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ESTIMATIONS IN HOMOSCEDASTIC LINEAR
REGRESSION MODELS WITH CENSORED DATA:

AN EMPIRICAL PROCESS APPROACH

BY FUSHING HSIEH

National Taiwan University

Pertaining to the estimating equations proposed by Tsiatis, based on
the linear rank test, we show the existence of local confounding between
the baseline hazard function and the covariates. Due to the local confound-
ing, an estimating equation in Tsiatis’ family with a larger time point of
truncation could contain less information about the regression parameter
than the estimating equation with a smaller time point of truncation. This
phenomenon further indicates significant loss of efficiency of Tsiatis’ esti-
mating equations as well as the power loss of log-rank type tests when the
baseline hazard function goes up and down along the time scale. To take
care of this local confounding without using nonparametric estimates of
the derivative of the baseline hazard function, we propose the empirical

Ž .process approach EPA based on an empirical process constructed from
Tsiatis’ log-rank estimating equation by varying its truncating time point.
The EPA will provide very tractable estimations of the regression parame-
ters as well as Pearson’s chi-squared statistics for testing the model’s
assumptions. Specifically, the performance of the EPA estimator is shown
to be very close to the best estimator in Tsiatis’ family.

1. Introduction. The problem of estimating the regression coefficient in
a linear model with censored data has received much attention in the

Ž .statistical literature. Some earlier works of Miller 1976 . Buckley and James
Ž . Ž .1979 and Koul, Susarla and Van Rayzin 1981 suggested estimators based
on different modifications of the ordinary least squares method. Recently,

Ž . Ž .Ritov 1990 generalized the method of Buckley and James 1979 and
Ž .introduced a family of M-estimators, then Tsiatis 1990 , building on some
Ž .earlier works on the two-sample problem of Louis 1981 and Wei and Gail

Ž .1983 , suggested a family of estimating equations based on linear rank tests.
The asymptotic equivalence of the two types of estimators was shown in Ritov
Ž . Ž . Ž .1990 . Lai and Ying 1992 and Ying 1993 improved upon the results of

Ž .Tsiatis 1990 by eliminating the truncation previously imposed on estimat-
ing functions and by proving stronger results on uniform convergences in the
development of asymptotic properties of the resulting estimators. Fygenson

Ž .and Ritov 1994 studied a class of monotone rank-test-based estimating
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equations, which were also shown to be a subfamily of Tsiatis’ estimating
equations.

In both Ritov’s and Tsiatis’ families, the optimal estimating equations
involve the unknown score function, the derivative of the logarithm of the
baseline hazard function. Therefore, in the semiparametric setting, solving
the estimating equations with an estimated score function for efficient esti-
mates of the regression coefficient becomes a common practice. However, it is
well known that this procedure suffers from severe computational difficulties,
such as nonmonotonicity, sensitivity to different choices of smoothing param-
eters and many others.

To avoid these difficulties, we introduce a new inference approach in this
Ž .paper called an empirical process approach EPA for estimating the regres-

sion parameter in a homoscedastic linear model with right-censored data.
With the EPA we do not need nonparametric smoothed estimates either in
point estimation or in interval estimation. Furthermore, as a by-product of
the EPA, Pearson chi-square statistics can be constructed easily for a good-
ness-of-fit test of the semiparametric model. For an introductory account of

Ž .the EPA, Hsieh and Turnbull 1996 discuss its applicability in many semi-
parametric models with very tractable inferences on both estimating and
testing.

To motivate our EPA, in Section 2, we first show that the bias term
pertaining to Tsiatis’ log-rank estimating equation resulting from a small
perturbation of the regression parameter reveals the existence of local con-
founding between the baseline hazard function and the covariates. The most
important effect of this local confounding on members of Tsiatis’ family is
that an estimating equation with a larger truncated time point could contain
less information about the regression parameter than the estimating equa-
tion with a smaller truncated time point. Heuristically, the log-rank test
could lose some of its power right after the baseline hazard function achieves
its local maximum or minimum. Hence, when the baseline hazard function
goes up and down along its time scale t, the original log-rank statistic
Ž . Ž .without a truncation imposed used in Ying 1993 could become very
inefficient. Furthermore, members of Ritov’s family as well as Fygenson and

Ž .Ritov’s 1994 estimator also suffer from this local confounding.
Under the setting of a homoscedastic regression model with censored data,

in Section 3, we consider an empirical process defined as the martingale
process constructed from Tsiatis’ long-rank estimating function by varying its
truncated time point t from y` to a prespecified constant T*. The EPA
approach is motivated as a way to take care of the local confounding by
chopping this empirical process into several small pieces and then combining
them into an approximated likelihood function constructed from its limiting
Gaussian martingale process. By maximizing this likelihood function, our
EPA estimator of the regression parameter is derived. The performance of the
estimator is shown to be very close to the optimal estimator in Tsiatis’ class.
Therefore, we neither need to work with weighted log-rank estimating func-
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tions nor to find the optimal weight function by using the unstable nonpara-
metric score estimates.

In Section 4, we construct a Pearson chi-square statistic for testing the
goodness of fit of the semiparametric linear model. Extension of the EPA
approach to a multiple regression model is discussed in Section 5. In Section
6, we first discuss issues related to our EPA, such as what numerical methods
and how many cutoff points to use. Then we suggest a practical algorithm
and report results from a small simulation in which the EPA estimators are

Ž .compared with estimators proposed in Fygenson and Ritov 1994 and in
Ž .Tsiatis 1990 . The effect of local confounding on the log-rank estimating

equations is also evaluated. At the end further applications of our EPA are
also mentioned.

2. The local confounding. In this section, we point out that local
confounding between the baseline hazard function and the covariates exists
in members of Tsiatis’ family of estimating equations. Due to the local

Žconfounding, we conclude that local structures especially the first-order
.derivative of the baseline hazard function should be taken into account in

order for members of Tsiatis’ family to be able to accumulate information
during the study or data collecting period. For expositional simplicity, we will

Ž .follow the notation used in Tsiatis 1990 .
Let T , . . . , T be a sequence of random variables, usually corresponding to1 N

responses of interest of N subjects in a study. Ultimately, we wish to make
inferences about the relationship between the response T and anotheri
concomitant variable Z , say, through a system of homoscedastic lineari
equations
1 T s b TZ q e , i s 1, . . . , N ,Ž . i i i

where b is a p = 1 parameter vector and, conditional on Z , the e arei i
Ž .independent and identically distributed i.i.d. residual variables with a

Ž . Ž .common distribution F x and corresponding hazard function l x s
Ž . Ž . Ž .yd log S x rdx, where S x denotes the survival function 1 y F x .

Ž .Throughout this paper the distribution F x is assumed to satisfy conditions
Ž . Ž .A and C given in Section 3 and otherwise is unknown.

Ž .If T in the model 1 represents the logarithms of survival times, then thisi
model is often referred to as an accelerated failure time model. See Cox and

Ž . Ž .Oakes 1984 and Kalbfleisch and Prentice 1980 .
Since all of our developments are conditional on the variables Z , we shalli

Ž .assume that the Z are nonrandom, and furthermore, satisfy conditions D ,i
Ž . Ž .E and F given in Section 3. For ease of exposition, we assume from now
through Section 4 that b is a scalar parameter.

Ž .The regression model 1 for survival data is often complicated by right-
censoring; that is, the data that are observed will only consist of N i.i.d.
random vectors
2 X , D , Z , i s 1, . . . , N ,Ž . Ž .i i i
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Ž .where X s min T , C andi i i

1, if T F C ,i i
D s failure indicator si ½ 0, if T ) C .i i

In the accelerated failure time model, the random variables C represent thei
logarithms of the censoring times. Here the C are independent randomi
variables whose distribution may depend on the covariates. To avoid any

Ž .nonidentifiability problems, we shall further assume that T , C are statisti-i i
cally independent. In this sense, the censoring scheme is noninformative.

Ž . Ž . Ž .For the regression model 1 with censored data 2 , Tsiatis 1990 studied
a family of estimating equations based on linear rank tests. Let T* be a

Ž . Ž .prespecified constant satisfying condition A in the next section. Let N u bei
the counting process for the ith individual, defined by

N u s I X F u , D s 1 ,Ž . Ž .i i i

Ž .where I A denotes the indicator function for event A, and let

ÝN Z Y u q bZŽ .is1 i i
Z u , b s ,Ž . NÝ Y u q bZŽ .is1 i i

Ž . � 4where Y u s I X G u . The estimating equation isi i
N

T*
3 S W , b s W u q bZ dN u q bZ Z y Z u , b ,Ž . Ž . Ž . Ž . Ž .� 4Ý HN N N i i i i

y`is1

Ž .where W u denotes a prespecified weight function and an estimate of b isN
defined as a solution of the equation

S W , b s 0.Ž .N N

It is known that, in general, solutions of the preceding equation are not
unique.

Ž . Ž .Specifically, the member of Tsiatis’ family with W u ' 1, that is, S 1, b ,N N
is the well-known log-rank statistic truncated at T*.

Ž .Consider the asymptotically linear approximation of S 1, b with b nearN
Ž . Ž . Ž .b s 0 given in 3.4 and an approximation of 3.3 of Tsiatis 1990 :0

S 1, b f S 1, 0Ž . Ž .N N

T* 2
qb Z y A u , b Y u q b Z l9 u duŽ . Ž . Ž .Ž .ÝH ½ 5i 0 i 0 i

y`

4Ž .

5 s S 1, 0 q bB T*, b , say.Ž . Ž . Ž .N 0

Ž .It is noted that the term B T*, b is not necessarily monotone with respect0
Ž .to T*, since the first-order derivative of l u is involved. For example, if T* is

Ž .a local extreme point of l, that is, l9 T* s 0, then the following inequality
holds, for some positive d,

< < < <6 B T*, b ) B T* q d , b ,Ž . Ž . Ž .0 0

< <where ? denotes the absolute value.
y1r2 Ž .Furthermore, we know that n S 1, 0 converges weakly to a GaussianN

variable with its variance as an increasing function of T*. Therefore, inequal-
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Ž .ity 6 implies that the log-rank estimating equation with a larger truncation
point may contain less information about b than the estimating equation
with a smaller truncating time point.

This phenomenon can also be understood from the following heuristics.
Given b s 0, then the rank of T is independent of the rank of its covariate0 i

Ž .Z . However, if the baseline hazard function l u changes its pattern fromi
increasing failure to decreasing failure at T*, then the log-rank statistic will
locally mistake the effect of decreasing failure as the effect of the covariate Z

Ž .on a small interval, such as T*, T* q d . This ‘‘false’’ local effect could be
positive or negative depending on the particular permutation of the Zi
corresponding to those subjects whose estimated residuals Y y bZ arei i
greater than T*. Hence we call this phenomenon ‘‘local confounding’’ between

Ž .the baseline hazard function l u and the covariates Z.
The significance of this local confounding is that it reveals the necessity of

taking local structures of the baseline hazard function into a statistical
inference approach in order to accumulate information about the regression
parameter during the study or data collecting period. In view of this, the

Ž .original log-rank estimating equation without a truncation imposed used in
Ž .Ying 1993 could be very inefficient when the baseline hazard function goes

up and down during the study of data collecting period.
One seemingly natural way to take care of the local confounding is to

Ž .consider Tsiatis’ estimating function S W , b with the weight function WN N N
Ž . Ž .being proportional to l9 u . In such a case, a nonparametric estimate of l9 u

is needed. However, it is known that this type of estimation has a very low
rate of convergence and, in general, is rather sensitive to smoothing parame-
ters. Furthermore, these undesirable properties will cause complications in
computing as well as severe instability for the estimating equation with an
estimated score function.

Ž .In the next section, we propose the empirical process approach EPA to
take care of the local confounding without employing unstable nonparametric

Ž .estimates of l9 u .

3. The EPA approach for the homoscedastic linear model. In view
of the local confounding introduced previously, it is not only natural, but also
necessary, to consider Tsiatis’ log-rank estimating function truncated at all

Ž xtime points t, t g y`, T* , as an empirical process on the interval. Further-
more, in order to take care of the local confounding, it seems practically

Ž xsufficient to chop this empirical process on the interval y`, T* into several
small pieces. Hopefully, we can confine the effect of local confounding to just a
few of those small pieces of the empirical process and extract almost all the
information about b available in those pieces on which the local confounding
does not take place. To achieve this goal, we stitch all these small pieces
together by combining them into an approximated likelihood function con-
structed from a limiting Gaussian martingale process. By maximizing this
likelihood function, our EPA estimator of the regression parameter is derived.
This is the idea behind our empirical process approach.
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For expositional clarity, the truncation T* is used throughout this paper,
Ž . Ž .as in Tsiatis 1990 and Andersen and Gill 1982 . With this truncation we

further avoid the technical difficulties due to possible tail instability treated
Ž .in Ying 1993 .

Ž . Ž . Ž .Now we list conditions A ] F used in Tsiatis 1990 .

Ž . Ž . Ž . Ž .A The density of the error term in model 1 , f x s dF x rdx, exists
and is bounded by K for all x F T* q j , for some j ) 0, and1

T *qj Ž Ž . Ž ..2 Ž . Ž .H f 9 x rf x f x dx - ` and P X y bZ G T* q j G c ) 0 for all i.y` i i
Ž .B The density of the censoring random variable C is also uniformlyi

bounded.
Ž . Ž .C There exists a function u u such that

< < 2l u q « y l u y «l9 u F « u uŽ . Ž . Ž . Ž .
< <for u F T* and « F j ;

T*
< <u u du - `,Ž .H

y`

Ž . Ž .where l9 u s dl u rdu.
Ž .D The covariates are uniformly bounded, and without loss of generality

< <we assume that Z F 1 for all i.i
Ž . Ž .E There exists a continuous function m u, b for values b in a neighbor-

hood B of b , such that0

< <sup Z u , b y m u , b ª 0.Ž . Ž .� 4 p
bgB , uFT *qj

Ž . Ž .F There exists a continuous function A u, b such that
N

2y1sup N Z y Z u , b Y u q bZ y A u; b ª 0.Ž . Ž . Ž .� 4Ý i i i p
bgB , uFT *qj is1

Ž xNow we define an empirical process on y`, T* as the normalizing
Ž xlog-rank statistic truncated at t g y`, T* , that is,

N
ty1r27 M t ; b s N dN u q bZ Z y Z u; b , t F T*.Ž . Ž . Ž . Ž .� 4Ý H i i i

y`is1

By applying Rebolledo’s central limit theorem for a local square integrable
w Ž .xmartingale see Appendix I in Andersen and Gill 1982 , the normalizing

Ž .process M t; b converges weakly to a continuous one-dimensional Gauss-0
Ž . Ž .ian martingale W t , say, with W y` s 0 and a covariance function

Ž Ž . Ž .. Ž .cov W t , W s s H s n t for all t, s F T* and

t
8 H t s A u; b l u du.Ž . Ž . Ž . Ž .H 0

y`

Ž .From the covariance function, we known that W t has independent incre-
ments.

This weak convergence can be heuristically interpreted as meaning that
Ž .the likelihood of the empirical process M t; b is approximately equal to0
Ž . Ž xthat based on the Gaussian martingale W t on y`, T* . This idea will be
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employed in our EPA approach to construct an approximated likelihood
function.

To set up our EPA inferences for b, we need the local asymptotic linearity
Ž xuniform in t g y`, T* given in the next theorem. This theorem is an

Ž .extended version of Theorem 1 of Ying 1993 . It follows directly from
Ž .Lemmas 1, 3, 4, and 5 of Ying 1993 and the stochastic equicontinuity of the

Ž .process M t; b ensured by its weak convergence. Therefore, its proof is0
omitted here.

Ž . Ž . Ž .THEOREM 3.1. Under conditions A ] F , the empirical process M t; b is
Ž xuniformly asymptotically linear on y`, T* in the sense that for every

sequence d ) 0 with d ª 0 a.s.,n n

' '< < < <sup M t ; b y M t ; b y N b y b g t r 1 q N b y bŽ . Ž . Ž . Ž .� 4Ž .0 0 0 09Ž .
s o 1 a.s.,Ž .

< < Ž .where the ‘‘sup’’ is taken over y` F t F T*, b y b F d and g t s0 n 0
t Ž . Ž .H A u; b l9 u du.y` 0

˜ ˜Furthermore, for every sequence of d ) 0 with d ª 0 a.s.,n n

' '< < < <sup M s ; b y M t ; b y N b y b g t r 1 q N b y bŽ . Ž . Ž . Ž .� 4Ž .0 0 0 010Ž .
s o 1 a.s.,Ž .

˜< < < <where the ‘‘sup’’ is taken over b y b F d , s y t F d , y` F t, s F T*.0 n n

Theorem 3.1 is an improved version of Theorems 3.1 and 3.2 of Tsiatis
Ž . Ž .1990 . And the use of the preceeding asymptotic linearities is twofold: 1 to
motivate the EPA estimate of b as a generalized partial likelihood estimator
Ž . Ž .see Remark 1 ; 2 to derive the consistency and asymptotic normality for our
EPA estimator.

To define our EPA estimator, we shall use the following vector notation: let
Ž .y` - t - t ??? - t s T* ,1 2 k

Tt s t , . . . , t ,Ž .1 k

T
U t s U t , . . . , U t ,Ž . Ž . Ž .Ž .1 k

T
DU t s D U, . . . , D U , D U s U t y U t ,Ž . Ž . Ž . Ž .1 k i i iy1

where U can be any function or empirical process in t. For example,
Ž . Ž Ž . Ž ..TM t; b s M t ; b , . . . , M t ; b .1 k

Ž .By ignoring the approximation error in 9 , we have a system of k regres-
sion equations as

M t; b s M t; b q N 1r2 b y b g tŽ . Ž . Ž . Ž .0 0 0

or, equivalently,

11 D M t; b s D M t; b q N 1r2 b y b D g t .Ž . Ž . Ž . Ž . Ž .0 0 0

Ž .From the weak convergence of M t; b , we have0

12 D M t; b f N 0, S0 ,Ž . Ž . Ž .0 d k
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0 Ž .where S is k = k diagonal matrix with diagonal vector D H t . Hence wek
Ž .have a regression setup in 11 with approximated normal errors.

Furthermore, we need an initial estimator for b. It is desirable that this
Ž .estimator is not only root-N consistent, but also robust to parameter l u and

ˆits estimates. Here we propose the following initial estimator b , say,0

T
b̂ s arg inf D M t, b D M t, b .Ž . Ž .0

b

ˆClearly, b is robust in the previous sense, since its definition is independent0
of l. And its root-N consistency is ensured by Theorem 3.1. One other choice

Ž .of initial estimator is the one proposed in Fygenson and Ritov 1994 .
ˆ Ž .With b , the function H t can be estimated consistently by0

tˆ ˆ ˆ ˆ13 H t s A u , b dL u ,Ž . Ž . Ž .Ž .H 0
y`

ˆwhere A is the empirical sum of squares of Z ’s that are at risk on a time
ˆ� 4scale of X y b Z , that is,i 0 i

N1 2
Â u , b s Z y Z u; b Y u q bZŽ . Ž . Ž .� 4Ý i i iN is1

ˆ Ž .and L is the Nelson estimate of the cumulative hazard function L t s
t ˆŽ . � 4H l u du based on calculated residuals X y b Z , that is,y` i 0 i

N ˆdN u q b ZŽ .t i 0 i
L̂ t s .Ž . Ý H N ˆye Ý Y u q b Zis1 ž /js1 j 0 j

ˆŽ . Ž .With H t given in 13 , our EPA estimator of b is defined as
y1T 0ˆ ˆb s arg inf D M t, b S D M t, bŽ . Ž .Ž .k k

b

s arg inf L b , say,Ž .k
b

ˆ 0 0where S is the plug in estimate of S .k k
In practice, we might like to iterate the preceding construction once or

twice for better finite sample properties. We call these iterative estimates
EPA estimators as well.

Ž .It is noted that the log-likelihood function based on 12 is equal to
Ž .� < 0 < Ž .4 Ž .y2 log S q L b . Furthermore, by using the asymptotic linearity in 11k k

Ž .and taking the derivative of L b with respect to b, we arrive at thek
Ž .unfeasible generalized least squares GLS estimator

y10ˆ14 b# s the solution of D g t S D M t, b s 0.Ž . Ž . Ž .Ž .0 k

ˆ ˆIt is clear that both estimates b and b# are asymptotically equivalent.k
Therefore, we have the following approximated equation:

y1k k
21r2 ˆ15 N b y b s D g rD H D g D M t ; b rD H .� 4Ž . Ž . Ž .Ž . Ý Ý0 i 0 i i 0 i i½ 5

is1 is1
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1r2 ˆ 2Ž .The variance of this normalized error N b y b is denoted by s and0 k

2N D gŽ .i 0y2s s Ýk D Hiis1
16Ž . 2tk iH A u , b l9 u duŽ . Ž .Ž .t 0iy 1s Ý t iH A u , b l u duŽ . Ž .t 0is1 iy 1

2
l9 uŽ .Ž .T*

17 f A u , b du.Ž . Ž .H 0 l uŽ .y`

Ž xThe last approximation holds when the vector t becomes dense on y`, T* at
a slow enough rate as N ª `.

The preceding argument gives a sketchy proof of the following theorem
which summarizes the asymptotic properties of our EPA estimators.

THEOREM 3.2. Under the conditions of Theorem 3.1 and with a fixed
choice of t, we have

2ˆ'N b y b f N 0, s ,Ž .Ž .k d k

and an approximate confidence region for b is given as

< 2V b s b L b F x a ,Ž . Ž . Ž .� 4a 0 k k

2Ž .where x a is the specified a-percentage point of the chi-square distributionk
with degrees of freedom k.

It should be emphasized here again that the point as well as the interval
estimations derived from the EPA make no use of nonparametric smoothed

Ž .estimated of l u or its derivative.
Ž .From 17 we see that this EPA estimator can perform very nearly as well

as the optimal estimator in Tsiatis’ class, that is, the estimator solving
Ž . Ž . Ž . Ž .equation S W , b s 0 with W u s l9 u rl u . Furthermore, if the set ofN N N

cutoff points becomes dense on the support of F and the truncation T* is
adaptively chosen to tend to ` at a slow enough rate as sample size N tends
to `, then the asymptotic variance of our EPA estimator given in Theorem 3.2

Ž .will achieve the Fisher information bound given in Ritov and Wellner 1988 .
The issue of the asymptotic efficiency of the EPA estimators will be further
discussed in Section 6.

A consistent estimate of sy2 can be constructed as follows:k

2N D gŽ .ˆi 0y2s s ,Ýk ˆD His1 i

where
ti ˆ ˆ ˆD g s A u , b l9 u duŽ .ˆ Ž .Hi 0 k

tiy1
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ˆand l9 is the kernel smoothed estimate of the derivative of the hazard
Ž .function proposed in Section 3.3 of Ramlau-Hansen 1983 . For example,

1 1 Xˆ ˆl9 t s K u dL u ,Ž . Ž . Ž .H B2b 0N

X Ž . Ž .where K u is the first derivative of the biweight kernel K u s 15r16 ?B B
Ž 2 .2 y1r51 y u , y1 F u F 1, and the bandwidth b s b N . A suitable con-N 0

Ž .stant b can be found according to the stability of the estimate g t shownˆ0 0
on the graphic display. See also Section 4.2 of Andersen, Borgan, Gill and

Ž .Keiding 1992 for a discussion of the optimal bandwidth.

Ž .REMARK 1 Generalized partial likelihood function . It shall be noted here
that, instead of using the maximum likelihood approach based on the full

Ž . 1r2Ž . Ž .likelihood function of the whole process W t q N b y b g t , t g0 0
Ž x`, T* , we use only its finite-dimensional approximation. One reason is that
the full likelihood function of this continuous-time process is, in general, very
difficult to compute explicitly, while its finite-dimensional approximation is

Ž .much more feasible. Slud 1992 gave a very nice discussion on this issue and
termed the latter likelihood as the generalized partial likelihood function.

Ž .Therefore, based on 12 , our EPA estimator is also asymptotically equivalent
to the maximum generalized partial likelihood estimator. The other reason

Ž . Ž .is that the strong or weak approximation of the empirical process M t; b0
Ž .or M t; b usually involves a remainder term of small order N. This

also prevents us from using the full likelihood. See Section 6 for further
discussion.

4. Testing the semiparametric model assumption. In this section,
we briefly discuss how a Pearson chi-square statistic can be easily con-
structed as a by-product of the EPA for testing the semiparametric model

Ž .assumption in 1 . This convenient feature is shared with the minimum
wchi-square estimate advocated by Joseph Berkson in parametric models see

Ž . xBerkson 1980 and the references therein . However, in the recent literature
related to semiparametric models, most existing approaches are only devoted
to estimating rather than goodness-of-fit testing.

Ž .Recall the definition of the empirical process M t; b :

N
ty1r218 M t ; b s N dN u q bZ Z y Z u; b , t F T*.Ž . Ž . Ž . Ž .� 4Ý H i i i

y`is1

It is noted that this empirical process involves only b, not the unknown
Ž .baseline hazard function l u . Therefore, it is a natural basis for testing the

Ž .semiparametric model assumption in 1 .
ˆŽ .Here we propose to use L b as a Pearson chi-square statistic for testingk k

Ž .the goodness-of-fit of model 1 . The asymptotic distribution of this testing
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statistic is derived from the following approximations:
2 y1T 0ˆ ˆ ˆL b f L b q b y b D g t S D g t ,Ž . Ž . Ž .ˆ ˆŽ . Ž . Ž .k 0 k k k 0 0 k 0

y1T 0ˆ ˆ0 f D g t S D M t, b .Ž .ˆ Ž . Ž .0 k k

The next theorem summarizes that this statistic is approximately dis-
tributed as x 2 .ky1

ˆTHEOREM 4.1. Under the conditions of Theorem 3.2, let b be the mini-k
ˆŽ . Ž .mizer of L b . Then L b is approximately distributed as the chi-squarek k

with degrees of freedom k y 1, that is, x 2 .ky1

This simple construction of the Pearson chi-square statistic for testing the
semiparametric model is an important advantage of our EPA. It should have
some practical value in applied statistics.

5. Extensions to multiple covariates. Up to now, we assumed that b
is a scale parameter. In this section, we extend the EPA to multiple regres-
sion models.

For ease of exposition, we will keep the time scale t g R1 and let v,
p Ž . Ž . Ž .Ts g R . And we take U t s U v with v s t, . . . , t for any p-dimensional

Ž . Ž . Ž .process U v and s n v s s n v , . . . , s n v .1 1 p p
Suppose that the underlying responses T are linearly related to covariatesi

Z g R p. That is, b g R p andi

T s b TZ q e .i i i

As discussed in Section 3, we construct a system of p empirical processes as
follows. Let

T
M t ; b s M t ; b , . . . , M t ; b ,Ž . Ž . Ž .Ž .1 p

where
N

ty1r2M t ; b s N R u , b dN u q bZ ,Ž . Ž . Ž .Ý Hj i j i i
y`is1

with
R u , b s Z y Z u , b , j s 1, . . . , p ,Ž . Ž .i j i j j

N
TY u , b s Y u q b Z ,Ž . Ž .Ý i i

is1

N
TZ u , b s Z Y u q b Z rY u , b .Ž . Ž .Ž .Ýj i j i i

is1

Then, by using Rebolledo’s central limit theorem, the system of empirical
Ž .processes M v; b converges weakly to a p-variate Gaussian martingale0

Ž .W v , say, that is,
pxM v ; b ª W v as N ª ` in D y`, t* .Ž . Ž . ŽŽ .d
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Ž .The Gaussian martingale W v has its p = p-matrix of covariance functions

cov W s , W v s H s n v ,Ž . Ž . Ž .Ž .
with

t
H t s A u , b l u du, l , m s 1, . . . , p ,Ž . Ž . Ž .Hl , m lm

y`

Ž .and A u, b defined as the limit oflm

N1
TR u , b R u , b Y u q b Z .Ž . Ž . Ž .Ý i l im i iN is1

Similarly, the local asymptotic linearity uniform in time scale t given in
'Theorem 3.1 can be established here and applied to ensure the N -con-

sistency of the initial estimates and the asymptotic normality of our EPA
estimators, which are likewise constructed as in Section 3. For testing the
semiparametric model assumption of this multiple regression model, the
Pearson chi-square statistic can be likewise derived as in Section 4. Results
similar to Theorems 3.2 and 4.1 can also be established.

6. A simulation study and discussion. In this section, we discuss
several issues related to the EPA and its further applications. First, the
numerical method used in this paper to find our EPA estimates is the grid
search. The feasibility of this simple method is very much enhanced by
modern computer technologies, such as a graphics display, among others, and
by our numerical experience which indicates the approximated likelihood

Ž .function L b in Section 3 having a unique minimum with very highk
probability if k G 2.

The next issue is how to choose k. We focus on this issue in the following
way: if k is allowed to depend on N, what is the fastest rate for k such that
the result in Theorem 3.2 remains valid? To facilitate the discussion of this
issue, we assume the following two strong approximations hold without proof.

First, in view of the strong approximation results of product-limit and
empirical cumulative hazard processes given in Theorems 1 and 2 in Burke,

Ž . Ž .Csorgo and Horvath 1988 and the results in Section 3 of Koning 1994 , we¨ ˝ ´
wexpect that, under suitable tail conditions on F and G see condition A3 ofi

Ž .xHsieh 1996a , the following strong approximation of the empirical process
Ž .M t, b also holds:1 0

Ž1. x19 M t , b s W t q R t a.s., t g y`, T* ,Ž . Ž . Ž . Ž . Ž1 0 N

Ž1.Ž . Ž y1r4 .where R t s O N log N .N
This strong approximation is similar to the one for the classic empirical

Ž .process derived in Kolmos, Major and Tusnady 1975 . A more precise de-´ ´
scription should be based on Dudley’s almost sure representation and de-
scribed in terms of the sequence of Gaussian processes on a new probability

w Ž .xspace see Pollard 1990 .
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Ž .Second, the refinement on Theorem 1 in Ying 1993 should lead to the
following strong approximation: for b is a small neighborhood of b ,0

20 M t , b s M t , b q b y b g t q RŽ2. t a.s.,Ž . Ž . Ž . Ž . Ž . Ž .1 1 0 0 0 N

Ž . Ž2.Ž . Ž1.Ž .where g t is defined in Section 3, and R t has the same order as R t .0 N N
Ž . Ž .With 19 and 20 , we further obtain a signal plus noise model with

resolution error:

˜ U x21 M t , b s W t q b g t q R t a.s., t g y`, T* ,Ž . Ž . Ž . Ž . Ž . Ž1 0 N

˜ ˜ ˜Ž Ž . Ž ..where W is a Gaussian martingale with covariance function cov W t , W s
ˆ U y1r4Ž . Ž . Ž .s H t n s , and R t s O N log N is called the resolution error whichN

dominates the fastest rate of k allowed.
Ž .By some standard calculations based on 21 , it can be found that a chosen

rate of k such that the result of Theorem 3.2 remains valid has to satisfy

k 2rN ª 0 as N ª `.

Otherwise the bias term incurred by our EPA estimate will overwhelm the
approximating normal component and make the result of Theorem 3.2 in-

Ž .valid. A similar condition is required in Portnoy 1988 for a valid normal
approximation in a model with the number of parameters increasing with the
sample size. Furthermore, under the preceding condition and taking T* s
Ž .O log N , we can show that the EPA estimators achieve the semiparametric

Ž . wFisher information bound given in Ritov and Wellner 1988 see Theorem 3.3
Ž .xin Hsieh 1996a .

Although the previous condition gives Ny1r2 as an upper bound on the
rate of k, this asymptotic result is still not practical enough to lead to a
choice of k. Here we suggest a practical algorithm for choosing a k and a
k-vector of cutoff time points t.

The algorithm is:

1. Choose a suitable truncation point T* and a time point t near the median0
� 4of uncensored Y . Take t s t .i 0

ˆ ˆŽ .2. Calculate the initial estimate b with t and then the Nelson estimate L u0
ˆ ˆŽ . � Ž .4and its corresponding estimate F u s 1 y exp yL u .

3. Choose a k and a new t such that the k-vector consists of time points
Ž̂ . � 4where F u has equal increments 1r k q 1 and each cell contains at least

20 uncensored data.
4. Iterate steps 2 and 3 once.
5. Calculate the EPA estimate and iterate it once.

In Table 1, we report results from a small simulation study estimating the
Ž .regression parameter b in the homoscedastic model 1 using Tsiatis’, Fygen-

ˆson and Ritov’s and our own EPA estimates. Our EPA estimates b , i s 3, 5,i
7 are respectively constructed with k s 3, 5 and 7 and time points where
Ž̂ . � 4F u has equal increments 1r k q 1 . For convenience, Fygenson and Ritov’s

ˆFRestimate b is also used as the initial estimate in the constructions of our
ˆTEPA estimates. Three of Tsiatis’ estimates b , i s 0, 1, `, say, are con-i
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TABLE 1
Ž .Simulation study results: estimates of the regression parameters b with MSEs in parentheses

for cases with log-Weibull, normal, Cauchy and F errors using the EPA, Tsiatis’ andMIX
Fygenson and Rotov’s estimators

Estimate log-Weibull Normal Cauchy FMIX

Uncensored % 90.8 85.7 70.6 100

b̂ 1.995486 1.988992 1.980305 1.9874733
Ž . Ž . Ž . Ž .0.001198 0.018708 0.047785 0.079400

b̂ 1.998961 1.994882 1.980805 1.9749285
Ž . Ž . Ž . Ž .0.001225 0.019408 0.046526 0.098660

b̂ 1.998716 1.994432 1.979625 1.9724147
Ž . Ž . Ž . .0.001176 0.020245 0.042797 0.100563

Tb 2.000154 2.003696 1.973794 1.984986`

Ž . Ž . Ž . Ž .0.000648 0.017670 0.066995 0.298983
Tb 2.000154 1.999696 1.984619 2.0433271

Ž . Ž . Ž . Ž .0.000648 0.017955 0.053678 0.132160
Tb̂ 1.999989 1.997916 1.957784 2.0216530

Ž . Ž . Ž . Ž .0.000666 0.017716 0.062479 0.088977
FRb̂ 1.999306 1.999367 1.981315 1.991312

Ž . Ž . Ž . Ž .0.000943 0.013923 0.053956 0.099489

structed from log-rank estimating equations with truncation at times 0, 1 and
`. These three estimators of Tsiatis’ family will numerically bring out the
effect of local confounding in the fourth case considered later where the
baseline hazard function goes up and down.

This simulation study consists of 200 repetitions of the log-Weibull, normal
and Cauchy cases, and consists of 1000 repetitions of the fourth case in which
the baseline hazard function is defined as

exp tr 1 q exp t , if t F 0,Ž .
l t sŽ .MIX ½ 1r2 1 q t , if t ) 0.Ž .

Let F denote its corresponding distribution. This hazard function has itsMIX
Ž .maximum at time 0 and F 0 s 1r2.MIX

In each repetition, we have sample size N s 100, b s 2 and the Z are0 i
Ž .generated from Uniform 0, 3 . For the first three cases, the error variables «i

Ž . Ž . Ž .are distributed as log-Weibull 2, 2 , N 0, 1 and Cauchy 0, 1 . In each case,
the censoring variables C are independently generated according to thei
distribution of c q 2Z q « , where the constant c is chosen to adjust thei i
censoring proportions. In the fourth case no censoring is considered.

From Table 1, we can see that our EPA estimators are comparable with
Tsiatis’ in the log-Weibull and normal cases, while performing better in the

ˆTCauchy case. It is noted that b is the optimal estimator in the log-Weibull`

case. For the fourth case, we can clearly see the effect of local confounding on
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ˆT ˆT wb and the even more signficant effect on b the original log-rank estimator1 `

Ž .xused in Ying 1993 .
We then briefly comment on the issue of the finite truncation T*. In view of

ˆredistribute-to-the-right, the estimate F, given in step 3 of the preceding
algorithm seems able to indicate which T* could be a reasonable choice.
Furthermore, the finite truncation issue is in part due to the martingale
structure employed here. In fact, we can make statistical inferences under
the setting considered here without applying the martingale structure, and
then this issue disappears or is relieved to some extent. For example, Hsieh

Ž .and Hsu 1996 developed the EPA approach employing the theory of classic
empirical processes and having Brownian bridges as limiting Gaussian pro-

Ž .cesses under the same models 1 , but with complete data. There is no need to
impose a finite truncation T* there.

Further applications of the EPA approach are for regression models with
complicated incomplete data, such as data from biased sampling. However, in
general, it is not likely to have martingale structures with these types of
data. The EPA together with the method of sieves, remains applicable. In a
separate report, our EPA is shown to have several advantages over the
inference based on maximizing the profiled likelihood obtained by plugging in
a solution of the self-consistent equation of F.

The EPA approach can also be applied to the accelerated failure model
with time-dependent covariates. In a separate report, the author discussed
the local confounding issue pertaining to the estimating equation proposed in

Ž .Robins and Tsiatis 1992 and derived an asymptotically efficient estimator
via the EPA based on a system of two empirical processes.

At the end of the paper, it is worth mentioning that, in a separate report
Ž .Hsieh 1996b , the EPA is applied to a censored regression model with

heteroscedasticity, that is,

22 T s b TZ q s e ,Ž . i i i i

� 4 wwhere s expresses the heteroscedasticity, for example, s s exp hV seei i i
Ž .xBickel 1978 , and the covariate V is assumed to be linearly independenti

of Z .i
These types of models are important in making predictions. A reason is

that if we ignore the heteroscedasticity and apply the original log-rank
estimating equation, then biased estimations of b will result. The related

Ž .two-sample problem was previously discussed in Hsieh 1996a based on
an empirical Q]Q plot. Furthermore, there is no corresponding version of

Ž . Ž .Fygenson and Ritov’s estimator 1994 in the model 22 , since the presence of
heteroscedasticity will make the Hodges]Lehmann-type estimators invalid.
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