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‘When the rank of the autoregression matrix is unrestricted, the maximum
likelihood estimator under normality is the least squares estimator. When
the rank is restricted, the maximum likelihood estimator is composed of
the eigenvectors of the effect covariance matrix in the metric of the error
covariance matrix corresponding to the largest eigenvalues [Anderson, T. W.
(1951). Ann. Math. Statist. 22 327-351]. The asymptotic distribution of these
two covariance matrices under normality is obtained and is used to derive the
asymptotic distributions of the eigenvectors and eigenvalues under normality.
These asymptotic distributions differ from the asymptotic distributions when
the regressors are independent variables. The asymptotic distribution of the
reduced rank regression is the asymptotic distribution of the least squares
estimator with some restrictions; hence the covariance of the reduced rank
regression is smaller than that of the least squares estimator. This result does
not depend on normality.

1. Introduction. The objective of canonical correlation analysis is to discover
and use linear combinations of the variables in one set that are highly correlated
with linear combinations of variables in another set. The linear combinations
define canonical variables, and the correlations between corresponding canonical
variables are the canonical correlations. See Anderson (1984), Chapter 12, for
an exposition and Anderson (1999a) for asymptotic theory in case of regression
on independent variables. In time series analysis the variables in one set are
measurements made in the present, and the variables in the other set are
measurements made in the past. The linear combinations of the variables of
the past may be employed for predicting variables of the present and future.
A framework within which to develop this analysis may be provided by
autoregressive moving average models (ARMA). Box and Tiao (1977) and Tiao
and Tsay (1989) have explored this area. See Reinsel (1997) and Reinsel and Velu
(1998) for more details.

In this paper the asymptotic distribution of the squares of the canonical cor-
relations between the present and past is derived for (stationary) autoregressive
processes. That distribution is contrasted with the asymptotic distribution of the
canonical correlations for two sets of variables with a joint normal distribution,
a common regression model. The comparison mirrors the comparison between
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scalar versions of the models; for a scalar autoregression with process correla-
tion p, the asymptotic variance of the sample correlation coefficient is 1 — p2,
but the asymptotic variance of the sample (Pearson) correlation in a bivariate nor-
mal distribution with correlation p is (1 — pz)z. Note the variance in the bivariate
model is 1 — p? times the variance in the autoregressive model. Moreover, the
sample canonical correlations in autoregression are asymptotically correlated
while in regression they are asymptotically uncorrelated when the population
canonical correlations are distinct. Thus there are differences in inference in the
two types of models; these differences affect model-selection procedures.

The asymptotic distribution of the coefficients of the canonical variables is
obtained for the first-order autoregressive process. The result is of interest because
it shows that the asymptotic distribution of the coefficients of the canonical
variables as well as the asymptotic distribution of the canonical correlations
is different from those distributions for the classical regression model. Velu,
Reinsel and Wichern (1986) have also derived the asymptotic distribution of these
canonical correlations, but their results differ from the results in this paper. More
detail is given in Section 7.

The reduced rank regression estimator of a regression matrix is composed of
a small number of canonical variables [Anderson (1951)]. It is the maximum
likelihood estimator in the autoregression model as well as the regression
model when the unobserved random disturbances (or errors) are normally
distributed [Anderson (1951), page 345]. In Section 5 its asymptotic distribution
is found under the assumption that the disturbance in the autoregressive model
is independent of the lagged variables. This asymptotic distribution is the same
as the asymptotic distribution of the reduced rank regressor estimator of the
coefficient matrix in the classical regression model as obtained by Ryan, Hubert,
Carter, Sprague and Parrott (1992), Schmidli (1995), Stoica and Viberg (1996) and
Reinsel and Velu (1998), under the assumption that the disturbances are normally
distributed and by Anderson (1999b) under general conditions. Here it is also
shown that the asymptotic distribution is valid regardless of the assumption on the
disturbances (as long as their variances exist). The algebra here differs from the
algebra in Anderson (1999b) because the transformation to canonical form differs
in the two models.

2. The model and canonical analysis.
2.1. The model. In this paper the model is the autoregressive process (AR)

m
(2.1) Y, =) BY_i+Z, t=..,-101,...,

i=1
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where Y; and Z; are p-component vectors with Z; unobserved and independent of
Yi—1,Yi2,...and EZ; =0, §Z,Z; = X. We assume that the roots of

m
ATT=) AT =0

i=1

2.2)

are less than 1 in absolute value. Then (2.1) defines the stationary process {Y;}
with €Y; = 0 and autocovariances

[e.g., Anderson (1971), Chapter 7]. If Y,—; is replaced by Y,—; — u, i =
0,1,...,m,in(2.1),then §Y, =p. Ifm=1,Y, =) 24 B}Z;,_sand T}, = B}l’l"o.

2.2. Population. In the AR(m) model the present is represented by Y, and the
(relevant) pastby Y, = (Y,_,,..., Y;_,) . Let
(2.4) eY,Y,_,=[Ty,....T,,1=r, €Y, ,Y _,=T.
Then the population canonical correlations between Y; and ?,_1 are the roots of

—plp r

2.5 ~
2.5 ' f

=0,

and the canonical vectors are the corresponding solutions of

—,Or() r _oc , =~
(2.6) , ~ =0, adTlpje=1, o Tw=1.
r —ol' | |@

The largest root of (2.5), say pi, is the first canonical correlation and the
corresponding solution to (2.6) defines the first pair of canonical vectors, which
are the coefficients of the first pair of canonical variables. The first canonical
corre~lati0n is the maximum correlation between linear combinations of Y;
and Y,_;.

From (2.6) we obtain

Q2.7) T 'Ia = p*Toa.
There are p nonnegative solutions to
2.8) ITT ' - p2T| =0

and p corresponding linearly independent vectors a satisfying (2.6) and «;; > O.
If the root p? of (2.8) is unique, the solution a of (2.6) (and «;; > 0) is uniquely
determined. [Since the matrix A = (ay, ..., &) is nonsingular, the components
of Y; can be numbered in such a way that the ith component of «; is nonzero.]
The number of positive solutions to (2.8) is equal to the rank of I and indicates
the degree of dependence between Y; and Y;_1.
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2.3. Estimation. Given a series of observations Y_,,+1,..., Yo, Y1,..., Y7
we form sample covariance matrices

(2.9) SYY——ZYf " —ZYI 1Y,y
z 1
1~ ~ -
(2.10) Sy_ = 7ZYA(;_1 =S ,, B=Sy S

t=1

The estimator B is the least squares estimator of B and is maximum likelihood if
the Z,’s are normally distributed conditional on Y_,,41, ..., Yo given.

The sample canonical correlations (ry > r > --- > r,) and vectors are defined
by

S Sy
@2.11) TSYy o Sr=1 ),
S_y —rS__
S Sy_ .
2.12) Yy ST o g aSypa=1w8_w=1,
S_Y —rS__ w

and a;; > 0. These are the maximum likelihood estimators if the Z,’s are normally
distributed. From (2.12) we obtain Sy_S~!'S_ya=r2Syya, which is the sample
analog of (2.7). This equation can be rearranged to give

(2.13) Sy_S7'S ya=1(Syy —Sy_S”!'S_y)a,

where t = r2/(1 r?). Note that Syy — Sy_ S-!'s_ y = SZZ —S7_ S-!'s_ 7z and

«/—SZ -1s_, L 0as T — co. Hence, Syy — Sy_ S°'s_ y is asymptotically
equ1va1ent to Szz. In what follows we shall not dlstlngulsh between S;7 =
lzt 1Z:Z, and Syy — Sy_ S-!'s_ y = 12; IZZ‘Zp where Z, =Y; —
BY, 1 is the residual.
Whenm =1,Y, =Y,, T, =T}, etc. Let Ty = I'. We define

~ 1z
(2.14) S._=S__= —ZY, Y, s_Z:?ZYHZQ.

Section 6 studies these problems for m > 1.

3. Asymptotic distribution of sample matrices. To find the asymptotic dis-
tribution of the canonical correlations rq, ..., r, and canonical variates a; foees@p
and Wi, ..., W, we need the asymptotic distribution of Syy, Sy_ and S__ or
of SZ_, S__and Szz.

If Z; has finite fourth moments, then JT (Syy — I'g) has a limiting normal
distribution [Anderson (1971)]. Further, if Z; is normally distributed, the fourth-
order moments of Y; and the second-order moments of Syy are quadratic functions
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of I'. In this section we find the asymptotic covariances of sample matrices
when m = 1. The asymptotic covariances when m > 1 can be obtained from the
application of Y;.

To express the covariances of the sample matrices we use the “vec” notation.
For A = (ay, ..., a,) we define vecA = (a], ..., a},)". The Kronecker product of
two matrices A = (a;;) and B is A ® B = (a;;B). A basic relation is vecABC =
(C' ® A) vec B, which implies vecxy’ = vecxly = (y ® X) vec | =y ® x. Define
the commutator matrix K as the (square) permutation matrix such that vecA’ =
KvecA for every square matrix of the same order as K. Note that K(A ® B) =
B®A)K.

THEOREM 1. If the Z;’s are independently normally distributed, the limit-
ing distribution of vecS}, = VT vec(Szz — X), vec S*, = VT vecS_y,, and

vecS* _ =T vec(S__ — I') is normal with means 0, 0 and 0 and covariances
(3.1 &vecSh,(vecSh,) =1+ K)(Z®X),

(3.2) &vecS* ,(vecS* ) =X QT,

(3.3) & vecS* ,(vecS%,) =0,

(3.4) &vecS* _(vecSy,) - I+ K)I[I-B® B (ZeY),

(3.5) &vecS* _(vecS* ) - (I+K)[I— (B®B)]"! (X @ BI),

&vecS* _(vecS*_)
> I+K[I-BIB] [(T®T)+E TN - (EQ )]
(3.6) x [I— B ®B)]!
=I+K{I-BeBI (Il
+TeD[I-®B®B) ' - TeI).

First we prove the following lemma.

LEMMA 1. If{Z,} consists of uncorrelated random vectors with §Z; = 0 and
E€Z,Z, =X, then

1
3.7 S__—BS__B' =BS_,+S,_ B +Sz7+ Op<7>
as T — oo.

PROOF. The model Y, = BY;_; + Z; implies

1 T
(3.8) ?ZYtY; =BS__B'+BS_z+Sz B +Szz.
t=1
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Since Zthl Y, Y, =TS__+Y7rY}; —YoY, Lemma I follows. [

PROOF OF THEOREM 1. The sample covariances of a stationary autore-
gressive process are asymptotically normally distributed; see Anderson (1971),
Chapter 5, for example. It remains to prove (3.1) to 3.6). If X ~ N(0, X),
EXi XXX = oijox + 0ik0j; + 0i10jk; in vec notation & vecXX'(vecXX')' =
EXRX)X' @X)=vecZ(vecX) + (TR X)+K(XEZ ® X). If X and Y are
independent, & vec XX'(vec YY) = EXX' ® €YY/,

Evec XY (vecXY') =8(YRX)(Y ® X))
=8(YY ®XX')=8YY ® €XX/,
(3.10) &vecYX'(vecXY') = K& vec XY (vecXY') =K(8YY' ® 6XX)).

The asymptotic variance of vecS%, = vec(1/4/T) ZL(Z,Z; —X)is (3.1). To
show (3.2) we write

(3.9

(g P
& vecS* ,(vecS* ) = =€ Y (@Y )(Zi®Y,_ )

t,s=1

(3.11)

1 T
=€ Y (L, ®Y 1Y, ).

t,s=1
Next, (3.3) follows from /T vec S*, = Z;T:1(Zz ®Y,;_1) and /T vec Sy, =

(1/\/7) ZST:1[(Zs ® Z;) — vec X]. Then (3.4), (3.5) and (3.6) are consequences
of (3.7), (3.1), (3.2) and (3.3) and

vecS* _=[1—- B®B)]" {I®B)vecS* , + B®I)vecS, + vecS},}
1
+0<7)
=[I- B®B)] {d+K)A®B)vecS* , + vecS},}
1
+0<7).

The second form of (3.6) follows from the substitution of ¥ = T’ — BI'B’ in the
first form. O

(3.12)

IfB=0,then Y, =7Z,,T =X and (3.6) reduces to (3.1). The effect of B #£ 0 is
to tend to inflate the asymptotic covariance matrix of vecS__. The characteristic
roots of B and hence of B® B (products of the roots of B) are less than 1 in absolute
value; hence I — (B®B)| #0.If p=1,B®B =57, and - B®B) =1 —b?,.

In the classical regression model Y; = BX; + Z; with §X; =0, €Z;, = 0,
EX/ X, = Xxx, €Z,Z, = X, and EX;Z; = 0. Then €Y, = 0 and €YY, =
BXxxB' + X = Xyy. If the X;’s and Z,’s are independent,

(3.13) Cov[vecSyy, vecSyyl =TI+ K)(Zyy ® Xyy).
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In the autoregressive model €Y,Y, =T = Xyy, but (3.6) is very differ-
ent from (3.13). In the scalar case (3.6) is 2[(1 + ,32)/(1 — ,32)]0*2 instead
of 202, where 02 = & ylz; the factor (1 + 82)/(1 — p?) inflates the variance of
Z,T: 1 yt2 /~/T. The larger B2 is, the larger the inflation factor.

Note that the covariances depend on Z; being normal.

4. Asymptotic distributions of canonical correlations and vectors. Let the
solutions to

@.1) BIB'¢ =03¢, ¢'Zé=1

form the matrices

4.2) O=(¢y,....9,), O =diag(6,...,60))
with ¢y >0, >--->0,>0and ¢;; >0,i =1,..., p. Let the solutions to
(4.3) BS__Bf=1S,,f, 'Sy f=1

form the matrices
4.4) F=(f,....1,), T =diag(ty, ..., 1))

with ty > > --- > 1, and f;; > 0,i=1,..., p. We shall find the asymptotic
distribution of F and T when the Z,’s are normally distributed.
Since I' = BI'B’ + X, (4.1) is equivalent to

4.5) IF'g=56X¢, dTp=1,
where § = (1 — p?)~! =6 + 1. Similarly, (4.3) is asymptotically equivalent to
(4.6) S__f=dSz A, £'Szf=1,

where d = (1 —r?)~! =7 + 1, since

1< 1< ,
VTSyy —S__) = ﬁ(7 Y Y Y, - - ZYHYH)
t=1 t=1

4.7
1 / 1\ P
= = (YrYy = YoYp) £ 0.
Let ®'Y, =X,;, ®'Z, =W, and ®'B(®')~! = W. Then X, satisfies
4.8) Xy =¥X;—1 + W,
4.9) 8X,X;=<I>T<I>=®+I=A=diag(81,...,51,),

(4.10) EW,W, =0'2d =1
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and €X;_1W, =0. Let

1 T
(4.11) T =?ZXHX§_1,
t=1
1 T
(4.12) Tww == > W, W,
t=1

The asymptotic covariances of T__ and Tww are given in Theorem 1 with S__
and Szz replaced by T__ and Tyw, X by I, T by A and B by V.

THEOREM 2. If the Z;’s are independently normally distributed, the limiting
distribution of T* _ = /T(T__ — A) and Ty w = VT (Tww — 1) is normal with
means 0 and 0 and covariances

EvecT* _(vecT*_) —» I+ K)[I— (¥ ® W¥)]!
Xx[(AQD+A®A)—AQDI— (¥ x ¥)]~!
=I+K){I- ¥ W] '(A®A)
+AQRAM— (¥ R¥) - (A®A)],

(4.13)

(4.14) EvecTiywvecThy) =T+ KAQID),
415  &vecT*_(vecTiyy) — A+ K- (¥ W]~ 'AQD.

Note that (A ® I), I ® A) and (I ® I) are diagonal.
Leth= & 'f, H= ®'F,D =diag(dy, ..., d,). Then H and D satisfy

(4.16) T__H=TyyHD, HTyyH=L

Since T__ % A and Tww LS I, the probability limit of (4.16) is AH,, = Ho A,
H,_H., =1, which implies plim;_, . H is diagonal with plim;_, . h;; = £1 if
the diagonal elements of A are different. Since ¢;; > 0 and plim;_,  fi; > O,
then plimy_, ., h;; > 0. Hence H L TandD 5 A.

Let H* = VT(H — 1), and D* = V/T(D — A) = VT(T — ©), where T =
diag(ty, ..., 1,). From (4.16) we obtain

(4.17) H*A — AH*+D*=T*_ — T}y A +0,(1),
(4.18) H"” + H* = —Tjyw +0p(1).

In components (4.17) and (4.18) are h; (8; —8;) =1~ ="V 8, 40,(1),i # j,

di =677 =5V 4 0,(1), 2h% = —t3VW 4 0,(1).
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Let

p
(4.19) E=) (i ®¢i)(e; ®¢)),

i=1
where €; has 1 in the ith position and 0’s elsewhere; E is a diagonal p* x p?
matrix with 1 in the [(( — 1)p +1i, (i — 1)p + i]th position, i =1, ..., p, and 0’s
elsewhere. Then vecD* = E vec(T* _ — Tj,, A). Note E2 = E; hence the Moore—
Penrose generalized inverse of E is ET = E. Let H* = H}} + H};, where H}; =
diag(hy,, ..., h;p). Then vecH); = E vec H*.

To write (4.17) more suitably we note that vecH*A = vecIH*A =

(A ® I) vecH* and vec AH* = vec AH* I = I ® A) vecH*. Define

N=(A®D-A®A)
(4.20) =diag(8;1— A, 51— A, ..., 5,1— A)
:diag(0,81 —52,...,51 —51,,52—51,0,...,51, —5[,_1,0).

The Moore—Penrose inverse of N is
1

TR A T

1 1 1
707 9 e e ey ,O)
5 =81 8—083 8, —8p1

Nt = diag(O
4.21)

Then NNT = Ipz —Eand NE=NTE =0.
We can write (4.17) as

422) NvecH* + vecD* = vec(TZ _ — T}, A) +0p,(1)
’ =vecT* _ — (A®DvecTy,y +op(1).

From (4.22) we obtain

(4.23) vecH! = NT[vecT* _ — (A @D vecT}, ]+ 0,(1),

(4.24) vecD* =E[vecT* _ — (A @) vec Ty | + 0, (D).

In vec notation, (4.18) is (I + K) vecH* = —vec T}y, + 0, (1), from which we
obtain

(4.25)  E(I+K)vecH* =2EvecH" =2vecH} = —Evec Ty +0,(1).

DEFINITION. If X7,Y7) 4 (X,Y) with £X'X < 0o and Y'Y < oo, then
(4.26) ACovX7,Y7r) =868X - &X)(Y — 8Y).
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The asymptotic covariance matrix of vecT* _ — (A ® I) vec T, is

ACov[vecT* _ — (A®DvecT},,, vecT* _ — (A®@D vecT}, ]
=I+KI[I- (¥ ¥ (A 0O)

(4.27)
+AQRO)I- (WU 'I+K) +(A’QD - (A®A)
=I+KAARO)+(ARO)A'I+K)+NT(ARI),
where
(4.28) A=I—(Ww)] !

The element of A in the jth row of the ith block of rows and in the £th column of
the kth block of columns is denoted as A;; x¢. Note @ = A — L.

The asymptotic covariance matrix of vecTj,y, is (4.14), and the asymptotic
covariance matrix between vec T* _ — (A ® I) vec Ty, and vec Ty, is

ACov[vecT? _ — (A®I) vecTyy, vec Ty, ]
(4.29) =I+K[I-¥eWv] 'deh - (ADI+KA®D
— I+ K)A — (A@DI+K).

The asymptotic covariance matrices of vecH), vecH); and vecD* are found
from (4.29), (4.14) and (4.27).

From (4.24), (4.27), EK=E,E(A’® 1) =E(A® A), EA®D =E(I® A)
and (A @ B)JK=K(B ® A), we obtain the following theorem.

THEOREM 3. If the Z;’s are independently normally distributed and if
the roots of |I — 8X| = 0 are distinct, the nonzero elements of D* have
a limiting normal distribution with means 0; the covariance matrix of this limiting
distribution is given by

A Cov(vecD*, vecD*) = 2E{[1 — (¥ @ ¥)] (A ® @)
(4.30) +(ARO)I— (¥ W) 'E
=2E[A(A®O®) + (A ®©)A'IE.

The asymptotic covariance of d; and d; is
A COV(di*, d;k) = 2()»,‘,"1']'5]'9]' + 5,‘9,‘)\1']",',‘)

2
Pj % )

:2(»‘ = A
A =ph? A= ph?

=2(¢, ®@¢H{[I-BRB)"'[T® ([ —X)]
+IT-X)]I-B B |9, ®¢).

(4.31)
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The vector ¢, is estimated consistently by f;; the matrices B, I', and X by ﬁ, S__
and Szz, respectively, and §; by d;. The variance (4.31) can, therefore, be
estimated consistently.

Note that df =17 = +/T(t; — ;) and = ﬁ(rf —pp) =(1 - pJZ.)Z\/T
x (tj —0;) +o0p(1). Thus, r12*, e, rlz,* have a limiting normal distribution with
means 0 and covariances

(4.32)  ACov(r*,r7) =2[hii jj (1 = p7)?pF + Xjjiinf (1= p7)?].

Unless W is a diagonal matrix, the roots rq, ..., r), are asymptotically correlated;
that is, dependent. In the special case that W is diagonal (y;; = ¥;8;; = pidij,
where §;; =1 and §;; =0, i # j), the roots are asymptotically independent, and
the asymptotic variance of d* =" is 4,0i2 /(1 — ,oiz)3 and the ith component of
X; =¥X,_1 +W;is X;; = p; X; ;,—1 + W;;. Contrast this result with the canonical
form of Y, = BX; + W, namely U;; = p; V;; + Wi, with §U2 = V2 = (1—p)~!
and EW? = 1. In this case the asymptotic variance of t* is 4p?/(1 — p?)?
[Anderson (1999a)]. The ratio of the variance in the autoregressive model to that
in the regression model is (1 — piz)_l, which is greater than 1. (Note that this
result agrees with the asymptotic distribution of the serial correlation coefficient
in a scalar first-order autoregressive process [Theorem 5.5.6 of Anderson (1971)].
The variance of the limiting distribution of r* = JT (ri — pi) when ¥ is diagonal
is 1 — ,oi2 as compared to (1 — ,oiz)2 in the regression model.) In the classical
case, the eigenvalues are asymptotically independent because Y; and X; are
each transformed, and hence B can be transformed into a diagonal matrix, but
in the autoregression case Y; and Y,_; are transformed by the same linear
transformation.

Now consider

vecH* = vecH} 4 vecH
(4.33) 1
=N*[vecT* _ — (A®IDvecT}, | — Evec T}, .
Then
A Cov(vecH*, vec H")
=NTI+KAARO)+ (A O)AI+K)+ (A’®D — (A® A)NT

wan INFIA+K)A — (A®DA+K)IE
T CIEANI+K) - I+ K)(A®DINT + JEI+ KE

=NT[I+K)AAR®O)+ (AR O)A'I+K)|N*
+NY (A ®T) — INTA+K)AE — JEA/0+KN* + IE

because NT(A ® DE = 0. The asymptotic covariance matrix of vecF =
(I ® ®)vecH is (4.34) multiplied on the left-hand side by (I ® ®) and on the
right-hand side by I ® ®').
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In the classical regression model Y; = BX; + Z; the eigenvalues of
Xy X):;&): xy in the metric of X7z are asymptotically independent when the
population eigenvalues are different. In the AR(1) case the eigenvalues are
asymptotically dependent. (See the comments in Section 7.1.)

5. Estimation of reduced rank regression. If the rank of B in Y, =
BY;_1 + Z; is specified to be k (< p), the maximum likelihood estimator of B
under normality with Yq given [Anderson (1951)] is

(5.1) B, =S;,F\FiB=Sy_ 9,

where F; and Ql are the first k columns of F and = (W1, ..., wWp), respectively.
The matrix By is the reduced rank regression coefficient matrix. In this section the
asymptotic distribution of By will be derived without assuming normality.

In canonical terms the reduced rank regression estimator is

(5.2) ¥, = TywH H,V,

where H; consists of the first k columns of H, and the least squares estimator is
(5.3) U=Ty_T-! =¥ +Ty_T-!.

Then

5 V=T (¥, — W)
' = (T} wlwTy, + HiT,,) + 1 H) ¥ + I(k)l/(k)T;V_A—l +o,(1),

where Ity = (Ix, 0)'. The submatrix consisting of the last p — k rows and columns
of WAW' = A —Tis (W + ¥n)A(¥), + ¥),) = 0, which implies W,; =0,
W5, =0 and

(5.5) \F:[‘I’H ‘I'”]
0 0

Expansion of (5.4) in terms of T}, T}, _ and H* gives
g [T T 0], [m 0], [
CTTEL T2 0|0 o) | HE 0 0 0

Vi ¥y
X
0 0

(5.6) L[ro Tyl Ty2][Aah 0 +ou()
0 o2 T2|Lo 1| 7
(Tiy +HE +HIDW (Th, + Y+ Y)W
=| +Ti AL +TH2 +op (D).

(T334 + H3 Wy (T34 + H3 W 1n



1146 T. W. ANDERSON

The first k columns of (4.17) and the upper left-hand side submatrix of (4.18)
are

Hfj Ay — A H; +D1 ] [T —T A
(5.7) HS AL - B3, = g2t _ 2l +o,(1),
—— ww
(5.8) A HY = =T, 4 0,(1).
Use of (5.7) and (5.8) in (5.6) yields
THLAT! Ti?
5.9 W= (T2 -T2L) (T2 —T32L) +o,(D).

x (A =D~y x (A =D~y

From Tyx =VT__ VW +VWT_y + Ty V¥ +Tyw, Txx=T__ + Op(l/ﬁ)
and (5.5) we obtain

1
(5.10) T Tl = TR, + T2 W), +o, <ﬁ)
Then from (5.9) we derive
| Tyl T2
VA= | (T2 4+ T2 W) (T2, + T2 W) | +0,(1)
| x (A =DMy, x (A =D~y
1 0] [0 0] v/
5.11 = T T A =D (W, ¥0)A
(5.11) 0 0 W_+_0 1 W—[\Iﬂlj( 1 —D7 (W1, ¥i2)
+o,(1)
1 0], 0 0],
=lo o|Tv-*|p p|Tw-M+opD),
where
‘I’/
(5.12) M= [\P}l} 07 (W, ¥)A =V 0,V A,
12

V. =,¥p) and ©1 = A; — 1. Note that M2 =M by virtue of the upper
left-hand corner of WAW' = @. Also M'AM = M’ A = AM. Then

(5.13)  vec[(¥" —¥;)A] = [(I -M)® (g ‘;) } vec Ty +0,(1).

Notice that the development to this point does not involve the second-order
moments of T__, T_y and Tww and hence does not require normality of W;.
The covariance of vec Ty, _ is

(5.14) EvecTy _(vecTy, ) =AQI

regardless of the nature of the distribution of W;.
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The asymptotic covariance of vec W} A and vec(¥* — W})A is

ACov[vec Wi A, vec(¥* — W;)A]

= & vec vec —
T*Zl T*22 T*Zl T*22
(515) w— wW— w— w—
_MAd-Me| Y
B 0 I

that is, vec (I\IZ and vec(¥* — {I\lz) are asymptotically independent. Hence, the
covariance of the limiting distribution of vec W} is the covariance of vec ¥ minus
the covariance of Vec(\Ifk — \IlZ). The asymptotic covariance of Vec(\Il* — \IIZ) is

A Cov[vec(¥" —¥})]

Al I-M)AO-MA'® 00 =A'AI-M)® 00
(5.16) 0 I

0 I
(A 'eD|dI-M)® 00
B 0 1/

Each factor in the brackets is idempotent of rank p — k; that is, each can be
diagonalized to diag(I, ¢, 0). In a sense the advantage of W over W is a reduction
of the variability by a factor of [(p — &)/ p]z.

The covariance of the limiting distribution of vec ﬁ,f is that of vec B* minus that
of vec(B* — B}) = [® ® (®) '] vec(¥" — W}); that is, (T~! ® I) minus
A Cov|[vec(B* — B})]
5.17) = [® ® (®)~']A Cov[vec(¥" — ¥))](®' @ )
—1 r @1 1 n—1 ro -1
=0(AT -V 0 V)P ® (D) |:I— (0 0>i| L

Since B has rank k, it can be written as B =X ®; ®,B = AIl’, where ®; consists
of the first k columns of ®, A =X®; (p x p) and I =B'®; = ®¥| (p x p).
Note that ®A~'®’' =T~ since ®'T'® = A. Further

(5.18) oV 07'v,. o' =ne; ',
©,=®'BIB'®, =I'TMH,[=9'2d, (¢)"' ==& and

(5.19) AN 'A=0\20, =1,.
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Then (5.17) is
ACov[vec(B* — B})]
= !'-nmTm e[ -AWNZTA)A].

Note that the second term in each factor in (5.20) is invariant with respect to the
transformation (A, I1) - (AG, IIG™1) for nonsingular G. When A = X®; and
M =B ®, (G =1), the effective normalization is A’S"'A =T and II'TI = ©;.

(5.20)

THEOREM 4. Let B = AIl', where A and I are p x k matrices of rank k.
Suppose that {Z;} is a sequence of independent identically distributed random
vectors with mean Q and covariance X, and let {Y,} be defined by Y, =BY,_| +
Z,. Then /T vec(By — B) has a limiting normal distribution with mean 0 and
covariance matrix

521) T l'er—mr'-n@rm 'meE-—-AWAT'A)IA).

This covariance matrix can be written as
Trl'ern-T'e

(5.22) , 1 —1 Iy—1 Ay—1 A7
x{I-TOMTI) ' I']|Q[I-X'AA'ZT'A)"'A]}.

The first term in (5.22) is the covariance matrix of /T Vec(ﬁ — B), the least
squares estimator of B. The second term is the covariance matrix of the limiting
distribution of /T Vec(ﬁ — ﬁk). Each bracketed matrix in the pair of braces is
idempotent of rank p — k.

A measure of the reduction in the variance of the estimator of B is

tr[(A CovB*)~' A Cov(B* — B})]/[tr(A CovB*) "' A CovB*]
(5.23) =t[I-TI(I'TI) ' ]tu[I- T 'AWAZIA)"TA]/ p?
=(p—k?/p*.
We have used tr(A @ B) = trAtrB, r TII(II'TID "' I’ = ¢ I'TI(IT'TIT) ! =
r0,0;", tTTTANWZT'A)TIA = e ATT'AWEZ A = oL =k
and (5.19). _

The limiting distribution of JT (Bx — B) holds under exactly the same
conditions as for the limiting distribution of /T (B — B); in particular, only
the second-order moment of Z,; is assumed. Hence confidence regions for B
established on the basis of normality of Z; hold generally. Note that the asymptotic
distribution of the sample canonical variate coefficients depends on the fourth-
order moments of Z;; nevertheless, the asymptotic distribution of the reduced rank
regression estimator, which is a function of those coefficients, does not depend on
fourth-order moments.

The asymptotic covariance matrix of ﬁk in this AR(1) model is the same as
the asymptotic covariance matrix of By in the model Y; = BX; + Z;, where X;’s
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are independently identically distributed with €X; = 0 and €X;X] = Xxx (in
place of I') or where the X;’s are nonstochastic and Syx — X xx [Anderson
(1999b)]. In the present AR(1) model the transformation to canonical form Y; —
®'Y;, Y1 —> @'Y, is different from the transformation for independent X;’s
(Y; =AY, X, — 2X)).

The likelihood ratio criterion for testing the null hypothesis that the rank of B
is k against alternatives that the rank is greater than k when the Z,’s are normally
distributed is

P p
—2logh=-T Z log(1 — riz) ~T Z ri2
i=k+1 i=k+1

(5.24)

[Anderson (1951)]. When the null hypothesis is true, this criterion has a limiting
x 2-distribution with (p — k)? degrees of freedom. This number is the product of
the ranks of the two idempotent factors in (5.16) and (5.20).

6. Autoregressive processes of order greater than one.

6.1. Canonical correlations and vectors. We consider the process (2.1)

written as
6.1) Y, =BY, | +Z,
where B = (B, ...,B,;). Since ' = BIB + Y, (4.1), which defines ¢ and 6,

is equivalent to (4.5); since S__ = BS__B’ + S35 + 0,(1/4/T) and S35 =
Szz+o0,(1/ VT), (4.3), defining f and 1, is asymptotically equivalent to (4.6).
The transformation X, = ®'Y, leads to (4.16), which in turn leads to (4.17)
and (4.18) for H* and D*. To carry out the analysis, we need the asymptotic
distribution of S__ and Szz and of T__ and Tyw for m > 1.
The process {\NG} can be defined by

(6.2) §z =ﬁ§z—1 +Zz,
where Y, = (Y,,Y,_,,....Y,_,..1). Z; = (Z},0,...,0), and
B; B Bu-1 By
I 0 0 0
(6.3) B=|0 I 0 0
(0 0 I 0 |

[Andegvson (1971), Section 5.3]. Note that the roots of (2.2) are the roots~0f
[\ — B| = 0 (assumed to be less than 1 in absolute value). We have Y; = JY;,
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where J = (I,,0,...,0), Z, = JZ,, Syy = JSyyJ) and Szz = JSzzJ. The
transformation X; = ®'Y;, W; = ®'Z,; carries (6.1) to

(6.4) X, =¥X,_1 +W,,

where ¥ = @’ Bd, ® <I>’) I The process (6.2) is carried to X, \I’X; 1+ W;,
where \I! =@, ® <I>/)B[I ® ()~ 11 has the same form as_ B. We have

=JX;, W, = JW,, Txx = JTxxJ, Tww = JTWWJ Let A = XX =
(I ® <I>’)F(I ® ®). The asymptotic covariances of T =JT(T T(T__ — Z) and
T’CVW \/_ T(Tww —I) are found from Theorem 1.

THEOREM 5.  Ifthe W, are independently normally distributed with EW,; = 0
and EW, W, =1, then T* _ and TWW have a limiting normal distribution with
means 0 and 0 and covariances

gvecT* _(vecT*_) — I+ K)[I —(¥® \AI;)]_1
x[AeD+A®X) —AD][I- (¥ @ ¥)]"
=1+K{[1- ¥e¥] 'AsA)
FARM[I—(F o¥)] ' — (Ao A)).

(6.5)

(6.6) EvecTiyy(vecTiyy) = I+ K)YJTT N =J J)A+K)J®1J),

&vecT* _ (vec ’T‘?}VW)’ - I+ ﬁ)[l — (¥ ® \i)]_l(J’J JJ

6.7) N
=I-wew] JeJ)I+KJeJD.
Here K refers to the commutation matrix of dimension ( pm)2 x ( pm)2 Note
=JW, and K@’ @)= ® JHK.
Slnce vecT*_ =J ® J)VecT’i_ and vecTy,, = J ® J)VecTWW, the
asymptotic covariances of vecT* _ are the asymptotic covariances given in
Theorem 5 multiplied on the left by (J ® J) and the right by (J' ® J'). Define

(6.8) A=[1-F ¥
Then
EvecT* _(vecT* ) - JRNA+K[AARA) +(AQAA I ®T)
—I+K)(AR®A)
(6.9) =I+KJNAARAJI &)

+JRNARMA T I)A+K)
—I+K)(A®A),

(6.10) evecTiwvecThy) =T+ KYARQD),
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(6.11) gvecT* _(vecThy) = A+KJQDHAT ®J).

The covariance of the limiting distribution of vecT* _ — (A ® I) vec T}, is
E[vecT* _ — (A®I) vecT},  |[vecT* _ — (AQT) VecT’ﬁ,W]/
—I+KJODAARA) +AMA ]I ®T)

6.12) ~I+KJ DAY ®I)(A®D
—(A®DIRNAJ ®J)I+K)
—I+K)A®A)+(A’DI+K)(A®D.
The last line of (6.12) is (A’QI) — (A® A) = (A ® I)N Note that (J ® J)A
x(J/ ® J/) is | the upper left-hand p x p submatrix of A=[1- ¥ ®W¥)]!

0(\11 QW) and JDHAA® A)J ®J) is the upper left-hand submatrlx
of

- e ' Aed) =Y (¥ ¥ ) AcA)
(6.13) $=0

o0
= > (XX, ® eX,X]_)),

which is Y225 (M; ® M), where My = €X,X]_ . Let JU') = I1,. Then (6.12)
can be written
ACov[vecT* _ — (A®DvecTy,, vecT* _ — (AQI)vecTy, ]

=(1+K) Z (M; @ My) — 1+ K) Y (II,A ® )
(6-14) §=—00 s=0

—> (AL, @M)A+K)+ (A°®D) +K(A® A).
s=0

THEOREM 6. If the Z;’s are independently normally distributed and if the
roots of |I' — §X| are distinct, the nonzero elements of D* have a limiting normal
distribution with means 0; the covariance of this limiting normal distribution is

A Cov(vecD*, vec D¥)
(6.15) =2EJ@D{AA®A) + (A M)A }J & J)E
—2E{J®NDATART)+(AJR DA ®J)]E.

In the calculations of (6.15) A can be found from A = WAW' +1. The operation
€ ReNIRD {--1T T)(e; ® ej) selects the element in the i, ith row and
J, jthcolumnof {---},and (¢; ® &;)(e; ® ) JIN{-- -} (T ® J’)(€j®ej)(€ ®e )
places it in the 7, ith row and j, jth column of the product. Since A is a dlagonal
matrix, (¢; ® )(J ® DAJA ® J)(e; ® &) selects the i,ith row and the
j, jth column and multiplies it by 4 ;.
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6.2. Reduced rank regression. The reduced rank regression estimator of B
is (5.1) with B defined in (2.10) and F the first k columns of F. The transformation
X; = ®'Y;, W, = ®'Z, carries (6.1) to (6.4). The reduced rank regression
estimator of ¥ is (5.2), where

(6.16) W=Tx_TZ =w+4+Ty_T!

is the least squares estimator of ¥. From A —I = WA W’ we obtain 0 = \IIQ.Z\II’Z,,
which implies ¥,. = 0; here W’ has been partitioned into k and p — k columns,
¥ = (¥, ¥)). The analog of (5.6) is

. (T*H +H>x< +H*/)\I’1 T*l_ ~_1
6.17) wzz{ ww ol + ;V A +o,(D).
(T w +H; ).
Here T}‘j[}'_ denotes the first k rows of T7;, _.
From (5.7) we have
(6.18) 5= (T — T AD A =D 4 0,(1).
From (6.4) and ¥,. = 0 we obtain
(6.19) T3 = Tw_ W) + T3y +o,(1),
(6.20) H =Th W (A —D ' =T, 4+ 0,(1).
Then
~ 0 T:! ~_1
U, = + WA 0,0
oo [Ttv_wa.ml—n—lm} [0} ot
(6.21) ..
Ty 0 |~ ]~
where
(6.22) M=v| 0, 'V A

Note that M2 = M. For (5.13) we obtain
ke ~ ~ 0
(6.23) vec[(W" — ¥ )A]=[T—-M)QI]vec T2 +0,(1),

and vec(¥" — \/I;Z) and vec @z are asymptotically independent. The covariance
of the limiting distribution of VGC(\T’* — \le) is (5.16) with A replaced by A
and A~!M’ replaced by ¥ ©¥,. = AW By algebra similar to that of
Section 5 the covariance of the limiting distribution of JT Vec(ﬁr —B) is (5.20)
with I' and IT replaced by T and I, respectively, where M is defined by B = ATl
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7. Discussion.

7.1. Reinsel. Velu, Reinsel and Wichern (1986), Ahn and Reinsel (1988),
Reinsel (1997) and Reinsel and Velu (1998) treat the reduced rank regression
estimator for autoregressive processes.

In the first paper the authors suggest the model in which B (p x pm) is factored
into the product of a p X r matrix and an r X pm matrix and proceed to find the
asymptotic distribution of the two factors when X is assumed known. However,
this distribution is incorrect because the variability due to S__ (my notation) is
ignored. Further, the assertion that this asymptotic distribution holds when X is
replaced by Sz is incorrect. To explain this matter in more detail, suppose X =1
and m = 1. Then the first factor in B= AIl"is A = ®| = (¢, ..., ¢;) as defined
in (4.1) with ¥ =1, and its estimator is F; = (f,...,f;) as defined in (4.3)
with Sz replaced by I. The left-hand side equation in (4.3) leads to

(BS* _B'+S% B +BS*,)®,

7.1
7D — &, T} +Fi®; — BTB'F; +0,(1),

where F] = VT(F; — ®)) and T} = VT (T| — ©)). After the transformation to
Xl‘ = q)/Yt, Wl‘ = q)/Zt (7.1) is

(UT* W+ T, W +WT* )

(7.2) . . .
=I»T] +H1®1 — ®1H1 +op(1).

In solving for HY the term WT* _ W’ was discarded by the authors.

Ahn and Reinsel (1988) generalize the model to let By = B1;Bg,..., B, =
B, B;ur such that range B;; D range B;; 1,1 and find a canonical form for the
matrices. They set up the likelihood equations and indicate that the covariance
matrix of the asymptotic normal distribution of the estimators can be obtained
from the Fisher information matrix. When their results are specialized to the first-
order case (m = 1), their results agree with Theorem 4, but their expression for the
asymptotic covariance matrix is not explicit (personal communication by one of
the authors). See also Reinsel (1997), Section 6.1, for further details on the nested
model.

In Reinsel and Velu (1998) the Theorem 2 of Velu, Reinsel and Wichern (1986)
about the asymptotic distribution of the factors and its proof are repeated as
Theorem 2.4 and its proof as pertaining to the model Y, = BX; +Z, with §Z,Z;, =
Y 7z known and X; being exogenous or independent regressors. In this case the
variability due to Sxyx — X xx is ignored. In the section on the autoregressive
model they approach the asymptotic distribution of the reduced rank regression
estimator by assuming that the Z;’s are normally distributed and use the Fisher
information matrix. Although they do not give the asymptotic covariance matrix
explicitly, the details can be filled in, as shown by one of the authors in a personal
communication; the asymptotic covariance matrix is shown to be (5.21).
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7.2. LL‘itkepohl Liitkepohl (1993) purports to obtain the asymptotic distribu-
tion of By = AIl’ by ﬁndlng the Jomt asymptotic distribution of A and I and

from that the distribution of ATl + ATI. The asymptotic distribution of A and T
is incorrect, however; see Anderson (1999b). The asserted asymptotic covariance
of By is not given very explicitly.

Acknowledgment. The author thanks two anonymous referees for valuable
suggestions.
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