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When the rank of the autoregression matrix is unrestricted, the maximum
likelihood estimator under normality is the least squares estimator. When
the rank is restricted, the maximum likelihood estimator is composed of
the eigenvectors of the effect covariance matrix in the metric of the error
covariance matrix corresponding to the largest eigenvalues [Anderson, T. W.
(1951). Ann. Math. Statist. 22 327–351]. The asymptotic distribution of these
two covariance matrices under normality is obtained and is used to derive the
asymptotic distributions of the eigenvectors and eigenvalues under normality.
These asymptotic distributions differ from the asymptotic distributions when
the regressors are independent variables. The asymptotic distribution of the
reduced rank regression is the asymptotic distribution of the least squares
estimator with some restrictions; hence the covariance of the reduced rank
regression is smaller than that of the least squares estimator. This result does
not depend on normality.

1. Introduction. The objective of canonical correlation analysis is to discover
and use linear combinations of the variables in one set that are highly correlated
with linear combinations of variables in another set. The linear combinations
define canonical variables, and the correlations between corresponding canonical
variables are the canonical correlations. See Anderson (1984), Chapter 12, for
an exposition and Anderson (1999a) for asymptotic theory in case of regression
on independent variables. In time series analysis the variables in one set are
measurements made in the present, and the variables in the other set are
measurements made in the past. The linear combinations of the variables of
the past may be employed for predicting variables of the present and future.
A framework within which to develop this analysis may be provided by
autoregressive moving average models (ARMA). Box and Tiao (1977) and Tiao
and Tsay (1989) have explored this area. See Reinsel (1997) and Reinsel and Velu
(1998) for more details.

In this paper the asymptotic distribution of the squares of the canonical cor-
relations between the present and past is derived for (stationary) autoregressive
processes. That distribution is contrasted with the asymptotic distribution of the
canonical correlations for two sets of variables with a joint normal distribution,
a common regression model. The comparison mirrors the comparison between
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scalar versions of the models; for a scalar autoregression with process correla-
tion ρ, the asymptotic variance of the sample correlation coefficient is 1 − ρ2,
but the asymptotic variance of the sample (Pearson) correlation in a bivariate nor-
mal distribution with correlation ρ is (1 − ρ2)2. Note the variance in the bivariate
model is 1 − ρ2 times the variance in the autoregressive model. Moreover, the
sample canonical correlations in autoregression are asymptotically correlated
while in regression they are asymptotically uncorrelated when the population
canonical correlations are distinct. Thus there are differences in inference in the
two types of models; these differences affect model-selection procedures.

The asymptotic distribution of the coefficients of the canonical variables is
obtained for the first-order autoregressive process. The result is of interest because
it shows that the asymptotic distribution of the coefficients of the canonical
variables as well as the asymptotic distribution of the canonical correlations
is different from those distributions for the classical regression model. Velu,
Reinsel and Wichern (1986) have also derived the asymptotic distribution of these
canonical correlations, but their results differ from the results in this paper. More
detail is given in Section 7.

The reduced rank regression estimator of a regression matrix is composed of
a small number of canonical variables [Anderson (1951)]. It is the maximum
likelihood estimator in the autoregression model as well as the regression
model when the unobserved random disturbances (or errors) are normally
distributed [Anderson (1951), page 345]. In Section 5 its asymptotic distribution
is found under the assumption that the disturbance in the autoregressive model
is independent of the lagged variables. This asymptotic distribution is the same
as the asymptotic distribution of the reduced rank regressor estimator of the
coefficient matrix in the classical regression model as obtained by Ryan, Hubert,
Carter, Sprague and Parrott (1992), Schmidli (1995), Stoica and Viberg (1996) and
Reinsel and Velu (1998), under the assumption that the disturbances are normally
distributed and by Anderson (1999b) under general conditions. Here it is also
shown that the asymptotic distribution is valid regardless of the assumption on the
disturbances (as long as their variances exist). The algebra here differs from the
algebra in Anderson (1999b) because the transformation to canonical form differs
in the two models.

2. The model and canonical analysis.

2.1. The model. In this paper the model is the autoregressive process (AR)

Yt =
m∑
i=1

BiYt−i + Zt , t = . . . ,−1,0,1, . . . ,(2.1)
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where Yt and Zt are p-component vectors with Zt unobserved and independent of
Yt−1, Yt−2, . . . and EZt = 0, EZtZ′

t = �. We assume that the roots of∣∣∣∣∣λmI −
m∑
i=1

λm−iBi

∣∣∣∣∣= 0(2.2)

are less than 1 in absolute value. Then (2.1) defines the stationary process {Yt}
with EYt = 0 and autocovariances

�h = EYtY′
t−h = EYt+hY′

t = �′−h(2.3)

[e.g., Anderson (1971), Chapter 7]. If Yt−i is replaced by Yt−i − µ, i =
0,1, . . . ,m, in (2.1), then EYt = µ. If m = 1, Yt =∑∞

s=0 Bs
1Zt−s and �h = Bh

1�0.

2.2. Population. In the AR(m) model the present is represented by Yt and the
(relevant) past by Ỹt−1 = (Y′

t−1, . . . ,Y′
t−m)′. Let

EYt Ỹ′
t−1 = [�1, . . . ,�m] = �, EỸt−1Ỹ′

t−1 = �̃.(2.4)

Then the population canonical correlations between Yt and Ỹt−1 are the roots of∣∣∣∣∣−ρ�0 �

�′ −ρ�̃

∣∣∣∣∣= 0,(2.5)

and the canonical vectors are the corresponding solutions of[−ρ�0 �

�′ −ρ�̃

][
α

ω

]
= 0, α′�0α = 1, ω′�̃ω = 1.(2.6)

The largest root of (2.5), say ρ1, is the first canonical correlation and the
corresponding solution to (2.6) defines the first pair of canonical vectors, which
are the coefficients of the first pair of canonical variables. The first canonical
correlation is the maximum correlation between linear combinations of Yt

and Ỹt−1.
From (2.6) we obtain

��̃
−1

�′α = ρ2�0α.(2.7)

There are p nonnegative solutions to∣∣��̃
−1

�′ − ρ2�0
∣∣= 0(2.8)

and p corresponding linearly independent vectors α satisfying (2.6) and αii > 0.
If the root ρ2 of (2.8) is unique, the solution α of (2.6) (and αii > 0) is uniquely
determined. [Since the matrix A = (α1, . . . ,αp) is nonsingular, the components
of Yt can be numbered in such a way that the ith component of αi is nonzero.]
The number of positive solutions to (2.8) is equal to the rank of � and indicates
the degree of dependence between Yt and Ỹt−1.
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2.3. Estimation. Given a series of observations Y−m+1, . . . ,Y0, Y1, . . . ,YT

we form sample covariance matrices

SYY = 1

T

T∑
t=1

YtY′
t , S̃−− = 1

T

T∑
t=1

Ỹt−1Ỹ′
t−1,(2.9)

SY− = 1

T

T∑
t=1

Yt Ỹ′
t−1 = S′−Y , B̂ = SY−S̃−1−−.(2.10)

The estimator B̂ is the least squares estimator of B and is maximum likelihood if
the Zt ’s are normally distributed conditional on Y−m+1, . . . ,Y0 given.

The sample canonical correlations (r1 > r2 > · · · > rp) and vectors are defined
by ∣∣∣∣∣−rSYY SY−

S−Y −rS̃−−

∣∣∣∣∣= 0,(2.11)

[−rSYY SY−
S−Y −rS̃−−

][
a

w

]
= 0, a′SYYa = 1,w′S̃−−w = 1,(2.12)

and aii > 0. These are the maximum likelihood estimators if the Zt ’s are normally
distributed. From (2.12) we obtain SY−S̃−1−−S−Y a = r2SYYa, which is the sample
analog of (2.7). This equation can be rearranged to give

SY−S̃−1−−S−Y a = t (SYY − SY−S̃−1−−S−Y )a,(2.13)

where t = r2/(1 − r2). Note that SYY − SY−S̃−1−−S−Y = SZZ − SZ−S̃−1−−S−Z and√
T SZ−S̃−1S−Z

p→ 0 as T → ∞. Hence, SYY − SY−S̃−1−−S−Y is asymptotically
equivalent to SZZ . In what follows we shall not distinguish between SZZ =
T −1∑T

t=1 ZtZ′
t and SYY − SY−S̃−1−−S−Y = T −1∑T

t=1 Ẑt Ẑ′
t , where Ẑt = Yt −

B̂Ỹt−1 is the residual.
When m = 1, Ỹt = Yt , �̃h = �h, etc. Let �0 = �. We define

S−− = S̃−− = 1

T

T∑
t=1

Yt−1Y′
t−1, S−Z = 1

T

T∑
t=1

Yt−1Z′
t .(2.14)

Section 6 studies these problems for m> 1.

3. Asymptotic distribution of sample matrices. To find the asymptotic dis-
tribution of the canonical correlations r1, . . . , rp and canonical variates a1, . . . ,ap

and w1, . . . ,wp we need the asymptotic distribution of SYY , SY− and S̃−− or
of SZ−, S̃−− and SZZ .

If Zt has finite fourth moments, then
√
T (SYY − �0) has a limiting normal

distribution [Anderson (1971)]. Further, if Zt is normally distributed, the fourth-
order moments of Yt and the second-order moments of SYY are quadratic functions
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of �. In this section we find the asymptotic covariances of sample matrices
when m = 1. The asymptotic covariances when m > 1 can be obtained from the
application of Ỹt .

To express the covariances of the sample matrices we use the “vec” notation.
For A = (a1, . . . ,an) we define vec A = (a′

1, . . . ,a′
n)

′. The Kronecker product of
two matrices A = (aij ) and B is A ⊗ B = (aijB). A basic relation is vec ABC =
(C′ ⊗ A)vecB, which implies vec xy′ = vec x1y′ = (y ⊗ x)vec 1 = y ⊗ x. Define
the commutator matrix K as the (square) permutation matrix such that vecA′ =
K vec A for every square matrix of the same order as K. Note that K(A ⊗ B) =
(B ⊗ A)K.

THEOREM 1. If the Zt ’s are independently normally distributed, the limit-
ing distribution of vec S∗

ZZ = √
T vec(SZZ − �), vec S∗−Z = √

T vec S−Z, and

vec S∗−− = √
T vec(S−− − �) is normal with means 0, 0 and 0 and covariances

E vec S∗
ZZ(vec S∗

ZZ)
′ = (I + K)(� ⊗ �),(3.1)

E vec S∗−Z(vec S∗−Z)
′ = � ⊗ �,(3.2)

E vec S∗−Z(vec S∗
ZZ)

′ = 0,(3.3)

E vec S∗−−(vec S∗
ZZ)

′ → (I + K)[I − (B ⊗ B)]−1(� ⊗ �),(3.4)

E vec S∗−−(vec S∗−Z)
′ → (I + K)[I − (B ⊗ B)]−1(� ⊗ B�),(3.5)

E vec S∗−−(vec S∗−−)′

→ (I + K)[I − (B ⊗ B)]−1[(� ⊗ �) + (� ⊗ �) − (� ⊗ �)]
× [I − (B′ ⊗ B′)]−1

= (I + K)
{[I − (B ⊗ B)]−1(� ⊗ �)

+ (� ⊗ �)[I − (B′ ⊗ B′)]−1 − (� ⊗ �)
}
.

(3.6)

First we prove the following lemma.

LEMMA 1. If {Zt} consists of uncorrelated random vectors with EZt = 0 and
EZtZ′

t = �, then

S−− − BS−−B′ = BS−Z + SZ−B′ + SZZ + Op

(
1

T

)
(3.7)

as T → ∞.

PROOF. The model Yt = BYt−1 + Zt implies

1

T

T∑
t=1

YtY′
t = BS−−B′ + BS−Z + SZ−B′ + SZZ.(3.8)
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Since
∑T

t=1 YtY′
t = T S−− + YT Y′

T − Y0Y′
0, Lemma 1 follows. �

PROOF OF THEOREM 1. The sample covariances of a stationary autore-
gressive process are asymptotically normally distributed; see Anderson (1971),
Chapter 5, for example. It remains to prove (3.1) to 3.6). If X ∼ N(0,�),
EXiXjXkXl = σijσkl + σikσjl + σilσjk ; in vec notation E vec XX′(vec XX′)′ =
E(X ⊗ X)(X′ ⊗ X′) = vec�(vec�)′ + (� ⊗ �) + K(� ⊗ �). If X and Y are
independent, E vec XX′(vec YY′)′ = EXX′ ⊗ EYY′,

E vec XY′(vec XY′)′ = E(Y ⊗ X)(Y′ ⊗ X′)
= E(YY′ ⊗ XX′) = EYY′ ⊗ EXX′,

(3.9)

E vec YX′(vec XY′)′ = KE vec XY′(vec XY′)′ = K(EYY′ ⊗ EXX′).(3.10)

The asymptotic variance of vec S∗
ZZ = vec(1/

√
T )

∑T
t=1(ZtZ′

t − �) is (3.1). To
show (3.2) we write

E vec S∗−Z(vec S∗−Z)
′ = 1

T
E

T∑
t,s=1

(Zt ⊗ Yt−1)(Z′
s ⊗ Y′

s−1)

= 1

T
E

T∑
t,s=1

(ZtZ′
s ⊗ Yt−1Y′

s−1).

(3.11)

Next, (3.3) follows from
√
T vec S∗−Z =∑T

t=1(Zt ⊗ Yt−1) and
√
T vec S∗

ZZ =
(1/

√
T )

∑T
s=1[(Zs ⊗ Zs) − vec�]. Then (3.4), (3.5) and (3.6) are consequences

of (3.7), (3.1), (3.2) and (3.3) and

vec S∗−− = [I − (B ⊗ B)]−1{(I ⊗ B)vecS∗−Z + (B ⊗ I)vecS∗
Z− + vec S∗

ZZ

}
+O

(
1

T

)
= [I − (B ⊗ B)]−1{(I + K)(I ⊗ B)vec S∗−Z + vec S∗

ZZ

}
+O

(
1

T

)
.

(3.12)

The second form of (3.6) follows from the substitution of � = � − B�B′ in the
first form. �

If B = 0, then Yt = Zt ,� = � and (3.6) reduces to (3.1). The effect of B �= 0 is
to tend to inflate the asymptotic covariance matrix of vec S−−. The characteristic
roots of B and hence of B⊗B (products of the roots of B) are less than 1 in absolute
value; hence |I − (B ⊗ B)| �= 0. If p = 1, B ⊗ B = b2

11 and I − (B ⊗ B) = 1 − b2
11.

In the classical regression model Yt = BXt + Zt with EXt = 0, EZt = 0,
EXtX′

t = �XX, EZtZ′
t = �, and EXtZ′

t = 0. Then EYt = 0 and EYtY′
t =

B�XXB′ + � = �YY . If the Xt ’s and Zt ’s are independent,

Cov[vec SYY ,vec SYY ] = (I + K)(�YY ⊗ �YY ).(3.13)
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In the autoregressive model EYtY′
t = � = �YY , but (3.6) is very differ-

ent from (3.13). In the scalar case (3.6) is 2[(1 + β2)/(1 − β2)]σ 2 instead
of 2σ 2, where σ 2 = Ey2

t ; the factor (1 + β2)/(1 − β2) inflates the variance of∑T
t=1 y

2
t /

√
T . The larger β2 is, the larger the inflation factor.

Note that the covariances depend on Zt being normal.

4. Asymptotic distributions of canonical correlations and vectors. Let the
solutions to

B�B′φ = θ�φ, φ′�φ = 1(4.1)

form the matrices

� = (φ1, . . . ,φp), � = diag(θ1, . . . , θp)(4.2)

with θ1 ≥ θ2 ≥ · · · ≥ θp ≥ 0 and φii > 0, i = 1, . . . , p. Let the solutions to

B̂S−−B̂′f = tSZZf, f ′SZZf = 1(4.3)

form the matrices

F = (f1, . . . , fp), T = diag(t1, . . . , tp)(4.4)

with t1 > t2 > · · · > tp and fii > 0, i = 1, . . . , p. We shall find the asymptotic
distribution of F and T when the Zt ’s are normally distributed.

Since � = B�B′ + �, (4.1) is equivalent to

�φ = δ�φ, φ′�φ = 1,(4.5)

where δ = (1 − ρ2)−1 = θ + 1. Similarly, (4.3) is asymptotically equivalent to

S−−f = dSZZf, f ′SZZf = 1,(4.6)

where d = (1 − r2)−1 = t + 1, since

√
T (SYY − S−−) = √

T

(
1

T

T∑
t=1

YtY′
t − 1

T

T∑
t=1

Yt−1Y′
t−1

)

= 1√
T
(YT Y′

T − Y0Y′
0)

p→ 0.

(4.7)

Let �′Yt = Xt , �′Zt = Wt and �′B(�′)−1 = 	 . Then Xt satisfies

Xt = 	Xt−1 + Wt ,(4.8)

EXtX′
t = �′�� = � + I = 
 = diag(δ1, . . . , δp),(4.9)

EWtW′
t = �′�� = I(4.10)
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and EXt−1W′
t = 0. Let

T−− = 1

T

T∑
t=1

Xt−1X′
t−1,(4.11)

TWW = 1

T

T∑
t=1

WtW′
t .(4.12)

The asymptotic covariances of T−− and TWW are given in Theorem 1 with S−−
and SZZ replaced by T−− and TWW,� by I,� by 
 and B by 	 .

THEOREM 2. If the Zt ’s are independently normally distributed, the limiting
distribution of T∗−− = √

T (T−− − 
) and T∗
WW = √

T (TWW − I) is normal with
means 0 and 0 and covariances

E vec T∗−−(vec T∗−−)′ → (I + K)[I − (	 ⊗ 	)]−1

× [(
 ⊗ I) + (I ⊗ 
) − (I ⊗ I)][I − (	 ′ × 	 ′)]−1

= (I + K)
{[I − (	 ⊗ 	)]−1(
 ⊗ 
)

+ (
 ⊗ 
)[I − (	 ′ ⊗ 	 ′)]−1 − (
 ⊗ 
)
}
,

(4.13)

E vec T∗
WW(vec T∗

WW)′ = (I + K)(I ⊗ I),(4.14)

E vec T∗−−(vec T∗
WW)′ → (I + K)[I − (	 ⊗ 	)]−1(I ⊗ I).(4.15)

Note that (
 ⊗ I), (I ⊗ 
) and (I ⊗ I) are diagonal.
Let h = �−1f, H = �−1F,D = diag(d1, . . . , dp). Then H and D satisfy

T−−H = TWWHD, H′TWWH = I.(4.16)

Since T−−
p→ 
 and TWW

p→ I, the probability limit of (4.16) is 
H∞ = H∞
,
H′∞H∞ = I, which implies plimT →∞ H is diagonal with plimT →∞ hii = ±1 if
the diagonal elements of 
 are different. Since φii > 0 and plimT →∞ fii > 0,

then plimT →∞ hii > 0. Hence H
p→ I and D

p→ 
.
Let H∗ = √

T (H − I), and D∗ = √
T (D − 
) = √

T (T − �), where T =
diag(t1, . . . , tp). From (4.16) we obtain

H∗
 − 
H∗ + D∗ = T∗−− − T∗
WW
 + op(1),(4.17)

H∗′ + H∗ = −T∗
WW + op(1).(4.18)

In components (4.17) and (4.18) are h∗
ij (δj −δi) = t∗−−

ij − t∗WW
ij δj +op(1), i �= j ,

d∗
ii = t∗−−

ii − t∗WW
ii δi + op(1), 2h∗

ii = −t∗WW
ii + op(1).
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Let

E =
p∑

i=1

(εi ⊗ εi )(ε
′
i ⊗ ε′

i ),(4.19)

where εi has 1 in the ith position and 0’s elsewhere; E is a diagonal p2 × p2

matrix with 1 in the [(i − 1)p + i, (i − 1)p + i]th position, i = 1, . . . , p, and 0’s
elsewhere. Then vecD∗ = E vec(T∗−− −T∗

WW
). Note E2 = E; hence the Moore–
Penrose generalized inverse of E is E+ = E. Let H∗ = H∗

d + H∗
n, where H∗

d =
diag(h∗

11, . . . , h
∗
pp). Then vec H∗

d = E vec H∗.
To write (4.17) more suitably we note that vec H∗
 = vec IH∗
 =

(
 ⊗ I)vec H∗ and vec
H∗ = vec
H∗I = (I ⊗ 
)vecH∗. Define

N = (
 ⊗ I)− (I ⊗ 
)

= diag(δ1I − 
, δ2I − 
, . . . , δpI − 
)(4.20)

= diag(0, δ1 − δ2, . . . , δ1 − δp, δ2 − δ1,0, . . . , δp − δp−1,0).

The Moore–Penrose inverse of N is

N+ = diag
(

0,
1

δ1 − δ2
, . . . ,

1

δ1 − δp
,

1

δ2 − δ1
,0,

1

δ2 − δ3
, . . . ,

1

δp − δp−1
,0
)
.

(4.21)

Then NN+ = Ip2 − E and NE = N+E = 0.
We can write (4.17) as

N vec H∗ + vec D∗ = vec(T∗−− − T∗
WW
) + op(1)

= vec T∗−− − (
 ⊗ I)vecT∗
WW + op(1).

(4.22)

From (4.22) we obtain

vec H∗
n = N+[vec T∗−− − (
 ⊗ I)vecT∗

WW

]+ op(1),(4.23)

vec D∗ = E
[
vec T∗−− − (
 ⊗ I)vec T∗

WW

]+ op(1).(4.24)

In vec notation, (4.18) is (I + K)vec H∗ = −vec T∗
WW + op(1), from which we

obtain

E(I + K)vec H∗ = 2E vecH∗ = 2 vecH∗
d = −E vec T∗

WW + op(1).(4.25)

DEFINITION. If (XT ,YT )
d→ (X,Y) with EX′X < ∞ and EY′Y < ∞, then

ACov(XT ,YT ) = E(X − EX)(Y − EY)′.(4.26)
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The asymptotic covariance matrix of vec T∗−− − (
 ⊗ I)vecT∗
WW is

ACov
[
vec T∗−− − (
 ⊗ I)vec T∗

WW,vecT∗−− − (
 ⊗ I)vecT∗
WW

]
= (I + K)[I − (	 ⊗ 	)]−1(
 ⊗ �)

+ (
 ⊗ �)[I − (	 ′ ⊗ 	 ′)]−1(I + K) + (
2 ⊗ I)− (
 ⊗ 
)

= (I + K)�(
 ⊗ �) + (
 ⊗ �)�′(I + K) + N+(
 ⊗ I),

(4.27)

where

� = [I − (	 ⊗ 	)]−1.(4.28)

The element of � in the j th row of the ith block of rows and in the )th column of
the kth block of columns is denoted as λij,k). Note � = 
 − I.

The asymptotic covariance matrix of vec T∗
WW is (4.14), and the asymptotic

covariance matrix between vec T∗−− − (
 ⊗ I)vecT∗
WW and vec T∗

WW is

ACov
[
vec T∗−− − (
 ⊗ I)vecT∗

WW,vec T∗
WW

]
= (I + K)[I − (	 ⊗ 	)]−1(I ⊗ I) − (
 ⊗ I)(I + K)(I ⊗ I)(4.29)

= (I + K)� − (
 ⊗ I)(I + K).

The asymptotic covariance matrices of vec H∗
n,vec H∗

d and vec D∗ are found
from (4.29), (4.14) and (4.27).

From (4.24), (4.27), EK = E, E(
2 ⊗ I) = E(
 ⊗ 
), E(
 ⊗ I) = E(I ⊗ 
)

and (A ⊗ B)K = K(B ⊗ A), we obtain the following theorem.

THEOREM 3. If the Zt ’s are independently normally distributed and if
the roots of |� − δ�| = 0 are distinct, the nonzero elements of D∗ have
a limiting normal distribution with means 0; the covariance matrix of this limiting
distribution is given by

ACov(vec D∗,vec D∗) = 2E
{[I − (	 ⊗ 	)]−1(
 ⊗ �)

+ (
 ⊗ �)[I − (	 ′ ⊗ 	 ′)]−1}E(4.30)

= 2E[�(
 ⊗ �) + (
 ⊗ �)�′]E.

The asymptotic covariance of di and dj is

ACov(d∗
i , d

∗
j ) = 2(λii,jj δj θj + δiθiλjj,ii)

= 2
(
λii,,jj

ρ2
j

(1 − ρ2
j )

2
+ λjj,ii

ρ2
i

(1 − ρ2
i )

2

)
= 2(φ′

i ⊗ φ′
i)
{[I − (B ⊗ B)]−1[� ⊗ (� − �)]
+ [� ⊗ (� − �)][I − (B′ ⊗ B′)]−1}(φj ⊗ φj ).

(4.31)
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The vector φi is estimated consistently by fi ; the matrices B,�, and � by B̂,S−−
and SZZ , respectively, and δi by di . The variance (4.31) can, therefore, be
estimated consistently.

Note that d∗
i = t∗i = √

T (ti − θi) and r2∗
j = √

T (r2
j − ρ2

j ) = (1 − ρ2
j )

2
√
T

× (tj − θj ) + op(1). Thus, r2∗
1 , . . . , r2∗

p have a limiting normal distribution with
means 0 and covariances

ACov(r2∗
i , r2∗

j ) = 2
[
λii,jj (1 − ρ2

i )
2ρ2

j + λjj,iiρ
2
i (1 − ρ2

j )
2].(4.32)

Unless 	 is a diagonal matrix, the roots r1, . . . , rp are asymptotically correlated;
that is, dependent. In the special case that 	 is diagonal (ψij = ψiiδij = ρiδij ,
where δii = 1 and δij = 0, i �= j ), the roots are asymptotically independent, and
the asymptotic variance of d∗

i = t∗i is 4ρ2
i /(1 − ρ2

i )
3 and the ith component of

Xt = 	Xt−1 + Wt is Xit = ρiXi,t−1 +Wit . Contrast this result with the canonical
form of Yt = BXt +Wt , namely Uit = ρiVit +Wit with EU2

it = EV 2
it = (1−ρ2

i )
−1

and EW 2
it = 1. In this case the asymptotic variance of t∗i is 4ρ2

i /(1 − ρ2
i )

2

[Anderson (1999a)]. The ratio of the variance in the autoregressive model to that
in the regression model is (1 − ρ2

i )
−1, which is greater than 1. (Note that this

result agrees with the asymptotic distribution of the serial correlation coefficient
in a scalar first-order autoregressive process [Theorem 5.5.6 of Anderson (1971)].
The variance of the limiting distribution of r∗

i = √
T (ri − ρi) when 	 is diagonal

is 1 − ρ2
i as compared to (1 − ρ2

i )
2 in the regression model.) In the classical

case, the eigenvalues are asymptotically independent because Yt and Xt are
each transformed, and hence B can be transformed into a diagonal matrix, but
in the autoregression case Yt and Yt−1 are transformed by the same linear
transformation.

Now consider

vec H∗ = vec H∗
n + vec H∗

d

= N+[vec T∗−− − (
 ⊗ I)vecT∗
WW

]− 1
2 E vec T∗

WW.
(4.33)

Then

ACov(vec H∗,vec H∗)
= N+[(I + K)�(
 ⊗ �) + (
 ⊗ �)�′(I + K) + (
2 ⊗ I) − (
 ⊗ 
)

]
N+

− 1
2 N+[(I + K)� − (
 ⊗ I)(I + K)]E

(4.34)
− 1

2 E[�′(I + K) − (I + K)(
 ⊗ I)]N+ + 1
4E(I + K)E

= N+[(I + K)�(
 ⊗ �) + (
 ⊗ �)�′(I + K)
]
N+

+N+(
 ⊗ I) − 1
2N+(I + K)�E − 1

2 E�′(I + K)N+ + 1
2 E

because N+(
 ⊗ I)E = 0. The asymptotic covariance matrix of vecF =
(I ⊗ �)vec H is (4.34) multiplied on the left-hand side by (I ⊗ �) and on the
right-hand side by (I ⊗ �′).
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In the classical regression model Yt = BXt + Zt the eigenvalues of
�YX�−1

XX�XY in the metric of �ZZ are asymptotically independent when the
population eigenvalues are different. In the AR(1) case the eigenvalues are
asymptotically dependent. (See the comments in Section 7.1.)

5. Estimation of reduced rank regression. If the rank of B in Yt =
BYt−1 + Zt is specified to be k (≤ p), the maximum likelihood estimator of B
under normality with Y0 given [Anderson (1951)] is

B̂k = SZZF1F′
1B̂ = SY−
̂1
̂

′
1,(5.1)

where F1 and 
̂1 are the first k columns of F and 
̂ = (w1, . . . ,wp), respectively.
The matrix B̂k is the reduced rank regression coefficient matrix. In this section the
asymptotic distribution of B̂k will be derived without assuming normality.

In canonical terms the reduced rank regression estimator is

	̂k = TWWH1H′
1	̂,(5.2)

where H1 consists of the first k columns of H, and the least squares estimator is

	̂ = TX−T−1−− = 	 + TW−T−1−−.(5.3)

Then

	̂
∗
k = √

T (	̂k − 	)

= (
T∗
WW I(k)I′

(k) + H∗
1I′

(k) + I(k)H∗′
1

)
	 + I(k)I′

(k)T
∗
W−
−1 + op(1),

(5.4)

where I(k) = (Ik,0)′. The submatrix consisting of the last p − k rows and columns
of 	
	 ′ = 
 − I is (	21 + 	22)
(	 ′

21 + 	 ′
22) = 0, which implies 	21 = 0,

	22 = 0 and

	 =
[
	11 	12

0 0

]
.(5.5)

Expansion of (5.4) in terms of T∗
WW,T∗

W− and H∗ gives

	̂
∗
k =

{[
T∗11
WW T∗12

WW

T∗21
WW T∗22

WW

] [
I 0

0 0

]
+
[

H∗
11 0

H∗
21 0

]
+
[

H∗′
11 H∗′

21

0 0

]}

×
[
	11 	12

0 0

]

+
[

I 0

0 0

][
T∗11
W− T∗12

W−
T∗21
W− T∗22

W−

][

−1

1 0

0 I

]
+ op(1)

=


(T∗11

WW + H∗
11 + H∗′

11)	11 (T∗11
WW + H∗

11 + H∗′
11)	12

+T∗11
W−
−1

1 +T∗12
W−

(T∗21
WW + H∗

21)	11 (T∗21
WW + H∗

21)	12

+ op(1).

(5.6)
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The first k columns of (4.17) and the upper left-hand side submatrix of (4.18)
are [

H∗
11
1 − 
1H∗

11 + D1

H∗
21
1 − H∗

21

]
=
[

T∗11−− − T∗11
WW
1

T∗21−− − T∗21
WW
1

]
+ op(1),(5.7)

H∗
11 + H∗′

11 = −T∗11
WW + op(1).(5.8)

Use of (5.7) and (5.8) in (5.6) yields

	̂
∗
k =


T∗11
W−
−1

1 T∗12
W−

(T∗21−− − T∗21
WW) (T∗21−− − T∗21

WW)

× (
1 − I)−1	11 × (
1 − I)−1	12

+ op(1).(5.9)

From TXX = 	T−−	 ′ + 	T−W + TW−	 ′ + TWW , TXX = T−− + op(1/
√
T )

and (5.5) we obtain

T∗21−− − T∗21
WW = T∗21

W−	 ′
11 + T∗22

W−	 ′
12 + op

(
1√
T

)
.(5.10)

Then from (5.9) we derive

	̂
∗
k
 =


T∗11
W− T∗12

W−
(T∗21

W−	 ′
11 + T∗22

W−	 ′
12) (T∗21

W−	 ′
11 + T∗22

W−	 ′
12)

× (
1 − I)−1	11 × (
1 − I)−1	12

+ op(1)

=
[

I 0

0 0

]
T∗
W− +

[
0 0

0 I

]
T∗
W−

[
	 ′

11

	 ′
12

]
(
1 − I)−1(	11,	12)


+op(1)

=
[

I 0

0 0

]
T∗
W− +

[
0 0

0 I

]
T∗
W−M + op(1),

(5.11)

where

M =
[
	 ′

11

	 ′
12

]
�−1

1 (	11,	12)
 = 	 ′
1·�

−1
1 	1·
,(5.12)

	1· = (	11,	12) and �1 = 
1 − I. Note that M2 = M by virtue of the upper
left-hand corner of 	
	 ′ = �. Also M′
M = M′
 = 
M. Then

vec
[
(	̂

∗ − 	̂
∗
k)


]= [
(I − M′)⊗

(
0 0

0 I

)]
vec T∗

W− + op(1).(5.13)

Notice that the development to this point does not involve the second-order
moments of T−−, T−W and TWW and hence does not require normality of Wt .
The covariance of vec T∗

W− is

E vec T∗
W−(vec T∗

W−)′ = 
 ⊗ I(5.14)

regardless of the nature of the distribution of Wt .
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The asymptotic covariance of vec 	̂
∗
k
 and vec(	̂∗ − 	̂

∗
k)
 is

ACov
[
vec 	̂

∗
k
,vec(	̂∗ − 	̂

∗
k)


]
= E vec

{[
0 0

T∗21
W− T∗22

W−

]
M

}
vec′

{[
0 0

T∗21
W− T∗22

W−

]
(I − M)

}

= M′
(I − M) ⊗
[

0 0

0 I

]
= 0;

(5.15)

that is, vec 	̂
∗
k and vec(	̂∗ − 	̂

∗
k) are asymptotically independent. Hence, the

covariance of the limiting distribution of vec 	̂
∗
k is the covariance of vec 	̂

∗
minus

the covariance of vec(	̂
∗ − 	̂

∗
k). The asymptotic covariance of vec(	̂

∗ − 	̂
∗
k) is

ACov
[
vec(	̂

∗ − 	̂
∗
k)
]

= 
−1(I − M′)
(I − M)
−1 ⊗
[

0 0

0 I

]
= 
−1(I − M′) ⊗

[
0 0

0 I

]

= (
−1 ⊗ I)

[
(I − M′) ⊗

(
0 0

0 I

)]
.

(5.16)

Each factor in the brackets is idempotent of rank p − k; that is, each can be
diagonalized to diag(Ip−k,0). In a sense the advantage of 	̂k over 	̂ is a reduction
of the variability by a factor of [(p − k)/p]2.

The covariance of the limiting distribution of vec B̂∗
k is that of vec B̂∗ minus that

of vec(B̂∗ − B̂∗
k) = [� ⊗ (�′)−1]vec(	̂∗ − 	̂

∗
k); that is, (�−1 ⊗ I) minus

ACov
[
vec(B̂∗ − B̂∗

k)
]

= [
� ⊗ (�′)−1]ACov

[
vec(	̂∗ − 	̂

∗
k)
]
(�′ ⊗ �−1)

= �(
−1 − 	 ′
1·�

−1
1 	1·)�′ ⊗ (�′)−1

[
I −

(
I 0

0 0

)]
�−1.

(5.17)

Since B has rank k, it can be written as B = ��1�
′
1B = ��′, where �1 consists

of the first k columns of �, � = ��1 (p × p) and � = B′�1 = �	 ′
1· (p × p).

Note that �
−1�′ = �−1 since �′�� = 
. Further

�	 ′
1·�−1

1 	1·�′ = ��−1
1 �′,(5.18)

�1 = �′
1B�B′�1 = �′��, I = �′��, (�′)−1 = �� and

�′�−1� = �′
1��1 = Ik.(5.19)



1148 T. W. ANDERSON

Then (5.17) is

ACov
[
vec(B̂∗ − B̂∗

k)
]

= [
�−1 − �(�′��)−1�′]⊗ [

� − �(�′�−1�)−1�′].(5.20)

Note that the second term in each factor in (5.20) is invariant with respect to the
transformation (�,�) → (�G,�G−1) for nonsingular G. When � = ��1 and
� = B′�1 (G = I), the effective normalization is �′�−1� = I and �′�� = �1.

THEOREM 4. Let B = ��′, where � and � are p × k matrices of rank k.
Suppose that {Zt} is a sequence of independent identically distributed random
vectors with mean 0 and covariance �, and let {Yt } be defined by Yt = BYt−1 +
Zt . Then

√
T vec(B̂k − B) has a limiting normal distribution with mean 0 and

covariance matrix

�−1 ⊗ � − [�−1 − �(�′��)−1�′] ⊗ [� − �(�′�−1�)−1�′].(5.21)

This covariance matrix can be written as

(�−1 ⊗ �) − (�−1 ⊗ �)

× {[
I − ��(�′��)−1�′]⊗ [

I − �−1�(�′�−1�)−1�′]}.(5.22)

The first term in (5.22) is the covariance matrix of
√
T vec(B̂ − B), the least

squares estimator of B. The second term is the covariance matrix of the limiting
distribution of

√
T vec(B̂ − B̂k). Each bracketed matrix in the pair of braces is

idempotent of rank p − k.
A measure of the reduction in the variance of the estimator of B is

tr
[
(ACov B̂∗)−1ACov(B̂∗ − B̂∗

k)
]/[

tr(ACov B̂∗)−1ACov B̂∗]
= tr

[
I − ��(�′��)−1�′] tr

[
I − �−1�(�′�−1�)−1�′]/p2

= (p − k)2/p2.

(5.23)

We have used tr(A ⊗ B) = tr A tr B, tr��(�′��)−1�′ = tr�′��(�′��)−1 =
tr �1�

−1
1 , tr�−1�(�′�−1�)−1�′ = tr�′�−1�(�′�−1�)−1 = tr IkI−1

k = k

and (5.19).
The limiting distribution of

√
T (B̂k − B) holds under exactly the same

conditions as for the limiting distribution of
√
T (B̂ − B); in particular, only

the second-order moment of Zt is assumed. Hence confidence regions for B
established on the basis of normality of Zt hold generally. Note that the asymptotic
distribution of the sample canonical variate coefficients depends on the fourth-
order moments of Zt ; nevertheless, the asymptotic distribution of the reduced rank
regression estimator, which is a function of those coefficients, does not depend on
fourth-order moments.

The asymptotic covariance matrix of B̂k in this AR(1) model is the same as
the asymptotic covariance matrix of B̂k in the model Yt = BXt + Zt , where Xt ’s
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are independently identically distributed with EXt = 0 and EXtX′
t = �XX (in

place of �) or where the Xt ’s are nonstochastic and SXX → �XX [Anderson
(1999b)]. In the present AR(1) model the transformation to canonical form Yt →
�′Yt ,Yt−1 → �′Yt−1 is different from the transformation for independent Xt ’s
(Yt → A′Yt ,Xt → 
′Xt ).

The likelihood ratio criterion for testing the null hypothesis that the rank of B
is k against alternatives that the rank is greater than k when the Zt ’s are normally
distributed is

−2 logλ = −T

p∑
i=k+1

log(1 − r2
i ) ∼ T

p∑
i=k+1

r2
i(5.24)

[Anderson (1951)]. When the null hypothesis is true, this criterion has a limiting
χ2-distribution with (p − k)2 degrees of freedom. This number is the product of
the ranks of the two idempotent factors in (5.16) and (5.20).

6. Autoregressive processes of order greater than one.

6.1. Canonical correlations and vectors. We consider the process (2.1)
written as

Yt = BỸt−1 + Zt ,(6.1)

where B = (B1, . . . ,Bm). Since � = B�̃B′ + �, (4.1), which defines φ and θ ,
is equivalent to (4.5); since S−− = B̂S̃−−B̂′ + SẐẐ + op(1/

√
T ) and SẐẐ =

SZZ + op(1/
√
T ), (4.3), defining f and t , is asymptotically equivalent to (4.6).

The transformation Xt = �′Yt leads to (4.16), which in turn leads to (4.17)
and (4.18) for H∗ and D∗. To carry out the analysis, we need the asymptotic
distribution of S−− and SZZ and of T−− and TWW for m> 1.

The process {Ỹt} can be defined by

Ỹt = B̃Ỹt−1 + Z̃t ,(6.2)

where Ỹt = (Y′
t ,Y′

t−1, . . . ,Y′
t−m+1)

′, Z̃t = (Z′
t ,0, . . . ,0)′, and

B̃ =



B1 B2 . . . Bm−1 Bm

I 0 . . . 0 0

0 I . . . 0 0
...

...
...

...

0 0 . . . I 0


(6.3)

[Anderson (1971), Section 5.3]. Note that the roots of (2.2) are the roots of
|λI − B̃| = 0 (assumed to be less than 1 in absolute value). We have Yt = JỸt ,
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where J = (Ip,0, . . . ,0), Zt = JZ̃t , SYY = JS̃YYJ′ and SZZ = JS̃ZZJ′. The
transformation Xt = �′Yt , Wt = �′Zt carries (6.1) to

Xt = 	X̃t−1 + Wt ,(6.4)

where 	 = �′B(Ip ⊗ �′)−1. The process (6.2) is carried to X̃t = 	̃X̃t−1 + W̃t ,
where 	̃ = (Im ⊗ �′)B̃[Im ⊗ (�′)−1]′ has the same form as B̃. We have
Xt = JX̃t , Wt = JW̃t , TXX = JT̃XXJ′, TWW = JT̃WWJ′. Let 
̃ = EX̃t X̃′

t =
(Ip ⊗ �′)�̃(Ip ⊗ �). The asymptotic covariances of T̃∗−− = √

T (T̃−− − 
̃) and
T̃∗
WW = √

T (T̃WW − I) are found from Theorem 1.

THEOREM 5. If the Wt are independently normally distributed with EWt = 0
and EWtW′

t = I, then T̃∗−− and T̃∗
WW have a limiting normal distribution with

means 0 and 0 and covariances

E vec T̃∗−−(vec T̃∗−−)′ → (I + K̃)
[
I − (	̃ ⊗ 	̃)

]−1

× [
(
̃ ⊗ I)+ (I ⊗ 
̃) − (I ⊗ I)

][
I − (	̃

′ ⊗ 	̃
′
)
]−1

= (I + K̃)
{[

I − (	̃ ⊗ 	̃)
]−1

(
̃ ⊗ 
̃)

+ (
̃ ⊗ 
̃)
[
I − (	̃

′ ⊗ 	̃)
]−1 − (
̃ ⊗ 
̃)

}
,

(6.5)

E vec T̃∗
WW(vec T̃∗

WW)′ = (I + K̃)(J′J ⊗ J′J) = (J′ ⊗ J′)(I + K)(J ⊗ J),(6.6)

E vec T̃∗−−(vec T̃∗
WW)′ → (I + K̃)

[
I − (	̃ ⊗ 	̃)

]−1
(J′J ⊗ J′J)

= [
I − (	̃ ⊗ 	̃)

]−1
(J′ ⊗ J′)(I + K)(J ⊗ J).

(6.7)

Here K̃ refers to the commutation matrix of dimension (pm)2 × (pm)2. Note
W̃t = J′Wt and K̃(J′ ⊗ J′) = (J′ ⊗ J′)K.

Since vec T∗−− = (J ⊗ J)vec T̃∗−− and vec T∗
WW = (J ⊗ J)vec T̃∗

WW , the
asymptotic covariances of vec T∗−− are the asymptotic covariances given in
Theorem 5 multiplied on the left by (J ⊗ J) and the right by (J′ ⊗ J′). Define

�̃ = [
I − (	̃ ⊗ 	̃)

]−1
.(6.8)

Then

E vec T∗−−(vec T∗−−)′ → (J ⊗ J)(I + K̃)
{
�̃(
̃ ⊗ 
̃) + (
̃ ⊗ 
̃)�̃

′}
(J′ ⊗ J′)

− (I + K)(
 ⊗ 
)

= (I + K)(J ⊗ J)�̃(
̃ ⊗ 
̃)(J′ ⊗ J′)
+ (J ⊗ J)(
̃ ⊗ 
̃)�̃

′
(J′ ⊗ J′)(I + K)

− (I + K)(
 ⊗ 
),

(6.9)

E vec T∗
WW(vec T∗

WW)′ = (I + K)(I ⊗ I),(6.10)
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E vec T∗−−(vec T̃∗
WW)′ → (I + K)(J ⊗ J)�̃(J′ ⊗ J′).(6.11)

The covariance of the limiting distribution of vec T∗−− − (
 ⊗ I)vecT∗
WW is

E
[
vec T∗−− − (
 ⊗ I)vec T∗

WW

][
vec T∗−− − (
 ⊗ I)vecT∗

WW

]′
= (I + K)(J ⊗ J)

[
�̃(
̃ ⊗ 
̃) + (
̃ ⊗ 
̃)�̃

′]
(J′ ⊗ J′)

− (I + K)(J ⊗ J)�̃(J′ ⊗ J′)(
 ⊗ I)

− (
 ⊗ I)(J ⊗ J)�̃′
(J′ ⊗ J′)(I + K)

− (I + K)(
 ⊗ 
)+ (
 ⊗ I)(I + K)(
 ⊗ I).

(6.12)

The last line of (6.12) is (
2 ⊗ I) − (
 ⊗ 
) = (
 ⊗ I)N. Note that (J ⊗ J)�̃
×(J′ ⊗ J′) is the upper left-hand p × p submatrix of �̃ = [I − (	̃ ⊗ 	̃)]−1 =∑∞

s=0(	̃
s ⊗ 	̃

s
) and (J ⊗ J)�̃(
̃ ⊗ 
̃)(J′ ⊗ J′) is the upper left-hand submatrix

of [
I − (	̃ ⊗ 	̃)

]−1
(
̃ ⊗ 
̃) =

∞∑
s=0

(	̃
s ⊗ 	̃

s
)(
̃ ⊗ 
̃)

=
∞∑
s=0

(EX̃t X̃′
t−s ⊗ EX̃t X̃′

t−s),

(6.13)

which is
∑∞

s=0 (Ms ⊗ Ms), where Ms = EXtX′
t−s . Let J	̃

sJ′ = �s . Then (6.12)
can be written

ACov
[
vec T∗−− − (
 ⊗ I)vecT∗

WW,vec T∗−− − (
 ⊗ I)vec T∗
WW

]
= (I + K)

∞∑
s=−∞

(Ms ⊗ Ms) − (I + K)

∞∑
s=0

(�s
 ⊗ �s)

−
∞∑
s=0

(
�′
s ⊗ �′

s)(I + K) + (
2 ⊗ I) + K(
 ⊗ 
).

(6.14)

THEOREM 6. If the Zt ’s are independently normally distributed and if the
roots of |� − δ�| are distinct, the nonzero elements of D∗ have a limiting normal
distribution with means 0; the covariance of this limiting normal distribution is

ACov(vec D∗,vecD∗)
= 2E(J ⊗ J)

{
�̃(
̃ ⊗ 
̃) + (
̃ ⊗ 
̃)�̃

′}
(J′ ⊗ J′)E

−2E
{
(J ⊗ J)�̃(J′
 ⊗ J′) + (
J ⊗ J)�̃′

(J′ ⊗ J′)
}
E.

(6.15)

In the calculations of (6.15) 
̃ can be found from 
̃ = 	̃
̃	̃
′ +I. The operation

(ε′
i ⊗ ε′

i)(J ⊗ J) {· · ·}(J′ ⊗ J′)(εj ⊗ εj ) selects the element in the i, ith row and
j, j th column of {· · ·}, and (εi ⊗εi )(ε

′
i ⊗ε′

i )(J⊗J){· · ·}(J′⊗J′)(εj ⊗εj )(ε
′
j ⊗ε′

j )

places it in the i, ith row and j, j th column of the product. Since 
 is a diagonal
matrix, (ε′

i ⊗ εi )(J ⊗ J)�̃(J′
 ⊗ J′)(εj ⊗ εj ) selects the i, ith row and the
j, j th column and multiplies it by δj .
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6.2. Reduced rank regression. The reduced rank regression estimator of B
is (5.1) with B̂ defined in (2.10) and F1 the first k columns of F. The transformation
Xt = �′Yt , Wt = �′Zt carries (6.1) to (6.4). The reduced rank regression
estimator of 	 is (5.2), where

	̂ = TX−T̃−1−− = 	 + TW−T̃−1−−(6.16)

is the least squares estimator of 	 . From 
 − I = 	
̃	 ′ we obtain 0 = 	2·
̃	 ′
2·,

which implies 	2· = 0; here 	 ′ has been partitioned into k and p − k columns,
	 ′ = (	 ′

1·,	 ′
2·). The analog of (5.6) is

	̂
∗
k =

[
(T∗11

WW + H∗
11 + H∗′

11)	1·
(T∗21

WW + H∗
21)	1·

]
+
[

T∗1·
W−
0

]

̃

−1 + op(1).(6.17)

Here T∗1·
W− denotes the first k rows of T∗

W−.
From (5.7) we have

H∗
21 = (T∗21

XX − T∗21
WW
1)(
1 − I)−1 + op(1).(6.18)

From (6.4) and 	2· = 0 we obtain

T21
XX = TW−	 ′

1· + T21
WW + op(1),(6.19)

H∗
21 = T∗

W−	 ′
1·(
1 − I)−1 − T∗21

WW + op(1).(6.20)

Then

	̂
∗
k =

[
0

T∗
W−	 ′

1·(
1 − I)−1	1·

]
+
[

T∗1·
W−
0

]

̃

−1 + op(1)

=
{[

T∗1·
W−
0

]
+
[

0

T∗2·
W−

]
M̃

}

̃

−1 + op(1),

(6.21)

where

M̃ = 	 ′
1·�

−1
1 	1·
̃.(6.22)

Note that M̃2 = M̃. For (5.13) we obtain

vec
[
(	̂

∗ − 	̂
∗
k)
̃

]= [
(I − M̃′)⊗ I

]
vec

[
0

T∗2·
W−

]
+ op(1),(6.23)

and vec(	̂∗ − 	̂
∗
k) and vec 	̂

∗
k are asymptotically independent. The covariance

of the limiting distribution of vec(	̂∗ − 	̂
∗
k) is (5.16) with 
 replaced by 
̃

and 
−1M′ replaced by 	 ′
1·�1	1· = 
̃

−1M̃′. By algebra similar to that of
Section 5 the covariance of the limiting distribution of

√
T vec(B̂r − B) is (5.20)

with � and � replaced by �̃ and �̃, respectively, where �̃ is defined by B = ��̃
′
.
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7. Discussion.

7.1. Reinsel. Velu, Reinsel and Wichern (1986), Ahn and Reinsel (1988),
Reinsel (1997) and Reinsel and Velu (1998) treat the reduced rank regression
estimator for autoregressive processes.

In the first paper the authors suggest the model in which B (p×pm) is factored
into the product of a p × r matrix and an r × pm matrix and proceed to find the
asymptotic distribution of the two factors when � is assumed known. However,
this distribution is incorrect because the variability due to S−− (my notation) is
ignored. Further, the assertion that this asymptotic distribution holds when � is
replaced by SZZ is incorrect. To explain this matter in more detail, suppose � = I
and m = 1. Then the first factor in B = ��′ is � = �1 = (φ1, . . . ,φk) as defined
in (4.1) with � = I, and its estimator is F1 = (f1, . . . , fk) as defined in (4.3)
with SZZ replaced by I. The left-hand side equation in (4.3) leads to

(BS∗−−B′ + S∗
Z−B′ + BS∗−Z)�1

= �1T∗
1 + F∗

1�1 − B�B′F∗
1 + op(1),

(7.1)

where F∗
1 = √

T (F1 − �1) and T∗
1 = √

T (T1 − �1). After the transformation to
Xt = �′Yt , Wt = �′Zt (7.1) is

(	T∗−−	 ′ + T∗
W−	 ′ + 	T∗−W)I(k)

= I(k)T∗
1 + H∗

1�1 − �1H∗
1 + op(1).

(7.2)

In solving for H∗
1 the term 	T∗−−	 ′ was discarded by the authors.

Ahn and Reinsel (1988) generalize the model to let B1 = B1LB1R, . . . , Bm =
BmLBmR such that range BiL ⊃ rangeBi+1,L and find a canonical form for the
matrices. They set up the likelihood equations and indicate that the covariance
matrix of the asymptotic normal distribution of the estimators can be obtained
from the Fisher information matrix. When their results are specialized to the first-
order case (m = 1), their results agree with Theorem 4, but their expression for the
asymptotic covariance matrix is not explicit (personal communication by one of
the authors). See also Reinsel (1997), Section 6.1, for further details on the nested
model.

In Reinsel and Velu (1998) the Theorem 2 of Velu, Reinsel and Wichern (1986)
about the asymptotic distribution of the factors and its proof are repeated as
Theorem 2.4 and its proof as pertaining to the model Yt = BXt +Zt with EZtZ′

t =
�ZZ known and Xt being exogenous or independent regressors. In this case the
variability due to SXX − �XX is ignored. In the section on the autoregressive
model they approach the asymptotic distribution of the reduced rank regression
estimator by assuming that the Zt ’s are normally distributed and use the Fisher
information matrix. Although they do not give the asymptotic covariance matrix
explicitly, the details can be filled in, as shown by one of the authors in a personal
communication; the asymptotic covariance matrix is shown to be (5.21).
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7.2. Lütkepohl. Lütkepohl (1993) purports to obtain the asymptotic distribu-
tion of B̂k = �̂�̂

′ by finding the joint asymptotic distribution of �̂ and �̂ and
from that the distribution of �̂�′ + ��̂. The asymptotic distribution of �̂ and �̂
is incorrect, however; see Anderson (1999b). The asserted asymptotic covariance
of B̂k is not given very explicitly.

Acknowledgment. The author thanks two anonymous referees for valuable
suggestions.
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