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NECESSARY AND SUFFICIENT CONDITIONS FOR WEAK
CONSISTENCY OF THE MEDIAN OF INDEPENDENT

BUT NOT IDENTICALLY DISTRIBUTED
RANDOM VARIABLES

By Ivan Mizera1 and Jon A. Wellner2

Comenius University and University of Washington

Necessary and sufficient conditions for the weak consistency of the
sample median of independent, but not identically distributed random vari-
ables are given and discussed.

1. Consistency of the sample median. For each n = 1�2� � � � � suppose
that Xn1�Xn2� � � � �Xnn are independent random variables with distribution
functions Fn1�Fn2� � � � �Fnn. Let Fn denote the empirical distribution function
of the Xni’s:

Fn�x� ≡
1
n

n∑
i=1

1�−∞� x��Xni��

and let Fn be the average distribution function

Fn ≡ 1
n

n∑
i=1

Fni�

For any distribution function G, let G−1 be the left-continuous inverse of G
defined by G−1�u� ≡ inf�x	 G�x� ≥ u�, 0 < u < 1. Throughout this paper,
unless otherwise noted, we call G−1�1/2� the median of G, even when there is
a nondegenerate interval �m0�m1� of median points in the sense that PG�Y ≤
m� ≥ 1/2 and PG�Y ≥ m� ≥ 1/2 for m ∈ �m0�m1� (see also the discussion
after Examples 6 and 7 in Section 3).

The problem is to give necessary and sufficient conditions for weak consis-
tency of the sample median F

−1
n � 1

2�: under what conditions on the Fni’s does
it hold that

F
−1
n

( 1
2

)−F−1
n

( 1
2

)→P 0?(1.1)

The sufficiency part of the problem has been studied by several authors,
mainly for the i.i.d. case, the case when Fni are equal to F for all i = 1�2� � � � � n
and all n ≥ 1: either for the median alone, starting perhaps from Kolmogorov
(1931), or in the more general framework of M-estimation, as in Huber (1981).
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WEAK CONSISTENCY OF THE SAMPLE MEDIAN 673

In the general, “non-i.i.d.” case, the relevant references are Weiss (1969), Sen
(1968, 1970), Stigler (1976), Shorack and Wellner (1986) and Portnoy (1991).

However, it seems that so far no sufficient and necessary conditions for (1.1)
have been established. In this context, a comparison with the older brother
of the median in the realm of location estimation—the sample mean—comes
to mind: here the research on laws of large numbers have been crowned by
theorems giving necessary and sufficient conditions, for the i.i.d. as well as
“non-i.i.d.” cases; see, for instance, Petrov (1995).

Consistency of the sample median has many statistical applications—for
i.i.d. as well as for non–identically distributed observations. For an interest-
ing application of medians to filtering in a setting involving dependence as
well as non–identically distributed observations, see Moore and Jorgenson
(1993). For an applied, operational side, sufficient conditions are vital: they
provide the fuel needed to proceed further. The impact of necessary condi-
tions is different. For instance, the first author was brought to the problem
through the alignment considerations for the runs tests of randomness un-
der a heteroscedasticity hypothesis: the sample median is a natural aligning
estimator for rank tests based on signs—and invariance properties of these
determine their use in nonhomogeneous situations [see Dufour, Hallin and
Mizera (1995)]. Thus, necessary conditions may be viewed more as negative
results: they outline the scope and limitations of situations where consistency
is needed.

2. Necessary and sufficient conditions. It turns out that in the special
case when all Fni’s have common median ξ1/2, that is, when

F−1
ni

( 1
2

) = ξ1/2 for i = 1�2� � � � � n� n = 1�2� � � � �(2.1)

the problem has a neat solution. For fixed ε > 0, define

an�ε� ≡ E
[
Fn

(
F−1

n

( 1
2

)+ ε
)] = Fn

(
F−1

n

( 1
2

)+ ε
)

and

bn�ε� ≡ E
[
Fn

(
F−1

n

( 1
2

)− ε
)] = Fn

(
F−1

n

( 1
2

)− ε
)
�

Note that bn�ε� ≤ 1
2 ≤ an�ε�.

Theorem 1. Suppose that Xn1�Xn2� � � � �Xnn are independent random
variables with distribution functions Fn1�Fn2� � � � �Fnn, all with a common
median ξ1/2. A necessary and sufficient condition for weak consistency of the
sample median is that

√
n
(
an�ε� − 1

2

)→ ∞ and
√
n
( 1

2 − bn�ε�
)→ ∞(2.2)

holds for all ε > 0.

Proof. This will be proved in Section 4 via Theorem 3, which shows
that the statement is a consequence of the more general Theorem 2. The
basic method involves rewriting events concerning sample quantiles in terms
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of events concerning the empirical distribution function (see, e.g., Kiefer
(1970)]. ✷

Condition (2.2) of Theorem 1 remains sufficient in general without assum-
ing the equality of medians condition (2.1), and in fact condition (2.2) is also
necessary under a mild nondegeneracy hypothesis: see Theorem 3 below. Fur-
thermore, this basic result carries over in an obvious way to a general tth
quantile; see Section 4.

Although Theorem 1 can provide a satisfactory answer in many practical
cases, the general problem is of interest too—in parallel to the classical laws
of large numbers: for example, in the case of the weak law of large numbers,
Feller [(1971), pages 235 and 565] gives conditions (now known as the weak-L1
condition) under which there exist constants µn such that the sequence �Xn�
of sample means satisfies Xn − µn → 0 in probability. Thus, we would like to
consider the problem of consistency without assuming (2.1).

Such a problem, however, is a more delicate one. The difficulty may lie in
the fact that under the “non-i.i.d.” case, condition (2.1) fails for an arbitrary
sequence of deterministic (and hence independent) random variables (such a
sequence would be forced to be constant in the i.i.d. case). Nevertheless, it
turns out that the “purely deterministic” situation enjoys the same level of
tractability as the “purely stochastic” one. It is the borderline “not determin-
istic, not stochastic” behavior which causes problems.

For fixed ε > 0, define cn�ε� and dn�ε� to be nonnegative numbers such that

c2
n�ε� ≡ nVar

[
Fn

(
F−1

n

(
1
2

)
+ ε

)]

= 1
n

n∑
i=1

Fni

(
F−1

n

(
1
2

)
+ ε

)(
1 −Fni

(
F−1

n

(
1
2

)
+ ε

))

and

d2
n�ε� ≡ nVar

[
Fn

(
F−1

n

(
1
2

)
− ε

)]

= 1
n

n∑
i=1

Fni

(
F−1

n

(
1
2

)
− ε

)(
1 −Fni

(
F−1

n

(
1
2

)
− ε

))
�

Note that

0 ≤ cn�ε� ≤ 1
2 and 0 ≤ dn�ε� ≤ 1

2 �(2.3)

We adopt the following conventions: a/0 = ∞ if a > 0; 0/0 = 0.

Theorem 2. Suppose that Xn1�Xn2� � � � �Xnn are independent random
variables with distribution functions Fn1�Fn2� � � � �Fnn.

A sufficient condition for weak consistency of the sample median is that

√
n
an�ε� − 1

2

cn�ε�
→ ∞ and

√
n

1
2 − bn�ε�
dn�ε�

→ ∞(2.4)

holds for all ε > 0.
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A necessary condition for weak consistency of the sample median can be
formulated as follows: The sample median is not consistent, if, for some ε > 0:

(i) there is a subsequence �n′� such that

√
n′cn′ �ε� → ∞ and

√
n′ an′ �ε� − 1

2

cn′ �ε� = O�1�(2.5a)

or

√
n′dn′ �ε� → ∞ and

√
n′

1
2 − bn′ �ε�
dn′ �ε� = O�1��(2.5b)

(ii) or, there is a K > 0 and a subsequence �n′� such that

√
n′cn′ �ε� → K and

√
n′ an′ �ε� − 1

2

cn′ �ε� < K(2.6a)

or
√
n′dn′ �ε� → K and

√
n′

1
2 − bn′ �ε�
dn′ �ε� < K�(2.6b)

(iii) or, there is a subsequence �n′� such that

√
n′cn′ �ε� → 0 and

√
n′ an′ �ε� − 1

2

cn′ �ε� = O�1�(2.7a)

or
√
n′dn′ �ε� → 0 and

√
n′

1
2 − bn′ �ε�
dn′ �ε� = O�1��(2.7b)

The proof is postponed to Section 4.

Corollary 1. If, under the assumptions of Theorem 2, for any subsequence
it follows that

√
ncn�ε� → ∞ whenever an�ε� → 1

2 and
√
ndn�ε� → ∞ whenever bn�ε� → 1

2 �
(2.8)

then the sample median is consistent if and only if (2.4) holds for every ε > 0.

Proof. The necessary part is a consequence of (2.5) and the fact that if an

or bn is bounded away from 1/2, then (2.4) holds due to (2.3). The sufficiency
part follows directly from Theorem 2. ✷

The final theorem shows that Theorem 1 is a special case of Theorem 2.

Theorem 3. Suppose that Xn1�Xn2� � � � �Xnn are independent random
variables with distribution functions Fn1�Fn2� � � � �Fnn. If there are a, b such
that

0 < a ≤ Fni

(
F−1

n

( 1
2

)) ≤ b < 1 for all i = 1�2� � � � � n�(2.9)

then (2.8) holds and condition (2.2) is equivalent to condition (2.4).
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Proof. The proof is for an�ε� and cn�ε�; for bn�ε� and dn�ε� it is analogous.
Note again that if lim inf an�ε� > 1/2, both (2.2) and (2.4) hold; hence in
proving the equivalence we can also restrict to the case when an�ε� → 1/2+,
but then (2.9) entails

Fni

(
F−1

n

( 1
2

)+ ε
) ≥ a�

hence

c2
n�ε� =

1
n

n∑
i=1

Fni

(
F−1

n

(
1
2

)
+ ε

)(
1 −Fni

(
F−1

n

(
1
2

)
+ ε

))

≥ 1
n

n∑
i=1

a

(
1 −Fni

(
F−1

n

(
1
2

)
+ ε

))
= a�1 − an�ε�� →

1
2
a > 0�

showing that cn�ε� is bounded away from zero; thus, in this case (2.2) and
(2.4) are equivalent and (2.8) holds. ✷

Note that (2.1) is a special case of (2.9).

3. Examples, corollaries and remarks. Here are some examples illus-
trating the general case. The presentation is condensed; a more thorough
treatment can be found in Mizera and Wellner (1996). We use the symbol
δx for the point probability concentrated at x. For simplicity, we consider in
Examples 1–5 only odd n = 2k + 1 (for even n we could put Xni = 0 almost
surely for all i, if desired).

Example 1. Let

Xni =d



δ−1� for i = 1�2� � � � � k�
δ0� for i = k+ 1�
δ1� for i = k+ 2� k+ 3� � � � � n�

This is a purely deterministic case. The difference between F
−1
n �1/2� and

F−1
n �1/2� is identically 0, condition (2.2) does not hold, but condition (2.4)

holds trivially.

In the deterministic case, including Example 1, condition (2.4) is always
satisfied, since cn�ε� = dn�ε� = 0.

Example 2. Replace Xn�k+1 in Example 1 by a random variable uniformly
distributed in �−1�1�. Now we have, for positive ε < 1,

√
ncn�ε� = 1

2

√
1 − ε2 ≡ Kε > 0

and
√
n
an�ε� − 1

2

cn�ε�
= n

ε/�2n�
1
2

√
1 − ε2

= ε√
1 − ε2

�

This is less than Kε for small ε, so Theorem 2 yields inconsistency—as can
also be checked directly.
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Example 3. Replace Xn�k+1 in Example 1 by a random variable uniformly
distributed in �−1/n�1/n�. Then (2.4) holds, and the median is consistent by
Theorem 2. Note that

√
ncn�ε� and

√
ndn�ε� converge to 0, but (2.7) fails.

[Actually, cn�ε� and dn�ε� are zero for large n, and condition (2.4) holds triv-
ially again. A more sophisticated variation of this example could be produced
by letting Xn�k+1 shrink to 0 in a more “smooth” way; for instance, setting its
distribution to N�0�1/n�.]

The results of Theorem 2 reveal some general features of the possible behav-
ior in the “independent, but not identically distributed” paradigm. Theorem 2
suggests distinguishing three principal situations:

Case 1. Stochastic. The variance of n times the empirical distribution func-
tion Fn at the points r±n ≡ F−1

n �1/2�±ε is unbounded. This corresponds to the
situation of (2.5) and partially also (2.6). In these cases, generally speaking,
the problem of consistency can be decided in terms of “macroparameters,” the
mean and variance of the empirical distribution function. A typical represen-
tative is the i.i.d. case.

Case 2. Quasideterministic. The variance of nFn�r±n � degenerates to zero—
in our setting (2.7). A typical representative is the purely deterministic case.
Here consistency again can be, basically, decided in the terms of mean and
variance of the empirical distribution function.

Case 3. “Chaotic” or “pseudostochastic.” The remaining case—the behavior
is erratic and unpredictable; in fact, as shown by Examples 4 and 5, the prob-
lem of consistency is undecidable in terms of the mean and variance of the
empirical distribution function.

Example 4. Let Xni =d �1 − 1/k�δ−1 + �1/k�δ0, for i = 1�2� � � � � k, Xni =d

δ0 for i = k+1, and Xni =d �1/k�δ0+�1−1/k�δ1 for i = n−k+1� n−k+2� � � � � n.
For ε ∈ �0�1�,

an�ε� =
k+ 2
n

= 1
2
+ 3

2n
� bn�ε� =

k− 1
n

= 1
2
− 3

2n

and c2
n�ε� = d2

n�ε� = �1/n��1 − 1/k�. Hence
√
ncn�ε� =

√
ndn�ε� → 1, and

√
n
an�ε� − 1

2

cn�ε�
= √

n
1
2 − bn�ε�
dn�ε�

=
3
2√

1 − 1/k
→ 3

2
�

Theorem 2 is inconclusive here, but F
−1
n �1/2� = 0 = F−1

n �1/2� with probability
1 for all n, and the sample median is consistent.

Example 5. Let pn = �1/2��1 − k−1/2�, and define

Xni =d




δ−1� for i = 1�2� � � � � k− 3�
pnδ−1 + �1 − pn�δ1� for i = k− 2� k− 1�
δ0� for i = k� k+ 1� k+ 2�
�1 − pn�δ−1 + pnδ1� for i = k+ 3� k+ 4�
δ1� for i = k+ 5� k+ 6� � � � � n�
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Computing an�ε�, bn�ε�, cn�ε� and dn�ε� for this example, we discover they
are the same as in Example 4 for all ε. Theorem 2 is again inconclusive, but
the median is inconsistent! To see this, just note that k+ 1 ≥ n/2 and

P
[
card�i	 Xni = −1� = k+ 1

] = P
[
card�i	 Xni = 1� = k+ 1

]
= p2

n�1 − pn�2 → 1
16 > 0�

The last two examples show why the oddity of restricting to odd sequences
appears.

Example 6. Let Xn1�Xn2� � � � �Xnn be the first n terms of a sequence
formed by setting, with probability 1, X1 = −1, X2 = 1, X3 = −1, X4 = 1� � � � �
The sample median is equal to −1 for all n and it is consistent.

Example 7. The same as Example 6, but now let X1 = 1, X2 = −1, X3 =
1, X4 = −1� � � � � The sample median is equal to 1 for all odd n and is equal
to −1 for all even n, and is inconsistent.

Note that, for even n, we have in both examples the same an�ε�, bn�ε�,
cn�ε� and dn�ε� for all ε > 0. Problems of this kind come from the possible
existence of multiple median points—points where Fn is equal to 1/2. (This is
also the reason for adopting the convention 0/0: it serves to rule out median
points which do not move toward the median, as defined in Section 1.) For the
sample median, this effect is restricted to even n. In the general case, a possible
way is outlined in the Introduction: we could adopt a set-valued definition of
the median. Consistency then could be defined through some concept of set
convergence: upper or lower limits [we follow the terminology of Aubin and
Frankowska (1990)].

The upper-limit consistency expresses that any sample median sequence
(i.e., any possible sequence of sample median points) approaches the sequence
of population medians: the distance between a sequence of sample medians
and the sets of population medians converges to zero in probability. If the
population median remains fixed, as in Theorem 1, then all accumulation
points in probability of any sequence of sample medians lie in the population
median set.

The lower-limit consistency is a more stringent one, requiring that the
Hausdorff distance between the sets of sample medians and the sets of pop-
ulation medians goes to zero in probability. In our opinion, the upper-limit
consistency satisfies all needs of applications; technical complications brought
by the lower-limit one are not counterbalanced by increase of its practical
utility or specific interpretation.

In this vein, extensions of the present results covering the case of non-
unique population median of the sequence of distributions Fn could be con-
sidered. Analogous results (concerning the upper convergence) could be de-
rived, with an’s, bn’s, cn’s and dn’s carefully redefined and proofs, going along
the same lines, revised. We, however, sacrifice such a development, preferring
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rather to maintain clarity of the exposition and readability of proofs, with
a hope that in a need of possible generalizations the relevant ideas will be
transparent enough.

Actually, the outlined path was followed in the (simpler in this respect) i.i.d.
case. First, in the i.i.d. case conditions (2.2) are satisfied if and only if

F�ξ1/2 + ε� > 1
2 and F�ξ1/2 − ε� < 1

2(3.1)

for all ε > 0. Note that (3.1) holds for all ε > 0 if and only if F is not flat
at ξ1/2 = F−1�1/2�, and this holds if and only if F−1�u� is continuous at
1/2. This is the usual condition for consistency of F

−1
n �1/2� as an estimator

of F−1�1/2� [see, e.g., Huber (1981), page 54, or Serfling (1980), page 75].
This also follows from the representation of the empirical quantile function
�F−1

n �t�	 0 < t < 1� n ≥ 1� =d �F−1�G−1
n �t��	 0 < t < 1� n ≥ 1�, where G

−1
n �t� is

the quantile function of i.i.d. uniform�0�1� random variables [see Shorack and
Wellner (1986), pages 4, 5 and 637]. Second, if we adopt the broader viewpoint
of upper-limit consistency, we can say that in the i.i.d. case the sample median
is always weakly consistent: any sample median sequence still converges to
the interval of all possible median points of F [see, e.g., Mizera (1993)].

We have seen that, for the i.i.d. case, the conditions of Theorem 1 can be
simply verified. Another application of Theorem 1 is to heteroscedastic models.
Suppose F0 is a fixed absolutely continuous distribution function with median
0 and with a bounded density f0 such that if x ∈ �−λ� λ�, then f�x� ≥ L for
some λ > 0 and L > 0. Suppose that Fni�x� = F0�cnix� for 1 ≤ i ≤ n
and n ≥ 1 for nonnegative constants �cni�. Note that the median of F0 is
unique and (2.1) holds. We want to express consistency of the sample me-
dian through the “empirical distribution” Gn of scaling constants cni at stage
n	 Gn�t� = n−1∑n

i=1 1�cni≤t�. The question may be of interest outside the realm
of location estimation: just think of Fni’s as distributions of possible distur-
bances in regression or autoregressive models, say; heteroscedastic models are
particularly popular in these types of applications. These links deserve further
exploration, but we know the answer in the location case.

Note first that Fn�x� = ∫∞
0 F0�tx�dGn�t�. If Gn →d G, where G is not

degenerate at 0, then Fn�x� → ∫∞
0 F0�tx�dG�t�. If F0 is strictly increasing,

then the limit is strictly increasing too, so the condition of Theorem 1 holds.
On the other hand, if Gn →d δ0, the distribution with all its mass at 0, the
condition for Theorem 1 can hold or fail depending on the rate at which the
sequence of distributions Gn degenerates to 0. Mizera and Wellner [(1996),
Example 7] show that, when

√
n�Gn − δ0� → $ in the sense of uniform con-

vergence, condition (2.2) fails and hence consistency fails by Theorem 1. More
generally, let %c�x� be a function from �0�∞� to �0�∞� equal to 1/c if x ≤ c and
1/x if x ≥ c. Hallin and Mizera (1996) derived the following corollary of The-
orem 1: a necessary and sufficient condition for the consistency of the sample
median is that

√
n
∫∞

0 %c�t�dGn�t� → ∞ for some (equivalently, for all) c > 0.
The special case of this result follows from the asymptotic normality result of
Sen (1968). See also Hallin and Mizera (1996, 1997) for the extensions of this
result and Theorem 1 to consistency rates and general M-estimators.
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Of course the methods developed here for the median carry over straightfor-
wardly to an arbitrary fixed tth quantile. Suppose, for instance, that 0 < t < 1
and F−1

ni �t� = ξt for all 1 ≤ i ≤ n and n ≥ 1. Then

F
−1
n �t� −F−1

n �t� →P 0

if and only if
√
n�an�ε� − t� → ∞ and

√
n�t− bn�ε�� → ∞

for every ε > 0 where

an�ε� ≡ Fn�F−1
n �t� + ε� and bn�ε� ≡ Fn�F−1

n �t� − ε��

4. Proofs for Theorems 1 and 2. The necessity parts of these proofs
are based on majorization arguments. To make these more transparent, we
introduce partial sum functions, also called Lorenz functions [for this and more
background on majorization, see Marshall and Olkin (1979)]. A function from
�0� n� to �0� n� is called piecewise linear if it is continuous and linear on every
interval �k − 1� k�, k = 1�2� � � � � n. We also say that P is a piecewise linear
function with turning points �k1� x1�� �k2� x2�� � � � � �km�xm�, if it is continuous,
P�k1� = x1, P�k2� = x2� � � � �P�km� = xm and linear on �0� n�\�k1� k2� � � � � km�.
The right endpoint �n�P�n�� and, for aesthetic reasons, also the left endpoint
�0�0� are always mentioned among the turning points when the function is
specified.

Given a sequence 0 ≤ q1 ≤ q2 ≤ · · · ≤ qn, its partial sum function Sq is a
piecewise linear function from �0� n� to �0� n� such that

Sq�x� = �x− �x��
�x�∑
i=1

qi + ��x� − x�
( �x�∑

i=1

qi − q�x�

)
�

In other terms, Sq is a piecewise linear function with turning points �0�0��
�1� q1�� �2� q1 + q2�� � � � � �n�

∑n
i=1 qi�. Clearly, Sq is nondecreasing and convex.

Conversely, any nondecreasing convex piecewise linear function S from �0� n�
to �0� n� is a partial sum function for some sequence 0 ≤ q1 ≤ q2 ≤ · · · ≤ qn.
Such a sequence is majorized by a sequence 0 ≤ q̃1 ≤ q̃2 ≤ · · · ≤ q̃n if and
only if

Sq̃�n� = Sq�n� and Sq̃�x� ≤ Sq�x�(4.1)

for all x ∈ �0� n�; that is,
i∑

j=1

q̃nj ≤
i∑

j=1

qnj

for all i = 1�2� � � � � n, with equality for n. [An equivalent and more usual def-
inition of majorization involves the n-vectors q̃ and q arranged in descending
order and the family of reverse inequalities. See Marshall and Olkin (1979),
page 9. For brevity, we say also that Sq is majorized by Sq̃, if (4.1) holds;
that is, the graph of Sq̃ does not exceed that of Sq and they have common
endpoints.
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We use Gleser’s (1975) refinement of Hoeffding’s (1956) inequality.

Lemma 1. Let Yi and Ỹi be, respectively, independent random variables
with Bernoulli�qi� and Bernoulli�q̃i� distributions. If the sequence 0 ≤ q1 ≤
q2 ≤ · · · ≤ qn ≤ 1 is majorized by the sequence 0 ≤ q̃1 ≤ q̃2 ≤ · · · ≤ q̃n ≤ 1, then

P

[ n∑
i=1

Yi ≥ λ

]
≥ P

[ n∑
i=1

Ỹi ≥ λ

]
�

provided λ ≥ �∑n
i=1 qi� + 2.

Fig. 1. Majorization plot.
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As already noted, Theorem 1 is a consequence of Theorem 2. The basic idea
behind the necessity part of the direct proof is contained in Figure 1. For the
details of the direct proof see Mizera and Wellner (1996).
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Now we give several lemmas to prepare for the proof of Theorem 2. Given
a partial sum function Sq, we define its entropy to be

H�Sq� =
n∑

i=1

qi�1 − qi��

Due to concavity of x�1 − x�, we have that H�Sq� ≥ H�Sq̃� whenever Sq is
majorized by Sq̃.

Lemma 2. Let Sq be a partial sum function with Sq�n� = α. If Sq�k� ≤ β,
then

H�Sq� ≤ α− β2

k
− �α− β�2

n− k
�

Proof. Just observe that if Sq�k� ≤ β, then the graph of Sq does not
exceed the graph of piecewise linear function R with turning points �0�0��
�k�β�� �n�α� by convexity of Sq. Then

H�Sq� ≤ H�R� = k
β

k

(
1 − β

k

)
+ �n− k� α− β

n− k

(
1 − α− β

n− k

)

= α− β2

k
− �α− β�2

n− k
�

since R is majorized by Sq. ✷

To overcome the “defect of 2” in Gleser’s inequality given in Lemma 1,
which seems to be substantial [see Gleser (1975) for details], we need also the
following lemma.

Lemma 3. Let 1 ≥ qmi ≥ ηm > 0 for all i = 1�2� � � � �m and m = 1�2� � � � �
Suppose that Ymi are independent random variables with Bernoulli�qmi� dis-
tributions for i = 1� � � � �m. If∑m

i=1 qmi�1 − qmi�
η2
m

= O�1��

then

lim
m→∞P

[ m∑
i=1

Ymi = m

]
> 0�

Proof. Note first that the sequence

P

[ m∑
i=1

Ymi = m

]
=

m∏
i=1

qmi
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is nonincreasing and bounded by 0 from below; hence we can really speak
about the limit. The inequality log x ≥ �x− 1�/x for 0 < x ≤ 1 yields

log
m∏
i=1

qmi =
m∑
i=1

log qmi ≥
m∑
i=1

qmi − 1
qmi

=
m∑
i=1

−qmi�1 − qmi�
q2
mi

≥ −
∑m

i=1 qmi�1 − qmi�
η2
m

�

The statement follows, since the last term is bounded away from −∞. ✷

Proof of the sufficient condition of Theorem 2. Let ε > 0. We begin
by rewriting

P

[∣∣∣∣F−1
n

(
1
2

)
−F−1

n

(
1
2

)∣∣∣∣ > ε

]

≤ P

[
F
−1
n

(
1
2

)
> F−1

n

(
1
2

)
+ ε

]
+P

[
F
−1
n

(
1
2

)
< F−1

n

(
1
2

)
− ε

]

≤ P

[
Fn

(
F−1

n

(
1
2

)
+ ε

)
<

1
2

]
+P

[
Fn

(
F−1

n

(
1
2

)
− ε

)
≥ 1

2

]

= P

[
EFn

(
F−1

n

(
1
2

)
+ ε

)
− Fn

(
F−1

n

(
1
2

)
+ ε

)
> an�ε� −

1
2

]

+P

[
Fn

(
F−1

n

(
1
2

)
− ε

)
−EFn

(
F−1

n

(
1
2

)
− ε

)
≥ 1

2
− bn�ε�

]

≤ P

[∣∣∣∣Fn

(
F−1

n

(
1
2

)
+ ε

)
−EFn

(
F−1

n

(
1
2

)
+ ε

)∣∣∣∣ > an�ε� −
1
2

]

+P

[∣∣∣∣Fn

(
F−1

n

(
1
2

)
− ε

)
−EFn

(
F−1

n

(
1
2

)
− ε

)∣∣∣∣ ≥ 1
2
− bn�ε�

]

≤ Var�Fn�F−1
n � 1

2� + ε��
�an�ε� − 1

2�2
+ Var�Fn�F−1

n � 1
2� − ε��

� 1
2 − bn�ε��2

= c2
n�ε�

n�an�ε� − 1
2�2

+ d2
n�ε�

n� 1
2 − bn�ε��2

�

the last inequality follows from two applications of Chebyshev’s inequality
(note that P��X − EX� ≥ η� ≤ VarX/η2 remains valid for VarX = 0, if
η > 0). Under (2.4), the last terms converge to 0, completing the proof. ✷

Proof of the necessary condition of Theorem 2. The proof is for (2.5b),
(2.6b) and (2.7b); for (2.5a), (2.6a) and (2.7a) it is analogous and symmetric.
The hypothesis implies that, for some ε and some subsequence,

√
n
� 1

2� − bn�ε�
dn�ε�

= O�1��(4.2)
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Note that this automatically entails that bn�ε� → 1/2−. We start from the
elementary inequalities

P
[∣∣F−1

n

( 1
2

)−F−1
n

( 1
2

)∣∣ > ε
] ≥ P

[
F−1

n

( 1
2

)− F
−1
n

( 1
2

)
> ε

]
≥ P

[
Fn

(
F−1

n

( 1
2

)− ε
)
> 1

2

] = P

[ n∑
i=1

Yni >
1
2n

]
�

(4.3)

where Yni are independent random variables with Bernoulli�pni� distribution,
with pni = Fni�F−1

n � 1
2� − ε�. Note that

n∑
i=1

pni = nbn�ε� and
n∑

i=1

pni�1 − pni� = nd2
n�ε��

We shall suppose, without restricting generality, that pn1 ≤ pn2 ≤ · · · ≤ pnn.
If we succeed in finding a subsequence of probabilities appearing in the last
term of (4.3) such that its lim inf is bounded away from zero, we succeed in
proving the inconsistency of the whole sequence—and hence in proving the
statement.

In the sequel, we pass sometimes to a subsequence; however, we keep the
same indexing, to avoid tedious notation. We also drop the argument of ε for
bn and dn.

Suppose first that there is a subsequence such that
√
ndn → ∞, satisfying

(2.5b). The random variables Zni = Yni−pni have zero expectation and satisfy
the Liapunov condition∑

i E�Zni�3
�∑i VarZni�3/2

=
∑

i p
3
ni�1 − pni� + �1 − pni�3pni

�∑i pni�1 − pni��3/2

=
∑

i pni�1 − pni��p2
ni + �1 − pni�2�

�∑i pni�1 − pni��3/2
≤ 2

∑
i pni�1 − pni�

�∑i pni�1 − pni��3/2

= 2
(∑

i

pi�1 − pi�
)−1/2

= 2�nd2
n�−1/2 → 0�

In view of (4.2), we have, for n large,

P

[ n∑
i=1

Yni >
1
2
n

]
= P

[ n∑
i=1

Yni − pni√∑
i pni�1 − pni�

>
√
n

1/2 − bn
dn

]

≥ P

[ n∑
i=1

Zni√∑
i VarZni

≥ M

]
→
∫ ∞

M
φ�x�dx > 0�

by the Liapunov central limit theorem; φ�x� = �2π�−1/2 exp�−x2/2� is the
standard normal density function. Combining this with (4.3) implies that the
median is inconsistent in this case.

Now, for the case of (2.6b), the heuristic outline of the proof is as follows
(Figure 2 seems to be helpful). Condition (2.6b) ensures that, asymptotically,
the entropy of the partial sum function Sn of pni’s is not too small in compar-
ison with the difference between n/2 and nbn. As a consequence, the possible
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Sn lying too close to the minimum entropy boundary (P in Figure 2) are ruled
out. That particularly means that Sn starts to be nonzero before crossing the
boundary of n/2; in other words, there are more than n/2 nonzero pni’s (other-
wise, there is no hope for inconsistency). [The sharpness of (2.6b) is illustrated
by the piecewise linear function which is zero until n/2 and then linearly as-
cends to �n�nbn�: it has entropy approximately equal to nbn.] However, having
enough positive pni’s does not mean automatically inconsistency (as shown in
Examples 4 and 5). The entropy condition helps again, since it admits only
those Sn’s which ascend steeply enough, after being equal to zero. Thus, after
ruling out the low entropy cases, the majority of the remaining possible Sn’s
is majorized by a partial sum function such that it is easily seen to yield in-
consistency (Q or Q2 in Figure 2). The inconsistency for Sn’s then follows via
Gleser’s inequality. Due to its, already mentioned, “defect of 2,” not all of the
Sn’s could be treated this way: for these, Lemma 3 applies.

To start with details, suppose that there is a subsequence
√
ndn → K > 0

satisfying (2.6b). Such a sequence contains only a finite number of dn = 0, so
that we can pass to a subsequence containing no dn = 0. We can pass further
to a subsequence such that

√
n
� 1

2� − bn
dn

→ M < K�(4.4)

As a consequence, n�1/2 − bn� → L = MK. Now, let

��nbn�� ≡
{ �nbn� − 1� if 1

2n−L is an integer and nbn ≥ 1
2n−L�

�nbn�� otherwise�

Let $n = nbn − ��nbn��. Here, the following possibilities can occur: L and 2L
is not an integer, that is, the fractional part of n/2 − L is never zero; then
since n/2 −L− nbn → 0, we have

lim inf
n→∞ $n > $ > 0�(4.5)

Or, n/2 − L is integer for odd or even n (note that the possibilities are ex-
clusive), but there is (respectively for odd or even n) a subsequence of nbn
approaching n/2 − L from below; more precisely, n/2 − L − nbn is decreas-
ing and nonzero. Then again (4.5) holds. All these possibilities are denoted
as case (a) (Figure 2a). Note that, in this case, we can pass to a subsequence
such that $n < 1 (n should be large, and odd or even n should be reduced to
a subsequence if necessary). Hence

lim sup
n→∞

$n ≤ 1�(4.6)

In the remaining case, denoted as case (b) (Figure 2b), n/2 −L is integer for
odd or even n, and, respectively for odd or even n, we can pick only (recall
that, from every convergent sequence, a monotone subsequence can be picked)
a subsequence of nbn approaching n/2 −L from above; that is, n/2 −L−nbn
is increasing, possibly zero. Then we reduce, respectively, odd or even n to this
subsequence; for those n, we have $n ≥ 1, hence (4.5) holds, and, since n/2 −
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Fig. 2a. Case (i), since L = 0 and n = 9 is odd, and case (a), since n/2 −L is not integer.

L− nbn → 0, we have also (4.6). For remaining n (even or odd, respectively),
we have (4.5) and (4.6) due to the same reason as in case (a), since n/2−L is
not integer. Summing up, we can pass to a subsequence such that $n ≥ $ > 0
for all n, and such that either (a) $n < 1 for all n or (b) $n → 1+, $n < 2 for
all n.

Let Fn = n − ��nbn��, let En = Fn − 1. Let Ẽn = En in case (a) (see
Figure 2a); let Ẽn = En − 1 in case (b) (see Figure 2b). For n odd, let D̃n =
Gn = �n/2�, Dn = �n/2�; for n even, let D̃n = n/2+1, Dn = n/2−1, Gn = n/2.
In all cases, let An = Dn − 3, Bn = Dn − 2, Cn = Dn − 1. Note that, in any
case, we have

4 ≤ En −An + 1 = Fn −An ≤ L+ 6�(4.7)

due to (4.6) (see again Figure 2).
Returning to (4.3), we consider the partial sum function Sn of pni’s. Since

all pni ≥ 0, we have Sn�x� ≥ 0 for all x; since all pni ≤ 1, the graph of Sn
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Fig. 2b. Cases (b) and (ii): L = 4� n = 14 and nbn approaches n/2−L from above. All the symbols
are explained in the text, except for R� which is a model example for Rm (or R from Lemma 2),
bounding partial sum functions passing below the point �Gn�2�.

lies above (possibly touching) the line with slope 1, passing through �n�nbn�.
Consequently, Sn is majorized by the piecewise linear function P with turning
points �0�0�, �Ẽn�0�, �Ẽn + 1� nbn − �nbn�� and �n�nbn� (see Figure 2). Note
that Ẽn + 1 ≤ Fn.

Now, we have again two cases—for the whole current subsequence (n is
considered large enough): (i) Gn = Fn (this happens if L = 0 and n is odd, as
in Figure 2a); (ii) Gn �= Fn (as in Figure 2b). In case (i), let Q be the piecewise
linear function with turning points �0�0�, �En�0�, �Fn�$n� and �n�nbn�—the
partial sum function of the sequence of probabilities

qni =




0� for i = 1�2� � � � �An�

$n

Fn −An

� for i = Bn�Bn + 1� � � � �En�

1� for i = Fn + 1�Fn + 2� � � � � n�
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Note that (4.6) and (4.7) ensure that $n/�Fn −An� ≤ 1. If Sn is majorized by
Q for infinitely many n, we have by Lemma 1, for all these n,

P

[ n∑
i=1

Yni >
1
2
n

]
≥ P

[ n∑
i=1

Bernoulli�pni� ≥
1
2
n+ 3

]

≥ P

[ n∑
i=1

Bernoulli�qni� ≥
1
2
n+ 3

]

≥
(

$n

Fn −An

)Fn−An

≥
(

$

L+ 6

)L+6

> 0�

the last inequalities due to (4.5) and (4.6).
In case (ii), we shall show first that we can pass to a subsequence such that

Sn�Gn� > 2 > 0�(4.8)

If (4.8) fails, then we have limn→∞Sn�Gn� = 0; then, given any m = 1�2� � � � �
there is an N�m� ≥ m such that SN�m� ≤ 1/m; that is, SN�m� ≤ Rm, where
Rm is the piecewise linear function with turning points �0�0�, �Gm�1/m�,
�N�m��N�m�bN�m��. Since K2 = limn→∞ nd2

n, Lemma 2 yields

K2 = lim
m→∞N�m�d2

N�m� = lim
m→∞

N�m�∑
i=1

pN�m�� i�1 − pN�m�� i�

= lim
m→∞H�SN�m�� ≤ lim

m→∞H�Rm�
and

H�Rm� = N�m�bN�m� −
m−2

GN�m�
− �N�m�bN�m� −m−2�2

N�m� −GN�m�
→ MK�

since N�m�bN�m� −N�m�/2 → −L, bN�m� → 1/2, GN�m� ∼ N�m�/2 and due
to (4.6). We have obtained that K2 ≤ MK, a contradiction to (4.4).

Hence, in case (ii) there is a 2 > 0, independent of n, such that (4.8) holds.
Note that, due to (4.7) and (4.5), we can choose 2 such that

$n − 2 >
2

En −An

(4.9)

for all n. We have then $n − 2 ≤ 1 for large n, due to (4.6); we pass again to
a subsequence to have it for all n. This and (4.9) ensure that the piecewise
linear function Q2 with turning points �0�0�, �An�0�, �En�2�, �Fn�$n� and
�n�nbn� is the partial sum function of the sequence of probabilities

qni =




0� for i = 1�2� � � � �An�

2

En −An

� for i = Bn�Bn + 1� � � � �En�

$n − 2� for i = Fn�

1� for i = Fn + 1�Fn + 2� � � � � n
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(see Figure 2b). Again, if Sn is for infinitely many n majorized by Q2, we have
by Lemma 1, for all these n,

P

[ n∑
i=1

Yni >
1
2
n

]
≥ P

[ n∑
i=1

Bernoulli�pni� ≥
1
2
n+ 3

]

≥ P

[ n∑
i=1

Bernoulli�qni� ≥
1
2
n+ 3

]

≥ �$n − 2�
(

2

En −An

)En−An

≥
(

2

L+ 6

)L+6

> 0�

the last inequalities due to (4.5), (4.6) and (4.9). Note that in both cases (i)
and (ii), Gleser’s inequality was applicable since

1
2n+ 3 ≥ 1

2n+ 3 −L ≥ �nbn� + 2�

Hence, we obtained inconsistency, if, for infinitely many n, Sn is majorized by
Q, in case (i), or by Q2, in case (ii).

Thus, it remains only to show what happens if Sn is only for finitely many
n majorized by Q2 (or Q). Then, for infinitely many n, the graph of Q2 (or
Q) exceeds that of Sn. We pass to the corresponding subsequence; case (ii) is
treated first. Note that in this case we have not only (4.7), but also

4 ≤ En −An�(4.10)

We have Sn�Bn� < Q2�Bn� or Sn�Cn� < Q2�Cn� or Sn�Dn� < Q2�Dn�. Since
Sn�Gn� ≥ 2 [recall (4.8)], either

Sn�Gn� −Sn�Bn� ≥ 2− 2
1

En −An

(4.11)

and consequently

Sn�Gn� −Sn�Dn� ≥
1
3
2

(
1 − 1

En −An

)
≥ 1

4
2�(4.12)

in view of (4.10); or

Sn�Gn� −Sn�Cn� ≥ 2− 2
2

En −An

(4.13)

and similarly

Sn�Gn� −Sn�Dn� ≥
1
2
2

(
1 − 2

En −An

)
≥ 1

4
2�(4.14)

or directly

Sn�Gn� −Sn�Dn� ≥ 2− 2
3

En −An

≥ 1
4
2�(4.15)

for the same reason (see Figure 2b). Hence,
1
42 ≤ pn�Gn

≤ pn�Gn+1 ≤ · · · ≤ pnn�(4.16)
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In case (i), we proceed in an entirely similar way: as in (4.11)–(4.15), with
Q instead of Q2, Fn instead of En, $ instead of 2 and using (4.7) instead of
(4.10). In both cases we arrive to (4.16); then Lemma 3 concludes that

lim inf
n→∞ P

[ n∑
i=1

Yni >
1
2n

]
≥ lim

n→∞P

[ n∑
i=Gn−1

Yni = n−Gn + 1
]
> 0�

since ∑n
i=Gn−1 pni�1 − pni�

� 1
9�2

≤
∑n

i=1 pni�1 − pni�
� 1

9�2
= O�1��

with $ instead of 2 in case (i). Thus, we have obtained inconsistency—and
finished the proof for (2.6b).

Finally, suppose that there is a subsequence of odd integers satisfying (2.7b).
If it contains an infinite number of n such that bn = 1/2, we have for all these
n that sample median equals F−1

n � 1
2� − ε—for n odd, multiple median points

are not possible. This yields inconsistency. Thus, suppose there is only a finite
number of n such that bn = 0; pass to a subsequence such that all bn < 1/2.
Such a subsequence cannot have dn = 0 for infinitely many n, since this would
result in a subsequence containing ∞ infinitely many times, contradicting
(2.7b). Hence, we can pass to a subsequence containing only nonzero dn.

The rest of the proof proceeds along the same lines as that for (2.6b). Note
that in this case we have K = M = L = 0, hence D̃n = Fn: thus, case (b)
cannot occur, since n is odd. Since Gn = D̃n for n odd, we have only case (i).
Then either Sn is not exceeded by Q infinitely many times (then Lemma 1
applies) or it is infinitely many times exceeded by Q at An or Bn, but not
exceeded at Gn, the case covered by Lemma 3. ✷
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Dufour, J.-M., Hallin, M. and Mizera, I. (1995). Generalized runs tests for heteroscedastic time

series. J. Nonparametr. Statist. To appear.
Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Wiley, New York.
Gleser, L. J. (1975). On the distribution of the number of successes in independent trials. Ann.

Probab. 3 182–188.
Hallin, M. and Mizera, I. (1996). Sample heterogeneity and the asymptotics of M-estimators.

Preprint IS-P 1996-15 (n. 49), Inst. Statistique, Univ. Libre de Bruxelles. (Available
via http://www.dcs.fmph.uniba.sk/∼mizera/writings.html.)

Hallin, M. and Mizera, I. (1997). Unimodality and the asymptotics of M-estimators. In L1-
Statistical Procedures and Related Topics (Y. Dodge, ed.) 47–56. IMS, Hayward, CA.

Hoeffding, W. (1956). On the distribution of the number of successes in independent trials. Ann.
Math. Statist. 27 713–721.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer.
Statist. Assoc. 58 713–721.



692 I. MIZERA AND J. A. WELLNER

Huber, P. J. (1981). Robust Statistics. Wiley, New York.
Kiefer, J. (1970). Old and new methods for studying order statistics and sample quantiles. In

Nonparametric Techniques in Statistical Inference (M. L. Puri, ed.) 349–357. Cambridge
Univ. Press, Cambridge.

Kolmogorov, A. N. (1931). Method of median in the theory of errors. Mat. Sb. 38 47–50.
[Reprinted in English in Selected Works of A. N. Kolmogorov (A. N. Shiryayev, ed.)
Kluwer, Dordrecht, 1991.]

Marshall, A. W. and Olkin, I. (1979). Inequalities: Theory of Majorization and Its Applications.
Academic Press, New York.

Mizera, I. (1993). Weak continuity and identifiability of M-functionals. Ph.D. dissertation,
Charles Univ., Prague. (In Slovak.)

Mizera, I. and Wellner, J. A. (1996). Necessary and sufficient conditions for weak consis-
tency of the median of independent but not identically distributed random vari-
ables. Technical Report 306, Dept. Statistics, Univ. Washington, Seattle. (Available
via http://www.stat.washington.edu/jaw/jaw.research.available.html.)

Moore, A. W., Jr. and Jorgenson, J. W. (1993). Median filtering for removal of low-frequency
background drift. Analytical Chemistry 65 188–191.

Petrov, V. V. (1995). Limit Theorems of Probability Theory. Clarendon, Oxford.
Portnoy, S. (1991). Asymptotic behavior of regression quantiles in nonstationary, dependent

cases. J. Multivariate Anal. 38 100–113.
Sen, P. K. (1968). Asymptotic normality of sample quantiles for m-dependent processes. Ann.

Math. Statist. 39 1724–1730.
Sen, P. K. (1970). A note on order statistics for heterogeneous populations. Ann. Math. Statist.

41 2137–2139.
Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York.
Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics.

Wiley, New York.
Stigler, S. M. (1976). The effect of sample heterogeneity on linear functions of order statistics

with applications to robust estimation. J. Amer. Statist. Assoc. 71 956–960.
Weiss, L. (1969). The asymptotic distribution of quantiles from mixed samples. Sankhyā Ser. A
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