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MULTIPLE-COMPARISON PROCEDURES
FOR STEADY-STATE SIMULATIONS1

BY MARVIN K. NAKAYAMA

New Jersey Institute of Technology

ŽSuppose that there are k G 2 different systems i.e., stochastic pro-
.cesses , where each system has an unknown steady-state mean perfor-

mance and unknown asymptotic variance. We allow for the asymptotic
variances to be unequal and for the distributions of the k systems to be
different. We consider the problem of running independent, single-stage
simulations to make multiple comparisons of the steady-state means of

Žthe different systems. We derive asymptotically valid as the run lengths
.of the simulations of the systems tend to infinity simultaneous confidence

intervals for each of the following problems: all pairwise comparisons of
means, all contrasts, multiple comparisons with a control and multiple
comparisons with the best. Our confidence intervals are based on stan-
dardized time series methods, and we establish the asymptotic validity of
each under the sole assumption that the stochastic processes representing
the simulation output of the different systems satisfy a functional central
limit theorem. Although simulation is the context of this paper, the results

Ž .naturally apply to asymptotically stationary time series.

Ž1. Introduction. Suppose that there are k G 2 different systems i.e.,
. Žstochastic processes that we want to compare, where system i has un-

. Ž . 2known steady-state mean m and unknown asymptotic variance s . Wei i
allow for the asymptotic variances to be unequal and for the distributions of
the k systems to be different. We consider the problem of running indepen-
dent simulations to compare the steady-state means of the different systems.
For example, the different systems may represent various service disciplines
in a queueing system, and we are interested in comparing the steady-state
throughputs of the systems. Although simulation is the context of this paper,

Ž .the results naturally apply to asymptotically stationary time series.
In this paper, we present some single-stage simulation procedures for

constructing simultaneous confidence intervals for each of the following
Ž . Ž .multiple-comparison problems: 1 all pairwise comparisons m y m , i - j; 2i j

Ž .all contrasts c m q c m q ??? qc m , where the constants c , c , . . . , c g1 1 2 2 k k 1 2 k
k Ž .R satisfy c q c q ??? qc s 0; 3 multiple comparisons with a control1 2 k

m y m , i s 1, 2, . . . , k y 1, where system k is considered to be the control;i k
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Ž . Ž .and 4 multiple comparisons with the best MCB , m y max m , i si j/ i j
1, 2, . . . , k. Our confidence intervals are constructed using a standardized
time series method, and they are shorter than those based on the Bonferroni
inequality. We prove that our confidence intervals are asymptotically valid
Ž .as n ª `, with the run length of each of the systems equal to n ; that is, for
each problem above, the joint probability that all of our confidence intervals
simultaneously cover the true values is, in the limit, at least 1 y a , where a
is prespecified by the user.

Most of the previous work on multiple-comparison procedures compared k
normally distributed populations using i.i.d. sampling within each population.

Ž .Tamhane 1977 studied the first two problems listed above, and Spøtvoll
Ž . Ž . Ž .1972 , Dalal 1978 and Tamhane 1979 constructed confidence intervals for

Ž .all linear combinations of means of normals. Hsu 1981, 1984a, b and
Ž .Edwards and Hsu 1983 developed confidence intervals for multiple compar-

isons with the best. For an overview of these and other multiple-comparison
Ž .procedures for i.i.d. random variables, see Hochberg and Tamhane 1987 and

Ž .Miller 1981 .
There has been some additional work on multiple-comparison procedures

Ž .specifically developed for use in simulations. Nelson and Hsu 1993 , Nelson
Ž . Ž .1993 and Yang and Nelson 1991 attacked the problem of comparing
normally distributed populations by using common random numbers to re-

Ž .duce the variance. Also, Yuan and Nelson 1993 considered MCB procedures
for steady-state simulations under the assumption that the simulation output
of each system can be modeled as an autoregressive process. Goldsman and

Ž .Nelson 1990 empirically studied a heuristic simulation method for steady-
state MCB.

Our results extend the previous work by proving the asymptotic validity of
multiple-comparison methods for the types of dependent, nonnormally dis-
tributed output typically encountered in steady-state simulations. We estab-
lish our results under the sole assumption that the stochastic processes
representing the simulation output of the different systems satisfy a func-
tional central limit theorem. This assumption is satisfied by virtually all
stochastic processes arising in practice.

As previously mentioned, our confidence intervals are based on standard-
Ž .ized time series methods. Schruben 1983 proposed this class of techniques

for constructing confidence intervals for the steady-state mean of a stochastic
process representing the simulation output of a single system. Glynn and

Ž .Iglehart 1990 formalized and generalized the class of methods and studied
some of its theoretical properties. The basic idea behind these approaches is

Žto ‘‘cancel out’’ the asymptotic variance constant s in a manner akin to the
.t-statistic rather than to estimate it consistently. This is desirable because

consistent estimation of s can be difficult in practice. Specifically, certain
Žmethods for doing this viz., the regenerative, autoregressive and spectral

.methods are computationally complicated and not robust. For further work
Ž .on standardized time series, see Goldsman and Schruben 1984 , Chen and

Ž . Ž . Ž .Sargent 1987 , Sargent, Kang and Goldsman 1992 and Nakayama 1994 .
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ŽFinally, we mention that the method of batch means also known as using
.subseries , a technique that has been studied extensively in the simulation

w Ž . Ž .xliterature e.g., see Bratley, Fox and Schrage 1987 and Schmeiser 1982
w Ž .xand in the statistics literature e.g., see Carlstein 1986 , is an example of a

standardized time series methodology.
The rest of the paper is organized as follows. In Section 2, we develop the

notation and state our functional-central-limit-theorem assumption. We also
present the class of standardized time series methods in Section 2. Section 3
contains our multiple-comparison procedures. We give examples of standard-
ized time series techniques in Section 4, and all of the proofs are collected in

Ž .Section 5. Finally, we note that Damerdji and Nakayama 1996 developed
some two-stage multiple-comparison procedures for steady-state simulations.

Ž . Ž .Also, Nakayama 1996a presented without proof MCB confidence intervals
for single-stage steady-state simulations using the method of batch means.

Ž .Nakayama 1996b studied the case when there is correlation among the
different systems induced by common random numbers.

2. Notation and assumptions. Suppose that there are k G 2 systems,
� Ž . 4 w .labeled 1, 2, . . . , k. For system i s 1, 2, . . . , k, let Y s Y t : t G 0 g D 0, `i i 1

Ž .be a real-valued measurable stochastic process representing the simulation
w .output of system i, where D 0, ` is the space of right-continuous real-1

w . w Ž .valued functions on 0, ` having left limits see Ethier and Kurtz 1986 or
Ž . w . xGlynn 1990 for more details on the space D 0, ` . Essentially all stochastic1

w .processes arising in practice have sample paths lying in D 0, ` . We can1
� 4 Ž .work with discrete-time processes Y : l s 0, 1, 2, . . . by taking Y t s Y ,i, l i i, ? t @

? @where b denotes the greatest integer less than or equal to b g R. Let
Ž . Ž . Ž Ž . Ž . Ž ..Y s Y , Y , . . . , Y and Y t s Y t , Y t , . . . , Y t .1 2 k 1 2 k

ŽWe assume that the processes Y , Y , . . . , Y are mutually independent. In1 2 k
practice, this means that for all i and j with j / i, the simulations of
systems i and j are generated using nonoverlapping streams of uniform

.random numbers. We allow for the distributions of Y , Y , . . . , Y to be1 2 k
different.

To establish our results, we need to restrict our attention to processes Y
Ž .that satisfy a functional central limit theorem FCLT . More formally, letting

w Ž . x« denote weak convergence see Billingsley 1968 for details , we assume
the following.

ASSUMPTION A1. There exist a finite diagonal matrix S g R k=k with
diagonal elements s , i s 1, 2, . . . , k, such that s ) 0, i s 1, 2, . . . , k, and ai i

Ž . kfinite constant m s m , m , . . . , m g R such that1 2 k

X « SBn

as n ª `, where B is a standard k-dimensional Brownian motion, X sn
Ž .X , X , . . . , X and1, n 2, n k , n

1r2X t s n Y t y m t , 0 F t F 1,Ž . Ž .Ž .i , n i , n i
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with
1 nt

Y t s Y s ds, 0 F t F 1,Ž . Ž .Hi , n in 0

for i s 1, 2, . . . , k.

Since we assumed that the Y , i s 1, 2, . . . , k, are mutually independent,i
the off-diagonal elements of the matrix S are all 0. Note that both X andn

kŽ . w xY s Y , Y , . . . , Y lie in C 0, 1 , the space of continuous R -valuedn 1, n 2, n k , n
w x Ž . Ž .functions on 0, 1 ; see Ethier and Kurtz 1986 or Glynn 1990 for further

w xdetails on the space C 0, 1 . Also, X is a rescaled, normalized, integratedn
version of the original process Y, and the time parameters of X and Y aren n
rescaled by n as compared to Y.

Observe that Assumption A1 implies that for each i,

1 1t
Y s ds y m s X 1 « 0 ? s B 1 s 0Ž . Ž . Ž .H i i i , t i i't t0

as t ª `, and so the m , i s 1, 2, . . . , k, appearing in Assumption A1 arei
precisely the steady-state means of the process Y. Also, Assumption A1
ensures that for each i,

n1'n Y s ds y m s X 1 « s B 1Ž . Ž . Ž .H i i i , n i in 0

Ž .as n ª `. Recalling that B 1 has a standard normal distribution, we seei
that s is the asymptotic variance parameter of the process Y . In addition,i i

Ž .B s B , B , . . . , B , where each B is a standard one-dimensional Brownian1 2 k i
wŽ .motion and B , B , . . . , B are mutually independent. By Billingsley 1968 ,1 2 k

xTheorem 3.2 and pages 26]27 Assumption A1 is then equivalent to requiring
that

X « s Bi , n i i

as n ª ` for each i s 1, 2, . . . , k.
Virtually all ‘‘real-world’’ stochastic systems having a steady state satisfy

the FCLT in Assumption A1. For example, Assumption A1 holds if the
process Y satisfies any of the following:

w1. Y is regenerative and satisfies suitable moment conditions see Glynn and
Ž .xWhitt 1987 ;

w Ž . x2. Y is a martingale process see Ethier and Kurtz 1986 , Chapter 7 ;
w Ž .3. Y satisfies appropriate mixing conditions see Ethier and Kurtz 1986 ,

xChapter 7 ; or
Ž . w Ž .x4. the Y t are associated see Newman and Wright 1981 .

ŽNow we describe the class of standardized time series methods as applied
.to the output of a single system . The foundation of these techniques is a class

Ž .of functions g defined by Glynn and Iglehart 1990 . The basic idea is to
Ždivide the output of each system into a fixed number m G 1 of nonoverlap-
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.ping batches. The function g is then applied to a scaled, normalized and
integrated version of each process Y , namely, X , and we can think ofi i, n
Ž .g X , when appropriately scaled, as an ‘‘estimate’’ of the asymptotic vari-i,n

w Ž .ance constant s . Glynn and Whitt 1990 showed that the method of batchi
means with a fixed number of batches, which is an example of a standardized

xtime series method, cannot consistently estimate the asymptotic variance.
w xMore formally, let C 0, 1 be the space of R-valued continuous functions1

w xon 0, 1 and let B be a standard one-dimensional Brownian motion. Also, for1
Ž . w x Ž .a measurable function h: C 0, 1 ª S with S some metric space, let D h1

w xbe the set of discontinuities of h. Also define the function e g C 0, 1 to be1 1
Ž .e t s t. Then the following assumption holds.1

Ž . w xASSUMPTION A2. The measurable function g: C 0, 1 ª R satisfies the1
following conditions:

Ž . Ž . Ž . w xi g a x s a g x for a ) 0, a g R, x g C 0, 1 ;1
Ž . Ž . Ž . w xii g x y be s g x for b g R and x g C 0, 1 ;1 1
Ž . � Ž . 4iii P g B ) 0 s 1,1
Ž . � Ž .4iv P B g D g s 0.1

Ž .Glynn and Iglehart 1990 defined MM as the class of functions g satisfying
Ž . Ž .Assumption A2. Condition i ensures that g X is a well-behaved ‘‘estima-i, n

tor’’ of the parameter s in the sense that if we multiply all of the observa-i
tions of Y by some constant a , then the new asymptotic variance parameteri
will be as . This property will allow us to ‘‘cancel out’’ the asymptotici
variance constant s ; for more details, see the proof of Theorem 1 in Sectioni

Ž . Ž .5. Condition ii guarantees that g X does not depend on the unknowni, n
Ž . Ž .parameter m . Conditions iii and iv are technical assumptions required toi

Ž .invoke the continuous mapping principle Proposition 1 in Section 5 .
1r2Ž .Observe that for each system i s 1, 2, . . . , k, X s n Y y m e . Thus,i, n i, n i 1

if g g MM, then

1r2 1r2g X s n g Y y m e s n g YŽ . Ž . Ž .i , n i , n i 1 i , n

Ž . Ž .by Assumption A2 i and ii .
Ž . ŽAs noted by Glynn and Iglehart 1990 , the method of batch means with a

.fixed number of batches is an example of a standardized time series method-
ology. Therefore, this technique has a corresponding function g. For further
details on this and other functions g, see Section 4.

3. Our multiple-comparison procedures. When presenting all of our
procedures, we will use the following notation and assumptions. There are k
systems, which are simulated independently. Prior to running the simulation,
we specify the desired confidence level 1 y a . We run the simulation of each
system i, i s 1, 2, . . . , k, with a run length n, where n is large. For each
system i, we analyze its simulation output as follows. We divide the simula-
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Ž .tion output of system i into m G 1 nonoverlapping batches, each of lengthi
nrm , and apply a function g to the output, where g satisfies Assumptioni i i
A2. Then, we compute the estimate of the steady-state mean of system i as

n1
m n s Y s dsŽ . Ž .ˆ Hi in 0

and
mi2 21 S n s g X ,Ž . Ž . Ž .i i i , n n

Ž .which, when divided by m , is an ‘‘estimate’’ of the variance of m n . Explicitˆi i
Ž .formulae for calculating g X for various functions g are given ini i, n i

Section 4.

3.1. All pairwise comparisons. First suppose that we would like to simul-
taneously make all pairwise comparisons of systems. Before presenting our
confidence intervals, we first need the following definition. For a given
probability 1 y 2g and a function g satisfying Assumption A2 using mi i
batches, we define the constant n G 0 such thati, g

2 2
22 E F n g B s 1 y 2g ,Ž . Ž .Ž .x i , g i i

where F 2 denotes the distribution function of a x 2 random variable with 1x

degree of freedom. The continuity of F 2 and the bounded convergencex

theorem imply that n exists. In Section 4 we will describe how to select ni, g i, g

for various functions g.
Ž .Now we simultaneously construct the two-sided confidence intervals

1r22 2 2 2n S n n S nŽ . Ž .i , b r2 i j , b r2 j
I n s m n y m n y q ,Ž . Ž . Ž .ˆ ˆi , j i j ž /m mi j

1r22 2 2 2n S n n S nŽ . Ž .i , b r2 i j , b r2 j
m n y m n q qŽ . Ž .ˆ ˆi j ž /m mi j

3Ž .

Ž .2rŽk Žky1..for m y m , 1 F i - j F k, where b s 1 y 1 y a and the desiredi j
confidence level is 1 y a . Then we have the following result, whose proof is
given in Section 5.

THEOREM 1. Assume Assumption A1 holds and that for each i s
1, 2, . . . , k, g satisfies Assumption A2 with m G 1 batches. Also, for ai i

Ž .2rŽk Žky1..desired confidence level 1 y a , let b s 1 y 1 y a . Then

lim P m y m g I n , ; i - j G 1 y a .Ž .� 4i j i , j
nª`

˘ Ž .Theorem 1 makes use of Sidak’s 1967 inequality to bound below the´
probability of simultaneous coverage of the confidence intervals by a function
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of the individual coverage probabilities. This bound is sharper than the
Bonferroni inequality. Thus, Theorem 1 yields confidence intervals that are
shorter than those based on the Bonferroni inequality.

3.2. All contrasts. The previous theorem considered the problem of mak-
ing all pairwise comparisons. Now we examine the construction of simultane-

k Ž .ous confidence intervals for all contrasts Ý c m with c s c , c , . . . , c gis1 i i 1 2 k
k k � k k 4C , where C s c g R : Ý c s 0 is the k-dimensional contrast space.is1 i

For example, this is useful if we want to analyze weighted means such as
Ž .m y m q m r2.1 2 3

To study the setting of all contrasts, we need the following lemma due to
Ž . wŽ . xTukey 1953 ; also see Hochberg and Tamhane 1987 , pages 81]82 .

Ž . kLEMMA 1. Let x s x , x , . . . , x g R and let j , 1 F i - j F k, be1 2 k i, j
< <nonnegative real numbers. Then x y x F j for all i - j if and only ifi j i, j

k k k2
q y kc x F c c j , ;c s c , c , . . . , c g C ,Ž .Ý Ý Ýi i i j i , j 1 2 kk < <Ý cls1 lis1 is1 js1

q Ž . y Ž .where c s max c , 0 and c s ymin c , 0 .i i j j

Ž . kThus, for each c s c , c , . . . , c g C , we now define the confidence1 2 k
interval

k

I n s c m nŽ . Ž .ˆÝc i i
is1

1r22 2 2 2k k2 n S n n S nŽ . Ž .i , b r2 i j , b r2 jq yy c c q ,Ý Ý i jk < < ž /m mÝ c i jls1 l is1 js1

4Ž .

1r22 2 2 2k k k2 n S n n S nŽ . Ž .i , b r2 i j , b r2 jq yc m n q c c qŽ .ˆÝ Ý Ýi i i jk < < ž /m mÝ c i jls1 lis1 is1 js1

k Ž .for Ý c m , where n is as defined in 2 . Then Theorem 1 and Lemma 1is1 i i i, b r2
immediately imply the following.

THEOREM 2. Assume Assumption A1 holds and that for each i s
1, 2, . . . , k, g satisfies Assumption A2 with m G 1 batches. Also, for ai i

Ž .2rŽk Žky1..desired confidence level 1 y a , let b s 1 y 1 y a . Then
k

klim P c m g I n , ;c s c , c , . . . , c g C G 1 y a .Ž . Ž .Ý i i c 1 2 k½ 5nª` is1

Theorem 2 is mainly intended for constructing only those confidence
intervals with c g C k that are of interest. Also, we note that contrasts only
allow comparisons between means. However, in many instances, we may also
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like to construct confidence intervals simultaneously for the individual means.
For example, we may want joint confidence intervals for m y m and m . This1 2 1
may be accomplished by developing simultaneous confidence intervals for all

wŽ .linear combinations of means as done by Hochberg and Tamhane 1987 ,
xpages 183]186 . However, we do not examine this further.

3.3. Multiple comparisons with a control. We now consider the problem
of making multiple comparisons with a control. More specifically, suppose
that system k is the control and we want to compare all other systems i / k
simultaneously to the control. For example, system k may represent a system
already in place, and systems 1, 2, . . . , k y 1 are various alternatives with

Žwhich we might replace system k if one of the other systems is better as
.measured by the steady-state means .

Ž .To do this, we define simultaneous 1 y a -level two-sided confidence
Ž . Ž . Žintervals I n as in 3 for m y m , i s 1, 2, . . . , k y 1, with b s 1 y 1 yi, k i k

.1rŽky1.a . Similarly, we define upper one-sided confidence intervals as

1r22 2 2 2n S n n S nŽ . Ž .i , b i k , b k
5 I n s y`, m n y m n q qŽ . Ž . Ž . Ž .ˆ ˆu , i , k i k ž /ž m mi k

and lower one-sided confidence intervals as

1r22 2 2 2n S n n S nŽ . Ž .i , b i k , b k
6 I n s m n y m n y q , q`Ž . Ž . Ž . Ž .ˆ ˆl , i , k i k ž / /m mi k

Žfor m y m , i s 1, 2, . . . , k y 1. We use subscripts u and l on I to denotei k
.that the one-sided confidence intervals are upper and lower, respectively.

Then we have the following result, whose proof is given in Section 5.

THEOREM 3. Assume Assumption A1 holds and that for each i s
1, 2, . . . , k, g satisfies Assumption A2 with m G 1 batches. Also, for ai i

Ž .1rŽky1.desired confidence level 1 y a , let b s 1 y 1 y a . Then:

Ž .i for the simultaneous two-sided confidence intervals,

lim P m y m g I n , i s 1, 2, . . . , k y 1 G 1 y a ;� 4Ž .i k i , k
nª`

Ž .ii for the simultaneous upper one-sided confidence intervals,

lim P m y m g I n , i s 1, 2, . . . , k y 1 G 1 y a ;� 4Ž .i k u , i , k
nª`

Ž .iii for the simultaneous lower one-sided confidence intervals,

lim P m y m g I n , i s 1, 2, . . . , k y 1 G 1 y a .� 4Ž .i k l , i , k
nª`

3.4. Multiple comparisons with the best. Now we construct simultaneous
confidence intervals for m y max m , i s 1, 2, . . . , k. This is useful wheni j/ i j
we want to determine the system with the largest mean. Thus, define the
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confidence interval

I nŽ .b , i

y1r22 2 2 2n S n n S nŽ . Ž .i , b i j , b js y min m n y m n y q ,Ž . Ž .ˆ ˆi j ž /m mŽ . ž /jgAA n , j/i� 0i j7Ž .
q1r22 2 2 2n S n n S nŽ . Ž .i , b i j , b j

min m n y m n q qŽ . Ž .ˆ ˆi j ž /m mj/i ž /� 0i j

Ž .for m y max m , i s 1, 2, . . . , k, where n is as defined in 2 , b s 1 yi j/ i j i, b

Ž .1rŽky1.1 y a ,

1r22 2 2 2¡ ¦n S n n S nŽ . Ž .i , b i j , b j~ ¥AA n s i : min m n y m n q q G 0Ž . Ž . Ž .ˆ ˆi j¢ §ž /m mj/i ž /i j

Ž .q Ž . Ž .y Ž . Ž .and we recall that g s max g , 0 and g s ymin g , 0 . In 7 , we define
Žmin x s 0. We use a subscript b on I to denote that the confidencejgB j

.interval is for multiple comparisons with the best. Then we have the
following result, whose proof is given in Section 5.

THEOREM 4. Assume Assumption A1 holds and that for each i s
1, 2, . . . , k, g satisfies Assumption A2 with m G 1 batches. Also, for ai i

Ž .1rŽky1.desired confidence level 1 y a , let b s 1 y 1 y a . Then

lim P m y max m g I n , i s 1, 2, . . . , k G 1 y a .Ž .½ 5i j b , i
nª` j/i

Note that the MCB confidence intervals use a quantile point with b s 1 y
Ž .1rŽky1. Ž .2rŽk Žky1..1 y a rather than b s 1 y 1 y a as in all pairwise com-
parisons. Thus, MCB intervals will typically be shorter than those arising
from all pairwise comparisons.

4. Examples of standardized time series. In this section we present
various functions g satisfying Assumption A2. All of these examples are

Ž .taken directly from Glynn and Iglehart 1990 . Also, we describe how to
Ž .determine the constant n given in 2 .i, g

EXAMPLE 1. The first function g that we describe corresponds to the
method of batch means. For this example we require that the number of

w xbatches m is at least 2. Define the function g: C 0, 1 ª R as1

1r22mm i x 1Ž .
g x s D x y ,Ž . Ý m ž /ž /m y 1 m mis1
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Ž . Ž . Ž .where D x t s x t y x t y 1rd for d g R with d ) 0. Thus, if we divided
Ž .the output of system i into m G 2 nonoverlapping batches and applyi

function g as above to X , we obtaini i, n

1r221r2 m mi in 1 1
g X s Z n y Z n ,Ž . Ž . Ž .Ý Ýi i , n i , j i , lž / ž /m m y 1 mi i ijs1 ls1

where n is the run length of the simulation of system i, which is proportional
to n, and

1 jnrm iZ n s Y s ds, j G 1,Ž . Ž .Hi , j inrm Ž .jy1 nrmi i

Ž .which is the sample mean of the jth nonoverlapping batch of size nrm ofi
2Ž . 2Ž .system i. Note that S n s g X m rn is equal to the sample variance ofi i i, n i

Ž . 2Ž . 2the m batch means of system i. Also, m y 1 g B has a x distributioni i i i
with m y 1 degrees of freedom.i

Ž .When g is defined this way, the constant n in 2 is given by n si i, g i, g

t , where t is the upper g point of a Student’s t-distribution with mm y1, g m , gi
� 4degrees of freedom; that is, P t G t s g , where t is a random variablem m , g m

having a t-distribution with m degrees of freedom.

EXAMPLE 2. Our next function g gives rise to the standardized sum
Ž .method developed by Schruben 1983 . Let m G 1. Then define the function

w xg: C 0, 1 ª R as1

1r22my1 j q t 1 j q 1 j1
g x s x dt y x q x .Ž . Ý H ž / ž / ž /ž /ž /m 2 m m0js0

Ž .Thus, if we divide the output of system i into m G 1 nonoverlappingi
batches and apply function g as above to X , we obtaini i, n

1r22m y1i1 11 Ž . Ž .jqt nrm jq1 nrmi ig X s Y s ds dt y Y s ds .Ž . Ž . Ž .Ý H H Hi i , n i iž /n 20 jnrm jnrmi ijs0

Ž . 2Ž . 2Glynn and Iglehart 1990 showed that 12m g B has a x distributioni i i
Ž .with m degrees of freedom. When g is defined this way, the point n in 2i i i, g

Ž .1r2is given by n s 12 t .i, g m , gi

EXAMPLE 3. The next function g corresponds to the standardized maxi-
Ž .mum intervals method described in Schruben 1983 . Let m G 1. Also,

w x w Ž .x � Ž . 4for x g C 0, 1 , we define t* s t* x s inf t G 0: x t s M* and M*1
w Ž .x � Ž . 4 w xs M* x s max x t : 0 F t F 1 . Also, define the functions G: C 0, 1 ª1

w x w x w xC 0, 1 and L : C 0, 1 ª C 0, 1 for j s 0, 1, . . . , m y 1 as1 j 1 1

G x s x y e x 1 ,Ž . Ž .1

j q e j1
L x s x y x ,Ž .j ž / ž /m m
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Ž .where e t s t. Then let1

Umy1 1 j q t jj
g x s x y xŽ . Ý U U ž / ž /žt 1 y t m mŽ .j jjs0

1r22j q 1 j
Uyt x y x ,j ž / ž /ž / /m m

U � Ž .Ž .Ž . U4 U �Ž .Ž .Ž .where t s inf t G 0: G(L x t s M and M s max G(L x t : 0 Fj j j j j
4 Ž .t F 1 . Thus, if we divide the output of system i into m G 1 nonoverlappingi

batches and apply function g as above to X , we obtaini i, n

m y1i1 1
g X sŽ . Ýi i , n U Un t 1 y tŽ .j jjs0

1r22
UŽ . Ž .jqt nrm jq1 nrmj i iU= Y s ds y t Y s ds ,Ž . Ž .H Hi j iž /jnrm jnrmi i

U U U� Ž .Ž .Ž . 4 �Ž .where t s inf t G 0: G ( L Y t s M and M s max G( Lj j i , n j j j
2 2Ž .Ž . 4 Ž . Ž .Y t : 0 F t F 1 . Schruben 1982 showed that m g B has a x distri-i, n i i i

bution with 3m degrees of freedom. When g is defined this way, the pointi i
Ž . Ž .1r2n in 2 is given by n s 1r3 t .i, g i, g 3m i, g

Other standardized time series methods include the Cramer]von Mises´
w Ž .x wmethod Goldsman, Kang and Seila 1993 and the L -norm methods Tokol,p

Ž .xGoldsman, Ockerman and Swain 1996 .

5. Proofs. Here we will provide the proofs for Theorems 1, 3 and 4 from
Section 3. To establish our results, we will repeatedly apply the following

wproposition, which is known as the continuous mapping principle. See
Ž . Ž . xBillingsley 1968 , Theorem 5.1, or Glynn 1990 for the proof.

w xPROPOSITION 1. Suppose X , X g C 0, 1 are random elements such thatn
Ž . w xX « X as n ª `. Consider a measurable function h: C 0, 1 ª S, S an

Ž . � Ž .4metric space, and let D h be the set of discontinuities of h. If P X g D h s 0,
Ž . Ž .then h X « h X as n ª `.n

We now present some preparatory lemmas that will be useful for proving
˘ Ž .Theorem 1. The first is owing to Sidak 1967 .´

Ž .LEMMA 2. Let W s W , W , . . . , W , d ) 1, be a multivariate normal1 2 d
Žwith mean vector 0 and arbitrary covariance matrix Q s Q : i, j si, j
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.1, 2, . . . , d . Then

d

< < < <P W F b , i s 1, 2, . . . , d G P W F b� 4 � 4Łi i i i
is1

Ž . dfor b , b , . . . , b g R .1 2 ky1

Ž .The next lemma was established by Tamhane 1977 .

LEMMA 3. Let W , W , . . . , W be mutually independent real-valued ran-1 2 d
Ž . d pdom variables and let C s C , C , . . . , C : R ª R be a nonnegative func-1 2 p

tion, where for each i s 1, 2, . . . , p, C is nondecreasing in each of its argu-i
ments. Then

p p

E C W , W , . . . , W G E C W , W , . . . , W .Ž . Ž .Ł Łj 1 2 d j 1 2 d
js1 js1

Ž .The following is a generalization of a result of Banerjee 1961 .

LEMMA 4. Let F 2 denote the distribution function of a x 2 random vari-x

able with 1 degree of freedom. Also, let l , l , . . . , l be real-valued constants1 2 d
such that l G 0, i s 1, 2, . . . , d, and l q l q ??? ql s 1. Theni 1 2 d

d
2 2

2E F l n g B G 1 y 2g .Ž .Ýx i i , g i iž /
is1

PROOF. Note that

21 yux'
2F x s 2 exp duŽ . Hx ž /' 22p0

Ž .2for x G 0 and 0 otherwise. By taking the second derivative of F x withx

respect to x, we can show that it is a concave function. Thus,

d d
2 2 2 2

2 2E F l n g B G l E F n g BŽ . Ž .Ž .Ý Ýx i i , g i i i x i , g i iž /
is1 is1

d

s l 1 y 2g s 1 y 2gŽ .Ý i
is1

Ž .by the definition of n in 2 . Ii, g

We are now in a position to prove Theorem 1 of Section 3.
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PROOF OF THEOREM 1. Note that

P m y m g I n , ; i - jŽ .� 4i j i , j

< <s P m n y m y m n y mŽ . Ž .Ž .ˆ ˆŽ .i i j j½
1r22 2 2 2n S n n S nŽ . Ž .i , b r2 i j , b r2 jF q , ; i - j 5ž /m mi j

< <s P m n y m y m n y mŽ . Ž .Ž .ˆ ˆŽ .i i j j½
1r22 2 2 2n m g X n m g XŽ . Ž .i , b r2 i i i , n j , b r2 j j j , nF q , ; i - j 5ž /m n m ni j

2Ž . 2Ž . Ž .since S n s g X m rn for all i by 1 . Thus,i i i, n i

P m y m g I n , ; i - jŽ .� 4i j l , i , j

< 1r2 1r2 <s P n m n y m y n m n y mŽ . Ž .Ž .ˆ ˆŽ .½ i i j j

1r22 2 2 2y n g X q n g X F 0, ; i - jŽ . Ž .Ž . 5i , b r2 i i , n j , b r2 j j , n

< <s P X 1 y X 1Ž . Ž .½ i , n j , n

1r22 2 2 2y n g X q n g X F 0, ; i - jŽ . Ž .Ž . 5i , b r2 i i , n j , b r2 j j , n

s P u X F 0 ,� 4Ž .n

Ž . w x k Žky1.r2where the function u s u : 1 F i - j F k : C 0, 1 ª R is definedi, j
as

1r22 2 2 2< <u x s x 1 y x 1 y n g x q n g xŽ . Ž . Ž . Ž . Ž .Ž .i , j i j i , b r2 i i j , b r2 j j

k Žky1.r2 Ž Ž . .for i - j, and 0 g R is the k k y 1 r2 -dimensional vector with all
Ž .components 0. By Assumption A2 iv and by the fact that the projection

mapping is continuous, u is continuous at B with probability 1, and so the
Ž . Ž .continuous mapping principle ensures that u X « u SB as n ª `.n

Ž .Now we show that u SB has a continuous distribution function. Let Hi, j
Ž .be the distribution function of u SB . Note thati, j

1r22 2 2 2< <u SB s s B 1 y s B 1 y n g s B q n g s BŽ . Ž . Ž . Ž . Ž .Ž .i , j i i j j i , b r2 i i i j , b r2 j j j

1r22 2 2 2 2 2< <s s B 1 y s B 1 y n s g B q n s g BŽ . Ž . Ž . Ž .Ž .i i j j i , b r2 i i i j , b r2 j j j

Ž .by Assumption A2 i . Recall that standard one-dimensional Brownian motion
has normal increments. In addition, B , B , . . . , B are mutually indepen-1 2 k
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Ž . Ž . Ž .dent, which implies that g B , g B , . . . , g B are also mutually inde-1 1 2 2 k k
Ž Ž . Ž .. Ž 2 2 .1r2pendent. Moreover, s B 1 y s B 1 r s q s has a standard normali i j j i j

distribution since 0 - s - ` for all l. Now let F denote the distributionl
function of the absolute value of a standard normal random variable and let

Ž .G be the distribution function of g B . Then, for h g R,i i i

¡s B 1 y s B 1Ž . Ž .i i j j~H h s PŽ .i , j 1r22 2¢ s q sŽ .i j

1r22 2 2 2 2 2 ¦h n s g B q n s g BŽ . Ž .i , b r2 i i i j , b r2 j j j ¥F q1r2 2 22 2 ž / §s q si js q sŽ .i j

1r22 2 2 2 2 2
` ` h n s x q n s yi , b r2 i j , b r2 js F qH H 1r2 2 22 2 ž /s q s0 0 � 0i js q sŽ .i j

=G dx G dy ,Ž . Ž .i j

Ž . Ž .since each B 1 is independent of g B , as was shown by Glynn andi i i
Ž .Iglehart 1990 . Now the continuity of F and the bounded convergence

theorem imply that H is continuous for all i - j.i, j
Ž .Since u SB has a continuous distribution function, Theorem 2.1 of
Ž .Billingsley 1968 implies that

P u X F 0 ª P u SB F 0� 4� 4Ž . Ž .n

as n ª `. Now we will show that

P u SB F 0 G 1 y a .� 4Ž .

Ž Ž . Ž . Ž ..Let FF denote the s-field generated by g B , g B , . . . , g B . Note thatg 1 1 2 2 k k

P u SB F 0� 4Ž .
¡s B 1 y s B 1Ž . Ž .i i j j~s E P 1r22 2¢ s q sŽ .i j

1r22 2 2 2 2 2 ¦n s g B q n s g BŽ . Ž .i , b r2 i i i j , b r2 j j j ¥F , ; i - j N FFg2 2ž / §s q si j

1r22 2 2 2 2 2n s g B q n s g BŽ . Ž .i , b r2 i i i j , b r2 j j jG E FŁ 2 2ž /s q sž /i-j i j
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by Lemma 2. Now define

C g 2 B , g 2 B , . . . , g 2 BŽ . Ž . Ž .Ž .i , j 1 1 2 2 k k

1r22 2 2 2 2 2n s g B q n s g BŽ . Ž .i , b r2 i i i j , b r2 j j js F 2 2ž /s q sž /i j

2Ž .for all i - j, and observe that each C is a nondecreasing function of g B ,i, j 1 1
2Ž . 2Ž .g B , . . . , g B . Hence, applying Lemma 3, we get2 2 k k

P u SB F 0� 4Ž .
1r22 2 2 2 2 2n s g B q n s g BŽ . Ž .i , b r2 i i i j , b r2 j j jG E FŁ 2 2ž /s q sž /i-j i j

2 2s si j2 2 2 2
2s E F n g B q n g B ,Ž . Ž .Ł x i , b r2 i i j , b r2 j j2 2 2 2ž /s q s s q si-j i j i j

where F 2 denotes the distribution function of a x 2 random variable with 1x

degree of freedom. Thus, Lemma 4 implies that

P u SB F 0� 4Ž .
2 2s si j2 2 2 2

2G E F n g B q n g BŽ . Ž .Ł x i , b r2 i i j , b r2 j j2 2 2 2ž /s q s s q si-j i j i j

Ž .k ky1 r2G 1 y b s 1 y b s 1 y a ,Ž . Ž .Ł
i-j

Ž .2rŽk Žky1..since b s 1 y 1 y a , which completes the proof. I

Ž .To prove Theorem 3, we need the following result due to Slepian 1962 .

Ž .LEMMA 5. Let W s W , W , . . . , W , d ) 1, be multivariate normal with1 2 d
Ž .mean vector 0 and covariance matrix Q s Q : i, j s 1, 2, . . . , d . Also, leti, j

Ž .V s V , V , . . . , V be multivariate normal with mean vector 0 and covari-1 2 d
Ž .ance matrix J s J : i, j s 1, 2, . . . , d . If Q G J for all 1 F i - j F k,i, j i, j i, j

then

� 4 � 4P W F b , i s 1, 2, . . . , d G P V F b , i s 1, 2, . . . , di i i i

Ž . dfor b , b , . . . , b g R .1 2 ky1

Ž .PROOF OF THEOREM 3. The proof of part i is the same as that of Theorem
Ž . Ž .1. Also, parts ii and iii can be established using arguments similar to those

employed in the proof of Theorem 1 except we need to rely on Lemma 5
instead of Lemma 2. I
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Now we prove Theorem 4.

PROOF OF THEOREM 4. First, define
1r22 2 2 2n S n n S nŽ . Ž .i , b i j , b j

D n s q .Ž .i , j ž /m mi j

Ž . Ž . Ž .Also, define 1 , 2 , . . . , k such that m F m F ??? F m ; that is, systemŽ1. Ž2. Žk .
Ž .j has the jth smallest steady-state mean. Then, define the events

E n s m y m G m n y m n y D n , ; i / k ,Ž . Ž . Ž . Ž . Ž .� 4ˆ ˆi Žk . i Žk . i , Žk .

q
E n s m y max m F min m n y m n q D n , ; i ,Ž . Ž . Ž . Ž .ˆ ˆŽ .1 i j i j j , i½ 5j/i j/i

y¡ ¦~ ¥E n s m y max m G y min m n y m n q D n , ; i .Ž . Ž . Ž . Ž .ˆ ˆŽ .2 i j i j i , j¢ §j/i Ž .jgAA n
j/i

Ž .Note that E n is the event that the lower one-sided confidence intervals for
Ž .multiple comparisons with a control, with the control being system k ,

contain all of the true differences m y m . Thus, we have thati Žk .
Ž Ž .. Ž .lim P E n G 1 y a by Theorem 3 iii . Now following an argument de-nª`

Ž . Ž . Ž . Ž .veloped by Edwards and Hsu 1983 , we show that E n ; E n l E n for1 2
all n, which will establish the result.

Ž . Ž .First we prove that E n ; E n :1

E n ; m y m F m n y m n q D n , ; j / kŽ . Ž . Ž . Ž . Ž .� 4ˆ ˆŽk . Žky1. Žk . j j , Žk .

q
; m y m F min m n y m n q D n , ; iŽ . Ž . Ž .ˆ ˆŽ .i Žky1. i j j , i½ 5j/i

q
; m y max m F min m n y m n q D n , ; i ,Ž . Ž . Ž .ˆ ˆŽ .i j i j j , i½ 5j/i j/i

Ž .where the penultimate step follows since m y m F 0 for all i / k andi Žky1.
w xq? G 0.

Ž . Ž . Ž .Now we show E n ; E n . First note that on the event E n , we have2
Ž . Ž . Ž . � Ž . Ž . Ž .that k g AA n since E n s m n y m n q D n G m y m , ; j /ˆ ˆŽk . j j, Žk . Žk . j

Ž .4k and m y m G 0 for all j. Hence,Žk . j

E n ; m y m G min m n y m n y D n , ; i / kŽ . Ž . Ž . Ž . Ž .ˆ ˆŽ .i Žk . i j i , j½ 5Ž .jgAA n
j/i

y¡ ¦~ ¥; m y max m G y min m n y m n y D n , ; i ,Ž . Ž . Ž .ˆ ˆŽ .i j i j i , j¢ §j/i Ž .jgAA n
j/i

w xywhere the last step follows since m y max m G 0 and y ? F 0. Hence,Žk . j/ Žk . j
Ž . Ž . Ž .E n ; E n l E n , and the proof is complete. I1 2
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