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MULTIPLE-COMPARISON PROCEDURES
FOR STEADY-STATE SIMULATIONS!

By MARVIN K. NAKAYAMA

New dJersey Institute of Technology

Suppose that there are k > 2 different systems (i.e., stochastic pro-
cesses), where each system has an unknown steady-state mean perfor-
mance and unknown asymptotic variance. We allow for the asymptotic
variances to be unequal and for the distributions of the & systems to be
different. We consider the problem of running independent, single-stage
simulations to make multiple comparisons of the steady-state means of
the different systems. We derive asymptotically valid (as the run lengths
of the simulations of the systems tend to infinity) simultaneous confidence
intervals for each of the following problems: all pairwise comparisons of
means, all contrasts, multiple comparisons with a control and multiple
comparisons with the best. Our confidence intervals are based on stan-
dardized time series methods, and we establish the asymptotic validity of
each under the sole assumption that the stochastic processes representing
the simulation output of the different systems satisfy a functional central
limit theorem. Although simulation is the context of this paper, the results
naturally apply to (asymptotically) stationary time series.

1. Introduction. Suppose that there are k > 2 different systems G.e.,
stochastic processes) that we want to compare, where system i has (un-
known) steady-state mean u, and (unknown) asymptotic variance o.2. We
allow for the asymptotic variances to be unequal and for the distributions of
the £ systems to be different. We consider the problem of running indepen-
dent simulations to compare the steady-state means of the different systems.
For example, the different systems may represent various service disciplines
in a queueing system, and we are interested in comparing the steady-state
throughputs of the systems. Although simulation is the context of this paper,
the results naturally apply to (asymptotically) stationary time series.

In this paper, we present some single-stage simulation procedures for
constructing simultaneous confidence intervals for each of the following
multiple-comparison problems: (1) all pairwise comparisons w; — u;, i <j; (2)
all contrasts ¢; u; + ¢y g + -+ +¢, u,, where the constants (¢, cy,...,¢,) €
Mt satisfy ¢; + ¢y + -+ +¢, = 0; (3) multiple comparisons with a control
W — g, 0 =1,2,..., k — 1, where system % is considered to be the control;
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and (4) multiple comparisons with the best (MCB), w; — max,,,u;, i=
1,2,..., k. Our confidence intervals are constructed using a standardized
time series method, and they are shorter than those based on the Bonferroni
inequality. We prove that our confidence intervals are asymptotically valid
(as n — o, with the run length of each of the systems equal to n); that is, for
each problem above, the joint probability that all of our confidence intervals
simultaneously cover the true values is, in the limit, at least 1 — «, where «
is prespecified by the user.

Most of the previous work on multiple-comparison procedures compared &
normally distributed populations using i.i.d. sampling within each population.
Tamhane (1977) studied the first two problems listed above, and Spgtvoll
(1972), Dalal (1978) and Tamhane (1979) constructed confidence intervals for
all linear combinations of means of normals. Hsu (1981, 1984a, b) and
Edwards and Hsu (1983) developed confidence intervals for multiple compar-
isons with the best. For an overview of these and other multiple-comparison
procedures for i.i.d. random variables, see Hochberg and Tamhane (1987) and
Miller (1981).

There has been some additional work on multiple-comparison procedures
specifically developed for use in simulations. Nelson and Hsu (1993), Nelson
(1993) and Yang and Nelson (1991) attacked the problem of comparing
normally distributed populations by using common random numbers to re-
duce the variance. Also, Yuan and Nelson (1993) considered MCB procedures
for steady-state simulations under the assumption that the simulation output
of each system can be modeled as an autoregressive process. Goldsman and
Nelson (1990) empirically studied a heuristic simulation method for steady-
state MCB.

Our results extend the previous work by proving the asymptotic validity of
multiple-comparison methods for the types of dependent, nonnormally dis-
tributed output typically encountered in steady-state simulations. We estab-
lish our results under the sole assumption that the stochastic processes
representing the simulation output of the different systems satisfy a func-
tional central limit theorem. This assumption is satisfied by virtually all
stochastic processes arising in practice.

As previously mentioned, our confidence intervals are based on standard-
ized time series methods. Schruben (1983) proposed this class of techniques
for constructing confidence intervals for the steady-state mean of a stochastic
process representing the simulation output of a single system. Glynn and
Iglehart (1990) formalized and generalized the class of methods and studied
some of its theoretical properties. The basic idea behind these approaches is
to “cancel out” the asymptotic variance constant o (in a manner akin to the
t-statistic) rather than to estimate it consistently. This is desirable because
consistent estimation of o can be difficult in practice. Specifically, certain
methods for doing this (viz., the regenerative, autoregressive and spectral
methods) are computationally complicated and not robust. For further work
on standardized time series, see Goldsman and Schruben (1984), Chen and
Sargent (1987), Sargent, Kang and Goldsman (1992) and Nakayama (1994).
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Finally, we mention that the method of batch means (also known as using
subseries), a technique that has been studied extensively in the simulation
literature [e.g., see Bratley, Fox and Schrage (1987) and Schmeiser (1982)]
and in the statistics literature [e.g., see Carlstein (1986)], is an example of a
standardized time series methodology.

The rest of the paper is organized as follows. In Section 2, we develop the
notation and state our functional-central-limit-theorem assumption. We also
present the class of standardized time series methods in Section 2. Section 3
contains our multiple-comparison procedures. We give examples of standard-
ized time series techniques in Section 4, and all of the proofs are collected in
Section 5. Finally, we note that Damerdji and Nakayama (1996) developed
some two-stage multiple-comparison procedures for steady-state simulations.
Also, Nakayama (1996a) presented (without proof) MCB confidence intervals
for single-stage steady-state simulations using the method of batch means.
Nakayama (1996b) studied the case when there is correlation among the
different systems induced by common random numbers.

2. Notation and assumptions. Suppose that there are & > 2 systems,
labeled 1,2,..., k. For system i = 1,2,..., k, let Y, = {Y;(#): ¢t > 0} € D,[0, )
be a real-valued (measurable) stochastic process representing the simulation
output of system i, where D,[0,) is the space of right-continuous real-
valued functions on [0, ©) having left limits [see Ethier and Kurtz (1986) or
Glynn (1990) for more details on the space D,[0,«).] Essentially all stochastic
processes arising in practice have sample paths lying in D,[0, ). We can
work with discrete-time processes {Y; ;: [ = 0,1,2,...} by taking Y;(¥) = Y, |,,,
where | 8] denotes the greatest integer less than or equal to g € ). Let
Y =(Y,Y,,....Y,) and Y(¢) = (Y,(2),Y,(¢),...,Y,(¢)).

We assume that the processes Y;,Y,,...,Y, are mutually independent. (In
practice, this means that for all i and j with j # i, the simulations of
systems i and j are generated using nonoverlapping streams of uniform
random numbers.) We allow for the distributions of Y;,Y,,...,Y, to be
different.

To establish our results, we need to restrict our attention to processes Y
that satisfy a functional central limit theorem (FCLT). More formally, letting
= denote weak convergence [see Billingsley (1968) for details], we assume
the following.

ASSUMPTION Al. There exist a finite diagonal matrix 3 € R*** with
diagonal elements o, i = 1,2,...,k, such that ¢, >0,i=1,2,...,%, and a
finite constant w = (uy, 4y, ..., ;) € R* such that

X, =3B
as n — », where B is a standard k-dimensional Brownian motion, X, =
(X, ., X ., X, ,) and

2,n7"

X, . (t) =n3 (Y, (t) —mt), O0=<t<l,



2436 M. NAKAYAMA

with
Y (1) 1[’”Y()d 0<t<1
. = — (s S, <t<l,
i,n n’o i

fori =1,2,...,k.

Since we assumed that the Y;, i = 1,2,..., k, are mutually independent,
the off- dlagonal elements of the matrlx 3 are all 0. Note that both X, and
=, ,,Ys ,,...,Y, ) lie in C[0,1], the space of continuous %*-valued
functlons on [0, 1]; see Ethier and Kurtz (1986) or Glynn (1990) for further
details on the space C[0, 1]. Also, X, is a rescaled, normalized, integrated
version of the original process Y, and the time parameters of X, and Y, are
rescaled by n as compared to Y.
Observe that Assumption Al implies that for each i,

1 . 1
T/ Yi(s)ds == =X, (1) = 0-0B(1) =0

as t » ©, and so the u;, i =1,2,..., k, appearing in Assumption Al are
precisely the steady-state means of the process Y. Also, Assumption Al
ensures that for each i,

ﬁ[%f(}”lfi(s)ds—m

as n — ». Recalling that B;(1) has a standard normal distribution, we see
that o; is the asymptotic variance parameter of the process Y;. In addition,
B = (By, B,,..., B,), where each B, is a standard one-dimensional Brownian
motion and By, B,,..., B, are mutually independent. By Billingsley [(1968),
Theorem 3.2 and pages 26—-27] Assumption Al is then equivalent to requiring
that

Xi,n(]') = 0;B;(1)

X, = o.B.

i,n i

asn —»>xforeachi=1,2,...,k.

Virtually all “real-world” stochastic systems having a steady state satisfy
the FCLT in Assumption Al. For example, Assumption Al holds if the
process Y satisfies any of the following:

1. Y is regenerative and satisfies suitable moment conditions [see Glynn and
Whitt (1987)];

2. Y is a martingale process [see Ethier and Kurtz (1986), Chapter 71;

3. Y satisfies appropriate mixing conditions [see Ethier and Kurtz (1986),
Chapter 7]; or

4. the Y(#) are associated [see Newman and Wright (1981)].

Now we describe the class of standardized time series methods (as applied
to the output of a single system). The foundation of these techniques is a class
of functions g defined by Glynn and Iglehart (1990). The basic idea is to
divide the output of each system into a fixed number m > 1 of (nonoverlap-
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ping) batches. The function g is then applied to a scaled, normalized and
integrated version of each process Y;, namely, X; ,, and we can think of
g(X; ), when appropriately scaled, as an “estimate” of the asymptotic vari-
ance constant o;. [Glynn and Whitt (1990) showed that the method of batch
means with a fixed number of batches, which is an example of a standardized
time series method, cannot consistently estimate the asymptotic variance.]

More formally, let C,[0, 1] be the space of f-valued continuous functions
on [0, 1] and let B; be a standard one-dimensional Brownian motion. Also, for
a (measurable) function A: C,[0,1] - S with S some metric space, let D(h)
be the set of discontinuities of %. Also define the function e; € C,[0, 1] to be
e,(t) = ¢. Then the following assumption holds.

AssuMPTION A2. The (measurable) function g: C,[0,1] — N satisfies the
following conditions:

() glax) = ag(x) for a >0, a € R, x € C,[0, 1];
(i) g(x — Be;) = g(x) for B € R and x € C,[0, 1];
(i) P{g(B,) > 0} =1,

(iv) P{B, € D(g)} = 0.

Glynn and Iglehart (1990) defined .# as the class of functions g satisfying
Assumption A2. Condition (i) ensures that g(X; ) is a well-behaved “estima-
tor” of the parameter o; in the sense that if we multiply all of the observa-
tions of Y; by some constant «, then the new asymptotic variance parameter
will be «o;. This property will allow us to “cancel out” the asymptotic
variance constant o;; for more details, see the proof of Theorem 1 in Section
5. Condition (ii) guarantees that g(X; ,) does not depend on the unknown
parameter u,. Conditions (iii) and (iv) are technical assumptions required to
invoke the continuous mapping principle (Proposition 1 in Section 5).

Observe that for each system i = 1,2,..., &, X; , = n'/%(Y, , — we,). Thus,
if g e, then

g(Xi,rL) = n1/2g(Yl’n - /“(‘iel) = nl/zg(l_,i,n)

by Assumption A2@) and (ii).

As noted by Glynn and Iglehart (1990), the method of batch means (with a
fixed number of batches) is an example of a standardized time series method-
ology. Therefore, this technique has a corresponding function g. For further
details on this and other functions g, see Section 4.

3. Our multiple-comparison procedures. When presenting all of our
procedures, we will use the following notation and assumptions. There are %
systems, which are simulated independently. Prior to running the simulation,
we specify the desired confidence level 1 — a. We run the simulation of each
system i, i =1,2,...,k, with a run length n, where n is large. For each
system i, we analyze its simulation output as follows. We divide the simula-
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tion output of system i into m; > 1 (nonoverlapping) batches, each of length
n/m;, and apply a function g; to the output, where g, satisfies Assumption
A2. Then, we compute the estimate of the steady-state mean of system i as

. 1 n
pi(n) = n'/(:)}i(S) ds
and

(1) Si(n) =g (X, )

m

n >
which, when divided by m;, is an “estimate” of the variance of fi,(n). Explicit

formulae for calculating g,(X; ,) for various functions g; are given in
Section 4.

3.1. All pairwise comparisons. First suppose that we would like to simul-
taneously make all pairwise comparisons of systems. Before presenting our
confidence intervals, we first need the following definition. For a given
probability 1 — 2y and a function g, satisfying Assumption A2 using m;

batches, we define the constant v; , > 0 such that

(2) E|[F.(v?,82(B)))| =1 -2y,

where F . denotes the distribution function of a x? random variable with 1
degree of freedom. The continuity of F. and the bounded convergence
theorem imply that »;  exists. In Section 4 we will describe how to select v,
for various functions g.

Now we simultaneously construct the (two-sided) confidence intervals

v2,,082(n) w2, ,,S%(n) 1/2
I . = | i _ 0. _ L,B/2Y0 n JsB/2j
L’J(n) ) Mj(n) ( m; m; ’
(3) s
. . 2, ,82(n) w2, ,S8%(n) )"
fu(n) = fy(n) + | —£2 4 LB

i m;

Y

for w;, —p;, 1<i<j<k, where B=1- (1 — a)”** 1 and the desired
confidence level is 1 — «. Then we have the following result, whose proof is
given in Section 5.

THEOREM 1. Assume Assumption Al holds and that for each i =
1,2,...,k, g, satisfies Assumption A2 with m; > 1 batches. Also, for a
desired confidence level 1 — a, let B =1 — (1 — @) **=D) Thep

lim P{p; — u; €I, j(n),Vi<j}>1-a.

Theorem 1 makes use of Sidak’s (1967) inequality to bound below the
probability of simultaneous coverage of the confidence intervals by a function
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of the individual coverage probabilities. This bound is sharper than the
Bonferroni inequality. Thus, Theorem 1 yields confidence intervals that are
shorter than those based on the Bonferroni inequality.

3.2. All contrasts. The previous theorem considered the problem of mak-
ing all pairwise comparisons. Now we examine the construction of simultane-
ous confidence intervals for all contrasts X*_, ¢; u; with ¢ = (¢cy,¢y,...,¢;) €
C*, where C* ={c € *: % ¢, = 0} is the k-dimensional contrast space.
For example, this is useful if we want to analyze weighted means such as
pr = Cug + pg)/2.

To study the setting of all contrasts, we need the following lemma due to
Tukey (1953); also see Hochberg and Tamhane [(1987), pages 81-82].

LEMMA 1. Let x = (xy,%,,...,%,) €ER* and let & ;, 1<i<j<k, be
nonnegative real numbers. Then |x; — x;| < & ; for all i <j if and only if
3
c; X; Z Zc ¢; & Ve = (cq,Cq,...,¢,) € CE,
=1 1| ll i=1j=1
where ¢ = max(c;,0) and ¢; = —min(c;,0).
Thus, for each ¢ = (c;,cy,...,c,) € C*, we now define the confidence

interval

k
(m) = | X eiu(n)

(4) -~ -~

Zl 1|cl| i=1j=1 i J

1/2
ko k v? S-Z(n) p? S»Z(n)
_ i, B/2%1 J,B/2%]
Y Y ( + ,

1/2
Vi2,B/2Si2(n) n Vfﬁ/2sj2(n))

s 5 5|

k
Zcuzn)+ B
= 1

for ¥_, ¢; p;, where v, g /o 18 as defined in (2). Then Theorem 1 and Lemma 1
immediately imply the following.

THEOREM 2. Assume Assumption Al holds and that for each i =
1,2,...,k, g; satisfies Assumption A2 with m; > 1 batches. Also, for a
desired confidence level 1 — a, let B =1 — (1 — a)? **=D) Then

k
lim P{ Y c;u; € I.(n),¥Ye = (¢, ¢9,...,¢) € Ck} >1- a.
n— o i=1

Theorem 2 is mainly intended for constructing only those confidence
intervals with ¢ € C* that are of interest. Also, we note that contrasts only
allow comparisons between means. However, in many instances, we may also
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like to construct confidence intervals simultaneously for the individual means.
For example, we may want joint confidence intervals for u, — u, and w,. This
may be accomplished by developing simultaneous confidence intervals for all
linear combinations of means as done by Hochberg and Tamhane [(1987),
pages 183-186]. However, we do not examine this further.

3.3. Multiple comparisons with a control. We now consider the problem
of making multiple comparisons with a control. More specifically, suppose
that system % is the control and we want to compare all other systems i # &
simultaneously to the control. For example, system %2 may represent a system
already in place, and systems 1,2,...,%k — 1 are various alternatives with
which we might replace system % if one of the other systems is better (as
measured by the steady-state means).

To do this, we define simultaneous (1 — «)-level two-sided confidence
intervals I, ,(n) as in (3) for u;, — u,, 1 =1,2,...,k — 1, with p=1—-(1 —

a)Y*=D_Similarly, we define upper one-sided confidence intervals as

1/27]
Vi%BSiz(n) n Vl?,BSlg(n))

my

(5) Iu,i,k(n) :(_007 :a’z(n) - :a“k(n’) +

i
and lower one-sided confidence intervals as

ViZ,BSiz(n) N Vl?,BSlz(n)

m;

1/2
, T

(6) Ipix(n) = | a(n) = iy(n) - (

my

for w;, — s, i =1,2,..., k — 1. (We use subscripts z and [ on I to denote
that the one-sided confidence intervals are upper and lower, respectively.)
Then we have the following result, whose proof is given in Section 5.

THEOREM 3. Assume Assumption Al holds and that for each i =
1,2,...,k, g; satisfies Assumption A2 with m; > 1 batches. Also, for a
desired confidence level 1 — a, let B =1 — (1 — a)/*~ V. Then:

(1) for the simultaneous two-sided confidence intervals,
im P{u; —p, €1, ,(n),i=1,2,...,k =1} > 1 — a;
n— o
(A1) for the simultaneous upper one-sided confidence intervals,
lim P{u, —p, €1, ; 4(n),i=1,2,...,k =1} >1 - a;
n—ow

(iii) for the simultaneous lower one-sided confidence intervals,
lim P{u, —p, €1, ; 4,(n),i=1,2,...,k -1} >1 - a.
n— o

3.4. Multiple comparisons with the best. Now we construct simultaneous
confidence intervals for u; — max;,; u;, t = 1,2,..., k. This is useful when
we want to determine the system with the largest mean. Thus, define the
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confidence interval

I, i(n)
v2,82(n)  12,82(n) )%
. ~ A i, -1 , B
] _(-Eﬁuﬁ- e ’
je(n), j#i ; .
(7) !
N
o v2yS2(n)  w2,SE(n) |
min | f;(n) — f;(n) + +
J#i m; mJ

for u, — max;,; u;, i =1,2,...,k, where v, ; is as defined in (2), g=1 —

(1 _ a)l/(k*l),

w(n) — u:(n) +
pu(n) = () - o

2 g2 2 g2 1/2
Vt,ﬁ L(n) + Vj,ﬁ j(n)) ZO

HZ(n) = {i: min
J#i

and we recall that (y)" = max(y,0) and (y)”= —min(y, 0). In (7), we define
min, 5 x; = 0. (We use a subscript b on I to denote that the confidence
interval is for multiple comparisons with the best.) Then we have the
following result, whose proof is given in Section 5.

THEOREM 4. Assume Assumption Al holds and that for each i =
1,2,...,k, g; satisfies Assumption A2 with m; > 1 batches. Also, for a
desired confidence level 1 — a, let B =1 — (1 — a)/*~ V. Then

limP{,u,i — max y, €1, (n),i= 1,2,...,k} >1-a.
J#F1

n— o

Note that the MCB confidence intervals use a quantile point with 8 =1 —
(1 — a)*=D rather than B=1— (1 — a)¥**=D) a5 in all pairwise com-
parisons. Thus, MCB intervals will typically be shorter than those arising
from all pairwise comparisons.

4. Examples of standardized time series. In this section we present
various functions g satisfying Assumption A2. All of these examples are
taken directly from Glynn and Iglehart (1990). Also, we describe how to
determine the constant »; ., given in (2).

ExamMpPLE 1. The first function g that we describe corresponds to the
method of batch means. For this example we require that the number of
batches m is at least 2. Define the function g: C,[0,1] = N as

£ (s.ef) 22y

m—1.,7 m

g(x) =
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where A x(¢) = x(¢) — x(¢ — 1/d) for d € R with d > 0. Thus, if we divide
the output of system i into m; > 2 (nonoverlapping) batches and apply
function g, as above to X; ,, we obtain

i, n’

gi<Xi,n)=(1)1/2[ . %( Zom) - Y2, l(n)) ]/

m; mi—1j:1 m; ;-1

where 7n is the run length of the simulation of system i, which is proportional
to n, and

Z, ,(n) = f”/’”" Y(s)ds, Jj=1,

(G=Dn/m;
which is the sample mean of the jth (nonoverlapping) batch of size n/m,; of
system i. Note that S2(n) = g*(X; ,)m;/n is equal to the sample variance of
the m; batch means of system i Also (m — Dg?(B;) has a x? distribution
with m; — 1 degrees of freedom.
When g; is defined this way, the constant v, _ in (2) is given by v;
tm.—1,y> Where ¢,  is the upper y pomt of a Student’s t-distribution Wlth m
degrees of freedom; that is, P{t, >t, ,} = v, where ¢, is a random variable

having a ¢-distribution W1th m degrees of freedom.

n/m;

ExaMPLE 2. Our next function g gives rise to the standardized sum
method developed by Schruben (1983). Let m > 1. Then define the function
g: C0,1] - N as

s [E ({2 o) ()]

Thus, if we divide the output of system i into m; > 1 (nonoverlapping)
batches and apply function g, as above to X, ,, we obtain

i, n’

1 mifl . n/m " m 2 1/2
g(X, ) = [— )y (/lf(“” My(s) dsdt — 2[””) / ‘Y,-(s)dsH .
=0

n =y \Jo jn/m, n/m;

1/2

Glynn and Iglehart (1990) showed that 12m,g2(B;) has a x? distribution
with m; degrees of freedom. When g; is defined this way, the point », . in (2)
is given by v, , = (12)"%¢,,

ExampPLE 3. The next function g corresponds to the standardized maxi-
mum intervals method described in Schruben (1983). Let m > 1. Also,
for x € C,[0,1], we define ¢* [=t*(x)] = inf{t > 0: x(¢) = M*} and M*
[= M*(x)] = max{x(¢): 0 < ¢ < 1}. Also, define the functions T': C,[0,1] —
C,[0,1] and A;: C[0,1] - C,[0,1] for j =0,1,...,m — 1 as

M) =2 -ex(D),
Aj(x) =x(J;el) —x(i),

m
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where e,(¢) = ¢. Then let

; *
_]+tj

0| T (o))

A A2

where ¢t¥ = inf{t > 0: (I" Aj)(x)(t) = Mj*} and M} = max{(T o Aj)(x)(t): 0<

J
¢t < 1}. Thus, if we divide the output of system i into m; > 1 (nonoverlapping)

batches and apply function g, as above to X, ,, we obtain

i,n?

1/2

1mit 1
8(Xin) =|— L
n 2o G(1=1¢)

971/2
<[ J sy ds - a7 [0 ) ) 1 ’

Jn/m; Jn/m;

where ¢} = inf{¢t > O: (FOAj)(Y'i’n)(t) = Mj*} and M} = max{(I‘OAj)
(Y; ,)(#): 0 <t < 1}. Schruben (1982) showed that m;g?(B;) has a x?* distri-
bution with 3m; degrees of freedom. When g, is defined this way, the point
v; , in (2) is given by v; , = (1/3)1/2t3mw.

Other standardized time series methods include the Cramér—von Mises
method [Goldsman, Kang and Seila (1993)] and the L ,-norm methods [Tokol,
Goldsman, Ockerman and Swain (1996)].

5. Proofs. Here we will provide the proofs for Theorems 1, 3 and 4 from
Section 3. To establish our results, we will repeatedly apply the following
proposition, which is known as the continuous mapping principle. [See
Billingsley (1968), Theorem 5.1, or Glynn (1990) for the proof.]

PROPOSITION 1. Suppose X,,, X € C[0,1] are random elements such that
X, =X as n - «. Consider a (measurable) function h: C[0,1] - S, S a
metric space, and let D(h) be the set of discontinuities of h. If P{X € D(h)} = 0,
then (X,) = h(X) as n — o.

We now present some preparatory lemmas that will be useful for proving
Theorem 1. The first is owing to Sidak (1967).

LEMMA 2. Let W= W, W,,...,W,), d>1, be a multivariate normal
with mean vector 0 and arbitrary covariance matrix © = (0, ;:i,j=
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1,2,...,d). Then
d
P(W)|<B,i=1,2,..., }ITHWL )

for (B, Bas---» Br_1) € R

The next lemma was established by Tamhane (1977).

LEmmA 3. Let Wi, W,,...,W, be mutually independent real-valued ran-
dom variables and let ¥ = (V,,¥,,..., ¥V ): N? — NP be a nonnegative func-
tion, where for each i = 1,2,..., p, V¥, is nondecreasing in each of its argu-
ments. Then

b p
E 1_[1\Ifj(W1,W2,...,Wd) > 1_[1E[\Ifj(W1,W2,...,Wd)].
J= J=

The following is a generalization of a result of Banerjee (1961).

LEMMA 4. Let F > denote the distribution function of a x?2 random vari-
able with 1 degree of freedom. Also, let A, A,,..., A; be real-valued constants
such that A; 20,1 =1,2,...,d, and A\ + Ay + - +A; = 1. Then

>1- 2y.
i=1

d
FXZ( > AiVi%ygiz(Bi))

Proor. Note that

N 1 _LL2
sz(x) = 2];) m exp T du

for x > 0 and 0 otherwise. By taking the second derivative of F :(x) with
respect to x, we can show that it is a concave function. Thus,

v

NE[F.(v?,g2(B)]

d
FXZ( ';1 )‘in?,yg?(Bi))

M&IM&

A(1—=2y)=1-2y

~
I
-

by the definition of »;  in (2). O

> Y

We are now in a position to prove Theorem 1 of Section 3.
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Proor or THEOREM 1. Note that

P{Mi —u; €1 (n),Vi <j}

=P |(ﬂz(n) - Mi) - (,&J(n) - Mj)|
b2, ,S2(n) w2, ,82(n) )"
< i,B/2 z( )+ 7, B/2 ]( ) ,Vl <J.
m; m;

=P{l(f(n) — m) = (;(n) = wm)l

1/2

Vi2,ﬁ/2migi2(Xi,n) n Vj2,B/2mjgj2(Xj,n)
m;n m;n

Vi <j}
since S(n) = g?(X; ,)m,/n for all i by (1). Thus,
P{u, — €1, ; (n),Vi <}
= P(In2(fu(n) = ) = 2 (i (n) = wy)|
1/2 . .
_(Viz,ﬁ/zgiz(Xi,n) + yjz,ﬁ/Zgjz(Xj,n)) <0,V: <J}

= P(IX, (1) - X, ,(1)]

1/2 . .
—(vlp280(Xi0) + ¥ p287 (X)) <0, Vi <J}
= P{u(X,) <0},
where the function u = (u; ;: 1 <i <j<k): C[0,1] > REE-D/2 g defined
as
2 2 2 2 /2
u; j(x) =lx,(1) —x;(1)| - (Vi,ﬁ/Qgi (%) + v p,08; (xJ))

for i <j, and 0 € W **~Y/2 ig the (k(k — 1)/2)-dimensional vector with all
components 0. By Assumption A2(iv) and by the fact that the projection
mapping is continuous, u is continuous at B with probability 1, and so the
continuous mapping principle ensures that u(X,) = uw(2B) as n — .

Now we show that u(%B) has a continuous distribution function. Let H, ;
be the distribution function of u; (3B). Note that

1/2
ui,j(EB) =lo;B;(1) — Uij(l)| - (Vi2,ﬁ/2gi2(UiBi) + ij,B/zng(Uij))

1/2
=10;B;(1) = o;B;(1)| = (v 2087 (B;) + v} 20787 (B)))

by Assumption A2@). Recall that standard one-dimensional Brownian motion
has normal increments. In addition, B,, B,,..., B, are mutually indepen-
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dent, which implies that g,(B;), g4,(Bs),..., g,(B,) are also mutually inde-
pendent. Moreover, (o;B,(1) — 0;B;(1))/(0;> + 0;°)'/* has a standard normal
distribution since 0 < o; < » for all /. Now let ® denote the distribution
function of the absolute value of a standard normal random variable and let
G, be the distribution function of g,(B;). Then, for n € R,

0;B;(1) — 0;B,(1)
Hi,j(n) =P 9 o\ 1/2
(O'i + g; )
2 9. 92 2 2 9 1/2
- n ( vl p,007°82(B;) + vl ,507°87(B))
= 1/2 2 2
(Ui2+0}2)/ og° + o;
1/2
@ n vl p07%% + vl n 0y ’
= fq) 1z T 2 2
0“0 (Ui2+0}2) (TL+U'J

X G(dx) G;(dy),

since each B;(1) is independent of g,(B;), as was shown by Glynn and
Iglehart (1990). Now the continuity of ® and the bounded convergence
theorem imply that H; ; is continuous for all i <.

Since u(XB) has a continuous distribution function, Theorem 2.1 of
Billingsley (1968) implies that

P{u(X,) <0} - P{u(2B) < 0}
as n — . Now we will show that
P{u(2B) <0} > 1 — a.
Let 7, denote the o-field generated by (g,(B,), g5(By), ..., g,(B,)). Note that
P{u(xB) < 0}
‘TiBi(l) - O}Bj(l)

=E|P i3

(0" + o7’)
1/2

Vi <jlF

2 2 .2 2 2 .2
_ | Vies2i g2(B;) + vig,507°8}(B))
N o’ + o

1/2
vl p,20°87(B;) + v] g 0787 (B;)

2 2
o + 0o;
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1/2)

for all i <j, and observe that each W, ; is a nondecreasing function of gX(By),
g2(By),..., g2(B,). Hence, applying Lemma 3, we get

P{u(XB) < 0}

by Lemma 2. Now define
\I’i,j(glz(Bl); g22(32)’ ’glg(Bk))

2 2 .2 2 2 .2
vip0.87(B;) + vl 00787 (B))
0'l-2 + a'j2

1/2
- [1E|® vl 20780 (B;) + v ,507°87 (B))
i<y o + o
[ aﬂ2 a'<2
_ 2 2
= 11E|F. g 28281 (B) + ———5v] 087 (B)) ||
1<J L l J

where F . denotes the distribution function of a x? random variable with 1

degree of freedom. Thus, Lemma 4 implies that
P{u(2B) < 0}

o2 0‘2

E Fz B)+ —1—? 2(B.

E ° 1 o 2 v p,287(B) -, +Uj2 v 285 (B;)
=TTA-B)=1-p)" " =1-a,

i<j

since B =1— (1 — a)?**~D) which completes the proof. O
To prove Theorem 3, we need the following result due to Slepian (1962).

LEmMMA 5. Let W= (W, W,,...,W,)), d > 1, be multivariate normal with
mean vector 0 and covariance matrix © = (®i,j: i,j=1,2,...,d). Also, let
V=(W,V,,...,V,) be multivariate normal with mean vector 0 and covari-
ance matrix Z = (§; ;: i,j = LA If O, ;=F,  forall 1 <i<j<k,
then

P{WLSB”l= 1’2""’d} ZP{‘/LSBL,Z= 1’2"--;d}
fOl" (Bb BQ"")kal)e md.

Proor oF THEOREM 3. The proof of part (i) is the same as that of Theorem
1. Also, parts (i1) and (iii) can be established using arguments similar to those
employed in the proof of Theorem 1 except we need to rely on Lemma 5
instead of Lemma 2. O
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Now we prove Theorem 4.

PrOOF OF THEOREM 4. First, define

1/2
ViQ,BSiZ(n) + VJ%ﬁSJZ(n))

m; m;

D; ;(n) = (
Also, define (1),(2),...,(k) such that w;, < o < -+ < y); that is, system
(j) has the jth smallest steady-state mean. Then, define the events

E(n) = {Mi — My = i(n) — /:L(k)(n) - DMk)(n),Vi #* (k)}a

B(n) = (= max, < [min( 2,(n) = fy(n) + D, ()] Vi,

,W}.

Note that E(n) is the event that the lower one-sided confidence intervals for
multiple comparisons with a control, with the control being system (%),
contain all of the true differences u; — u;). Thus, we have that
lim, . P(E(n)) > 1 — a by Theorem 3(iii). Now following an argument de-
veloped by Edwards and Hsu (1983), we show that E(n) c E(n) N Ey(n) for
all n, which will establish the result.

First we prove that E(n) c E{(n):

E(n) c {/-L(k) — M- = ,&(k)(n) — ;(n) + D; )(n),Vj + (k)}

+
,w}
.
< { s = max i, < [min () = () + D, ()] Vi,
J#i J#i ’

where the penultimate step follows since w; — p,_,, < 0 for all i # (k) and
[[I*> 0.

Now we show E(n) C Ey(n). First note that on the event E(n), we have
that (k) €(n) since E(n) = {j,,(n) — p{n) + D; ;,(n) = py,) — u;, Vj#
(R)} and p;y — p; = 0 for all j. Hence,

Y

Ey(n) = {:Uﬁ T maxpu; ,
J#i jeA(n)
NES

—l min (&,(n) — f;(n) + D, ;(n))

c {Mi T M-y = [IJHJ?(,&;(”) — f(n) + D; i(n))

E(n) © {Mi ~ oz min (u(n) = iy(n) = Dy j(n), Vi # (k)}

VE
’Vl} b

where the last step follows since w,, — max;, ,, u; > 0 and —[-]” < 0. Hence,
E(n) c E{(n) N Ey(n), and the proof is complete. O

J#i jeA(n)
VE

- {Mi — max u; = —[ min (ﬂi(n) - ﬂj(n) _Di,j(n))
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