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OPTIMAL RATES OF CONVERGENCE FOR ESTIMATES
OF THE EXTREME VALUE INDEX1

By Holger Drees

University of Cologne

Hall and Welsh established the best attainable rate of convergence
for estimates of a positive extreme value index γ under a certain second
order condition implying that the distribution function of the maximum
of n random variables converges at an algebraic rate to the pertaining ex-
treme value distribution. As a first generalization, we obtain a surprisingly
sharp bound on the estimation error if γ is still assumed to be positive, but
the rate of convergence of the maximum may be nonalgebraic. This result
allows a more accurate evaluation of the asymptotic performance of an es-
timator for γ than the Hall and Welsh theorem. For example, it is proved
that the Hill and the Pickands estimators achieve the optimal rate, but
only the Hill estimator attains the sharp bound. Finally, an analogous re-
sult is derived for a general, not necessarily positive, extreme value index.
In this situation it turns out that location invariant estimators show the
best performance.

1. Introduction. Consider n i.i.d. random variables (r.v.’s), whose distri-
bution function (d.f.) F belongs to the weak domain of attraction of an extreme
value d.f.:

Gγ�x� �= exp�−�1 + γx�−1/γ�� 1 + γx > 0� γ ∈ R�

which is interpreted as exp�−e−x� if γ = 0. Then by definition there are se-
quences of normalizing constants an > 0 and bn ∈ R such that

Fn�anx+ bn� → Gγ�x�(1.1)

for all x ∈ R. Whereas many estimators of the so-called extreme value index
γ were proposed in literature [see, e.g., Hill (1975), Pickands (1975), Hall and
Welsh (1985), Csörgő, Deheuvels and Mason (1985), Smith (1987), Dekkers,
Einmahl and de Haan (1989) and Drees (1995a, 1997a, b)], little is known
about optimality of these estimators.

The most important result in literature about what can be achieved is given
in Hall and Welsh (1984), where for positive γ an upper bound on the rate is
established at which any sequence of estimators α̂n for α = 1/γ converges
towards the true parameter uniformly over certain neighborhoods of Pareto
distributions. More precisely, they defined sets � = � �α0� c0� ε� ρ�A� consist-
ing of all densities f� �0�∞� → �0�∞� which satisfy

f�x� = dαx−�α+1��1 + r�x�� where �r�x�� ≤ Ax−αρ(1.2)
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for all x > 0, �α − α0� ≤ ε, �d − d0� ≤ ε and α0� d0� ε� ρ�A > 0. Then it was
proved that

lim
n→∞ inf

f∈�
Pn
f��α̂n − α� ≤ an� = 1

implies

lim
n→∞an n

ρ/�2ρ+1� = ∞�(1.3)

Here Pn
f denotes the distribution of n i.i.d. r.v.’s with density f. Moreover, Hall

and Welsh showed that the reciprocal of the Hill estimator

γ̂n�H �= 1
kn

kn∑
i=1

log
(
Xn−i+1 �n
Xn−kn �n

)
(1.4)

actually attains this optimal bound if kn ∼ n2ρ/�2ρ+1�. Here X1 �n ≤ X2 �n ≤
· · · ≤Xn �n denote the order statistics pertaining to X1� � � � �Xn.

Thus as far as rates of convergence are concerned, optimality in model (1.2)
may be defined using (1.3). Furthermore, the rate of uniform convergence of
an estimator for γ can be considered as a measure of its robustness against
deviations of type (1.2) from the ideal Pareto distributions. However, note that
model (1.2) is rather restrictive, since it includes only distributions with posi-
tive extreme value index whose upper tail is fitted very well by a Pareto tail. In
particular, for those d.f.’s the rate of convergence in (1.1) w.r.t. the variational
distance is algebraic [Reiss (1989), Corollary 5.2.7], whereas, for example, for
loggamma d.f.’s with density f�x� = cx−�1/γ+1� logβ−1�x�1�1�∞��x�, which are
common in nonlife insurance mathematics [cf. Ramlau-Hansen (1988) and
Hogg and Klugman (1984)], or the log-hyperbolic distribution often used in
geology and other natural sciences [see Beirlant, Teugels and Vynckier (1996)]
the rate of convergence is much slower, namely a power of the logarithm of the
sample size. Consequently, one should expect a poor rate of convergence for
estimates of the extreme value index if the underlying d.f. is of this type. In
order to safeguard oneself against large estimation errors in this “worst case,”
it is particularly important that an estimator converges at the best possible
rate for such d.f.’s. To this end, we aim at generalizing the Hall and Welsh
result to enlarged sets of distributions including quite arbitrary d.f.’s in the
domain of attraction of an extreme value d.f.

Note that there is no obvious counterpart of condition (1.2) if the density
is not tail equivalent to a Pareto density. This is partly because in (1.2) the
bound on the remainder term r�x� depends both on the first order parameter
α and the second order parameter ρ. For that reason, in case γ > 0 we replace
(1.2) by a suitable condition in terms of the function

U�t� �= F−1
(

1 − 1
t

)
� t > 1�

with F−1 denoting the quantile function (q.f.) pertaining to F.
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Recall that F ∈ D�Gγ�, γ > 0, if and only if U is regularly varying with ex-
ponent γ. Here we assume the slightly stronger condition that U is normalized
regularly varying, that is,

U�t� = ctγ exp
(∫ t

1
η�s�/sds

)
(1.5)

with η�t� → 0 as t → ∞. Representation (1.5) is equivalent to the well-
known von Mises condition h1�x� �= �1−F�x��/�xf�x�� → γ as x→ ∞ where
f denotes a suitable Lebesgue-density of F; in particular, (1.5) is necessary
for F ∈ D�Gγ� if f is eventually monotone [Bingham, Goldie and Teugels
(1987), Theorem 1.7.2]. Observe that η�t� = tU′�t�/U�t� − γ = h1�U�t�� −
γ measures the speed of convergence in Karamata’s theorem applied to the
regularly varying functions U′ and f.

In Theorem 2.1 we establish an upper bound on the rate of convergence of an
arbitrary sequence of estimators for γ uniformly over all d.f.’s satisfying (1.5)
with �η�t�� ≤ g�t� where g is �−ρ�–varying for some ρ ≥ 0. In the special case
of g�t� = const. t−ρ, ρ > 0, this is essentially equivalent to the Hall and Welsh
result (see Lemma 2.1); whereas for slowly varying function g, we do not only
obtain an upper bound on the rate of convergence but an asymptotically sharp
bound on the estimation error itself. Hence, the latter case leads to a criterion
to discriminate the robustness of different estimators for γ against deviations
from a Pareto tail, which is more accurate than the one following from the
Hall and Welsh theorem: While most prominent estimators of γ converge at
the optimal rate if a suitable fraction of the observations is used for estimation,
for example the Pickands estimator defined by

γ̂n�P �= log
(
Xn−kn+1 �n −Xn−2kn+1 �n
Xn−2kn+1�n −Xn−4kn+1�n

)/
log�2�(1.6)

does not attain the asymptotic bound in case of ρ = 0 but the Hill estimator
does.

In the general case, where the sign of γ is not known in advance, there is no
simple unifying representation of the function U comparable to (1.5), but the
following analogue for its derivative U′ is sufficient for F ∈ D�Gγ� if η�t� → 0
as t→ ∞:

U′�t� = ctγ−1 exp
(∫ t

1
η�s�/sds

)
�(1.7)

Note that (1.7) is equivalent to the von Mises type condition h2�x� �=
��1 − F�/f�′�x� → γ as x ↑ F−1�1� [see Reiss (1989), (5.1.25)]. Here
η�t� = tU′′�t�/U′�t�−�γ−1� = h2�U�t��−γ quantifies the speed of Karamata’s
convergence for U′′ and of the convergence of h2.

Theorem 3.1 is the counterpart of Theorem 2.1 in this general setup where
representation (1.5) is replaced by (1.7). While the bounds are literally the
same, in contrast to the case γ > 0, estimators of the extreme value index that
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are not location invariant, as, for example, the moment estimator introduced
by Dekkers, Einmahl and de Haan (1989):

γ̂n�M �= γ̂n�H + 1 − 1

2�1 − γ̂2
n�H/M

�2�
n �

with

M
�2�
n �= 1

kn

kn∑
i=1

log2
(
Xn−i+1 �n
Xn−kn �n

)
�

(1.8)

in general do not converge at the optimal rate in model (1.7). Therefore, in the
general situation, we recommend the use of location invariant estimators, like
Pickands-type estimators or (in the case γ > −1/2) the maximum likelihood
estimator examined by Smith (1987), which attain the optimal rates in both
models (1.5) and (1.7). All proofs are given in Section 4.

Further bounds on the estimation error as well as modifications of the re-
sults presented here and more detailed proofs can be found in a technical
report [Drees (1995b)].

2. Optimal rates of convergence in the case � > 0. First we establish
an upper bound on the rate of convergence in model (1.5) uniformly over all
distributions for which the approximation error in the Karamata convergence
for U′ is bounded by a given regularly varying function g.

Theorem 2.1. Fix constants c, γ0 > 0 and 0 < ε < γ0. Suppose that the
function g� �1�∞� → �0�∞� is �−ρ�-varying for some ρ ≥ 0, bounded away
from 0 and finitely integrable on compact intervals, and eventually nonin-
creasing with limt→∞ g�t� = 0. Moreover, let �γ̂n� be an arbitrary sequence of
estimators for γ and �an�, a sequence of positive real numbers.

If

lim
n→∞P

n
U��γ̂n − γ� ≤ an� = 1

uniformly for all functions U satisfying (1.5) with �η�t�� ≤ g�t� for all t > 1
and �γ − γ0� ≤ ε, then

lim inf
n→∞

an
g�tn�

{
= ∞� if ρ > 0�

≥ 1� if ρ = 0
(2.1)

for any sequence �tn� satisfying

lim
n→∞g�tn�

(
n

tn

)1/2

= 1�(2.2)

(Here Pn
U denotes the distribution of n i.i.d. r.v.’s with d.f. F pertaining to U.)

Remarks. (i) In contrast to (1.3), in general the bound g�tn� cannot be
described explicitly. However, note that for a �−ρ�-varying function g there
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always exists a sequence �tn� satisfying (2.2) and that (2.1) is equivalent for
all such sequences.

(ii) By the same methods as used in the proof of Theorem 2.1, in the case
ρ > 0 one can establish very crude asymptotic lower bounds on the probability
that the estimation error exceeds lg�tn� where l > 0 is an arbitrary fixed
constant [see Drees (1995b)].

As already mentioned, the case ρ = 0 is most interesting since then Theo-
rem 2.1 is substantially stronger than the Hall and Welsh theorem, in that it
gives a bound on the estimation error itself.

Example. Let g�t� = A/�1+ log�t�� for some sufficiently large constant A.
Then (1.5) with �η�t�� ≤ g�t� is satisfied for large t by loggamma distributions.
Since �n/tn�1/2/�log�tn�� → 1 implies log�tn� ∼ log�n�, the optimal uniform
bound an on the estimation error asymptotically behaves as A/ log�n�. In par-
ticular, one should not expect an estimator of γ to converge at a faster rate
than 1/ log�n� if the observations are loggamma distributed.

Next we demonstrate by means of the examples introduced in Section 1
how Theorem 2.1 can be used to evaluate the robustness of estimators of the
extreme value index against deviations of the tail of the underlying d.f. from
the pertaining Pareto tail, particularly against large deviations in the case
ρ = 0. To this end it is crucial to choose the number of order statistics used
for estimation suitably depending on the dominating function g. In the case
ρ = 0, the following proposition, which follows immediately from the uniform
convergence theorem for slowly varying functions, plays a central role.

Proposition 2.1. If g is slowly varying and limn→∞ tn = ∞, then there
exists a sequence �t∗n� such that

lim
n→∞

t∗n
tn

= 0 yet lim
n→∞

g�t∗n�
g�tn�

= 1�(2.3)

Now fix some function g satisfying the assumptions of Theorem 2.1 and
choose sequences �tn� according to (2.2) and, for ρ = 0, �t∗n� according to (2.3).
In what follows we will always assume that the sequence �kn�, which deter-
mines the order statistics used by the estimators, is defined by

kn �=




[
n

tn

]
� if ρ > 0�

[
n

t∗n

]
� if ρ = 0�

(2.4)

where �x� denotes the integral part of x.
First we examine the Hill estimator defined by (1.4). It turns out that γ̂n�H

is optimal in the sense that it attains the bounds given in Theorem 2.1. In
particular, these bounds cannot be improved.
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Theorem 2.2. Suppose the conditions of Theorem 2.1 are satisfied and

lim
n→∞

an
g�tn�

= ∞ if ρ > 0�

lim
n→∞

(
n

t∗n

)1/2

�an − g�t∗n�� = ∞ if ρ = 0�
(2.5)

Then with kn according to (2.4) one has

lim
n→∞P

n
U

{�γ̂n�H − γ� ≤ an
} = 1

uniformly for all functions U considered in Theorem 2.1.

Observe that in case of ρ = 0 by (2.2) and (2.3) one has �n/t∗n�1/2g�t∗n� → ∞
and g�tn�/g�t∗n� → 1, so that �n/t∗n�1/2�an−g�t∗n�� = �n/t∗n�1/2g�t∗n��an/g�t∗n�−
1� → ∞, that is, (2.5), if an/g�tn� ↓ 1 sufficiently slowly. This proves that the
optimal bound is actually attained by the Hill estimator.

Remarks. (i) By obvious changes in the proof of Theorem 2.2, we see that
the assertion holds true if γ̂n�H is replaced by any kernel estimator defined by
Csörgő, Deheuvels and Mason (1985) with support ⊂ �0�1�.

(ii) Observe that the choice kn = �n/tn� guarantees that the maximal bias
and the standard deviation of the Hill estimator are of the same order. Now
Proposition 2.1 enables us to reduce the variance to a smaller order without
changing the bias asymptotically if one chooses kn = �n/t∗n� in the case ρ = 0.
Therefore the limiting distribution of γ̂n�H (if it exists) will be degenerate if ρ =
0 and kn is chosen optimally. In Drees (1997a), Corollary 4.1, a similar result
is proved for a quite general class of estimators of γ. In fact, this degeneracy
property explains why it is possible to obtain a sharp bound on the estimation
error instead of merely a bound on the rate of convergence.

Many estimators of γ converge at the optimal rate but do not attain the
asymptotically optimal bound in the case ρ = 0. A typical example is the
Pickands estimator γ̂n�P defined by (1.6).

Theorem 2.3. Suppose that the conditions of Theorem 2.1 hold and kn
fulfills (2.4). Moreover, assume that an satisfies

lim inf
n→∞

an
g�tn�




= ∞� if ρ > 0�

>
1 + 2ε−γ0

1 − 2ε−γ0
� if ρ = 0�

(2.6)

Then

lim
n→∞P

n
U

{�γ̂n�P − γ� ≤ an
} = 1(2.7)

uniformly for all U considered in Theorem 2.1.
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It can be proved that for ρ = 0 the bound (2.6) is sharp in the sense that no
sequence �an� with lim infn→∞ an/g�tn� < �1+2ε−γ0�/�1−2ε−γ0� satisfies (2.7).
Hence, asymptotically the uniform estimation error is at least three times as
high as the minimal error if the extreme value index is less than 1 (which
is satisfied in most applications), so that Hill’s estimator is clearly superior
in this case. However, it should be mentioned that the Pickands estimator
attains the optimal bound, too, if not only the dominating function g but
also η is regularly varying, which indeed is the case for the usual textbook
distributions.

As it is shown in Drees (1997a, b), such a behavior is typical for a large class
of estimators of the extreme value index, including the moment estimator γ̂n�M
defined in (1.8), whose performance lies somewhere in between the Hill and
the Pickands estimators; it attains the optimal bound in the case ρ = 0 for
γ ≥ 1 but not for smaller extreme value indices. More precisely, one can show
by lengthy calculations along the lines of Dekkers and de Haan (1993), proof
of Theorem 3.4, that γ̂n�M fulfills the assertions of Theorem 2.3 if for ρ = 0,
(2.6) is replaced by

lim inf
n→∞

an
g�tn�

>

(
2 exp�γ0 − ε− 1�

γ0 − ε
− 1

)
1�γ0−ε<1� + 1�γ0−ε≥1�

where the right-hand side is strictly greater than 1 if γ0 − ε < 1. On the
other hand, asymptotically the uniform estimation error is always less than
the error of the Pickands estimator and it is less than 1/3 of this error if the
extreme value index is less than 1. Hence, the Pickands estimator shows the
worst performance of the three estimators under consideration.

We close this section with a comparison between the Hall and Welsh result
and Theorem 2.1.

Lemma 2.1. Consider the following two conditions.

(C1) The density f fulfills (1.2) for all x ≥ x0 with �1/α − 1/α0� ≤ ε,
�d− d0� ≤ ε�

(C2) The function U fulfills

U�t� = dγtγ exp
(
−
∫ ∞

t

η�s�
s

ds

)
(2.8)

with �η�t�� ≤ Bt−ρ for all t ≥ t0, �γ − γ0� ≤ ε and �d− d0� ≤ ε.

Then we have the following relations.

(i) For all constants α0� d0� ρ�A�x0 > 0 and 0 < ε < min�d0�1/α0� there
exist constants B > 0 and t0 > 1 such that if f satisfies (C1), then the corre-
sponding function U satisfies (C2) with γ0 = 1/α0.

(ii) Conversely, for all γ0� d0� ρ�B > 0, t0 > 1 and 0 < ε < min�d0� γ0�, there
exist constants A�x0 > 0 such that if U satisfies (C2), then f satisfies (C1) with
α0 = 1/γ0.
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Observe that (2.8) implies (1.5) with

c = dγ exp
(
−
∫ ∞

1
η�s�/sds

)
if

∫ ∞

1
g�s�/sds <∞�

Conversely, if (1.5) is fulfilled, then (2.8) holds with

d = c1/γ exp
(∫ ∞

1
η�s�/�γs�ds

)

∈
[
c1/γ exp

(
−
∫ ∞

1
g�s�/�γs�ds

)
� c1/γ exp

(∫ ∞

1
g�s�/�γs�ds

)]
�

Therefore, essentially condition (C2) is equivalent to the conditions on U im-
posed in Theorem 2.1 with g�t� = Bt−ρ if one is merely interested in the
upper tail of U. In this sense, the Hall and Welsh result is just a special case
of Theorem 2.1.

If
∫∞

1 g�s�/sds is infinite, then a similar reformulation of the conditions on
U in terms of the density is not available. Furthermore, if

∫∞
1 g�s�/sds < ∞

but g is slowly varying, that is, ρ = 0, then an analogue to the implication
(C2) ⇒ (C1) with Ax−ρ/γ in (1.2) replaced by A

∫∞
x1/γ g�s�/sds holds true, but in

general the converse implication is false. This demonstrates that it is indeed
appropriate to define neighborhoods of Pareto tails in terms of the q.f. instead
of the density.

3. Best attainable rates in the general case. As explained in the in-
troduction, one obtains literally the same bounds for the rate of convergence
of estimators for arbitrary extreme value indices γ ∈ R if the conditions on
the function U imposed in Theorem 2.1 are replaced by analogous conditions
on its derivative.

Theorem 3.1. Fix constants c� ε > 0, γ0 ∈ R and assume that the function
g� �1�∞�→�0�∞� satisfies the conditions of Theorem 2.1. Denote by �γ̂n� an
arbitrary sequence of estimators for γ and �an� a sequence of positive real num-
bers.

Then (2.1) holds true if

lim
n→∞P

n
U

{�γ̂n − γ� ≤ an
} = 1

uniformly for all functions U whose derivative satisfies (1.7) with �η�t�� ≤ g�t�
for all t > 1 and �γ − γ0� ≤ ε.

One important difference between Theorems 2.1 and 3.1 is the fact that (1.7)
allows of an arbitrary location parameter. Note that in many applications a
good fit of a generalized Pareto tail to extreme data can only be achieved if a lo-
cation parameter is taken into account [see Reis and Thomas (1997), pages 187
and 214]. As a consequence, estimators for γ that are not (at least asymp-
totically) location invariant, as, for example, the moment estimator γ̂n�M, in
general do not converge uniformly at the optimal rate; this holds true even
if the location parameter is restricted to a compact interval by the additional
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condition �U�t0� − b0� ≤ ε where t0 > 1 and b0 ∈ R are fixed constants. To see
this, consider the example

U�t� = b+ c

γ
tγ =

(
c

γ
+ b

)
tγ exp

(∫ t

1

−γbs−γ
c/γ + bs−γ

s−1 ds

)
with γ > 0, that is, in the notation of Theorem 2.1, the additional location pa-
rameter corresponds to a function η that is �−γ�-varying. It follows by Dekkers
and de Haan (1993), Theorem 3.4, that for the optimal choice of kn, the esti-
mation error �γ̂n�M − γ� is of the stochastic order n−γ/�2γ+1�, so that in the case
of ρ > γ, the optimal rate given in Theorem 3.1 is not attained. Likewise it
can be proved that the rate of convergence is not optimal if −ρ < γ < 0. Hence
(at least if the asymptotic behavior is regarded as decisive), it is not advisable
to use estimators that are not location invariant in the present context.

As opposed to this, a natural candidate for an estimator that does converge
at the optimal rate is the location invariant Pickands estimator γ̂n�P.

Theorem 3.2. Suppose that the assumptions of Theorem 3.1 are satisfied,
kn is defined by (2.4) and

lim inf
n→∞

an
g�tn�

{ = ∞� if ρ > 0�
> 1� if ρ = 0�

Then

lim
n→∞P

n
U

{�γ̂n�P − γ� ≤ an
} = 1

uniformly for all functions U considered in Theorem 3.1.

In contrast to the situation for γ > 0, here γ̂n�P even attains the optimal
bound for ρ = 0. On the other hand, one should not forget that this optimality
only reflects the fact that the bias is asymptotically minimal [see Remark (ii)
following Theorem 2.3], while the variance, which is of smaller order than the
squared bias, may be large (and in fact is large compared with other estimator)
for moderate sample sizes.

Therefore we recommend using more advanced location invariant estima-
tors, for example, mixtures of Pickands estimators as introduced by Drees
(1995a), certain generalizations of probability weighted moment estimators
[see Hosking and Wallis (1987) and Drees (1997a)] or, if γ is assumed to be
greater than −1/2, the maximum likelihood estimator [cf. Smith (1987)]. No-
tice that all these estimators belong to the class of statistical tail functionals
as introduced in Drees (1997a), based on a Frechét differentiable functional.
Therefore it can be proven by the methods used in that paper that these esti-
mators converge uniformly at the optimal rate.

4. Proofs.

Proof of Theorem 2.1. The basic idea of the proof is similar to the one
used by Hall and Welsh (1984) and Farrell (1972). Fix some l > 0 and let
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sn �= ltn. Define

U+
n �t� �= ctγ

+
n exp

(∫ t

1

η+
n �s�
s

ds

)
and U−

n �t� �= ctγ
−
n exp

(∫ t

1

η−
n �s�
s

ds

)

for t ≥ 1 where

γ±n �= γ0 ± g�sn� and η±
n �= �γ0 − γ±n �1�1� sn��

Obviously U±
n satisfy the conditions imposed in the theorem for sufficiently

large n, since g is an eventually nonincreasing function converging to 0.
The densities corresponding to U+

n and U−
n are

f±
n �x� =




1
cγ0

(
x

c

)−�1/γ0+1�
� if c ≤ x ≤ cs

γ0
n �

s
−�γ0+1�
n

cγ±n

(
x

cs
γ0
n

)−�1/γ±n+1�
� if csγ0

n < x�

Thus

∫ ∞

1

(
1 − f+

n �x�
f−
n �x�

)2

f−
n �x�dx

=
∫ ∞

cs
γ0
n

(
1 − γ−n

γ+n

(
x

cs
γ0
n

)1/γ−n−1/γ+n)2 s
−�γ0+1�
n

cγ−n

(
x

cs
γ0
n

)−�1/γ−n+1�
dx

= s−1
n

∫ ∞

1

(
1 − γ−n

γ+n
x1/γ−n−1/γ+n

)2 1
γ−n
x−�1/γ−n+1� dx

= s−1
n

(
1 − 2 + γ−n

γ+n
2

1

2/γ+n − 1/γ−n

)

= s−1
n

�γ+n − γ−n �2

γ+n �2γ−n − γ+n �
∼ 4l−�2ρ+1�γ−2

0 n−1

by the definitions of sn and tn. The Cauchy–Schwarz inequality yields

Pn
U+
n

{�γ̂n − γ+n � ≤ an
}

=
∫

1��γ̂n−γ+n �≤an�
n∏
i=1

�f−
n �xi��1/2

n∏
i=1

f+
n �xi�

�f−
n �xi��1/2

�n�dx�

≤ Pn
U−
n

{�γ̂n − γ+n � ≤ an
}1/2

(
1 +

∫ ∞

1

(
1 − f+

n �x�
f−
n �x�

)2

f−
n �x�dx

)n/2

≤KPn
U−
n

{�γ̂n − γ+n � ≤ an
}1/2
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for some K ∈ �0�∞�, where �n�dx� denotes integration w.r.t. the Lebesgue
measure on R

n. Hence

lim
n→∞P

n
U−
n
��γ̂n − γ−n � ≤ an� = 1 and lim inf

n→∞ Pn
U−
n
��γ̂n − γ+n � ≤ an� ≥K−2�

which in turn implies

an ≥ 1
2�γ+n − γ−n � = g�sn� ∼ l−ρg�tn��

Because this holds for all l > 0, (2.1) is proved. ✷

Proof of Theorem 2.2. In Csörgő, Deuheuvels and Mason (1985), Theo-
rem 1, (see also page 1073, line 2), it was proved that

�

(
k

1/2
n

γ
�γ̂n�H − γ − βn�η�

)
→ � �0�1�

weakly where

βn�η �=
∫ 1

0
η

(
n

knv

)
dv�

A close inspection of the proof presented in that paper shows that this result
holds uniformly for all U satisfying the conditions of Theorem 2.1 and hence∣∣∣∣Pn

U��γ̂n�H − γ� ≤ an� −� �0�1�
[
k

1/2
n

γ
�−an − βn�η��

k
1/2
n

γ
�an − βn�η�

]∣∣∣∣ → 0

uniformly. Since eventually �βn�η� < g�tn� if ρ > 0 and �βn�η� < g�t∗n� if ρ = 0,

the assumptions imply that k1/2
n �−an−βn�η� → −∞ and k1/2

n �an−βn�η� → ∞
uniformly for all U under consideration. Now the assertion is obvious. ✷

Proof of Theorem 2.3. First check that a Taylor expansion of the expo-
nential function yields, for all δ ∈ �0�1�,

sup
x∈�1−δ�4+δ�

∣∣∣∣U�tx� −U�t�
γU�t� − xγ − 1

γ
− xγ

γ

∫ x

1

η�st�
s

ds

∣∣∣∣ = O�g2�t��

uniformly for all functions U satisfying the conditions of Theorem 2.1. There-
fore, following the lines of Drees (1995a), proof of Theorem 2.1, one can define
a sequence of r.v.’s γ̃n and a Brownian motion W such that the variational
distance between the distributions of γ̃n and γ̂n�P vanishes asymptotically
�� �γ̃n� −� �γ̂n�P�� → 0 and∣∣∣∣γ̃n−γ− 1

�1 − 2−γ� log�2�
(
γ

kn

(
W�kn�−

1+2−γ

2
W�2kn�+2−�γ+2�W�4kn�

)

−2−γ
∫ 1/2

1/4

η�sn/kn�
s

ds+
∫ 1

1/2

η�sn/kn�
s

ds

)∣∣∣∣
= O

(
log�kn�
kn

+g2
(
n

kn

))
(4.1)

almost surely uniformly for all U under consideration.



ESTIMATES OF THE EXTREME VALUE INDEX 445

Under the conditions of the theorem, one has k−1
n max��W�kn��� �W�2kn���

�W�4kn��� = Op�k−1/2
n � = oP�an� and log�kn�/kn = o�an�. Hence the assertion

follows from ∣∣∣∣−2−γ
∫ 1/2

1/4

η�sn/kn�
s

ds+
∫ 1

1/2

η�sn/kn�
s

ds

∣∣∣∣
≤ g�n/kn� log�2��2−γ4ρ + 2ρ��1 + o�1��

in combination with (2.3), (2.4) and (2.6). ✷

Proof of Lemma 2.1. First assume that condition (C1) is fulfilled. Then
we have 1 −F�x� = dx−1/γ�1 + r̃�x�� with �r̃�x�� ≤ Ax−ρ/γ/�ρ+ 1� for x ≥ x0,
so that

U�t� = �dt�γ�1 + h�t���(4.2)

where the tail of h is given by the condition

1 −F�U�t�� = t−1 ⇒ �1 + h�t��1/γ = 1 + r̃�U�t���(4.3)

Now consider

η�t� �= tU′�t�
U�t� − γ = 1

tf�U�t��U�t� − γ

= γ�1 + h�t��1/γ

1 + r�U�t�� − γ = γ
r̃�U�t�� − r�U�t��

1 + r�U�t�� �

Since by (4.2) and (4.3) one has �dt/2�γ < U�t� < �2dt�γ for sufficiently large
t, it follows that

�η�t�� ≤ γA

(
1

ρ+ 1
+ 1

) �U�t��−ρ/γ
1 −A�U�t��−ρ/γ ≤ γA

ρ+ 2
ρ+ 1

2�d/2�−ρt−ρ� t ≥ t0�

for some t0 > 1. Thus in view of

U�t� = U�t0�
t
γ
0

tγ exp
(∫ t

t0

η�s�
s

ds

)
= d̃tγ exp

(
−
∫ ∞

t

η�s�
s

ds

)
�

and (4.2), assertion (C2) is immediate.
For the proof of (ii), assume that U satisfies (C2). Then

1
1 −F�x� = 1

d
x1/γ�1 + h�x�� with 1 + h�x� = exp

(∫ ∞

1/�1−F�x��
η�s�
γs

ds

)

for sufficiently large x. Therefore

f�x� = �1 −F�x��2

U′�1/�1 −F�x��� = d

γ
x−�1/γ+1��1 + r�x���
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where

r�x� =
(

exp
(
−
∫ ∞

1/�1−F�x��
η�s�
γs

ds

)
− 1 − η�1/�1 −F�x���

γ

)

×
(

1 + η�1/�1 −F�x���
γ

)−1

for almost all sufficiently large x. In the same way as above one can conclude
that 1/�1 −F�x�� ≥ x1/γ/�2d� and thus by the mean value theorem

�r�x�� ≤ 2ρ+1
(

2
ρ
+ 1

)
B

γ0 − ε
�d0 + ε�ρx−ρ/γ =� Ax−ρ/γ

for almost all sufficiently large x. Thus there exists a constant x0 > 0, such
that a suitable version of the density f satisfies (C1). ✷

Proof of Theorem 3.1. Since every neighborhood of 0 includes subinter-
vals of �0�∞� [and �−∞�0�] and (2.1) is independent of ε, w.l.o.g. one may
assume that either γ0 > 0 or γ0 < 0. We concentrate on the latter case, be-
cause the former can be treated in a similar way to Theorem 2.1.

Fix some l > 0, τ > 0 and δ ∈ �0�1�. Let sn �= ltn and

bn �= 1 − δ

1 + τ
g
(
��1 + 1/τ�−1/γ0 + δ�sn

)
�

Define

γ±n �= γ0 ± bn� τ+n �= τ� τ−n �=
(
γ+n
γ−n

(
1 + 1

τ

)
− 1

)−1

�

β±
n �=

(
1
γ0

+ τ±n

(
1
γ0

− 1
γ±n

))−1

and χ±
n �=

(
1 + 1

τ±n

)−1/β±
n

�

Then

U±
n �t� �= c ·



tγ0/γ0� if 1 ≤ t ≤ sn�

s
γ0
n �1/γ0 − 1/β±

n � + s
γ0−β±

n
n tβ

±
N/β±

n � if sn < t ≤ χ±
nsn�

s
γ0−γ±n
n χ

β±
n−γ±n

n tγ
±
n /γ±n � if χ±

nsn < t

satisfy the conditions imposed in the theorem. By somewhat lengthy computa-
tions, one can prove that the χ2-distance between the corresponding densities
f+
n and f−

n is of the order 1/n. [For details we refer to Drees (1995b).] As in
the proof of Theorem 2.1, it follows that

an ≥ bn ∼ 1 − δ

1 + τ

((
�1 + 1/τ�−1/γ0 + δ

)
l
)−ρ

g�tn�

for all l� τ > 0 and δ ∈ �0�1�. Now let l tend to 0 for ρ > 0 and let δ and τ
converge to 0 in the case ρ = 0 to obtain the assertion. ✷
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Remark. In view of the proof of Theorem 2.1, one is tempted to make the
simple approach

�U±
n �′�t� �= ctγ

±
n−1 exp

(∫ t

1

�γ0 − γ±n �1�1� sn��s�
s

ds

)
�

However, since then
∫∞

1 �U+
n �′�t�dt �=

∫∞
1 �U−

n �′�t�dt for γ0 < 0, the distribu-
tions pertaining to U+

n and U−
n have different supports. Therefore the χ2–

distance between f+
n and f−

n is of larger order than 1/n if γ0 < −1/2. ✷

Proof of Theorem 3.2. By a Taylor expansion of the exponential function
it is easily seen that

∣∣∣∣U�tx� −U�t�
tU′�t� − xγ − 1

γ
−

∫ x

1
uγ−1

∫ u

1

η�st�
s

dsdu

∣∣∣∣
=

∣∣∣∣
∫ x

1
uγ−1

(
exp

(∫ u

1

η�st�
s

ds

)
− 1 −

∫ u

1

η�st�
s

ds

)
du

∣∣∣∣ = O�g2�t��

uniformly for all x ∈ �1− δ�4+ δ� and all U satisfying the assumptions of the
theorem. Therefore we get the following counterpart of (4.1):

∣∣∣∣γ̃n − γ − γ

�1 − 2−γ� log�2�
(

1
kn

(
W�kn� −

1 + 2−γ

2
W�2kn� + 2−�γ+2�W�4kn�

)

+ 2γ
∫ 1/2

1/4
uγ−1

∫ 1

u

η�sn/kn�
s

dsdu

−
∫ 1

1/2
uγ−1

∫ 1

u

η�sn/kn�
s

dsdu

)∣∣∣∣
= O

(
log�kn�
kn

+ g2
(
n

kn

))

uniformly where by convention �1 − t−γ�/γ �= log�t� if γ = 0.
Integration by parts and the ρ-variation of g yield

∣∣∣∣2γ
∫ 1/2

1/4
uγ−1

∫ 1

u

η�sn/kn�
s

dsdu−
∫ 1

1/2
uγ−1

∫ 1

u

η�sn/kn�
s

dsdu

∣∣∣∣
=

∣∣∣∣2γ
∫ 1/2

1/4

η�sn/kn�
s

sγ − 4−γ

γ
ds+

∫ 1

1/2

η�sn/kn�
s

1 − sγ

γ
ds

∣∣∣∣
= O�g�n/kn�� if ρ > 0

≤ g�n/kn� log�2��1 − 2−γ�/γ�1 + o�1�� if ρ = 0�

Now the assertion follows in the same way as in the proof of Theorem 2.3. ✷
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Smith, R.L. (1987). Estimating tails of probability distributions. Ann. Statist. 15 1174–1207.

Mathematisches Institut
Universität zu Köln
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