finite collection of subgraphs G ' V , E i s 1, . . . , n ofi i i
Ž . Ž .G ' V, E is the subgraph DG [ DV , D E . Clearly, DG is the smallesti i i i

subgraph larger than each G , i s 1, . . . , n.i
Ž .Let a, b be distinct vertices in G ' V, E . A path p of length n G 1 from

� 4a to b in G is a sequence p ' a , a , . . . , a : V of distinct vertices such0 1 n
that such that a s a, a s b, and either a ª a g G or a a g G0 n iy1 i iy1 i
for every i s 1, . . . , n. If a ª a g G for at least one i, the path is directed;iy1 i

Ž . Ž .if this is not the case, the path is undirected. A directed cycle is a directed
path with the modification that a s a . An arrow a ª b g G is said to block0 n
a directed cycle in G if there is a directed path from a to b in G other than
a ª b itself.

Ž .A UDG G ' V, E is complete if all pairs of vertices are adjacent. Triv-
ially, the empty graph is complete. A subset A : V is complete if its induced
subgraph G is complete. A complete subset that is maximal with respect toA

Ž .inclusion is called a clique. A vertex a is simplicial if its boundary bd a isG
complete. A subset A : V is connected in G if for every distinct pair
a, b g A, there is a path from a to b in G . For pairwise disjoint subsets AA
Ž . Ž ./ B , B / B and S of V, A and B are separated by S in G if all paths
from vertices in A to vertices in B intersect S.

Ž .The UDG G ' V, E is chordal if every cycle of length n G 4 possesses a
chord, that is, two nonconsecutive adjacent vertices. A total ordering of V is a
perfect ordering of G if, when each edge of G is oriented in accordance with
this ordering, the resulting ADG D is perfect, that is, is acyclic and moral
Ž .without immoralities ; D is called a perfect directed version of G. It is well
known that a UDG admits a perfect directed version if and only if it is

w Ž .xchordal cf. Blair and Peyton 1993 . Furthermore, such a perfect orientation
of a chordal UDG G is not unique: in fact, by using maximum cardinality

Ž . w Ž .xsearch MCS cf. Blair and Peyton 1993 , the perfect ordering can be
started at any vertex in G. Thus, for any distinct vertices a, b g V, a chordal
UDG G admits two perfect directed versions, say D and D , such that1 2
a ª b g D and a ¤ b g D .1 2

Ž . ŽA graph G ' V, E is called a chain graph equivalently, an adicyclic
.graph if it contains no directed cycles. Every induced subgraph G of G isA

also a chain graph. Any UDG is trivially a chain graph. A chain graph that is
Ž .also a digraph is called an acyclic digraph ADG .

An ADG D is transitive if a ª c g D whenever a ª b g D and b ª c g D.
Ž .For the remainder of Appendix A, let G ' V, E be a chain graph. Then G

Ž .determines a preordering V, F as follows: a F b iff a s b or there exists a
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Ž .FIG. 4. A simple chain graph. Here a, C, b is a minimal complex.

path from a to b in G. A subset A : V is an anterior set if b F a g A « b g
Ž .A. For a subset A : V, An A denotes the smallest anterior set containing A:

Ž . � < 4An A s b g V b F a for some a g A .
If both a F b and b F a, then we write a f b, which occurs iff a s b or

Ž .there is an undirected path from a to b in G. Frydenberg 1990 notes that
f is an equivalence relation on V; we denote the set of equivalence classes in

Ž . Ž .V by T G . Equivalently, T G is the set of connected components of the
undirected graph obtained from G by removing all directed edges. Each

Ž .t g T G is called a chain component of G. A connected UDG has only one
chain component, while for an ADG, every chain component consists of a
single vertex.

We write a - b if there exists a directed path from a to b. The future of a
Ž . � < 4vertex a g V is the set f a [ b g V a - b .

Ž .A triple a, C, b is called a complex in G if C is a connected subset of a
Ž .chain component t g T G and a and b are two nonadjacent vertices in

Ž . Ž . Ž .bd t l bd C . A complex a, C, b is called a minimal complex in G if noG G
X Ž X . Ž .proper subset C ; C forms a complex a, C , b in G. Frydenberg 1990 notes

Ž .that a, C, b is a minimal complex in G iff G looks like the chainC j �a, b4
graph of Figure 4. An immorality is the special case of a minimal complex

< <where C s 1.
m Ž m.The moral graph determined by G is the undirected graph G ' V, E ,

m u w Ž U Ž Ž .. < Ž ..x m uwhere E [ E j D E bd t t g T G . That is, G is G augmentedG
Ž . mby all undirected edges needed to make bd t complete in G for everyG

Ž . m uchain component t g T G . Equivalently, G is obtained from G by adding a
Ž .line a b whenever a, C, b is a minimal complex in G.

APPENDIX B

Graphical Markov models and Markov equivalence. We consider
multivariate probability distributions P on a product probability space

Ž < .X ' = X a g V , where V is a finite index set and each X is sufficientlya a
regular to ensure the existence of regular conditional probabilities. Such

Ž <distributions are conveniently represented by a random variate X [ X a ga
. Ž < .V g X. For any subset A : V, we define X [ X a g A . Often we abbre-A a

viate X and X by a and A, respectively, and define X ' constant.a A B

< w xFor three pairwise disjoint subsets A, B and C of V, we write A H B C P
to indicate that X and X are conditionally independent given X under P.A B C
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A graphical Markov model is defined by a collection of conditional indepen-
Ž < .dencies among the component random variates X a g V , which collectiona

Ž .is represented by a chain graph G ' V, E with vertex set V.

DEFINITION B.1. A probability measure P on X is said to be local G-
w Ž .x Ž . < Ž .w xMarkovian if a H V _ f a _ cl a bd a P ; a g A.G G

DEFINITION B.2. A probability measure P on X is said to be global
< w xG-Markovian if A H B S P whenever S separates A and B in

Ž .mG .AnŽ Aj B j S .

wŽ . xFrydenberg 1990 , page 339 notes that global G-Markovian implies local
G-Markovian. The converse is not true in general; see, for example,

wŽ . xAndersson, Madigan and Perlman 1996 , Remark A.1 , but Lauritzen,
wŽ . xDawid, Larsen and Leimer 1990 , Proposition 4 show that the converse is

valid if G is an ADG.
We define the graphical Markov model on X determined by a chain graph

ŽG to be the set of all global G-Markovian probability measures on X. In
applications, an additional parametric assumption, such as multivariate

.normality, is often imposed.

DEFINITION B.3. Two chain graphs G and G are Markov equivalent on a1 2
product space X indexed by V if the classes of global G -Markovian and1
global G -Markovian probability measures on X coincide. If G and G are2 1 2
Markov equivalent on every such product space X, G and G are called1 2
Markov equivalent.

The following basic result concerning Markov equivalence of chain graphs
wŽ . xwas first proved by Frydenberg 1990 , Theorem 5.6 for a restricted class of

wŽ .probability measures and by Andersson, Madigan and Perlman 1996 ,
xTheorem 3.1 for the general case. We shall say that two chain graphs are

graphically equivalent if they have the same skeleton and the same minimal
complexes.

THEOREM B.1. Suppose that for each a g V, the component space X of Xa
contains at least two points. Then two chain graphs G and G are Markov1 2
equivalent on X if and only if they have the same skeleton and the same
minimal complexes. Thus, G and G are Markov equivalent if and only if1 2
they are graphically equivalent.

Since the only possible minimal complexes in an ADG are immoralities,
Theorem 2.1, the key equivalence theorem for ADG’s, follows from Theorem
B.1 as a special case. Because the proof of Theorem B.1 is quite complex,
however, we present here a direct proof of Theorem 2.1, different from that of

Ž .Verma and Pearl 1992 in that their notion of ‘‘d-separation’’ is not used.
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Ž .We require the notion of a well-numbering i.e., topological sort of an ADG
Ž . � 4 < <D ' V, E , namely, a 1]1 mapping n : V ª 1, . . . , n , n ' V , such that

Ž . Ž .c - d « n c - n d . A straightforward inductive argument shows that every
ADG admits at least one well-numbering. Propositions 4 and 5 of Lauritzen,

Ž .Dawid, Larsen and Leimer 1990 together imply that a probability measure
ŽP on X is global D-Markovian if and only if, for some and, therefore, for

.every well-numbering n of D,

< < w xB.1 c H d g V n d - n c _ pa c pa c P ; c g V .� 4Ž . Ž . Ž . Ž . Ž .D D

Ž . XPROOF OF THEOREM 2.1. ‘‘if ’’ . Suppose that D and D are two ADG’s
with the same skeleton and same immoralities. In order to show that D and
DX are Markov equivalent, by Lemma 3.2 we may assume in addition that D
and DX differ in exactly one edge, say a ª b g D but b ª a g DX. By Lemma

Ž . Ž .3.1 ii , a ª b is reversible, and therefore unprotected, in D, that is, pa a sD
Ž . � 4 Ž . Ž .pa b _ a . It follows that for any well-numbering n of D, n b s n a q 1.D

X � 4This can then be applied to show that n : V ª 1, . . . , n is a well-numbering
X X XŽ . Ž . XŽ . Ž . XŽ . Ž .of D , where n is defined as follows: n a s n b , n b s n a , n c s n c

if c / a, b. Therefore, a probability measure P on X is global DX-Markovian if
and only if

< X X <X X w xB.2 c H d g V n d - n c _ pa c pa c P ; c g V .� 4Ž . Ž . Ž . Ž . Ž .D D

X Ž . Ž .XSince D and D differ only in the edge a ??? b, pa c s pa c if c / a, b, soD D
Ž . Ž .the conditions in B.1 and B.2 coincide when c / a, b. The remaining

Ž . Ž .conditions in B.1 and B.2 are

< < w xB.3 a H d g V n d - n a _ pa a pa a P ,� 4Ž . Ž . Ž . Ž . Ž .D D

< < w xB.4 b H d g V n d - n b _ pa b pa b P ,� 4Ž . Ž . Ž . Ž . Ž .D D

and

< X X <X X w xB.5 a H d g V n d - n a _ pa a pa a P ,� 4Ž . Ž . Ž . Ž . Ž .D D

< X X <X X w xB.6 b H d g V n d - n b _ pa b pa b P ,� 4Ž . Ž . Ž . Ž . Ž .D D

Ž . Ž . � 4 Ž . Ž . � 4 Ž .X Xrespectively. Since pa a s pa a j b and pa b s pa b _ a , B.5D D D D
Ž .and B.6 can be rewritten as

< < w x� 4B.7 a H d g V n d - n b _ pa a pa a j b P ,� 4Ž . Ž . Ž . Ž . Ž .D D

< < w x� 4B.8 b H d g V n d - n a _ pa b pa b _ a P .� 4Ž . Ž . Ž . Ž . Ž .D D

Ž . Ž . � 4Finally, use the relation pa b s pa a j a and the following well-knownD D
Ž . Ž .property of conditional distributions to conclude that B.3 and B.4 are

Ž . Ž .jointly equivalent to B.7 and B.8 : for any four random variates X, Y, Z
and W,

< < < < <X H Y , Z W m X H Y W and X H Z W , Y m X H Z W and X H Y W , Z.Ž .
Ž . Ž . XTherefore B.1 and B.2 are equivalent, hence D and D are Markov

equivalent.
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Ž . wŽ . x‘‘only if ’’. The proof given by Frydenberg 1990 , pages 347]348 for
chain graphs applies without change to the special case of ADG’s.

Acknowledgments. We are grateful to Julian Besag, Victor Klee,
Michael Levitz, Colin Mallows and Christopher Triggs for their helpful
comments and encouragement, and especially to an anonymous referee for an
extremely careful reading of this paper.

ENDNOTES

Ž .1. Chain graphs may have both directed and undirected edges but may contain no partially
directed cycles; they include both ADG’s and UDG’s ADG’s as special cases.

Ž .2. The essential graph associated with an equivalence class of ADG’s was first introduced by
Ž .Verma and Pearl 1990 as the completed pattern associated with the ADG.

Ž . Ž .3. Chickering 1995 and Meek 1995 also have obtained polynomial-time algorithms for
constructing DU from D.

wŽ . x4. Chickering 1995 , Section 4 notes that, under certain additional assumptions, the essential
Ž .arrows s compelled edges of an ADG may indicate causal influences.

5. This statement is valid because we have defined Markov equivalence of chain graphs in
terms of the global Markov property}see Definition B.3 in Appendix B. If we were to
replace the global Markov property by the local Markov property, then this statement is not
valid in general. The local and global Markov properties of the chain graph DU need not be
equivalent, whereas those of the ADG D must be equivalent}see Appendix B and also the

Ž .example in Remark 3.4 of Andersson, Madigan and Perlman 1996 .
6. This is not an arbitrary choice: removal of only one arrow may leave the other unprotected.
7. The vertices of the graphs in Table 1 are labelled only to allow us to describe the Markov

properties.
8. In fact, we only present a parsimonious list of independencies that are equivalent to the

global Markov properties of the essential graph. Recall that the local and global Markov
properties of the essential graph itself may not be equivalent, whereas the local and global
Markov properties of any ADG in its equivalence class are equivalent to each other and to
the global Markov properties of the essential graph. We use the local Markov properties of
such ADG’s, together with standard properties of conditional independence, to obtain our
parsimonious lists.

Ž . Ž .9. In this case, the joint and conditional pdf’s in 7.1 and 7.2 denote the pdf’s for the
classification of a single individual.

Ž Ž .. wŽ U . x m
U10. Since f cl t is global D -Markovian, it admits a Gibbs factorization over theUD cl Žt .D

wŽ U . x m w Ž . xcliques x , . . . , x of D cf. Frydenberg 1990 , page 344 . Because each intersec-U1 k cl Žt .D
Ž U . Ž U .tion x l t is complete in D , it is contained in at least one clique of D . Thus, eachi t t

Ž < Ž .. Ž U .Uconditional pdf f t bd t admits a Gibbs factorization over the cliques of D , henceD t

Ž U .each conditional pdf is global D -Markovian.t

Ž .11. Dawid and Lauritzen 1993 introduced hyper-Dirichlet distributions as natural conjugate
priors in decomposable models for categorical data. As in the case of Dirichlet priors for
multinomial data, hyper-Dirichlet priors allow explicit expressions for posterior model proba-
bilities.

Ž .12. George and McCulloch 1994 discuss similar stochastic search procedures for Bayesian
model selection in regression analysis.

wŽ . x13. For example, Spiegelhalter, Dawid, Lauritzen and Cowell 1993 , Section 3 and Heckerman,
Ž .Horvitz and Nathwani 1992 model dependencies in biomedical data by means of ADG’s

with n s 20 and n s 108 vertices, respectively.
14. Our notation differs from Frydenberg’s in that he uses the notation a « b rather than a ª b

in his text, although not in his figures.
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