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NONPARAMETRIC TESTING OF THE EXISTENCE OF MODES

By Michael C. Minnotte1

Utah State University

Given a set of data drawn from an unknown density, it is frequently
desirable to estimate the number and location of modes of the density. A
test is proposed for the weight of evidence of individual observed modes.
The test statistic used is a measure of the size of the mode, the absolute
integrated difference between the estimated density and the same density
with the mode in question excised at the level of the higher of its two sur-
rounding antimodes. Samples are simulated from a conservative member
of the composite null hypothesis to estimate p-values within a Monte Carlo
setting. Such a test can be used with the graphical “mode tree” of Minnotte
and Scott to examine, in a locally adaptive fashion, not only the reality of
individual modes, but also (roughly) the overall number of modes of the
density. A proof of consistency of the test statistic is offered and simulation
results are presented.

1. Introduction. A mode of a probability distribution is defined as a lo-
cal maximum in the associated probability density function. In the case of a
density function with constant values at a peak, all of the points on this peak
shall be considered a single mode. The identification of modes has applications
in many fields of study, from high-energy physics [Good and Gaskins (1980)]
and astronomy [Roeder (1990)], to philately [Izenman and Sommer (1988)].
The most common interpretation of multimodality is that of a mixture dis-
tribution containing several subpopulations, or as an indication of clustering.
It is desirable to identify multimodality when it exists, but we do not wish
to give too much importance to apparent modes caused merely by random
fluctuations in the data.

Different techniques in the field of multimodality testing have aimed at
different goals. The vast majority of techniques available to date have been
global, testing for the unimodality, bimodality or multimodality of a data set
as a whole.

For example, Silverman (1981) provides us with the most commonly used
and studied test, based on “critical bandwidths,” the infimum of those smooth-
ing parameters h for which the kernel density estimate
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using normal kernel K = φ is at most k-modal. The normal kernel was se-
lected for the useful property that the number of modes in a normal kernel
density estimate is nonincreasing as h increases. This property is not, in gen-
eral, shared with other kernels; see Babaud, Witkin, Boudin and Duda (1986)
and Minnotte and Scott (1993). The critical bandwidth test has been investi-
gated theoretically in Silverman (1983), Mammen, Marron and Fisher (1992)
and Hall and Wood (1993) and empirically in Matthews (1983) and Izenman
and Sommer (1988). Müller and Sawitzki (1991) suggest a test based on use
of the empirical cumulative distribution function
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to estimate the amount of increase in probability mass above some level λ
when k+1 disjoint connected sets are counted as compared to k. Other global
univariate tests of multimodality can be found in Hartigan and Hartigan
(1985) and Wong (1985). Tests of multivariate multimodality are investigated
in Hartigan (1988), Hartigan and Mohanty (1992), Rozál and Hartigan (1994)
and Polonik (1993). See Minnotte (1992) for a survey and comparison of such
techniques.

As opposed to the global approach of the above authors, the ideas pro-
pounded in this paper follow the more local procedure of Good and Gaskins
(1980). Instead of trying to perform a test on the entire data set, individual
suspected modes are examined, which has several advantages. Frequently,
merely knowing the number of modes is insufficient; knowing which modes
are “real” is of greater value. Local tests also allow location information to
be used more effectively, and simplify the possibility of adaptive procedures.
Adaptivity can be important when modes occur on peaks of varying sizes, as
the peaks can be poorly estimated using a nonadaptive density estimation
technique such as fixed-bandwidth kernel density estimation.

In the mode-existence test, we achieve adaptivity by using a fixed, but dif-
ferent, bandwidth for each potential mode. By testing the reality of each mode
at an appropriate bandwidth, we can accomplish the goal of finding a usefully
adaptive procedure, without the problems inherent in attempting to produce
an adaptive density estimate. Therefore, the null hypothesis which we wish
to test is that “the mode seen at location x of our density estimate is an ar-
tifact of the sample” against the alternative “the mode seen at location x is
a true feature of the population.” In this way, one can gain the benefits of
locality and increase power by taking advantage of mode location and size
information which tests such as Silverman’s ignore.

This is assisted by the use of a graphical tool known as a “mode tree”
[Minnotte and Scott (1993)]. In its purest form, the mode tree plots a range of
bandwidths h on the y-axis versus the locations of all modes seen in the kernel
density estimates with those bandwidths. The result is a series of (roughly)
vertical lines called mode traces. As h decreases, new modes appear. A new
mode trace is connected to an existing one by a horizontal line indicating which
peak contained the shoulder which has now become a mode (determined by
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the location of the new antimode). See Figure 2 for an example of a mode tree
for the Ahrens (1965) chondrite data �n = 22�.

2. Testing modes. We begin with a sample �X1; : : : ;Xn� of size n from
a population with density f�x�. We compute a normal kernel density estimate
f̂�x� with kernel bandwidth h. If h is sufficiently large that there is only a
single mode, then there is nothing to test, since all densities are assumed
to have a minimum of one mode. Therefore, in the following discussion, it is
assumed that there are k ≥ 2 modes u1; u3; : : : ; u2k−1 and �k − 1� antimodes
u2; u4; : : : ; u2k−2 in f̂�x�. Note that ui < ui+1 for all i. For the purposes of
the test statistic, the extreme x-values −∞ and ∞ (or, more practically, the
lowest and highest points x for which the estimate f̂�x� is calculated) are also
considered antimodes and are denoted u0 and u2k, respectively.

In testing the existence of mode ui, the first step is to determine the band-
width htest; i at which to test. We perform the test at the smallest bandwidth at
which the mode still remains a single object; that is, at the bandwidth slightly
greater than that at which the mode tree indicates the mode in question is
splitting. Thus htest; i will be Silverman’s critical bandwidth hcrit; k for some k.

There are several reasons for this choice of test bandwidth. The first is
simply that this is an objective choice, determined by the data, rather than
the analyst. A more important reason is that this choice will give the greatest
power (see Section 4, Theorem 1). This choice also allows us to use the theory
already developed for Silverman’s critical bandwidths.

A final feature of this selection is that if a given mode never splits, it will
never be tested. This result is useful in the case of single points. An isolated
point in the tail of a sample will not be tested, even if it produces a mode at
fairly large values of h. In our view, this is desirable, and perhaps comparable
to Hall and Wood’s (1993) suggestion to truncate the data in the tails for Sil-
verman’s test or their modification of it. Unfortunately, if the data are binned,
a mode consisting of a single bin will also never be tested, even if it contains
many points. Minor modification of the procedure will allow us to test such
modes. We will suggest a possible solution in the binned case in Section 3.

Having determined the bandwidth htest; i of our test [and having kernel
density estimate f̂�·�], we can now calculate the test statistic

Mi =
∫ ui+1

ui−1

[
f̂�x� −max

(
f̂�ui−1�; f̂�ui+1�

)]
+ dx:(3)

We note that Mi is the minimal L1 distance from the density estimate to the
set of continuous functions without a local maximum between the observed
antimodes in the density function. Mi can be thought of as the area or prob-
ability mass of the mode above the higher of the two surrounding antimodes.
In this light, the decision to use the smallest possible bandwidth makes sense;
the smaller the bandwidth, the higher the modes and lower the antimodes,
and the greater the probability mass in the region above the higher antimode.
Mi is also in a sense the single-mode equivalent of Müller and Sawitzki’s

(1991) excess mass functional. It differs from their statistic both in being lo-
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cal and in being computed from a specific density estimate, rather than from
the empirical cumulative distribution function. It also shares some similar-
ities with Hartigan’s (1988) FILL parameter, which compares a continuous,
but multimodal, density, to one which is unimodal, but possibly discontinu-
ous, through the addition of “bridges” connecting the modes. FILL finds the
minimal area under the bridges and above the valleys the bridges cross.

To estimate a p-value from Mi, we follow Silverman (1981) in the use of
Monte Carlo methods. Standard Monte Carlo methods for obtaining p-values
assume a simple null hypothesis from which to draw the new samples for
comparison. Unfortunately, this is certainly not the case; the set of densities
containing no modes in the observed region is infinite. Therefore, we settle
for choosing a representative density of the null hypothesis which is both
conservative and consistent with the observed data.

In order to keep our estimate consistent with the data in every way but
that in which the hypothesis is concerned, we impose some constraints. We
insist (with one exception, considered shortly) that the new density f̃i equal f̂
everywhere outside the adjacent modes ui−2 and ui+2. Of course, if the mode
being tested is the left- or rightmost, this constraint will only apply to the
density on the far side of the (sole) adjacent mode.

Within the region bounded by the indicated modes, we then impose addi-
tional constraints. In the region ui−2 < x < ui, f̃i�x� cannot be greater than
f̂�ui−2� unless f̂�x� > f̂�ui−2�. Likewise, f̃i�x� in the region ui < x < ui+2 is
bounded by max�f̂�x�; f̂�ui+2��. Finally, of course, in keeping with the null hy-
pothesis, there can be no mode between ui−2 and ui+2, resulting in an overall
maximum for the entire region of max�f̂�ui−2�; f̂�ui+2��.

Working within this somewhat convoluted set of constraints, we find the
admissible function f̃i which is closest in L1 distance to the original f̂. This
will involve putting some of the probability mass of the mode into at least
one of the antimode valleys on either side. The L1 difference between the two
functions will simply be twice the mass so moved, so this criterion will favor
leaving as much mass as possible under the mode in question. The result
will frequently be that all of the moved mass will go to one side or the other.
Which side is filled will be determined by which choice will leave the region
of the original mode the highest. If the side with the higher mode is filled to
the level of that mode, but there is still mass to be accounted for which was
removed from the mode down to that level, then the second side will fill, to a
maximum of its mode. If this is done, and the two filled regions together still
do not equal the excised region, then the entire density is rescaled to make
up the difference (so that the whole integrates to one; this is the exception to
the equality constraint mentioned above). If the mode being investigated is
the left- or rightmost mode of f̂, the density will be rescaled after filling only
the one available valley. Some examples of the entire density-choosing process
are shown in Figure 1.

This choice of f̃i satisfies all of the desirable properties mentioned earlier.
It is a member of the null hypothesis. It keeps the probability mass as close to
that of the original data-produced density estimate as permissible under the
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Fig. 1. Examples of the density-choosing process using the chondrite data. The dotted line in-
dicates the original density estimate, while the solid line represents the final choice of density
(without the mode in question). Examples include (a) h = 0:700, i = 1, (b) h = 0:487, i = 3,
(c) h = 0:347, i = 4 and (d) h = 0:286, i = 3.

constraints (due to the L1 requirement). Finally, it is conservative in general,
as the algorithm will generally result in a density with a flattened bump where
the mode used to be (stuck on the side, as it were, of one of the adjacent modes),
and f̃i will be on the boundary of the null hypothesis, since it “almost” has a
mode.

Given the null representative density f̃i, new samples, each of size n, are
then drawn from f̃i. After a sample is drawn, a new density estimate f̂ji is cal-
culated using the same bandwidth htest; i. The modes of f̂ji and f̂ are matched,
using a matching algorithm described for use in the mode tree in Minnotte
and Scott (1993). The mode of f̂ji matching ui might be used directly to es-
timate the p-value, but it is more conservative and appropriate to select the
largest mode of f̂ji in the region of interest. This region is bounded by the
matches of ui−2 and ui+2 of f̂ or, lacking one or both of these, the mode loca-
tions themselves. Each mode in this region is measured with a test statistic
exactly equivalent to Mi. The largest is then allowed to “experience” decreas-
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ing h until just before it splits (to give a true equivalent to our choice of htest; i).
The value of the final test statistic can be denoted Mj

i .
Estimation of a p-value could be performed as a standard Monte Carlo

procedure, fixing the number of resamplings N, but it is more efficient to
follow Besag and Clifford (1991) in using a sequential method, counting the
number of samples, Ñ, and the number with simulated test statistics at least
as great as the observed value, L̃. We stop when Ñ =N [specifying p-value
�L̃+ 1�/�N+ 1�] or when L̃ = L < N (assigning p-value L/Ñ). In simulation
studies, values of 16 for L and 399 for N seemed quite successful, though both
might be increased for greater accuracy.

If we conduct such a test at each hcrit; k for a given data set, we may plot the
results on the same mode tree that already provided us with the critical band-
widths for our tests. For example, Figure 2 is the mode tree for the chondrite
data, with filled circles indicating the location and test bandwidths of modes
found significant at the α = 0:15 level. Tests resulting in p-values greater than
0.15 are indicated by open circles. Of course, any choice of cutoff α-level could
be selected. Using levels of higher than 5% has been suggested for other tests
of multimodality [see Matthews (1983) and Izenman and Sommer (1988)]. The
test might be conducted on a fixed number of modes (starting at the top of
the mode tree) or on all splits until each point or bin forms its own mode. The
author’s implementation takes all splits down to the bandwidth equal to 0.005
times the range of the data.

The result may be useful as a rough exploratory tool for examining the mul-
timodality of the overall data set. Of course, the dangers inherent in multiple
testing are very real here, and we should approach the results with caution
(see the final example in Section 5). A Bonferroni approach might be appropri-

h
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Fig. 2. Test mode tree for the chondrite data. Filled circles are significant modes at the α = 0:15
level; open circles are modes which are not significant at this level.
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ate, but appears likely to be too conservative to be worthwhile. Nonetheless,
such a plot may be useful for pointing out modes which may be worthy of fur-
ther study, including some which might be missed by nonadaptive tests such
as Silverman’s.

3. Implementation. The implementation of the above test used by the
author follows Good and Gaskins (1980) in requiring binned data. While it is
possible that an unbinned version of the test is feasible and perhaps slightly
more accurate, the advantages in ease and speed of most of the required com-
putations made the binned implementation attractive. Our choice of 500 bins
resulted only in very small amounts of rounding, and likely resulted in very
little difference from a nonbinned version of the procedure. The most impor-
tant consideration here is that the bin widths be substantially smaller than
anticipated modes, to ensure sufficient resolution that the modes can be clearly
identified and to ensure that the modes of interest will eventually split and
be tested.

For the initial (and simulated) density estimates, an implementation of
Scott’s (1985a) average shifted histogram (ASH) estimator was used as an
approximation to the normal kernel density estimate. Although approximating
the normal kernel is less efficient than a finite-support kernel, it can still
be much quicker than an exact kernel calulation [see, e.g., Fan and Marron
(1994)].

By binning the data and then using the ASH to calculate f̂�x� at the bin
centers, it is simple to simulate from the modified distributions f̃j by approx-
imating f̃j as a multinomial distribution. Since only the bin counts, rather
than the actual data are required for the estimate, little or no accuracy is lost
in this approximation.

The only remaining problem is that of prior binning. Generally, data are
measured only to a certain level of accuracy. Although the mode-estimation
procedure requires binning, it can produce problems if the binning is much
cruder than we wish to use and, more importantly, if numerous bins contain
a large number of points. If the original, rough binning is used, it can result
in large modes never being tested, due to never splitting (see Section 2). If the
unmodified points are placed in narrower bins, it can produce unreasonably
low p-values for single bins. This effect is due to the large number of points
in some bins, while several surrounding bins have zero points.

One possible solution is standard blurring. This is accomplished by adding
a uniform random variable ranging from −d/2 to d/2, where d is the bin
width, to each data point. While this is satisfactory if all interesting modes
are wider than the individual bins, it unfairly dilutes modes as narrow as the
original bins.

We found a useful compromise between standard blurring and the original
data to be random blurring based on the frequency polygon of the data (FP-
blurring). In the frequency polygon, histogram bin centers are connected with
straight lines, leading to a smoother [and asymptotically superior; see Scott
(1985b)] density estimate than the histogram itself.
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The FP-blurring algorithm takes the frequency polygon estimate from each
bin (which will include that bin center and half of each of the two linear
regions connecting to adjacent bins), and rescales it into a density in its own
right. A number of points equal to the original bin count is then drawn from
the resulting density (by use of an inverse cdf method). Thus, when a bin is
far larger than either of its neighbors, most of the points will be drawn near
the center, where they will still provide evidence for a possible mode. On the
other hand, a bin with a far smaller count than its neighbors will find most of
its (few) points near the bin edges. This might be viewed as a rough inverse
analogue to the linear binning examined in Jones (1989).

This compromise appears to work well. The points are distributed through-
out the domain of the data, but in a manner consistent with the data’s indi-
cation of likely mode and antimode locations.

4. Theoretical investigations. Theoretical investigations into the mode-
existence test have proven fruitful in two major directions. The first is an
indication of the utility of the mode tree in investigations of this sort, as
Theorem 1 below shows that for a given mode, Mi is decreasing in h. This is
a strong argument for using the appropriate hcrit, the bandwidth at which the
mode is about to split, as the bandwidth for the test, as this ensures that the
test statistic will be as large as possible and will give the greatest possible
power for the results. Because of the focus on the bandwidth h in this theorem,
we explicitly note the dependence on h (usually left unstated) of the density
estimate f̂�x� and its derived statistics.

Theorem 1. For fixed data set �X1; : : : ;Xn�, let h1 < h2 be such that the
normal kernel density estimates with bandwidths h1 and h2, f̂�x;h1� and
f̂�x;h2�, have the same number of modes. Define Mi, ui−1, ui, and ui+1 as in
(3). Then Mi�h1� ≥Mi�h2�.

The proof of the theorem requires the use of the following two related propo-
sitions, easily verified by differentiation, that are of substantial interest them-
selves.

Proposition 1. For a normal kernel estimator f̂�x;h�,
∂

∂h
f̂�x;h� = h ∂

2

∂x2
f̂�x;h�:

Proposition 2. Let x�h� be a point chosen in a manner dependent on h, for
example, a mode of a particular kernel density estimate. For a normal kernel
estimator f̂�x�h�; h�,

∂

∂h
f̂�x�h�; h� = h ∂

2

∂x2
f̂�x�h�; h� + ∂

∂h
x�h� ∂

∂x
f̂�x�h�; h�:

The second key theoretical result is the consistency and rate of convergence
of the test statistic Mi. Because of the local nature of kernel density estimates
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as n goes to ∞, this can be reduced to two primary cases, a unimodal density
with two (false) estimated modes, and a bimodal density with two (presumably
true) estimated modes. Theorems 2 and 3, respectively, explore the asymptotic
behavior of Mi under these two conditions.

For the purposes of these two theorems, we will follow Mammen, Marron
and Fisher (1992) in making the following assumptions on f.

Assumptions.

(A1) f is a bounded density with bounded support �a; b�.
(A2) f is twice continuously differentiable on �a; b�.
(A3) f′�a+� > 0, f′�b−� < 0.
(A4) f′′�x� 6= 0 and f�x� > 0 for all x with f′�x� = 0.

We also require one further assumption.

(A5) �f′′�x�� <∞ for all x with f′�x� = 0.

Theorem 2. Let f be a density satisfying assumptions (A1)–(A5) with sin-
gle mode z1. Let M1 and M3 be the values of the test statistic Mi for the two
modes, u1 and u3, of f̂n observed for hcrit;1 ≥ h > hcrit;2. (Recall, u2 is the
antimode. One of M1 and M3 will be evaluated at hcrit;2, the other at hcrit; k
for some k > 2.) Then Mi = OP�n−3/5�log n�3/4� for i = 1;3.

Theorem 3. Let f be a bimodal density satisfying assumptions (A1)–(A5)
with modes z1 and z3, and antimode z2. Let

M1 =
∫ z2

−∞
�f�x� − f�z2��+ dx

and

M3 =
∫ ∞
z2

�f�x� − f�z2��+ dx:

Let M1 and M3 be the values of the test statistic Mi for the two modes of
f̂n observed for hcrit;1 ≥ h > hcrit;2. Then �Mi −Mi� = OP�n−2/5�log n�1/2� for
i = 1;3.

These theorems imply that the test statistics Mi converge in probability to
0 when the modes are spurious, and to Mi > 0 for real modes.

5. Simulation studies. In order to investigate the properties of the
mode-existence test, a number of simulation studies were conducted. The first
aspect we examined was the reported p-values provided by the test. Since
these represent the likelihood of seeing so extreme a result from a member of
the null hypothesis, we tested samples of various sizes drawn from unimodal
distributions. For each sample, the modes existing at hcrit;2 were noted and
tested at the appropriate bandwidths. Although Theorem 2 suggests that
both test statistics should be converging in probability to 0, at the relatively
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small sample sizes investigated one of the two will probably contain the true
mode and thus has the potential to still have large Mi. As we are concerned
primarily with the probability of declaring a second mode, we focus on the
larger (less significant) of the two p-values generated from each sample.

For each tested density, 1000 samples were generated for sample sizes 40,
100 and 250. For each sample, the first two modes to appear were tested at
the appropriate bandwidths. If the reported p-values are to be accurate (or
conservative), the probability of getting a p-value of α from the null hypothesis
should be no greater than α. This does indeed turn out to be the case for the
standard normal and uniform densities, as can be seen in Table 1 for α = 0:05
and 0.15.

Visual examination of the quantiles of the larger p-values (not shown) con-
firms the test’s conservative nature at all α levels. The uniform results are
somewhat less conservative than those of the normal, giving credence to the
suggestion of authors such as Hartigan and Hartigan (1985) and Müller and
Sawitzki (1991) that the uniform be used in calculating “worst-case” p-values
in tests of unimodality.

As the mode-existence test appears to be acting appropriately for unimodal
densities, we now turn our attention to the alternative (bimodal) case. We
repeated the procedure used above for examining the significance levels in
an attempt to examine the power of the test. Again, for each density and
sample size, we tested the first two modes of each of 1000 samples. Because
we are interested in the likelihood of finding both modes significant, we again
examine the larger p-value (presumably from the smaller of the two modes).
Here, of course, it is desirable to see large probabilities of small p-values.

When investigating equal mixtures of normal densities with equal standard
deviations, degree of separation is critical. When the modes are separated by
only three standard deviations, the test does not distinguish the density from

Table 1

Percentage of samples �out of 1000� from the indicated distribution and sample size in which
the larger of the p-values for the first two modes was less than 0:05 or 0:15. Small numbers are

desirable for unimodal densities, large ones for bimodal densities

Sample size 40 100 250
Significance level 0.05 0.15 0.05 0.15 0.05 0.15

Unimodal distributions

N�0;1� 0.2 3.6 0.7 2.1 0.6 3.7
U�0;1� 2.6 9.1 2.5 6.8 2.2 6.8

Bimodal distributions

1
2N�− 3

2 ;1� + 1
2N� 3

2 ;1� 3.1 8.2 4.3 12.9 15.2 32.8
1
2N�−2;1� + 1

2N�2;1� 27.6 46.6 63.3 82.4 96.0 98.7
3
4N�0;1� + 1

4N�2; � 1
3 �2� 3.9 12.1 12.6 28.8 33.6 58.3
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a unimodal one at sample sizes of 40 or 100. Even at 250 points, the test
indentifies both modes only a small fraction of the time. With four standard
deviations between the modes, however, the test finds both modes frequently
even at 40 points, and most of the time at 100 or more.

A bimodal normal mixture with different weights and variances gave results
between those of the first two bimodal examples. The density is the sum of
3/4 of a standard normal density and 1/4 of a normal density with mean 2
and standard deviation 1/3. As the two modes were separated by 1.5 times
the sum of the standard deviations, it should not surprise us that the results
were similar to those of the closer equal mixture.

To investigate the effectiveness of the adaptive nature of the test, a final
density was chosen. The density is a trimodal mixture of three normal den-
sities in a ratio of 1 x1 x3. The first two have standard deviations of 1, and
means of 4 and 8, while the third has standard deviation 5 and mean 20.

The density is easy to identify in that all three modes are large, clear and
highly separated (by amounts comparable to the second bimodal test density).
It is difficult in that the two left modes are so much narrower than the right
mode, that highly different bandwidths are appropriate for density estima-
tion of the two regions. Five hundred samples of size 100 were drawn from
this density and tested both by the mode-existence test (on a complete mode
tree) and by Silverman’s critical-bandwidth test (testing the hypotheses of one
through five modes for each sample). The results can be seen in Table 2.

As would be expected from the nature of the density, Silverman’s test had
severe problems detecting the separate natures of the two smaller modes.
The test rejected unimodality for bimodality in all but 11 of the 500 tests
performed, when tested at the α = 0:05 level. Unfortunately, it only rejected
bimodality in favor of trimodality in 25 samples, none of which were among
the 158 samples in which the three true modes were the first three to appear.
In none of the other 342 is there any chance to successfully identify the three
true modes and no false ones using a global test such as Silverman’s.

Even with an α of 0.4, almost three out of four samples still fail to reject
bimodality (correctly or otherwise). One final indication of the problems a

Table 2

Percentages from testing 500 samples of size 100 from 1
5N�4;1� + 1

5N�8;1� + 3
5N�20;52� using

the mode-existence test and Silverman’s critical bandwidth test with several choices of α level

Modes found Mode-existence test Critical-bandwidth test

Significance level 0.05 0.10 0.15 0.05 0.10 0.15 0.4
1 12.2 3.2 0.4 2.2 0.4 0.2 0.0
2 51.8 30.8 14.2 92.8 91.0 87.4 73.8
3 (correct) 26.8 32.8 28.2 0.0 0.2 0.6 1.8
3 (incorrect) 4.6 10.4 12.2 5.0 7.6 10.6 12.4
4 4.6 17.8 28.4 0.0 0.6 0.8 4.0
5 0.0 4.6 12.4 0.0 0.2 0.4 4.6
6 (or more) 0.0 0.4 4.2 0.0 0.0 0.0 3.4
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global test can have with a density such as this is that for 223 of the samples
(including 84 of the 158 with the proper first three modes), the p-value for
rejecting bimodality in favor of trimodality is the largest p-value of the first
five.

The mode-existence test, on the other hand, had considerably greater suc-
cess with this density. At the α = 0:05 level, 134 of the 500 densities indicated
the correct three modes (and no others), as did 164 and 141 at the α = 0:10
and 0.15 levels, respectively. It is clear, however, that the far larger number
of tests here leads to a less conservative procedure overall; 46 of the samples
found spurious modes at the α = 0:05 level, and by α = 0:15, 286 did. Even
at the α = 0:4 level, Silverman’s test found spurious modes in only 122 of
the samples. In a sense, this is analogous to a bias versus variance trade-
off. Silverman’s test has (in this case) a very low variance, but is biased. The
mode-existence test, on the other hand, is far less biased, but displays greater
variability. Clearly, there is a choice to be made here between using a test
which will have trouble finding modes of varying sizes, and using a procedure
which, though conservative for individual tests, will more often find spurious
modes when repeated for many apparent modes from a single data set.

6. Future directions. A variety of potential lines of inquiry exist for
improving, generalizing or making use of the mode existence test.

For example, it would be desirable to generate a p-value, not only on the
existence of individual modes, but also on the number of modes itself, similar
to the way that Silverman’s test does. Whether there is some way of combining
the information gained from the test into a single p-value on the number of
modes is an open question, but if possible, it would be worthwhile.

The simulation results of Section 5 indicate that the test tends to be con-
servative, resulting in higher p-values than necessary. It might be possible to
take results such as those for the uniform at a given sample size and make a
monotone transformation so that the final values would be precise for the uni-
form density and less conservative for other unimodal densities. This would
reduce the stated p-values, resulting in greater power, while keeping the p-
values and α levels meaningful.

Another improvement might come in the manner of simulation. By drawing
from a modified kernel density estimate, we open ourselves to variance infla-
tion caused by the smoothing. If we could find a set of weights for the points
which provided a weighted kernel density estimate consistent with the null
hypothesis, we could use those weights to select weighted, nonsmoothed boot-
strap samples from the data and avoid this spreading. The proper manner of
choosing such weights appears to be the most difficult aspect of this proposal.

Fertile ground for generalization of the mode existence test lies in several
directions. Extending the test to a multivariate density estimation setting
seems conceptually straightforward, but practically quite challenging. Within
the univariate setting, the test could be extended to examine “bumps,” re-
gions of negative second derivative, much as it currently handles modes. It
might also be fruitful to examine local maxima in settings other than density
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estimation, such as nonparametric regression or time series spectral density
estimation.

Finally, Minnotte and Jawhar (1995) take the results of the mode-existence
test and the mode tree, and apply them to produce a useful adaptive density
estimate, which might show only those modes deemed significant at whatever
level is desired.

APPENDIX

Proof of Theorem 1. If the estimates are unimodal, the theorem fol-
lows trivially, as u0�h1� = u0�h2� = −∞, u2�h1� = u2�h2� = +∞ and
f̂�u0�h1�; h1� = f̂�u2�h1�; h1� = f̂�u0�h2�; h2� = f̂�u2�h2�; h2� = 0: Clearly, in
this case, M1�h1� =M1�h2� = 1.

If the estimates are not unimodal, then for some h satisfying h1 ≤ h ≤ h2,
suppose f̂�ui−1�h�; h� ≥ f̂�ui+1�h�; h�. Define w�h� to be the unique solution
to f̂�x;h� = f̂�ui−1�h�; h� in the range ui�h� < x ≤ ui+1�h�. Then

∂

∂h
Mi�h� =

[
f̂�w�h�; h� − f̂�ui−1�h�; h�

] ∂
∂h
w�h�

−
[
f̂�ui−1�h�; h� − f̂�ui−1�h�; h�

] ∂
∂h
ui−1�h�

+
∫ w�h�
ui−1�h�

∂

∂h

[
f̂�x;h� − f̂�ui−1�h�; h�

]
dx:

The difference factors in the first two terms are 0, so we can confine our
investigation to the third term, using Propositions 1 and 2:

∂

∂h
Mi�h� =

∫ w�h�
ui−1�h�

h
∂2

∂x2
f̂�x;h�dx

−
∫ w�h�
ui−1�h�

[
h
∂2

∂x2
f̂�ui−1�h�; h� +

∂

∂x
f̂�ui−1�h�; h�

∂

∂h
ui−1�h�

]
dx:

The second term of the second integral will be 0 since ui−1�h� is an antimode.
Therefore, we arrive at

∂

∂h
Mi�h� = h

[
∂

∂x
f̂�w�h�; h� − ∂

∂x
f̂�ui−1�h�; h�

]

− h
[
w�h� − ui−1�h�

] ∂2

∂x2
f̂�ui−1�h�; h�:

The bandwidth h and the other factors of the second term are positive. The
derivatives with respect to x of f̂�ui−1�h�; h� and f̂�w�h�; h� are 0 and non-
positive, respectively. Therefore, the derivative with respect to h of Mi�h� is
negative. A similar argument shows that this last conclusion also holds when
f̂�ui−1�h�; h� ≤ f̂�ui+1�h�; h�. SinceMi is strictly decreasing in h, the theorem
follows. 2
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Proof of Theorem 2. We prove Theorem 2 for the case M1 being tested
at hcrit;2. The other cases have similar proofs. Let u1 < u3 be the modes of f̂n,
and u2 be the antimode. Also, let w < u1 be such that f̂n�w� = f̂n�u2�:

M1 =
∫ u2

w

∣∣f̂n�x� − f̂n�u2�
∣∣dx

≤ �u2 −w�
(
f̂n�u1� − f̂n�u2�

)

≤ ��u2 − z1� + �z1 −w��
(∣∣f̂n�u1� − f�z1�

∣∣+
∣∣f�z1� − f̂n�u2�

∣∣):

Mammen, Marron and Fisher (1992) show that the first element is OP�n−1/5�.
The same result, combined with Silverman’s (1978) result that when h is
of order n−1/5, supx �f̂n�x� − f�x�� is OP�n−2/5�log n�1/2�, can show that the
elements of the second term share the latter rate, as does �f�w�−f�z1��. This
and the fact that f�w� − f�z1� = �w− z1�2f′′�ξ�/2 for some ξ between w and
z1 imply that �z1 −w� is OP�n−1/5�log n�1/4�. The theorem follows. 2

Proof of Theorem 3. We consider Theorem 3 for the case M1 being
tested at hcrit;2, with the other cases having similar proofs. Let u1, u2, u3 and
w be as in the proof of Theorem 2. Also, let t < z1 be such that f�t� = f�z2�:
∣∣M1 −M1

∣∣ ≤ �max�z2; u2� −min�t;w��
(∣∣f̂n�u2� − f�z2�

∣∣+ sup
x

∣∣f̂n�x� − f�x�
∣∣)

≤
(∣∣u2 − z2

∣∣+
∣∣z2 − t

∣∣+
∣∣t−w

∣∣)

×
(∣∣f̂n�u2� − f�z2�

∣∣+ sup
x

∣∣f̂n�x� − f�x�
∣∣):

Again, using Silverman’s (1978) result, the final element isOP�n−2/5�log n�1/2�,
as is the penultimate element when we bring in Mammen, Marron and Fisher’s
(1992) result. These also allow us to show that �u2−z2� is OP�n−1/5�, and, with
the fact that f�w� − f�t� = �w − t�f′�ξ� for some ξ between w and t, imply
that �t − w� is OP�n−2/5�log n�1/2�. As both of these elements are dominated
by the constant �OP�1�� �z2 − t� term, the theorem follows. 2
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