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Let Z be a discrete random variable with support Z
+ = {0,1,2, . . .}. We

consider a Markov chain Y = (Yn)
∞
n=0 with state space Z

+ and transition
probabilities given by P(Yn+1 = j |Yn = i) = P(Z = i + j)/P (Z ≥ i). We
prove that convergence of

∑∞
n=1 1/[n3P(Z = n)] is sufficient for transience

of Y while divergence of
∑∞
n=1 1/[n2P(Z ≥ n)] is sufficient for recurrence.

Let X be a Geometric(p) random variable; that is, P(X = x) = p(1 − p)x

for x ∈ Z
+. We use our results in conjunction with those of M. L. Eaton [Ann.

Statist. 20 (1992) 1147–1179] and J. P. Hobert and C. P. Robert [Ann. Statist.
27 (1999) 361–373] to establish a sufficient condition for �-admissibility of
improper priors on p. As an illustration of this result, we prove that all prior
densities of the form p−1(1 − p)b−1 with b > 0 are �-admissible.

1. Introduction. We begin with the statistical problem. Suppose that X is
a Geometric(p) random variable; that is, P (X = x) = p (1 − p)x for x ∈
Z

+ = {0,1,2, . . .}. Set R
+ = (0,∞) and let ν : (0,1) → R

+ be such that∫ 1
0 ν(p)dp = ∞ and

∫ 1
0 pν(p)dp < ∞. Under these conditions, ν(p) can be

viewed as an improper prior density for the parameter p which yields a proper
posterior density given by

π(p|x)= p (1 − p)x ν(p)

mν(x)
,

where, of course, mν(x) := ∫ 1
0 p (1 − p)x ν(p) dp.

We associate with each such ν an irreducible, aperiodic Markov chain �ν =
(�ν

n)
∞
n=0 with state space Z

+ and transition probabilities given by

P (�ν
n+1 = j |�ν

n = i)=
∫ 1

0 p
2 (1 − p)i+j ν(p) dp∫ 1

0 p (1 − p)i ν(p) dp

for i, j ∈ Z
+. It follows from results of Eaton (1992) and Hobert and Robert (1999)

that if �ν is recurrent, then the prior ν is �-admissible under squared error loss.
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[Roughly speaking, an improper prior is �-admissible if the generalized Bayes
estimates it generates are admissible; see Eaton (1997) for a detailed introduction
to these ideas.] In this paper, we analyze a family of Markov chains that includes
all the �ν’s. Our main result is a sufficient condition for recurrence and a sufficient
condition for transience. A corollary of this result is a simple sufficient condition
for the P -admissibility of ν. We now describe the family of chains that we will
study.

Suppose Z is a discrete random variable with support Z
+. Let Y = (Yn)

∞
n=0 be

a Markov chain with state space Z
+ and transition probabilities given by

P (Yn+1 = j |Yn = i)= pij = P (Z = i + j)

P (Z ≥ i)
(1)

for all i, j ∈ Z
+. The fact that P (Z = i + j) > 0 for all i, j ∈ Z

+ implies that Y is
irreducible and aperiodic. Let πi = P (Z ≥ i) and note that πi pij = πj pji for all
i, j ∈ Z

+. Thus, Y is reversible and the sequence (πi)∞i=0 is an invariant sequence
for Y since

∞∑
i=0

πi pij =
∞∑
i=0

πj pji = πj

for all j ∈ Z
+. It follows [see, e.g., Durrett (1996), Chapter 5] that if

∑∞
i=0 πi <∞,

then the chain is positive recurrent, and if
∑∞

i=0 πi = ∞, then the chain is either
null recurrent or transient. Moreover, since

∑∞
i=0 πi = 1 +E[Z], the Markov chain

Y is positive recurrent if and only if E[Z]<∞.
In this paper, we focus on differentiating between null recurrence and transience

of Y when Z has infinite expectation. [Note that �ν is never positive recurrent
since mν(x) is an invariant sequence.] Standard results for establishing recurrence
and transience of Markov chains on Z

+ [e.g., Lamperti (1960)] involve relation-
ships between E(Yn+1|Yn = i) and E(Y 2

n+1|Yn = i). However, when E[Z] = ∞,
E(Yn+1|Yn = i) = ∞ for all i ∈ Z

+. Thus, these results are of no use for ana-
lyzing Y . We prove a result which can often be used to determine whether Y is
null recurrent or transient when Z has infinite expectation. Our main result is as
follows.

THEOREM 1. If
∞∑
n=1

1

n3P (Z = n)
<∞,(2)

then the Markov chain Y is transient. If
∞∑
n=1

1

n2P (Z ≥ n)
= ∞,(3)

then Y is recurrent.
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REMARK. Since (πi)
∞
i=0 is a decreasing sequence,

∑∞
i=0 πi < ∞ implies

iπi → 0 [Knopp (1990), page 124] and this in turn implies that (3) holds. Thus, our
sufficient condition for recurrence is satisfied for every positive recurrent chain.

We now give three examples. Examples 1 and 2 demonstrate the application of
Theorem 1. Example 3 shows that it is possible for neither (2) nor (3) to hold.

EXAMPLE 1. Suppose for all z ≥ N , we have P (Z = z) = Czα for some
C > 0 and α < −1. Then 1/[n3P (Z = n)] = 1/Cn3+α for n ≥ N . Therefore,
if α > −2, then (2) holds, so the chain is transient. For n ≥ N , we have
P (Z ≥ n) ≤ ∫∞

n−1Cx
α dx = −C(n − 1)α+1/(α + 1), and so 1/[n2P (Z ≥ n)] ≥

−(α + 1)/[Cn2(n− 1)α+1]. Therefore, if α ≤ −2, then (3) holds, so the chain is
recurrent. Note that when α < −2, we have E[Z] < ∞, so the chain is positive
recurrent. It follows that the chain is null recurrent if and only if α = −2.

EXAMPLE 2. Suppose for all z ≥ N , we have P (Z = z) = Cz−2(log z)α for
some C > 0 and α > 0. We have 1/[n3P (Z = n)] = 1/[Cn(logn)α] for n ≥ N .
Therefore, if α > 1, then (2) holds and the chain is transient. Also, for sufficiently
large n, we have

P (Z ≥ n)=
∞∑
k=n

C(log k)α

k1/2

1

k3/2
≤ C(logn)α

n1/2

∞∑
k=n

1

k3/2
≤ A(logn)α

n

for some constant A > 0. Therefore, 1/[n2P (Z ≥ n)] ≥ 1/[An(logn)α] for
sufficiently large n. It follows that when α ≤ 1, (3) holds and the chain is recurrent.
In this example, the chain is never positive recurrent since E[Z] = ∞ for all α > 0.
Thus, the chain is null recurrent for α ≤ 1.

EXAMPLE 3. Suppose, for some C > 0, we have P (Z = z)=Cz−3 when z is
odd and P (Z = z) = Cz−3/2 when z > 0 and z is even. Then 1/[n3P (Z = n)]
= C−1 when n is odd, so (2) is false. If n > 0 and n is even, then P (Z ≥ n) ≥
1
2
∑∞

k=n Cn−3/2 ≥ Cn−1/2. Therefore, 1/[n2P (Z ≥ n)] ≤ 1/Cn3/2. It follows
that (3) also does not hold.

We now return to our statistical problem. Any Markov chain on Z
+ whose

transition probabilities take the form pij = ci di+j , where (ck)∞k=0 and (dk)∞k=0 are
sequences of positive numbers, is a member of the family described above. This
follows by taking Z such that P (Z = z)= c0 dz for z ∈ Z

+. Thus, �ν is a member
of this family and the corresponding Z, call it Zν , has distribution

P (Zν = z)=
∫ 1

0 p
2 (1 − p)z ν(p) dp∫ 1

0 p ν(p)dp
.(4)

Combining Theorem 1 with (4) yields the following result.
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COROLLARY 1. If
∞∑
n=1

1

n2mν(n)
= ∞ ,

then �ν is recurrent and ν is P -admissible. If
∞∑
n=1

1

n3
∫ 1

0 p
2 (1 − p)n ν(p)dp

<∞,

then �ν is transient.

The rest of this paper is organized as follows. In Section 2, we will use a theorem
of Lyons to prove that (2) implies that Y is transient. In Section 3, we will apply a
result of McGuinness to show why (3) implies that the chain is recurrent. Finally,
in Section 4, we generalize a result of Hobert and Robert (1999) by applying
Corollary 1 in the special case where ν(p)∝ pa−1 (1 − p)b−1.

2. Proving transience. The results that we will use to prove Theorem 1
are related to a well-known connection between reversible Markov chains and
electrical networks. For a summary of this connection, and how the connection
can be used to prove the transience or recurrence of reversible Markov chains,
see Doyle and Snell (1984) or Sections 8–10 of Peres (1999). A network is a
pair N = [G,c], where G is a connected graph with countable vertex set V (G)
and edge set E(G), and c is a function from E(G) to the positive real numbers. If
e ∈E(G), then c(e) is called the conductance of the edge e. If v andw are vertices
of G which are connected by an edge, then we write v ∼ w and denote the edge
connecting v andw by evw . For v ∈ V (G), let c(v)=∑

w : v∼w c(evw). A weighted
random walk on N is a Markov chain S = (Sn)

∞
n=0 with state space V (G) whose

transition probabilities are given by P (Sn+1 =w|Sn = v)= c(evw)/c(v) if v ∼w

and P (Sn+1 =w|Sn = v)= 0 otherwise.
If a ∈ V (G), a flow from a to ∞ is a real-valued function θ defined on

V (G) × V (G) such that θ(v,w) = 0 unless v ∼ w, θ(v,w) = −θ(w,v) for
all v,w ∈ V (G), and

∑
w∈V (G) θ(v,w) = 0 if v �= a. We call the flow a unit

flow if
∑

w∈V (G) θ(a,w) = 1. The energy of the flow is defined by E(θ) =
1
2

∑
(v,w):v∼w θ(v,w)2/c(evw). The following theorem is due to Lyons (1983).

THEOREM 2. The weighted random walk on a networkN = [G,c] is transient
if and only if, for some a ∈ V (G), there exists a unit flow from a to ∞ having finite
energy.

We will now apply Theorem 2 to the Markov chain Y defined in Section 1
to show that (2) implies that the chain is transient. First, we must show how to
interpret this chain as a weighted random walk on a network. Let G be the graph
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in which V (G)= Z
+ and there is an edge between any two distinct vertices in G.

Define c(eij ) = πipij = P (Z = i + j). Then, for the network N = [G,c], the
transition probabilities of the weighted random walk S are given by

P (Sn+1 = j |Sn = i)= c(eij )

c(i)
= πipij∑

j : j �=i πipij
= pij

1 − pii

for all i �= j . It is easily verified that these are also the transition probabilities of
the chain Ỹ = (Ỹn)

∞
n=0 obtained from the chain Y by removing repeated values.

That is, we define Ỹn = YTn , where T0 = 0 and Tn = inf{k > Tn−1 :Yk �= YTn−1}
for all n ∈ N = {1,2, . . .}. Note that Y is transient if and only if Ỹ is transient, so
Y is transient if and only if S is transient. Therefore, to show that (2) implies the
transience of the chain Y , it suffices to find a unit flow from some vertex to infinity
on the network N which has finite energy whenever (2) holds.

We now define a real-valued function θ on V (G) × V (G). Let B0 = {0}.
For k ∈ N, let Bk = {2k−1,2k−1 + 1, . . . ,2k − 1}. The sets Bk are disjoint, and
Z

+ =⋃∞
k=0Bk . Suppose i ∈ Bk and j ∈ Bl , where we assume l ≥ k without loss

of generality. If l = k or l ≥ k + 2, define θ(i, j) = θ(j, i) = 0. If l = k + 1,
define θ(i, j) = 2−2k+1 and θ(j, i) = −2−2k+1, unless k = 0 in which case we
define θ(0,1)= 1 and θ(1,0)= −1. Note that

∑∞
j=0 θ(1, j)= θ(1,0)+ θ(1,2)+

θ(1,3)= −1 + 1/2 + 1/2 = 0. Also, if i ∈Bk for k ≥ 2, then

∞∑
j=0

θ(i, j)= ∑
j∈Bk−1

θ(i, j)+ ∑
j∈Bk+1

θ(i, j)= −2k−22−2(k−1)+1 + 2k2−2k+1 = 0.

Therefore, θ is a flow from 0 to ∞. Since
∑∞

j=0 θ(0, j)= θ(0,1)= 1, this flow is
a unit flow.

We now obtain an upper bound for the energy of θ . We have

E(θ)= 1

2

∞∑
i=0

∞∑
j=0

θ(i, j)2

P (Z = i + j)
= 1

2

∞∑
n=0

1

P (Z = n)

n∑
i=0

θ(i, n− i)2.

Note that θ(i, n− i)= 0 if n− i ≥ 4i, unless i = 0 and n= 1, so

E(θ)= 1

P (Z = 1)
+ 1

2

∞∑
n=2

1

P (Z = n)

n∑
i=�n/5�

θ(i, n− i)2.

If i ∈ Bk and k ≥ 2, then θ(i, j)2 ≤ (2−2(k−1)+1)2 = 64(2k)−4 ≤ 64i−4. It follows
that

E(θ)≤ 1

P (Z = 1)
+

∞∑
n=2

32n

P (Z = n)

(
n

5

)−4

= 1

P (Z = 1)
+

∞∑
n=2

20,000

n3P (Z = n)
.

Thus, E(θ) <∞ whenever (2) holds.



STABILITY OF A MARKOV CHAIN ON Z
+ 1219

3. Proving recurrence. In this section we will prove that (3) implies that
the Markov chain Y defined in Section 1 is recurrent. Given a graph G, we can
obtain a new graph by subdividing an edge of G. That is, we can add vertices
u1, . . . , un−1 to the graph and then replace an edge e in G connecting the vertices
v and w with edges e1, . . . , en, where e1 connects v to u1, ek connects uk−1 to
uk for 2 ≤ k ≤ n− 1, and en connects un−1 to w. A network M = [H,d] is said
to be a refinement of the network N = [G,c] if the graph H can be obtained by
subdividing some of the edges of G and if, whenever e ∈ E(G) is replaced by
edges e1, . . . , en ∈E(H), we have

n∑
i=1

d(ei)
−1 = c(e)−1.(5)

McGuinness (1991) observes that if M is a refinement of N , then the weighted
random walk on M is recurrent if and only if the weighted random walk on N

is recurrent. One explanation for this result is that the condition for recurrence of
the weighted random walk on a network can be expressed in terms of the effective
conductances between vertices of the network [see Peres (1999)] and the series
law for electrical conductances states that replacing an edge from v to w by the
edges e1, . . . , en does not change the effective conductance between the vertices
v and w when (5) holds.

Given any network N = [G,c], let U = {Un}∞n=0 be a partition of V (G). If,
whenever |m−n| ≥ 2, there is no edge between a vertex in Um and a vertex in Un,
we call U an N -constriction. Let τNa (Un) denote the probability that the weighted
random walk on N starting at a eventually reaches a vertex in the set Un. Let En
be the set of edges connecting a vertex in Un−1 to a vertex in Un. We will use the
following theorem due to McGuinness (1991).

THEOREM 3. Let N = [G,c] be a network, and let a ∈ V (G). Then the
weighted random walk on N is recurrent if and only if there exists a refinement
M = [H,d] of N having an M-constriction U = {Un}∞n=0 such that a ∈ U0,
τMa (Un)= 1 for all n ∈ N, and

∞∑
n=1

( ∑
e∈En

d(e)

)−1

= ∞.(6)

Theorem 3 is a generalization of a result of Nash-Williams (1959), which
established a necessary and sufficient condition for recurrence in locally finite
networks (i.e., networks in which each vertex is connected to only finitely many
other vertices).

Let N = [G,c] be the network described in Section 2. We will construct a
refinement M = [H,d] as follows. For all i, j ∈ Z

+ such that i < j , we add
vertices vnij for n = i + 1, i + 2, . . . , j − 1 and replace the edge eij with edges
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enij for n = i + 1, i + 2, . . . , j . When j = i + 1, the edge ejij connects i to j .

Otherwise, ei+1
ij connects i to vi+1

ij , ejij connects vj−1
ij to j , and enij connects vn−1

ij

to vnij for n= i + 2, i + 3, . . . , j − 1. Define

d(enij )= P (Z = i + j)

(
j∑

m=i+1

m−3/2

)
n3/2.

Note that
j∑

n=i+1

d(enij )
−1 = 1

P (Z = i + j)

( j∑
m=i+1

m−3/2

)−1 j∑
n=i+1

n−3/2

= 1

P (Z = i + j)
= c(eij )

−1,

which verifies (5).

For all n ∈ Z
+, let Un = {n} ∪ {vnij : i < n < j}. It follows from the definition

of H that every edge in E(H) with one end in Un has its other end in Un−1

or Un+1. Therefore, U = {Un}∞n=0 is an M-constriction. For n ∈ N, let En =
{enij : i < n≤ j} be the set of edges connecting a vertex in Un−1 to a vertex in Un.

Clearly 0 ∈ U0. We claim that τM0 (Un)= 1 for all n ∈ Z
+. To prove the claim, let

S = (Sk)
∞
k=0 be the weighted random walk on M starting at 0. Let T0 = 0, and for

m ∈ N, let Tm = inf{k > Tm−1 :Sk �= STm−1 and Sk ∈ Z
+}, which is almost surely

finite. Then define a Markov chain S̃ = (S̃k)
∞
k=0 with state space Z

+ by S̃k = STk .
Note that if S̃k ≥ n, then Sj ∈ Un for some j ≤ Tk . Since it is easily verified that
the chain S̃ is irreducible, we have P (S̃k ≥ n for some k)= 1, so τM0 (Un)= 1.

Now, assume that (3) holds. By Theorem 3, if we can show that (6) holds, it
will follow that the Markov chain Y described in Section 1 is recurrent, which will
complete the proof of Theorem 1. For any n ∈ N, we have

∑
e∈En

d(e)=
n−1∑
i=0

∞∑
j=n

d(enij )=
∞∑
k=n

min{n−1,k−n}∑
i=0

d(eni,k−i)

≤
∞∑
k=n

n−1∑
i=0

P (Z = k)

(
k−i∑

m=i+1

m−3/2

)
n3/2

= n3/2
∞∑
k=n

P (Z = k)

(
n−1∑
i=0

k−i∑
m=i+1

m−3/2

)
.
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Note that
n−1∑
i=0

k−i∑
m=i+1

m−3/2 ≤
n∑

m=1

m−1/2 + n

k∑
m=n+1

m−3/2

≤ 1 +
∫ n

1
x−1/2 dx + n

∫ k

n
x−3/2 dx

= 1 + (2n1/2 − 2)+ 2n(n−1/2 − k−1/2)≤ 4n1/2.

Therefore,

∑
e∈En

d(e)≤ 4n2
∞∑
k=n

P (Z = k)= 4n2P (Z ≥ n).

It follows that

∞∑
n=1

( ∑
e∈En

d(e)

)−1

≥
∞∑
n=1

1

4n2P (Z ≥ n)
,

which is infinite by (3).

4. �-admissibility of improper conjugate priors. Consider the following
family of prior densities for p:

ν(p;a, b)=
{
pa−1(1 − p)b−1, 0<p < 1,
0, otherwise.

Each (a, b) pair corresponds to a particular prior and the set

Q= {
(a, b) :a ∈ (−1,0] and b > 0

}
contains all the pairs for which

∫ 1
0 ν(p;a, b) dp= ∞ and

∫ 1
0 pν(p;a, b) dp <∞.

For this class, the transition probabilities of �ν take the form

P (�ν
n+1 = j |�ν

n = i)= (a+ 1)0(i + a+ b+ 1)0(j + i + b)

0(i + b)0(j + i + a + b+ 2)

for i, j ∈ Z
+. Hobert and Robert (1999) showed that �ν is null recurrent on Qr =

{(a, b) :a = 0 and b ≥ 1} and transient on Qt = {(a, b) :a ∈ (−1,0) and b ≥ 1} but
the stability of �ν on the set Q\(Qr ∪Qt)= {(a, b) :a ∈ (−1,0] and b ∈ (0,1)}
remained an open question. We now prove a result which completely characterizes
the stability of �ν on Q.

THEOREM 4. The chain �ν is null recurrent when a = 0 and b > 0 and is
transient when a ∈ (−1,0) and b > 0. Hence, the prior ν is �-admissible when
a = 0 and b > 0.



1222 J. P. HOBERT AND J. SCHWEINSBERG

PROOF. We simply apply Corollary 1. First, when a = 0, we have
∞∑
n=1

1

n2mν(n)
=

∞∑
n=1

n+ b

n2 = ∞,

and �ν is null recurrent. Now,
∞∑
n=1

1

n3
∫ 1

0 p
2 (1 − p)n ν(p)dp

=C

∞∑
n=1

0(n+ a+ b+ 2)

n30(n+ b)
(7)

where C > 0 is a constant. According to Abramowitz and Stegun [(1972),
page 257],

lim
n→∞nd−c 0(n+ c)

0(n+ d)
= 1.

Therefore, when a ∈ (−1,0), (7) converges and �ν is transient. �

REMARK. It is worth pointing out that Hobert and Robert (1999) did not
actually analyze�ν . These authors proved results about�ν indirectly by analyzing
a different Markov chain and appealing to a duality result relating the two
chains.

Acknowledgments. The second author thanks Yuval Peres, in whose class at
University of California, Berkeley, he learned some of the techniques used in the
proof of Theorem 1. Both authors are grateful to an Associate Editor and two
referees for helpful comments and suggestions.

REFERENCES

ABRAMOWITZ, M. and STEGUN, I. A. (1972). Handbook of Mathematical Functions. Dover, New
York.

DOYLE, P. G. and SNELL, J. L. (1984). Random Walks and Electric Networks. Math. Assoc. Amer.,
Washington, DC.

DURRETT, R. (1996). Probability: Theory and Examples, 2nd ed. Duxbury Press, Belmont, CA.
EATON, M. L. (1992). A statistical diptych: Admissible inferences–recurrence of symmetric Markov

chains. Ann. Statist. 20 1147–1179.
EATON, M. L. (1997). Admissibility in quadratically regular problems and recurrence of symmetric

Markov chains: Why the connection? J. Statist. Plann. Inference 64 231–247.
HOBERT, J. P. and ROBERT, C. P. (1999). Eaton’s Markov chain, its conjugate partner and

�-admissibility. Ann. Statist. 27 361–373.
KNOPP, K. (1990). Theory and Application of Infinite Series. Dover, New York.
LAMPERTI, J. (1960). Criteria for the recurrence or transience of stochastic processes, I. J. Math.

Anal. Appl. 1 314–330.
LYONS, T. (1983). A simple criterion for transience of a reversible Markov chain. Ann. Probab. 11

393–402.
MCGUINNESS, S. (1991). Recurrent networks and a theorem of Nash-Williams. J. Theoret. Probab.

4 87–100.



STABILITY OF A MARKOV CHAIN ON Z
+ 1223

NASH-WILLIAMS, C. ST. J. A. (1959). Random walk and electric currents in networks. Proc.
Cambridge Philosophical Soc. 55 181–194.

PERES, Y. (1999). Probability on trees: An introductory climb. Lectures on Probability Theory and
Statistics. Lecture Notes in Math. 1717 193–280. Springer, Berlin.

DEPARTMENT OF STATISTICS

UNIVERSITY OF FLORIDA

GAINESVILLE, FLORIDA

E-MAIL: jhobert@stat.ufl.edu

DEPARTMENT OF MATHEMATICS

CORNELL UNIVERSITY

ITHACA, NEW YORK

E-MAIL: jasonsch@polygon.math. cornell.edu


