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ON GLOBAL PERFORMANCE OF APPROXIMATIONS TO
SMOOTH CURVES USING GRIDDED DATA
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Australian National University

Approximating boundaries using data recorded on a regular grid in-
duces discrete rounding errors in both vertical and horizontal directions.
In cases where grid points exhibit at least some degree of randomness,
an extensive theory has been developed for local-polynomial boundary es-
timators. It is inapplicable to regular grids, however. In this paper we
impose strict regularity of the grid and describe the performance of lo-
cal linear estimators in this context. Unlike the case of classical curve
estimation problems, pointwise convergence rates vary erratically along
the boundary, depending on number-theoretic properties of the boundary’s
slope. However, average convergence rates, expressed in the L1 metric, are
much less susceptible to fluctuation. We derive theoretical bounds to per-
formance, coming within no more than a logarithmic factor of the optimal
convergence rate.

1. Introduction.

1.1. Information in digitized data. Consider the problem of digitizing a
curve from the trace that it leaves on a grid. Suppose the region above the
curve, represented by the equation y = g�x�, is colored black and the area
below, white; and that the vertices of the grid preserve these colors, but provide
no other information. From the color pattern we wish to approximate the curve
itself. Even without noise, no precise observations of g are available, unless
the boundary should happen to pass directly through a vertex.

In the case of a regular grid, such as a square lattice (used in most imaging
equipment) or hexagonal lattice (employed in at least one proprietary image
analyser), relatively little theory exists for describing the performance of esti-
mators computed from vertex color data. Curiously, the case of a random array
of grid points is simpler and has received considerable attention. A random
array might, for example, arise through a Poisson distribution of vertices in
the plane and has the attractive property that there are no special orienta-
tions for which it is likely to produce better approximations to boundaries.
It offers a continuum of possibilities for approximation. This is particularly
advantageous for theoretical analysis, and so various “jittered” grids (with
vertices perturbed randomly within small regions centered at vertices of a
regular lattice) have been treated as approximations to regular grids.

A detailed account of different grid types, including jittered grids, is pro-
vided by the monograph of Korostelev and Tsybakov (1993). These authors
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devote particular attention to local polynomial approximations to boundaries,
using vertex color data. They survey the literature, noting that the regular grid
case has received little attention and pointing out the elegance and detail of
results available for the continuum or “random grid” case. In the context of
engineering, the Freeman code [Freeman (1970)] is a particularly well-known
practical method for tracking a boundary using discrete data on vertex colors.
Worring and Smeulders (1995) describe related techniques and recent appli-
cations and survey the literature.

1.2. Description of main results. In this paper we devote attention to
regular grids. There, even the noiseless case requires attention, although
statistical methods for noisy data are helpful to its analysis; see Section
1.3. It is sufficient to treat the case of a square grid, since almost identical
results for its more sophisticated competitors, such as hexagonal arrays of
vertices, are readily obtained by noting that square subgrids are embedded
within them and that they are in turn embedded within overlapping square
grids.

We derive upper bounds to the error of approximation by local linear
smoothers and their interpolants. It is shown that a twice-differentiable
curve inscribed on a square grid of edge width n−1 is approximable at rate
rn = �n−1 log n�4/3, in an L1 sense, with or without noise, and that the rate is
valid uniformly in a special class of twice-differentiable functions. It may be
proved that in a minimax sense, for randomly tilted and shifted curves with
two nonvanishing bounded derivatives, observed on a regular grid, the rate
n−4/3 is a lower bound.

A convergence rate in the case of regular grids has been given by Korostelev
and Tsybakov [(1993), pages 139 and 140], for their “preliminary estimator,”
although it is only n−1�log n�1/2. This rate is for the Hausdorff metric and in a
pointwise sense. The methods of Korostelev and Tsybakov for improving the
performance of this estimator require irregularly arranged grid vertices and
so are not applicable to the contexts treated in the present paper.

1.3. Role of number-theoretic properties of slope. The L1 measure provides
only an average description of convergence. Unlike the classical case of non-
parametric curve estimation, the L1 rate is not available at each fixed point.
Indeed, using local linear methods to estimate y = g�x� at a given point x = t,
where g′�t� is rational, the best rate of convergence that can be expected is
O�n−1�—substantially inferior to the rate rn. Superior rates can be achieved
at other places; for example, it may be shown that the rate of convergence of
an appropriately smoothed local linear estimator at points t such that g′�t� is
a quadratic irrational [i.e., g′�t� is the solution of a quadratic equation with
rational coefficients] is n−4/3.

More generally, points t at which g has a rational or irrational slope fall into
different categories, and the pointwise rate of convergence to g�t� is driven
by properties of a continued fraction expansion of the real number g′�t�. That
expansion is of infinite extent if and only if g′�t� is irrational.
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Convergence rates in L1, describing “average” performance of an estimator,
are arguably of more practical relevance than pointwise rates, which in the
present problem have been treated by Hall and Raimondo (1997). In both
instances the methods rely on techniques from number theory. Indeed, the
fact that the convergence rate rn is available in an L1 sense, even though it is
not valid for a dense set of fixed points (e.g., the rationals), is a consequence
of metric number theory: if the value of g′�t� should be chosen randomly in
the interval �0
1�, then with probability 1 the pointwise approximation to g
at t would be at least as good as rn. Versions of the results in this paper for
high-order polynomial smoothers are restricted by the difficulty of developing
high orders of Diophantine approximation [e.g., Baker (1986), Chapter 1].

One portion of the logarithmic factor in rn derives from the fact that if g′�t�
is chosen randomly, then the ratio of any two consecutive partial denominators
in its continued fraction expansion has a Cauchy-like distribution, with the
tail of the distribution decreasing like x−1. Thus, even in the absence of noise,
the arguments leading to our results rely on statistical analysis.

2. Approximation using noiseless, gridded data. Our basic result,
Theorem 2.1, provides a bound for a direct approximation, y = ḡ�x�, to a
boundary y = g�x� at a general point x = t, using vertex color data on a
square grid. One term in the bound depends on the accuracy of a rational ap-
proximation to the slope of g at t and requires a little elaboration. To this end,
Theorem 2.2 provides a bound to the integral average of that term. Theorem
2.3 applies that result to describe performance of ḡ in the L1 metric.

We begin by noting number-theoretic results which are important to our
analysis. Let u > 0 be an irrational number, and consider an expansion of u
as a continued fraction:

�2
1� u = �a0	a1
 a2
 
 
 
� = a0 +
1

a1 + 1
a2+ 1

a3+···




Here, a0 ≥ 0, an ≥ 1 for n ≥ 1 and each an is an integer. The numbers

p0

q0
= a0


p1

q1
= a0 +

1
a1



p2

q2
= a0 +

1

a1 + 1
a2


 
 
 


are called the convergents of u. For n ≥ 1, pn and qn are positive and relatively
prime, q0 = 1, the sequence 
qn�u�
 n ≥ 1� is strictly increasing,

�2
2� {
qn�qn + qn+1�

}−1
< �u− �pn/qn�� < �qnqn+1�−1


�2
3� inf
p
1≤q≤qn

�u− �p/q�� = �u− �pn/qn��


�2
4� p2n/q2n ↑ u
 p2n+1/q2n+1 ↓ u


See, for example, Chapter 9 of Leveque (1956). In the case of rational u, the
sequence 
qn�u�� is strictly increasing until, for some finite n0 = n0�u�, we
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have qn�u� = qn0
�u� and pn�u�/qn�u� = u for all n ≥ n0. [This is a definition;

other conventions argue that qn�u� is not defined for such u and n.] Results
(2.2)–(2.4) hold for rational u provided that 1 ≤ n ≤ n0 − 1.

In developing our results, it is convenient to assume initially that the curve
is monotone, since this avoids awkward notation connected with either positive
or negative slopes. However, our main result in this section, Theorem 2.3, does
not require monotonicity.

Let � �B� be the class of all functions g that are strictly increasing and
differentiable on � = �0
1� and whose first derivative satisfies the Lipschitz
condition ∣∣g′�x1� − g′�x2�

∣∣ ≤ B �x1 − x2� for all x1
 x2 ∈ � 


Let � denote the curve defined by y = g�x�, for x ∈ � , and consider the
square grid whose vertices are at points �in−1
 jn−1� for pairs of integers i
 j
with 0 ≤ i ≤ n. Let � = � �n� denote the set of all such vertices. Color
black each vertex that lies above � and white each vertex that lies below.
(Vertices lying on the curve may be regarded as “colorless,” or alternatively, as
having either color, specified either randomly or deterministically.) We wish
to estimate g from the pattern � = � �� 
� � of vertex colors.

Suppose we wish to estimate g at a point t ∈ � . Let �t denote the set
of all vertices �in−1
 jn−1� such that in−1 ∈ �t − h
 t + h� ∩ � , where h > 0
is a bandwidth, and consider the color pattern �t among these vertices. If
there exists a straight line � which is consistent with �t, let ḡ�t� be the y
coordinate of the point where this line cuts the vertical line x = t. (Any line �
consistent with the color pattern in the thin strip �t may be chosen; naturally,
we do not ask that it be consistent with the pattern in all of � .) If no line is
consistent with the pattern, let � denote any line which minimizes the errors
that arise if it is considered to have produced the pattern �t, with any positive
assignment of weights (bounded away from zero and infinity) to a vertex on
the wrong side of � (e.g., a black vertex below � ), and zero weight to a vertex
on the correct side; and let ḡ�t� be the point at which � cuts the vertical line
x = t.

In either of these cases, the straight line � defining ḡ�t� might be regarded
as a local “line of best fit” to the vertex color pattern in �t. Note particularly
that our definition permits us to define ḡ�t� right up to the ends of �—edge
effects do not require us to restrict t to the interval �h
1 − h�.

Theorem 2.1. Let u denote g′�t�. There exist positive absolute constants
A1, A2 and A3 such that, if N = N�s� is the largest integer for which qN�s� ≤
A1nh, then

�2
5� �ḡ�t� − g�t�� < A2h
{
qN�u��u�qN�u�+1�u�

}−1 +Bh2

for all g ∈ � �B�, t ∈ � , 0 < h < 1
2 and nh ≥ A3.

Remark 2.1. Improving the second term on the right in (2.5). If g has two
bounded derivatives on � then of course g ∈ � �B�, with B = sup �g′′�. A
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minor modification to the proof of Theorem 2.1 shows that in that case, (2.5)
holds true with the term Bh2 replaced by 1

2B�h
 t�h2, where

B�h
 t� = sup
s∈� � �s−t�≤h

∣∣g′′�s�∣∣


Remark 2.2. Origins of the two terms in (2.5). The two terms on the right-
hand side of (2.5) represent, respectively, the error due to discretization and
the error that arises from the fact that ḡ is a linear approximation rather than
something more sophisticated. In classical statistical formulations of related
problems, the second term would be referred to simply as “bias.”

An order h2 term for bias is, of course, typical in the context of approximat-
ing twice-differentiable functions using second-order methods, such as local
linear ones. See for example Wand and Jones (1995), Chapter 5. The first
term on the right-hand side of (2.5) is also close to being best possible. It
arises directly from the upper bound given by (2.2). The lower bound there is
always greater than half the upper bound, indicating that the upper bound is
accurate.

Next we present a bound for the integral of the first term on the right-
hand side of (2.5). Here we need to be a little more restrictive about g. Let
�1 be the class of all functions g that are strictly increasing and have two
bounded derivatives on � = �0
1� and satisfy inf x∈� g′′�x� > 0. Generally, let
N�u� denote the largest integer such that qN�u��u� ≤ r; in Theorem 2.1 we
considered the special case r = A1nh.

Theorem 2.2. There exists a positive absolute constant A4 such that

�2
6�

∫
�

[
qN
g′�t��
g′�t��qN
g′�t��+1
g′�t��]−1

dt

< A4

∣∣g′�0� − g′�1�∣∣ ( inf
�

∣∣g′′∣∣)−1
r−2 �log r�2

for all r ≥ 2 and all g ∈ �1.

Remark 2.3. Method of proof. A statistical argument is used to derive The-
orem 2.2. It involves writing the left-hand side as

E
[
qN
g′�T��
g′�T��qN
g′�T��+1
g′�T��]−1




where T has the uniform distribution on � , and bounding the probabilities
that the random argument of the expectation operator takes values of specific
size.

Remark 2.4. The need to avoid points of inflection. (Here and below we
define a point of inflection of f to be any point where f′′ vanishes.) Formula
(2.6) suggests that the greatest difficulty is caused by points of inflection,
where (perhaps only instantaneously) the derivative of g is not changing.
An examination of the derivations of Theorems 2.1 and 2.2 shows that this
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difficulty is real, not an artifact of the method of proof. Indeed, the “�inf �g′′��−1”
term on the right-hand side of (2.6) arises through the necessarily large size
of 
qN�u��u�qN�u�+1�u��−1 if u is changing very slowly; see (3.3).

To better appreciate this point, consider the case where g is purely linear.
Then g′ is constant and g′′ vanishes. If the slope of the straight line y = g�x�
is rational, then the best possible rate of approximation to g, using all the
information in the full vertex color pattern � , is generally only O�n−1� (unless
the line happens to pass through vertices). Therefore, the convergence rate
of virtually O�n−4/3� that is achievable from local linear approximation in
other circumstances (see Remark 2.6) is not valid here, and so the constant
coefficient associated with that rate must be infinite.

Remark 2.5. The case of a turning point. A turning point is much less of
a problem than a point of inflection. Although a turning point is specifically
excluded by the conditions of Theorem 2.2, once we have derived that result
we may take limits as any turning point is approached, without affecting the
validity of (2.6). Indeed, combining Theorems 2.1 and 2.2, we may establish
a bound that is applicable to approximations of functions in intervals where
there do not exist points of inflection, as follows.

Let �2 be the class of all functions g that have two bounded derivatives on
� , and satisfy inf x∈� �g′′�x�� > 0. Define B�h
 t� as in Remark 2.1.

Theorem 2.3. Let A1
 
 
 
 
A4 be as in Theorems 2.1 and 2.2, and put r =
A1nh. Then,

�2
7�

∫
�

�ḡ�t� − g�t��dt < A2A4 h
∣∣g′�0� − g′�1�∣∣ ( inf

�

∣∣g′′∣∣)−1
r−2 �log r�2

+ 1
2h

2
∫
�

B�h
 t�dt

for all g ∈ �2, 0 < h < 1
2 and nh ≥ max �2/A1
A3�.

Theorem 2.3 is a corollary of Theorems 2.1 and 2.2, noting the symmetry
that exists between cases where g′ < 0 and g′ > 0 and the fact that g′ = 0 is
allowed by taking limits.

Remark 2.6. Convergence rate. The second term on the right-hand side of
(2.7) does not depend on n, and is asymptotic to 1

2h
2
∫
� �g′′� as h → 0. The

first term is asymptotic to C�n2h�−1 
log�nh��2 as h → 0 and nh → ∞, where

C = A−2
1 A2A4

∣∣g′�0� − g′�1�∣∣ ( inf
�

∣∣g′′∣∣)−1



Equating the orders of magnitude of these two terms, and choosing h to
solve this identity, we see that if h is taken equal to a constant multiple
of �n−1 log n�2/3 then

�2
8�
∫
�

�ḡ�t� − g�t��dt = O
{(
n−1 log n

)4/3}
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This rate is attained uniformly in functions g ∈ �2 for which inf �g′′� and
sup �g′′� are bounded away from zero and infinity, respectively.

This convergence rate is not available uniformly in t or even at individual
points. For example, when t is a turning point of g, the bandwidth within
which the approximation is conducted needs to be of size at least h = n−1/2 in
order for vertices on both sides of the curve to be contained within a horizontal
strip of width h2. Since h2 represents the extent to which bias interferes with
local linear approximations, it provides a lower bound, as well as an upper
bound, to accuracy; and so h = n−1/2 produces an error of n−1.

Remark 2.7. Performance in other Lp metrics. Versions of all these results
may be derived in other Lp metrics, although for p > 1 there are qualifications.
When 0 < p < 1, the best Lp convergence rate achievable by our methods is
actually slightly better, by a logarithmic factor, than the pth power of the rate
O
�n−1 log n�4/3� noted in Remark 2.6. [Recall that for 0 < p < 1, the Lp norm
is defined by

�g1 − g2� =
∫
�

�g1�t� − g2�t��p dt


and so is not standardized for p.] However, for p > 1 the best convergence
rate that we are presently able to derive is inferior to n−4/3 by a factor nα,
where α = α�p� increases with p.

Remark 2.8. Local polynomial estimators. As an alternative to ğ, one may
define a version ḡγ of the approximant ḡ = ḡ2 in which the boundary between
black and white vertices is approximated by a polynomial of degree γ− 1. We
might expect an analogue of (2.7) to hold for ḡγ; for example,

�2
9�
∫
�

�ḡγ�t� − g�t��dt = O
{
h �nh�−γ+ε + h2}

for all ε > 0. This would allow the rate of convergence in (2.8) to be improved to
∫
�

�ḡγ�t� − g�t��dt = O
(
nε−2γ/�γ+1�)

for all ε > 0.
Such results seem particularly difficult to derive, however. Just as our proof

of (2.7) relies on bounds to integer approximations to linear functions of in-
tegers [see (3.2), for example], so (2.9) seems to require bounds on integer
approximations to �γ − 1�th degree polynomials in integers. Our efforts at
deriving such results have not enabled us to achieve the convergence rate de-
scribed by (2.9). Hence, they will not be presented here. Related work on such
approximations in more classical contexts includes those described by Schmidt
(1980) and Baker (1986).
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Remark 2.9. Effect of additive noise. These results may be extended to
cases where the observed color is subject to both systematic and stochastic
error. For example, suppose the intensity of the noiseless signal may be ex-
pressed as

f�x
y� = f1�x
y� + f2�x
y�I
y ≤ g�x��

where f1, f2 and g have two bounded derivatives, f2 is bounded away from
zero and g does not have points of inflection. Suppose we observe f on a grid,
contaminated by additive noise εij, so that the data Y�i/n
 j/n� are generated
as Y�i/n
 j/n� = f�i/n
 j/n� + εij for 1 ≤ i, j ≤ n. Assume that the εij’s are
independent and identically distributed random variables with zero mean and
finite moment generating function within some neighborhood of the origin.
Under these conditions it is possible to construct a local linear estimator ĝ,
for example, based on a wavelet or least-squares diagnostic, that attains the
convergence rate at (2.8):

E

{ ∫
�

�ĝ�t� − g�t��dt
}
= O

{(
n−1 log n

)4/3}



An example of the wavelet approach is given in an unpublished technical
report obtainable from the authors, while the least-squares method has been
treated by Hall and Raimondo (1997).

3. Technical arguments.

Proof of Theorem 2.1. First we treat the case of a fixed straight line on
a fixed square grid whose vertices are at integer pairs (as distinct from integer
multiples of n−1; thus, we are in effect considering n = 1). Let 0 < c1 < c2 <
∞ be constants and temporarily redefine � as the set of all vertices whose
x coordinates lie in � = �c1m
c2m�. Let � denote the line with equation
y = ux + v and let � be the set of all candidates �̂ for � which produce
the same vertex color pattern in � as � . Let dm�� 
� 	x0
 �̂ � denote the
absolute value of the difference between the y-coordinates of the places where
� and �̂ intersect the line x = x0, for x0 ∈� , and define

dm�� 
� � = sup
x∈� 	 �̂ ∈�

dm�� 
� 	x
 �̂ �


Let K = K�u� be the largest integer such that qK�u� ≤ 1
4c1m. [By convention,

q0 = 1, and so K�u� is well defined if m ≥ 4/c1.]

Lemma 3.1. If c2/c1 ≥16 then dm�� 
� �<18 c2m 
qK�u��u�qK�u�+1�u��−1,
uniformly in choices of v.

Proof. Let V1 be the black vertex in � that is nearest to � among all
such vertices (with distance measured vertically, here and below) and let �1
be the line parallel to � that passes through V1. Let V2 be the white vertex in
� that is nearest to �1 among all such vertices and let �2 be the line that is
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parallel to � and passes through V2. Then � lies between �1 and �2. Let d1m
denote the vertical separation of �1 and �2 and let L = L�u� be the largest
integer such that qL�u� ≤ 1

4�c2 − 3c1�m. Defining d2m = c2m �qL qL+1�−1, we
prove that

�3
1� d1m < d2m


It follows that both V1 and V2 are distant less than d2m from � in the vertical
direction. At this point in the proof we require only c2/c1 > 3, rather than the
stronger assumption c2/c1 > 16.

We may assume without loss of generality that L = 2k is even, in which case
we first develop an approximation to � using white vertices in the vertical
direction. For odd L, this particular approximation could be via black vertices,
again vertically.

Let v1 be chosen such that �1 has equation y = ux + v1 and write �z� for
the integer part of the positive number z. We may write v1 = i1 − uj1 for
integers i1 and j1. Then

d1m = min
c1m≤j≤c2m

�uj+ v1 − �uj+ v1�� = min
c1m≤j≤c2m


u�j− j1� − �u�j− j1���


which is the vertical distance of V2 from �1. The interval �c1m−j1
 c2m−j1�
contains an interval of length at least 1

2�c2 − c1�m which does not have the
origin as an interior point. Without loss of generality, the interval is entirely
nonnegative. Then, with c3 denoting any positive number strictly less than
c4 = 1

2�c2 − c1�, there exists an integer j2 = j2�u
 v� ∈ �0
 1
2�c1 + c2�m� such

that

�3
2� d1m≤ min
c3m+j2≤j≤c4m+j2

�uj−�uj��≤ c2m min
c3m+j2≤j≤c4m+j2

(
u− j−1�uj�)


Since c1 < 1
3c2, then with c3 = 1

4�c2 − 3c1� we have 0 < c3 < 1
2�c2 − 3c1�. In

this case, m/q2k ≥ 4/�c2 − 3c1� > �c4 − c3�−1, implying that the length of the
interval ��c3m+ j2�/q2k
 �c4m+ j2�/q2k� is strictly greater than 1. Therefore,
the interval contains an integer l, say, for which c3m+j2 ≤ lq2k ≤ c4m+j2. By
properties (2.2) and (2.4) of convergents, 0 < u − �lp2k/lq2k� < �q2kq2k+1�−1.
Now, r = �ulq2k� is the largest integer such that r/lq2k < u, and so is the
integer such that u−�r/lq2k� is as small as possible, subject to being positive.
Therefore, by properties (2.3) and (2.4) of convergents, r = lp2k. Hence, with
j = lq2k we have u − j−1�uj� < �q2kq2k+1�−1. Result (3.1) now follows from
(3.2).

Now divide the interval � = �c1m
c2m� into three (slightly overlapping)
parts, �1 = �c1m
c5m�, �c5m
c6m� and �2 = �c6m
c2m�, where c5 = 4c1
and c6 = 5c1. Let �i be the set of all vertices whose x coordinates lie in
�i. Apply the argument above to �1 and �2 instead of � (and so �c1m
c5m�
and �c6m
c2m� instead of �c1m
c2m�), establishing the existence of vertices
V

�b�
1 
V

�w�
1 
V

�b�
2 and V

�w�
2 such that (1) V�b�

i and V
�w�
i both lie in �i; (2) vertices

V
�b�
1 and V

�b�
2 are black, while both the other two are white and (3) each of

V
�b�
1 
V

�w�
1 
V

�b�
2 and V

�w�
2 is distant no more than d3m from � , where d3m =
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c2m�qKqK+1�−1. [It is at this point that we need the condition c2/c1 > 16,
which implies that 1

4�c2 − 3c6� > 1
4c1 and c2/c6 > 3. Note too that c5/c1 > 3.

The quantity d3m is an upper bound to the versions of d2m obtained when �
is replaced by �1 or �2 in (3.1).]

Let � �b� [respectively, � �w�] be the line segment joining V
�b�
1 to V�b�

2 [respec-
tively, V�w�

1 to V
�w�
2 ], and let �1 denote the set of all lines which pass between

� �b� and � �w� without cutting either segment. Given an element 	 of �1, let
d4m�x0� be the absolute value of the difference between the y-coordinates of
the places where � and 	 intersect the line x = x0. It may be proved after
a little geometry that for all x0 ∈� , d4m�x� ≤ 18d3m.

The lemma follows from this result, since any candidate �̂ for � is neces-
sarily an element of �1, when restricted to having x coordinates in � . ✷

Now we return to the proof of Theorem 2.1. Recall that � is the curve
whose equation is y = g�x�, drawn across a square grid with vertices at
pairs of integer multiples of n−1. Let t ∈ � , and consider the vertex color
pattern produced within the thin vertical strip �t of width between h and 2h,
consisting of all vertices whose x coordinate lies in the interval �t−h
 t+h�∩� .
If g ∈ � �B�, then for �x� ≤ h and t+x ∈ � , g�t+x� = ux+ v+ r�t
 x�, where
u = g′�t�, v = g�t� and �r�t
 x�� ≤ Bh2. Let � denote the straight line with
equation y = ux+ v and consider the following upper and lower bounds to �
within �t: the line � up, with equation y = ux+ v+Bh2, and the line � low,
with equation y = ux+v−Bh2. Within �t, the curve � lies between � up and
� low.

Next we apply Lemma 3.1 to deduce the accuracy with which either � up

or � low (denoted generically below by � 0) could be approximated from the
vertex color pattern which would arise in �t if it were present instead of � .
We take c1 = 1, c2 = 16 and m = m�n� = �nh/16�. (If t ∈ �h
1 − h� then a
more appropriate choice would be m�n� = �2nh/16� = �nh/8�, reflecting the
fact that �t is of width 2h there, and giving a slightly improved bound.) In
view of the lemma, the vertical displacement between � 0 and any one of the
possible candidates for it, consistent with the vertex color pattern produced
by � 0, would not exceed

δ = n−118 c2m�n� {qK�u��u�qK�u�+1�u�
}−1

< 2h
{
qK�u��u�qK�u�+1�u�

}−1

at each point in �t = �t−h
 t+h�, provided nh ≥ 16. Here, K may be taken to
equal the largest integer such that qK�u� ≤ �nh/64�−1. Of course, the vertical
displacement between � up and � low is 2Bh2 and both lines are parallel to � .

Let �t denote the vertex color pattern defined in �t by (1) all vertices below
or on � low are white, (2) all vertices above or on � up are black, and (3) all
vertices strictly between � low and � up are colorless. We shall say that a line
does not conflict with �t if the vertex color pattern that it produces in �t

differs from �t only at colorless vertices of the latter. Any line which does
not conflict with �t has its vertical displacement from � equal to at most
δ+Bh2 at each point in �t. The “line of best fit” defined in Section 2 does not
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conflict with �t and so lies no further than δ+Bh2 from � throughout �t. In
particular, it is no more than this distance from � at t ∈ �t. This completes
the proof of the theorem, since (for appropriate choices of the constants A1,
A2 and A3), δ+Bh2 is an upper bound to the right-hand side of (2.5).

Proof of Theorem 2.2. Since the range of integration is bounded away
from points where g′′ = 0, then g′ is monotone in the range. Without loss
of generality, it is increasing there, and so f1 = �g′��−1� (the function inverse
of g′) is also increasing, and f′

1 = 
g′′�f1��−1 > 0. Let T have the uniform
distribution on � , let U have the uniform distribution on � = �g′�0�
 g′�1��
and let V have the distribution on � with density f proportional to f′

1. Then,
with R�u� = 
qN�u��u�qN�u�+1�u��−1, we have

�3
3� E
[
R
{
g′�T�}] = E
R�V�� ≤

(
sup
�

f
) {

g′�1� − g′�0�}E
R�U��


Next we bound the function R. Define bn = qn+1/qn > 1. (Here and below we
suppress the argument u.) Trivially, R ≤ r−2bN. Furthermore, if bN > r2 then,
since qN ≥ 1, q−1

N+1 < r−2, and so R < r−2. Hence, R < r−2
{
1+bN I

(
bN ≤ r2

)}
.

It is known that qi ≥ 2�i−1�/2 [e.g., Khintchine (1963), page 18], and so N�u� ≤
C1 log r + 1, where C1 = 2 �log 2�−1. Furthermore, bi = ai+1 + b−1

i−1 < 2ai+1
[see Khintchine (1963), page 12, for the equality], where a1
 a2
 
 
 
 are the
strictly positive integers in the unique continued fraction expansion of u at
(2.1). Therefore,

�3
4� R < r−2
{

1 + 2
C1 log r+2∑

i=1

ai I
(
ai ≤ r2)}


The result supi≥1 P
ai�U� = j� ≤ 2j−2, for all j ≥ 1, may be deduced from
formula (57) of Khintchine (1963), page 68. Therefore,

E
[
ai�U�I{ai�U� ≤ r2}] ≤ C2 log r

for all i ≥ 1 and r ≥ 2, where C2 and C3 denote absolute constants. Substitut-
ing into (3.4) we see that E
R�U�� < C3 r

−2 �log r�2 for all r ≥ 2. Substituting
into (3.3) we deduce that∫

�
R
g′�t��dt < C3 
g′�1� − g′�0��

(
inf
�

g′′
)−1

r−2 �log r�2


The theorem follows from this result. ✷
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