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A feature that distinguishes extreme-value contexts from more conven-
tional statistical problems is that in the former we often wish to make pre-
dictions well beyond the range of the data. For example, one might have
a 10-year sequence of observations of a phenomenon, and wish to make fore-
casts for the next 20 to 30 years. It is generally unclear how such long ranges
of extrapolation affect prediction. In the present paper, and for extremes from
a distribution with regularly varying tails at infinity, we address this problem.
We approach it in two ways: first, from the viewpoint of predictive inference
under a model that is admittedly only approximate, and where the errors of
greatest concern are caused by the interaction of long-range extrapolation
with model misspecification; second, where the model is accurate but errors
arise from a combination of extrapolation and the fact that the method is only
approximate. In both settings we show that, in a way which can be defined
theoretically and confirmed numerically, one can make predictions exponen-
tially far into the future without committing serious errors.

1. Introduction. Suppose a sequence of events, each with a numerical
“strength,” is observed over time. For example, the events might be windstorms, in
which case the strength of an event could be the total cost to an insurance company
of a storm. In such cases, attention would usually be confined to extreme events,
and the very existence of a storm would be defined as an exceedence of a threshold.
Given data on the strengths of previous events, we wish to construct prediction
intervals to forecast future events.

In extreme-value contexts one often wishes to make predictions well beyond
the range of the data. For example, it may be necessary to make predictions
about the strengths of events over the next 25 years, based on data from the
last 10 years. It is important to know how robust our prediction intervals are
to this sort of extrapolation, assuming that the model persists over the time
period. In mathematical terms we wish to know whether we can make predictions
polynomially far into the future, or even exponentially far, from a given amount of
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data. That is, given a sample of n data values, can we provide accurate prediction
bounds for extrema of the next O(nC) data, or even the next O{exp(nC)} data, for
some C > 0? In more practical terms we wish to know how such theoretical results
translate into numerical accuracy of prediction bounds.

In the present paper, and in the context of extreme-value data with Pareto-
type distributions, we address these questions. We take two viewpoints. First, we
suppose the data are only approximately Pareto-distributed (e.g., that they are in
the same extreme-value domain of attraction as the Pareto). There we assess the
influence of departures from the Pareto model on long-range forecasts. Second, we
assume the data are exactly distributed according to the generalized Pareto (GPD)
model and assess the accuracy of long-range forecasts in this case.

Our second set of results complements the first by showing what is possible
when extrema are accurately modelled, and bootstrap methods are used to correct
for statistical errors, rather than model-misspecification errors. When the GPD
model is valid, bootstrap calibration is one way of correcting for the inaccuracy
of naive prediction, but it still does not give perfect accuracy. Just as in the case of
unmodelled departure from the standard Pareto model, there are prediction errors,
and these are exacerbated by long-range forecasting.

The conclusions of our analysis are broadly similar in both contexts: extrapo-
lation can be made exponentially, rather than just polynomially, far into the future
before serious errors due specifically to extrapolation are introduced. Expressed
in theoretical terms, if the error for one-step-ahead prediction, based on a sample
of size n, is δ = δ(n), then the error for m-step-ahead prediction will be of order
	 = (logm)aδ for some a > 0. Usually δ is polynomially small, that is, of order
n−b for some b > 0. In such casesm can be exponentially large, as a function of n,
before extrapolation causes significant problems.

The value of a in the formula for	 depends on context. For example, in the case
of fitting a Pareto model to data that are only approximately Pareto-distributed,
where the error δ arises through model misspecification, we generally have a = 1.
This problem is explored in Section 2, where we also address bootstrap calibration
approaches which help to reduce the coverage error of prediction intervals. In the
case of constructing simple prediction intervals for GPD-distributed data, where
δ is a consequence of inaccuracies of the method rather than of the model, the
value of a will generally be larger for methods that are more accurate. This is
not a problem, of course, since δ is smaller for more accurate methods, and its
reduced size more than compensates for the larger value of the logarithmic factor.
These issues are taken up in Section 3, where again we treat refinements based on
bootstrap calibration.

For both problems—that is, prediction using an approximate model, and
prediction using the correct model but an approximate method—we report
numerical results which corroborate the conclusions of our mathematical analysis.
We also discuss “interactions” between the problems, where bootstrap calibration
is used in the presence of model misspecification. Technical arguments behind our
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results are given in Section 4. For the sake of simplicity and brevity we confine
attention to extremes in the upper, infinite tail of a distribution, where the tail is
regularly varying at infinity. Of course, we could similarly treat extremes in a lower
tail at the origin.

Applications of the Pareto and generalized Pareto models include the following:
the early, relatively qualitative work of Zipf (1941, 1949); applications to hydrol-
ogy, by Davison (1984), Smith (1984), Hosking and Wallace (1987), Davison and
Smith (1990) and Moharram, Gosain and Kapoor (1993); applications to analysis
of ozone levels, by Smith (1989); applications in the insurance industry, by Ryt-
gaard (1990) and Rootzén and Tajvidi (1997); and applications to the study of fiber
strength, by Grimshaw (1993). Properties of estimators of Pareto parameters have
been studied by, in addition to the aforementioned authors, Davis and Resnick
(1984), Csörgő, Deheuvels and Mason (1985), Smith (1985), Leadbetter (1991)
and Rosbjerg, Madsen and Rasmussen (1992). Bootstrap prediction intervals in
more conventional settings, not involving extensive extrapolation, have been stud-
ied by Stine (1985), Bai and Olshen (1988), Bai, Bickel and Olshen (1990) and
Beran (1990, 1992).

2. Semiparametric prediction based on a Pareto model.

2.1. Approximate models for the tail of a distribution. We begin by describing
tail properties of distributions conditional on exceedence of a high threshold, and
then we discuss a model motivated by these properties. Let Y denote a random
variable the distribution of which satisfies

P (Y > y)= a1y
−β + a2y

−β−γ + o(y−β−γ )(2.1)

as y → ∞, where a1, β, γ > 0 and a2 ∈ (−∞,∞). Then, for t ≥ 1,

P (Y > y0t|Y > y0)=A1t
−β +A2t

−β−γ + o(|A2|t−β−γ )

as y0 → ∞, where

A1 = 1 − a2y
−γ
0

a1 + a2y
−γ
0 + o(y

−γ
0 )

, A2 = a2y
−γ
0

a1 + a2y
−γ
0 + o(y

−γ
0 )

.

Therefore, if X = {X1, . . . ,Xn} denotes the n values of a random sample
{Y1, . . . , YN } that exceed a given high threshold y0, and if we condition on n, then
without loss of generality we have drawn X from a distribution which depends
on n and for which P (Xi > 1)= 1 and

P (Xi > x)= (1 − δ)x−β + δx−β−γ + o(|δ|x−β−γ ),(2.2)

uniformly in x ≥ 1, where β > 0, γ > 0, δ = δ(n) is nonrandom and δ → 0 as
n→ ∞. [In the formula δ = δ(n) we are using n as a surrogate for y0; the value
of n is of course a deceasing function of y0.] Our aim is to predict the largest of
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the next m values coming from distribution function (2.2), that is, to predict the
largest of the next m values which exceed the given high threshold y0 and come
from distribution function (2.1).

It is common to take y0 to be one of the data Yi , in which case it would
be included in X as the smallest value of Xi . On other occasions y0 would be
genuinely deterministic, for example, a threshold set on the machine that recorded
the data. The value of y0 would usually be taken large, relative to the center of the
distribution of Y , so as to render small the value of δ at (2.2).

Often in practice the value of N is not known and is not itself of interest. For
similar reasons, the distribution of Y is often not of interest, and typically there are
no data in the lower tail. (The operation of conditioning on n sometimes amounts
to defining the extrema of interest to be those that exceed the threshold y0.) We
shall assume that this is the case and regard n as a deterministic quantity. Our goal,
then, is to determine the impact that the size of n has on coverage accuracy and on
the extent of extrapolation that is feasible.

Of course, one could include the number, n, of data Yi that exceed y0, as well
as the values of those data, in the procedure for inference. This is seldom done
in practice, however, because little useful information is contained in n. In the
exact Pareto case, where (2.1) would be replaced by P (Y > y) = a1y

−β , there
is hardly more information in n than could be obtained by including one more
data value—the largest datum strictly less than y0. In the more general context of
(2.1) the distribution of n, given y0, Y1, . . . , Yn, depends on β only through the
high-order terms in (2.1), which as we shall see in Section 2.3 are very hard to
obtain information about. Therefore, even in the general case it is conventional to
condition on n.

2.2. Prediction intervals for future events. The basic Pareto model is the case
δ = 0 in (2.2): P (Xi > x) = x−β , x ≥ 1. There, if β̂H denotes the Hill (1975)
estimator of β , that is, β̂−1

H = n−1∑
i logXi , it may be shown that an exact

prediction interval (i.e., an interval having exactly known coverage probability) for
the largest of the next m values of X is (1, x̂1(α,m)), where x̂1(α,m) = ρ−1/β̂H

and ρ = ρ(α,m) denotes the solution of the equation �m(ρ)= α, and

�m(ρ)=
m∑
j=0

(
m

j

)
(−1)j (1 − n−1j logρ)−n.(2.3)

Since �m is a strictly decreasing function of ρ ∈ (0,1), decreasing from 1 at ρ = 0
to 0 at ρ = 1, then ρ(α,m) is always uniquely defined. Outline derivations of these
properties will be given in Section 4.1.

In many instances, for example, in the context of sampled distributions with
regularly varying tails, it is attractive to use the Pareto prediction interval
(1, x̂1(α,m)) even when the Pareto model is not strictly correct. In such cases we
are concerned to know the level of coverage error that is incurred. To address this
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question we note that if F denotes the true distribution of X, then the probability
that the largest of the next m values of X does not exceed x̂1(α,m) equals

π(α,m)=E
[
F {x̂1(α,m)}m].

In the Pareto case, that is, when P (X≥ x)= x−β , we have π(α,m)= α, but more
generally [e.g., under the model (2.2)], interest centers on the extent of coverage
error and the manner in which it alters as m increases. Our first theorem focuses
on these issues.

THEOREM 2.1. Assume (2.2), in which β > 0, γ > 0 and δ → 0 as n→ ∞,
and that for some C > 0, n−C =O(|δ|).

(i) If m is fixed, then

π(α,m)= α +mδρ(1 − ρ)m−1
(
γ logρ

β + γ
+ 1 − ργ/β

)
+ o(|δ|)(2.4)

as n→ ∞.
(ii) If m=m(n)→ ∞ and (δ+ n−1/2 logn) logm→ 0 as n→ ∞, then

π(α,m)= α+ αδγ logα

β + γ
logm+ o(|δ| logm)(2.5)

as n→ ∞.

REMARK 2.1 (Size of coverage error). It follows from Theorem 2.1 that the
coverage error of the prediction interval (1, x̂1(α,m)) is of size δ for fixed m, and
that it increases only logarithmically fast, that is, at the rate |δ|logm, as m→ ∞.

Note too that m may increase exponentially fast, as a function of δ−1, without
these results being violated and without the prediction interval (1, x̂1(α,m)) failing
to have asymptotically correct coverage. For example, if δ = O(n−ξ1) for some
ξ1 ∈ (0, 1

2), then, in order for π(α,m) to converge to α as n→ ∞, it is sufficient
that m=O{exp(Cnξ2)} for some ξ2 ∈ (0, ξ1) and some C > 0.

REMARK 2.2 (Sign of coverage error). Observe that, since logα < 0, the sign
of the term of size δ logm on the right-hand side of (2.5) is opposite to the sign
of δ. Moreover, for fixed m the sign of the dominant term (other than α) on the
right-hand side of (2.4) is also opposite to the sign of δ. This follows from the fact
that (β + γ )−1γ logρ + 1 − ργ/β < 0 for all γ > 0.

2.3. Correcting coverage error. In this section, we suggest three methods for
improving coverage accuracy under a specific model assumption. The dominant
terms in the coverage error formulas (2.4) and (2.5) equal δ multiplied by a factor
that depends on the sampled distribution only through the ratio β/γ . Exploratory
and diagnostic methods are available for assessing the value of this quantity



880 P. HALL, L. PENG AND N. TAJVIDI

[Feuerverger and Hall (1999)]. Thus, after analysis of the data we may be prepared
to assume a specific value for β/γ . The value β/γ = 1 is of particular interest in
this regard; if X is generated in the form X = |U |1/β or X = sgn(U)|U |1/β , where
the random variable U has a density that is nonzero and differentiable at the origin,
then β/γ = 1. This value also obtains if X has a Type I extreme value distribution,
that is, if P (X ≤ x)= exp(−cx−β), where β , c > 0.

In some contexts, β/γ may be explicitly estimated by least-squares or
maximum likelihood, for example, by fitting the model consisting of the first two
terms on the right-hand side of (2.2), that is,

P (X > x)= (1 − δ)x−β + δx−β−γ ,

or by fitting a model that is asymptotically equivalent, to second order, to this one.
These approaches were discussed by Feuerverger and Hall (1999). Experience in
that setting suggests that estimation of β/γ is infeasible unless n is very large, and
that X often contains little information about second-order aspects of an extreme-
value model. In particular, for the sample sizes of 40–50 treated in the numerical
work in the present paper, it is generally not feasible to estimate γ .

Statistical, mathematical and computational issues depend only a little on the
fixed value chosen for β/γ . Since β/γ = 1 is more commonly encountered in
practice (see the discussion two paragraphs above) we shall assume that case here.
Then (2.4) reduces to

π(α,m)= α+mδρ(1 − ρ)m−1(1
2 logρ + 1 − ρ

)+ o(|δ|),(2.6)

and (2.5) reduces to

π(α,m)= α + 1
2αδ logα logm+ o(|δ| logm).(2.7)

Our three methods for improving coverage accuracy are based on fitting
a mixture of Pareto distributions,

G(x | β, δ)= (1 − δ)(1 − x−β)+ δ(1 − x−2β), x ≥ 1,(2.8)

to data, using either maximum likelihood or least squares. This aspect of the
technique is a variant of that discussed by Feuerverger and Hall (1999). In (2.8),
β > 0 and −1 ≤ δ < 1, and we may construct maximum likelihood estimators β̂
and δ̂, say. Note the distinction between β̂ , the first component of the maximum
likelihood estimator under (2.8), and β̂H , the maximum likelihood estimator under
the model G(x|β)= 1 − x−β ; we use the former in all three methods.

1. First method: explicit error correction—Let ρ = ρ(α,m) be defined as in
Section 2.2, and put p(α,m) = mρ(1 − ρ)m−1(1

2 logρ + 1 − ρ). Define
a = a1 = a1(α,m, δ̂) to be the solution of a + δ̂p(a,m) = α, and put
x̂2(α,m) = x̂1{a1(α,m, δ̂),m}. Then our error-corrected prediction interval is
(1, x̂2(α,m)).
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2. Second method: bootstrap calibration of Pareto-mixture interval—Let x̂∗
1 (a,m)

denote the version of x̂1(a,m) computed for a resample X∗ = {X∗
1, . . . ,X

∗
n}

drawn from the model G(·|β̂, δ̂), rather than for the original data set X =
{X1, . . . ,Xn}. Let â2 = â2(α,m,X) be the solution of E[Gm{x̂∗

1 (a,m)|β̂, δ̂}|
X] = α. Then, our error-corrected prediction interval is (1, x̂1(â2,m)).

3. Third method: bootstrap calibration of naive interval—Let x2 = x2(α,m,β, δ)

denote the solution of Gm(x2|β, δ) = α. The “naive” or “empirical” α-level
prediction interval for the next m values of X is (1, x2(α,m, β̂, δ̂)) and may be
shown to have coverage error O{n−1(1 + logm)} when the model G(· | β,α)
is correct. This error may be reduced to O{n−2(1 + logm)2} by calibration, as
follows. Let (β̂∗, δ̂∗) denote the version of (β̂, δ̂) computed from X∗ (defined
as for the second method) rather than from X, and let â3 = â3(α,m,X) be the
solution of

E
[
Gm{x2(a,m, β̂

∗, δ̂∗) | β̂, δ̂}∣∣X]= α.

Then our error-corrected prediction interval is (1, x2(â3,m, β̂, δ̂)).

The first method, which does not involve any simulation and so is in principle
the simplest of the three, is strongly asymptotic in character and can share
the difficulties associated with related techniques for coverage correction. In
particular, the approximations

α +mδρ(1 − ρ)m−1(1
2 logρ + 1 − ρ

)
and α + 1

2αδ logα logm

to coverage probability, deriving from (2.6) and (2.7) respectively, do not
necessarily lie in the interval [0,1]. This can lead to problems when solving
the equation that defines a1(α,m, δ). (Similar difficulties arise in the context of
explicit Edgeworth correction.) For these reasons we prefer the second and third
methods.

However, it should be recognized that all three approaches introduce a new term
to the coverage error formula, of size O{n−1(logm)2} for methods 1 and 3 and
O{n−2(logm)4} in the case of method 2. These errors occur because a stochastic
error of order η = n−1/2 logm arises from estimating δ in the model (2.8), even
when the model is correct and δ = 0. Since the expected value of the error is of
order η2 this is the order of the additional coverage-error term for methods 1 and 3.
It is reduced to O(η4) by the calibration involved in method 2. As a result, none
of the methods 1, 2 or 3 exhibits perfect coverage accuracy when the sampled
distribution is exactly Pareto.

We conclude with a formal description of these results.

THEOREM 2.2. Assume (2.8) holds for β = γ . Then the coverage prob-
abilities of prediction intervals produced by the first and third methods equal
α + O{n−1(1 + logm)2} + o{|δ|(1 + logm)}, while for the second method they
equal α+O{n−2(1 + logm)4} + o{|δ|(1 + logm)}.
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In the event that the assumption β/γ = 1 is incorrect, the assertions of the
theorem do not hold. Instead, taking the setting of Theorem 2.1(iii) as an example,
and using the first or the third method to “correct” for coverage error, we have
instead of the result given in Theorem 2.2 the property that the coverage probability
equals

α+ αδ(γ − β) logα

2(β + γ )
logm+O

{
n−1(logm)2

}+ o(δ logm).

Therefore, there is no improvement, and possibly even a deterioration, in the order
of coverage error asserted by Theorem 2.1(ii).

We are not claiming that any of our methods for improving coverage accuracy
is “optimal” in some sense. Indeed, the semiparametric nature of the setting
where the methods are deployed and the fact that the coverage corrections address
second-order quantities rather than first-order ones mean that it is probably
not feasible to describe optimality in a manner that is meaningful for practical
applications.

The technique of proof of Theorem 2.2 is a combination of those used to derive
Theorems 2.1 and 3.2, and so is not given here.

2.4. Simulation study. In this section we investigate the coverage accuracies
and lengths of both the Pareto interval and its bootstrap-calibrated version, the
latter constructed using the second method (referred to below as Method 2)
suggested in Section 2.3. We took the true distribution to be given by model (2.8).
For reasons given in Section 2.3, intervals constructed using Method 2 are
generally more satisfactory than those based on either of the other two calibrated
techniques.

Coverage accuracy was estimated by averaging over 200 realizations of sample
size n= 50 from the population with distribution function given by (2.8). We took
β = 1 and either δ = n−1/5 or δ = n−2/5. In the bootstrap calibration step we used
400 simulations for each of the 200 samples.

In Figure 1 the “true” coverage of 90% prediction intervals is plotted againstm.
Figure 2 shows the values of x̂1(α,m) and x̂1(â2,m), as functions of m, averaged
over all 200 samples; these are of course numerical approximations to the expected
values of x̂1(α,m) and x̂1(â2,m), respectively. The latter figure also shows the
solution x0 of the equation G(x0)

m = α.
From Figure 1 we see that, except when m is small, coverage accuracy of both

interval types tends to decrease in a logarithmic way as m increases; and that the
rate of decrease is faster for the Pareto interval (1, x̂1(α,m)) than for its Method 2
counterpart. Figure 2 shows that this is achieved through an increase in the average
length of the prediction region, as a function of m. The reason the basic Pareto
interval fails to achieve good coverage accuracy, for large m, is that its length does
not increase sufficiently fast with m.
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FIG. 1. Coverage accuracy: true coverages of one-sided prediction intervals (1, x̂1(α,m)) and
(1, x̂1(â2,m)), for α = 0.90, are indicated by dot and star points, respectively. The unbroken line
indicates the true coverage level. Panels (a) and (b) show coverages when δ = n−2/5 and δ = n−1/5,
respectively.

As expected, the extent to which coverage accuracy decreases with increasingm
is greater for the larger value of δ, although Figure 1 indicates that the differences
are only small. Figure 2 confirms that the greater extent of undercoverage observed
for larger δ is caused by the relatively large gap between the too-short length of
the corresponding prediction interval and the length of its “ideal,” nonempirical
counterpart, based on x0. However, this is only in absolute terms; in relative
terms the lengths of the empirical prediction intervals in the cases δ = n−1/5 and
δ = n−2/5 are too small by similar amounts.
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FIG. 2. Average sizes of upper endpoints: values of E{x̂1(α,m)} and E{x̂1(â2,m)}, for α = 0.90,
are indicated by dot and star points, respectively. The straight line shows the solution, x0, of the
equation G(x0)

m = α. Panels (a) and (b) show expected values when δ = n−2/5 and δ = n−1/5,
respectively.

3. Parametric prediction in a generalized Pareto model.

3.1. Statement of problem. In Section 3 we assume that the form of departure
from the Pareto distribution is known exactly, up to an unknown parameter. We
complement the results in Section 2 by discussing the effects that long-range
forecasting has on accuracy in this setting, when bootstrap methods are used for
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calibration. The conclusions are broadly similar (i.e., extrapolation can be made
exponentially far into the future before serious errors are introduced) but the
quantifications of the errors are quite different in the two settings. The generalized
Pareto model treated here provides an illustration of the accuracy of bootstrap-
calibrated forecasts under exact models, just as the Pareto-type approximations in
Section 2 illustrate forecasting accuracy under distributional approximations. In
Remark 3.1 we address bootstrap calibration of a misspecified generalized Pareto
model.

Suppose we observe events with strengths X1, . . . ,Xn at respective times
T1 ≤ · · · ≤ Tn. Here, we have the following properties: (i) the variables in X =
{X1, . . . ,Xn} are independent and have common distribution F(x|θ) = 1 − (1 +
τx)−β , for x ≥ 0, where β > 0 and τ > 0 are parameters, and θ = (β, τ )T ; (ii) the
variables in T = {T1, T2 − T1, . . . , Tn − Tn−1} are independent and exponentially
distributed, with common mean µ> 0; and (iii) the variables in X are independent
of those in T .

Properties (i)–(iii) define events observed at successive points of a Poisson
process in time. Assumption (i) that β > 0, which we make throughout our
work, ensures that we are addressing the so-called regular case where maximum
likelihood estimators of β and τ are jointly asymptotically Normally distributed;
see Smith (1987).

The distribution F(·|θ) is usually referred to as the generalized Pareto distri-
bution (GPD); see, for example, Embrechts, Klüppelberg and Mikosch [(1997),
pages 162ff.]. Of course, we may allow τ to vary with n without influencing our
results. Changing τ amounts only to altering scale, and it is the value of (τ̂ − τ )/τ ,
rather than simply τ̂−τ , which determines forecasting accuracy. Embrechts, Klüp-
pelberg and Mikosch [(1997), page 165] and Reiss and Thomas [(1997), page 54]
have discussed the fact that varying τ with n in the GPD model can be interpreted
as modelling exceedences over high thresholds.

We shall consider two distinct prediction problems, where we wish to construct
an α-level prediction interval for (a) the largest of the strengths, Xmax(m), of the
nextm events or (b) the strength,Xmax[t], of the strongest further event that occurs
in the next time period of length t units. One-sided intervals for solving these
problems, and having nominal levels α, are respectively

(a) I(α,m)= [
0, F̃−1(1 − α1/m)

]
,

(b) I[α, t] = [
0, F̃−1{(− logα)µ̂/t}],(3.1)

where µ̂= Tn/n, F̃ = 1−F(·|θ̂ ) and θ̂ denotes the maximum likelihood estimator
of θ .

These are the so-called naive or estimative prediction intervals for problems (a)
and (b), obtained by substituting parameter estimates for true parameter values
in the intervals that would be employed if true parameter values were known.
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For fixed m or t , and without calibration, the coverage accuracy of such a
procedure is only O(n−1). The order of accuracy is not improved, however,
using the methods of predictive likelihood; for the latter, see, for example,
Butler (1986), Davison (1986), Bjørnstad (1990) and Barndorff-Nielsen and
Cox [(1994), Section 9.4], and note the discussion by Hall, Peng and Tajvidi (1999)
of coverage accuracy of predictive likelihood. The GPD model can, however,
be addressed using predictive pivotal methods suggested by Barnard (1986) in
location–scale cases.

3.2. Effects of long-range prediction on coverage accuracy. Of particular
interest is the effect on coverage accuracy of increasing the values of m and t . One
may show that in order for coverage to converge to the nominal level, α, as n→ ∞,
it is necessary and sufficient that neitherm nor t increases faster than exp{o(n1/2)},
as our next result indicates.

THEOREM 3.1. If m and t are bounded above 0, then in the case of problems
(a) and (b) a necessary and sufficient condition for the prediction intervals I(α,m)
and I[α, t] to have asymptotically correct coverage, for each 0 < α < 1, is that
logm+ log t = o(n1/2) as n→ ∞.

It may be proved that this result also holds for bootstrap-calibrated forms of the
intervals I(α,m) and I[α, t], which we consider next. Let X∗ = {X∗

1 , . . . ,X
∗
n}

denote a resample drawn by sampling randomly from the distribution F(·|θ̂ ),
conditional on X; and conditionally independently of X∗, let T ∗ = {T ∗

1 , T
∗

2 −
T ∗

1 , . . . , T
∗
n − T ∗

n−1} be a set of independent Exponential random variables with
mean µ̂. Let I∗(α,m) and I∗[α, t] [denoted generically by I∗(α)] be the bootstrap
versions of I(α,m) and I[α, t] [denoted generically by I(α)], respectively,
obtained by replacing (X,T ) by (X∗,T ∗) in definitions of the latter prediction
intervals.

In the context of I∗(α,m) or I∗[α, t], respectively, write X∗
max for the largest

of the next m bootstrap values of strength, or of the bootstrap values of strength
observed in the next time interval of length t . Put π̂(α) = P {X∗

max ∈ I∗(α)|X},
the bootstrap estimator of π(α) = P {Xmax ∈ I(α)}. Define γ = γ̂α to be the
solution of π̂(γ ) = α. Then the bootstrap-calibrated form of I(α) is I(γ̂α),
denoting either I(γ̂α,m) or I[γ̂α, t].

We may iterate this approach any number, k, of times, obtaining intervals
Ik(α,m) and Ik[α, t], say. In particular, I1(α,m) = I(γ̂α,m) and I1[α, t] =
I[γ̂α, t]. We claim that each iteration reduces coverage error by an order of
magnitude and that coverage error increases only logarithmically fast as a function
of the distance into the future at which we are making our prediction. Our next
result makes this clear.
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THEOREM 3.2. Assume that, as n → ∞, both t = t (n) and m = m(n) are
bounded away from 0 and satisfy log t+ logm=O(n(1/2)−ε), for some 0< ε < 1

2 .
Then

P {Xmax(m) ∈ I(α,m)} = α +O
[{n−1(1 + logm)2}k],

P {Xmax[t] ∈ I[α, t]} = α +O
[{n−1(1 + | log t|)2}k].(3.2)

REMARK 3.1 (Comparison with the Pareto case in Section 2). There are
similarities between (3.2) and the coverage expansions (2.4) and (2.5) in the Pareto
case. For example, in both the effect of increasing m is only to inflate coverage
error by a power of logm. However, in the semiparametric context of Section 2 the
power is 1, whereas in the parametric setting of Theorem 3.2 it is an even integer,
depending on iteration order. The reason for the difference is that in Section 2 the
coverage error resulted largely from model misspecification—we assumed a Pareto
distribution when the correct model was only asymptotically Pareto—while in
Theorem 3.2 the error comes from calibrating a “naive” or “estimative” interval
in a strictly parametric setting.

Related arguments may be used to address the “interaction” between contexts
treated in Sections 2 and 3, that is, where the GPD model is mistakenly assumed,
when it is not valid, and predictions are made using bootstrap methods rather than
the technique (derived from a standard Pareto, instead of a GPD, model) discussed
in Section 2. It may be shown that, to first order, the results in this setting are just
the compound, through addition, of those in Sections 2 and 3.

That is, the order of magnitude of the coverage error of a prediction interval
for Xmax(m) is the order stated in Theorem 2.1, plus that in result (3.2) of
Theorem 3.2; the former isO(δ logm) and the latter equalsO[{n−1(1+ logm)2}k].
In this setting the data Xi are assumed to satisfy, instead of (2.2), the condition

P (Xi > x)= (1 − δ)(1 + τx)−β + δ(1 + τ1x)
−β−γ + o

{|δ|(1 + x)−β−γ }
uniformly x > 0, where τ1 > 0 and δ = δ(n)→ 0; and the bootstrap method, based
on the GPD assumption, is used to construct prediction intervals.

REMARK 3.2 (Analogous results for confidence intervals). Standard boot-
strap methods, for example, the percentile method, may be used to construct con-
fidence intervals involving long-range extrapolation. In particular, we might seek
a confidence interval for (i) the mean interoccurrence time ν(x|µ,θ)= µ/F̄ (x|θ)
(where F̄ = 1−F ) of successive events of strength at least x; or for (ii) the p-level
quantile of the distribution of strength; or for (iii) the probability that strength ex-
ceeds a given value, x.

Bootstrap calibration may then be employed to improve coverage accuracy, and
results analogous to those in Theorem 3.2 may be derived in this setting. For
example, the k-fold bootstrap iterate of a one-sided percentile-method confidence
interval may be shown to have coverage error O{(n−1/2 logu)k}, where u = x,
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p−1 and x in the cases of problems (i), (ii) and (iii), respectively. In the setting of
two-sided, k-fold bootstrap-calibrated, percentile-method confidence intervals the
coverage error is O[{n−1(logu)2}k].

The main feature of these results, common to Theorems 2.1 and 3.2, is the way
in which coverage error increases only logarithmically with extrapolation. The
property that the size of coverage error decreases with k is common in this type
of problem; see Hall [(1992), Chapter 3] for discussion. However, the constant
multiple of the asymptotic order can also increase with k, and as a rule, for a
given sample size, there is a finite value of k for which the maximum amount of
correction is achieved.

REMARK 3.3 (Two-sided prediction intervals). In extreme-value applications,
one-sided intervals such as those addressed in Theorem 3.2 are usually of more
interest than their two-sided counterparts. Nevertheless, the theorem holds without
change for equal-tailed, two-sided prediction intervals formed by taking the
intersection of two one-sided intervals. In both one- and two-sided cases the
“big oh” remainder terms correctly reflect the size of the remainder, although,
particularly in the case where m and t are bounded, exact formulae for dominant
terms in remainders are complex.

The fact that there is no reduction in the order of coverage error in the two-
sided case is in contrast to the context of confidence intervals, where parity
properties of terms in Edgeworth expansions imply such a reduction. In the
case of prediction intervals, however, expansions of coverage error are derived
directly from Taylor expansions of the sampled distribution function, rather than
by Edgeworth expansion.

3.3. Numerical properties. We present both an application to real data and
a simulation study. The former is based on financial loss data supplied by the
Swedish insurance group Länförsäkringar for the most severe windstorms during
the 12-year period from 1 January 1982 to 10 July 1993. The “strength” of a storm
is defined as the total insurance loss that it produced, in millions of Swedish
Kronor (MSEK). A windstorm is defined as an “event” if its strength exceeds
0.9 MSEK. The time of occurrence of each event was deduced from wind speed
data provided by the Swedish Meteorological and Hydrological Institute. Figure 3a
graphs storm strength against time of occurrence.

These strength data, in a sample of size n = 45, fit a generalized Pareto
distribution well; see the Q–Q plot in Figure 3b, and note the goodness-of-fit
analysis by Rootzén and Tajvidi (1997), where the data set is discussed in detail.
Parameter estimates are β̂ = 1.354, τ̂ = 0.199 and µ̂= 95.4.

We applied the methodology suggested in Sections 3.1 and 3.2 to these data,
and illustrate here the solution, given in (3.1), to problem (b). Table 1 presents
prediction intervals for Xmax[t]. Here and in the simulation study, when using the
bootstrap to calibrate prediction intervals we employed 500 simulations. Overall,
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FIG. 3. Windstorm data: (a) occurrence times of storms for which the strength exceeded MSEK 0.9,
plotted on the horizontal axis, with the logarithm of strength (in MSEK) on the vertical axis;
(b) a Q–Q plot for these data, the dashed line corresponding to the equation y = x.

the interval endpoints in Table 1 increase by a factor of about 2.5 for each doubling
of t , the latter measured in days.

Table 2 reports results from a simulation study that attempts to capture
performance in the context noted immediately above. There we employed
parameter values close to those observed for the real data; we used n= 45, β = 1,
τ = 1 and µ= 100. (The results are of course invariant under changes to τ and µ.)
Table 2 confirms that, even after significant extrapolation, bootstrap-calibrated
prediction intervals enjoy particularly good coverage accuracy.

In these results and others not reported here we found that a single calibration
step was adequate to ensure excellent robustness against extrapolation. Even

TABLE 1
Endpoints x̂j of prediction intervals I1 (one-sided lower-tailed ),

I2 (one-sided upper-tailed ) and I3 (two-sided ) for Xmax[t]: values of t
are in the range t = 365,1460(1460)7300, and nominal level is 0.90.

For one-sided intervals I1 and I2, only upper or lower limits are listed;
for two-sided intervals I3, both limits are given

t x̂2 for I1 x̂1 for I2 x̂1 for I3 x̂2 for I3

365 8.1 × 107 1.8 × 106 7.6 × 105 1.8 × 108

1460 3.5 × 108 1.5 × 107 1.0 × 107 1.3 × 109

2920 8.5 × 108 2.8 × 107 2.3 × 107 2.2 × 109

4380 1.3 × 109 3.7 × 107 2.9 × 107 2.8 × 109

5840 2.0 × 109 4.7 × 107 3.5 × 107 4.3 × 109

7300 2.5 × 109 5.5 × 107 3.9 × 107 5.3 × 109
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TABLE 2
Monte Carlo approximations to true coverage of prediction

intervals for Xmax[t] in the case of a fitted GPD model:
nominal levels are 0.90 and 0.95, with n= 45 and β = 1.

The value of t is given in the first column

α = 0.90 α = 0.95

t no calib. calib. no calib. calib.

1500 0.838 0.905 0.897 0.954
3000 0.817 0.910 0.879 0.953
5000 0.798 0.916 0.863 0.950

greater accuracy is obtainable using the double bootstrap, but practical motivation
for such a high order of correction does not seem strong, in view of the good
performance evident from Table 2.

4. Technical arguments.

4.1. Derivation of formula for exact prediction intervals in Pareto case. Let
Y1, . . . , Ym be independent and identically distributed with distribution function
Fβ(x) = 1 − x−β , for x > 1; independently of the Xi ’s, let Z1, . . . ,Zn be
independent standard exponential variables; and recall the definition of �m(ρ)

in (2.3). Put S = n−1∑
i Zi and, without loss of generality, write β̂H = β/S. Then,

using the representation of independent Pareto random variables as functions of
independent standard exponential random variables Y1, . . . , Ym+n, one may prove
that

P

(
max

1≤i≤mXi ≤ ρ−1/β̂H
)

= P

(
max

1≤i≤mYn+i ≤ −n−1 logρ
n∑
i=1

Yi

)

= 1

5(n)

∫ ∞
0

{1 − exp(n−1w logρ)}mwn−1e−w dw.

Expanding {1 − exp(n−1w logρ)}m as a binomial, and carrying out the integration
term by term, we deduce the exactness of the prediction interval suggested in
Section 2.1. It may also be proved that E(1 − ρβ/β̂H )m = �m(ρ), from which
it can be seen that �m is strictly decreasing.

4.2. Proof of Theorem 2.1. Let nVn denote a random variable having the
Gamma distribution with shape parameter n and unit scale. The distribution of
β/β̂H , which we shall denote by Wn, and the distribution of Vn − δγ (β + γ )−1

have almost identical large-sample properties, and our method will be based on
this feature.
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In the above notation, ρ is the solution of E(1 − ρVn)m = α. If Wn =
−n−1∑

1≤i≤n β logXi , where Xi has distribution function F with the prop-
erty (2.2), thenWn has the moment generating functionmWn given by (on changing
the argument to ns for simpler notation),

mWn(ns)=
(

1 − δ

1 − s
+ δ{1 + o(1)}

1 − sβ(β + γ )−1

)n

= 1

(1 − s)n

(
1 − {1 + o(1)}δγ s/(β + γ )

1 − sβ(β + γ )−1

)n
.

It follows that, as n → ∞, (a) E(Wn) = 1 − δγ (β + γ )−1 + o(|δ|), (b) the
distribution of Un ≡ n1/2(Wn − EWn) converges to that of a standard normal
variable and (c) σ 2

n ≡ varUn = 1 − 2δβγ (β + γ )−2 + o(|δ|).
Assume for the time being that the “small oh” term in (2.2) may be dropped so

that the distribution of Xi is given more simply by

1 − F(x)= (1 − δ)x−β + δx−β−γ ,(4.1)

where δ → 0 as n→ ∞. Then F has a density, and we can compare the density of
Un with that of n1/2(Vn − 1). Moreover, the moment generating function of Un is
given by

mUn(s)= (1 − sn−1/2)−n
(

1 − δγ s/(β + γ )n1/2

1 − sβ{(β + γ )n1/2}−1

)n
exp(−sEWnn

1/2)

= (1 − sn−1/2)−n exp
{

−sn1/2 + 1

2
(σ 2
n − 1)s2 + o(|δ|)

}
,

where the second identity above holds uniformly in values of s for which |s| ≤
ζ(n)n1/6 for any given sequence ζ(n) ↓ 0. (We allow s to take complex values.)

Comparing this formula with that for the moment generating function mṼn
of

Ṽn ≡ n1/2(Vn − 1), we obtain

mUn(s)=mṼn
(s) exp

{1
2(σ

2
n − 1)s2 + o(|δ|)},(4.2)

again uniformly in |s| ≤ ζ(n)n1/6. Noting (4.2), and inverting the moment
generating functions of Un and Ṽn to obtain the respective densities, which we
denote by fUn and fṼn , we deduce that

fUn(x)= σ−1
n fṼn(x/σn){1 + o(|δ|)},(4.3)

where the o(|δ|) remainder term is of that order uniformly in x satisfying |x| ≤
n1/6ζ(n), for any given sequence ζ(n) ↓ 0. The inversion may be accomplished
via the representation

fUn(x)= 1

2πi

∫ (x/σ 2
n )+i∞

(x/σ 2
n )−i∞

e−xsmUn(s) ds,

where i = √−1.
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Taking ?n = logn, and using (4.3), we obtain, provided the distribution of Xi is
given by (4.1), the results

E
(
1 − ρWn

)m
= E

{
(1 − ρWn)mI (|Un| ≤ ?n)

}+O
(

exp
[− 1

2?
2
n{1 + o(1)}])

= E
{(

1 − exp[(logρ){1 +Unn
−1/2 + o(|δ|/n1/2)}])mI (|Un| ≤ ?n)

}+ o(|δ|)

=
∫ ?n

−?n
[1 − exp{(logρ)(1 + un−1/2)}]mσ−1

n fṼn(u/σn) du+ o(|δ|)

=
∫ ∞
−∞

[1 − exp{(logρ)(1 + un−1/2)}]mfṼn(u) du+ o(|δ|)

= E
{
(1 − ρVn)m

}+ o(|δ|)= α+ o(|δ|).
The result of Theorem 2.1 follows, provided the “small oh” term in (2.2) may

be taken to be identically 0. However, once we have the result in that case we
also have it for the more general F of (2.2), as may be seen using a comparison
argument based on stochastic ordering of distributions.

4.3. Proof of Theorem 3.1. Put F̄ = 1 − F(·|β, τ ), where β, τ denote the
true values of those parameters, and let θ̂ = (β̂, τ̂ ), 	β = β̂ − β , 	τ = τ̂ − τ ,
	µ = (µ̂−µ)/µ, z= 1 + τx and y = x/z. Then

F̃ (x)/F̄ (x)= (1 + y	τ )
−β(z+ x	τ )

−	β ,(4.4)

where F̃ = 1 − F(·|β̂, τ̂ ). From (4.4) and the asymptotic normality of θ̂ [see
Smith (1987)], if x = x(n)→ ∞ as n→ ∞, then F̃ (x)/F̄ (x)→ 1 in probability
as x → ∞ if and only if logx = o(n1/2). Likewise, if m = m(n) is increasing,
then F̃−1(1 − α1/m)/F̄−1(1 − α1/m)→ 1 in probability as m→ ∞ if and only if
logm= o(n1/2), and likewise it may be proved that if t = t (n) is increasing, then

F̃−1{(− logα)µ̂/t}/F̄−1{(− logα)µ/t} → 1

in probability as t → ∞ if and only if log t = o(n1/2). Using these properties in
conjunction with the definitions of prediction intervals we may deduce the claimed
results.

For example, consider the prediction interval I(α,m), where m=m(n)→ ∞,
and put u = u(n) = 1 − α1/m and V = F̃−1(u) (a random variable). Note that
the right-hand side of (4.4) equals {1 + op(1)}(τx)−	β as x → ∞ and that
P (V > v)→ 1 as n→ ∞, for each fixed v > 0. Therefore, by (4.4),

u= F̃ (V )= {1 + op(1)}F̄ (V )(τV )−	β = {1 + op(1)}τ−(β+	β)V−(β+	β).

It follows that, on defining 	≡	β/β , we have τV u1/(β+	β) → 1 in probability
and

F̄ (V )= {1 + op(1)}u1/(1+	)

= −{1 + op(1)}(logα) exp{−(1 +	)−1 logm}.(4.5)
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In view of (4.5), the coverage probability of the prediction interval I(α,m) equals

π(α)≡ P
{
Xmax(m)≤ F̃−1(1 − α1/m)}=E[{1 − F̄ (V )}m]

= E
([1 +m−1{1 + op(1)}(logα) exp{	(1 +	)−1 logm}]m)

= E
(
exp[{1 + op(1)}(logα) exp{	(1 +	)−1 logm}])

= E
{

exp
({1 + op(1)}(logα) exp[{1 + op(1)}Nη])},

(4.6)

where N ≡ n1/2	 is asymptotically Normal N(0, σ 2) for some σ > 0, and
η≡ n−1/2 logm.

Since 1 − F̄ (V ) ≤ 1 the argument of the expectation is uniformly bounded
by 1. It follows from this property and (4.6), on using a subsequence argument
(i.e., considering the case where, along a subsequence of values n, η = η(n)→ ?,
with 0 ≤ ? ≤ ∞), that π(α)→ α for each 0 < α < 1 if and only if η → 0. That
is, the prediction interval I(α,m) has asymptotically correct coverage, for all α,
if and only if n−1/2 logm → 0. [If η → ∞, then π(α) → 1

2 for each α, and if
η→ ? ∈ (0,∞), then π(α)→ π0(α)≡E[exp{(logα)eN0?}], where N0 is Normal
N(0, σ 2). The value of π0(α), depending as it does on α and ?σ , can equal α or
be on either side of α. Therefore, the condition n−1/2 logm→ 0 is not equivalent
to π(α)→ α for a single, given value of α.]

4.4. Proof of Theorem 3.2. Let u = 1 − α1/m, V = V (α) = F̃−1(u), v =
v(α) = F̄−1(u), Y = V/(1 + τV ) and W = log(1 + τV ). In view of (4.4),
V is equivalently defined by

u(1 + Y	τ )
β+	β exp(W	β)(1 + τV )β = 1.(4.7)

Use Taylor expansion to express the left-hand side of (4.7) as 1 plus a polynomial
in (V /v) − 1, plus a remainder. Equate to 0, solve implicitly for V and thereby
show that, with π(α) defined as in (4.6),

π(α)= α+E(Q?)+O{(n−1/2w)?+1}(4.8)

for all ? ≥ 1, where Q? enjoys the following properties: (i) Q? is a polynomial,
with constant coefficients, of degree ? in sums of the form n−1∑

i≤n Yi for
random variables Yi ; (ii) if Vi is the vector whose elements are the ith summands
(e.g., Yi just above) of the respective sums in the polynomial expansion, then the
Vi’s are independent and identically distributed with zero mean and all moments
finite; and (iii) the polynomial Q? has no term of degree 0. Note that the terms
that derive from the quantity exp(W	β) on the left-hand side of (4.7) should
explicitly preserve the factor w = log(1 + τv), replacing W , that arises in the
Taylor expansion.

The terms in Q? that are of order r for even r have expectation equal to a series
in both n−j and (n−1/2w)2j for j ≥ r/2, and the terms that are of order r for odd r
have expectation equal to a similar series but for j ≥ (r + 1)/2. Arguing thus we
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see from (4.8) that there exist constants cj1j2 , denoting functions of θ , such that,
for any ?≥ 2,

π(α)= α +
1∑

j1=0

?−1∑
j2=1

cj1j2(n
−1w2j1)j2 +O{(n−1w2)?}.(4.9)

The value of w is asymptotic to a constant multiple of logm. Therefore, result
(4.9) gives (3.2) in the case k = 1. The constants cj1j2 are infinitely differentiable
functions of the true values of the parameters β and τ , which in the first bootstrap
calibration step are replaced by the maximum likelihood estimators β̂ and τ̂ . [In
this step the quantity Q? in (4.8) is replaced by the analogous function of the
resampled data, and the expectation in (4.8) is replaced by expectation conditional
on X.] Higher-order bootstrap iteration involves similar changes. Arguing thus
we see that successive bootstrap calibration steps operate in the same way as
successive bias reduction steps in more conventional problems [e.g., Hall (1992),
pages 27ff.], each reducing the order of coverage error by the factor n−1w2.
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