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QUICKEST DETECTION WITH EXPONENTIAL
PENALTY FOR DELAY1

BY H. VINCENT POOR

Princeton University

The problem of detecting a change in the probability distribution of a
random sequence is considered. Stopping times are derived that optimize
the tradeoff between detection delay and false alarms within two criteria.
In both cases, the detection delay is penalized exponentially rather than
linearly, as has been the case in previous formulations of this problem.
The first of these two criteria is to minimize a worst-case measure of the
exponential detection delay within a lower-bound constraint on the mean
time between false alarms. Expressions for the performance of the optimal
detection rule are also developed for this case. It is seen, for example, that
the classical Page CUSUM test can be arbitrarily unfavorable relative to
the optimal test under exponential delay penalty. The second criterion
considered is a Bayesian one, in which the unknown change point is
assumed to obey a geometric prior distribution. In this case, the optimal
stopping time effects an optimal trade-off between the expected exponen-
tial detection delay and the probability of false alarm. Finally, generaliza-
tions of these results to problems in which the penalties for delay may be
path dependent are also considered.

1. Introduction. Quickest detection is the problem of detecting, with as
little delay as possible, a change in the probability distribution of a sequence
of random measurements. This problem arises in a great variety of applica-
tions, such as seismology, speech and image processing, biomedical signal
processing, machinery monitoring and finance. Overviews of existing tech-

Ž .niques for quickest detection can be found in Basseville and Nikiforov 1993 ,
Ž . Ž .Brodsky and Darkhovsky 1992 , Carlstein, Muller and Siegmund 1994 and¨

Ž .Kerestecioglu 1993 .ˇ
A useful formulation of the quickest detection problem is to consider a

sequence X , X , . . . of random observations, and to suppose that there is a1 2
Ž .change point t � 1 possibly t � � such that, given t, X , X , . . . , X are1 2 t�1

drawn from one distribution and X , X , . . . , are drawn from anothert t�1
distribution. The set of detection strategies of interest corresponds to the set

Ž .of extended stopping times with respect to the observed sequence, with the
interpretation that the stopping time T decides that the change point t has
occurred at or before time k when T � k. We will be more specific about this
model in subsequent sections.
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The design of quickest detection procedures typically involves the opti-
mization of a trade-off between two types of performance indices, one being a

�measure of the delay between the time a change occurs and it is detected i.e.,
Ž .� � � 4�T � t � 1 , where x � max 0, x , and the other being a measure of the

Ž � 4.frequency of false alarms i.e., events of the type T � t . In essentially all
such extant designs, detection delay is penalized via a linear function of

� Ž .delay. An exception is found in Pelkowitz 1987 , in which nonlinear delay
penalties are proposed, but corresponding optimal stopping times are not

�derived. This type of penalty is suitable for many applications. For example,
the earliest applications of quickest detection involved the monitoring of
manufacturing processes to detect possible declines in quality of the manufac-
tured goods. In this situation, the cost of delay is accurately measured by a
linear penalty, reflecting the fact that the economic cost of discarded defective
goods will be proportional to the quantity produced. However, in other
applications, linear cost does not capture the true cost of delayed action.
Consider, for example, financial applications in which the change point may
represent a time at which a fundamental shift in the performance, or
expected performance, of some type of investment occurs. In this situation,
the compounding of investment growth or the short shelf lives of investment
opportunities point to exponential penalties as more suitable measures of the
cost of delay. Similarly, in the health monitoring of components in intercon-

Žnected systems e.g., aircraft systems, communication networks, power grids,
.biological populations, etc. , the effects of undetected faults can exponentiate

with time, again suggesting a more aggressive cost structure than is captured
with a linear delay penalty.

Motivated by these types of applications, this paper considers the problem
of quickest detection with exponential penalty for delay. In particular, we
consider penalties on the detection delay of the form

� ŽT�t�1.�� 1
1 ,Ž .

� � 1

where � � 1 is a positive constant. Note that, with � � 1, this penalty
quantifies an exponential growth of costs as a function of delay, reflecting the
type of exponentiating costs mentioned in the preceding paragraph. Alterna-

Ž .tively, with � � 1, 1 quantifies a saturating, sublinear cost of delay. Since

ŽT�t�1.� T� � 1
l�t2 � � ,Ž . Ý

� � 1 l�t

the exponential penalty in this latter case can be viewed as a discounted
Ž .�version of the traditional linear penalty T � t � 1 . Of course, as � � 1,

Ž .the quantity of 1 approaches the linear delay penalty.
For this cost function, we consider two traditional formulations of the

quickest detection problem. The first of these is a minimax formulation, first
Ž .proposed in the linear-delay-penalty case by Lorden 1971 , in which the

delay penalty is a worst-case measure of delay, and false alarms are con-
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strained through a lower bound on the allowable mean time between false
alarms. In this formulation, the worst-case delay is taken over all possible
realizations of the observations leading up to the change point and over all
possible values of the change point. The second formulation is a Bayesian
formulation, first proposed in the linear-delay-penalty case by Kolmogorov

� Ž .�and Shiryayev see Shiryayev 1963 , in which the change point is endowed
with a prior distribution, and the opposing performance indices are expected
detection delay and false-alarm probability. We also consider modifications of
these problems in which the delay penalty depends explicitly on the observed
sample path of the random sequence. We develop optimal detection proce-
dures for each of these formulations. Performance analysis is also considered
in each case, with the first of the formulations offering perhaps the most
interesting results in this regard. For example, among other results, it is seen

Žthat the classical Page CUSUM test which is minimax optimal for linear
.delay penalty can have infinite minimax exponential delay if the rate at

which delay penalty accumulates is too large relative to the rate at which
discrimination information between prechange and postchange distributions
accumulates.

The remainder of this paper is organized as follows. The minimax solution
is presented in Section 2, and Section 3 is devoted to performance analysis in
this case. Section 4 develops the Bayesian solution. Section 5 considers the
extension of the results of Sections 2 through 4 to the case of path-dependent
cost of delay. Finally, Section 6 contains some concluding remarks. Appen-
dices containing the more detailed elements of the required proofs are also
included.

2. A minimax solution. We begin by considering the situation in which
the change point t is a fixed, nonrandom quantity that can be either � or any
value in the positive integers. To model this situation, we consider a measur-

Ž .able space �, FF , consisting of a sample space � and a �-field FF of events.
� � �4We further consider a family P ; t � 1, 2, . . . , � of probability measures oni

Ž .�, FF , such that, under P , X , X , . . . , X are independent and identicallyt 1 2 t�1
Ž .distributed i.i.d. with a fixed marginal distribution Q , and X , X , . . . areb t t�1

i.i.d. with another marginal distribution Q and are independent of X , X ,a 1 2
. . . , X . For simplicity, we assume that Q and Q are mutually absolutelyt�1 a b
continuous, that the likelihood ratio L � dQ �dQ has no atoms under Qa b b

Ž � . Ž � .and that 0 � D Q Q � �, where D Q Q denotes the Kullback�Leiblerb a b a
divergence of Q from Q ,a b

�3 D Q Q � � log L dQ .Ž . Ž . Hb a b

For technical reasons, we also assume the existence of a random variable X0
� �that is uniformly distributed in 0, 1 and that is independent of X , X , . . .1 2

under each P .t
We would like to consider procedures that can detect the change point, if it

Ž .occurs i.e., if t � � , as quickly as possible after it occurs. As a set of
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Ž .detection strategies, it is natural to consider the set TT of all extended
� 4stopping times with respect to the filtration FF where FF denotes thek k � 0 k

smallest �-field with respect to which X , X , . . . , X are measurable. Thus,0 1 k
when the stopping time T takes on the value k, the interpretation is that T
has detected the existence of a change point t at or prior to time k.

Ž .Following Lorden 1971 , it is of interest to penalize exponential detection
delay via its worst-case value

4 d T � sup d TŽ . Ž . Ž .t
t�1

with
�ŽT�t�1.� � 1

5 d T � ess sup E FF ,Ž . Ž .t t t�1½ 5� � 1

� 4 Žwhere E � denotes expectation under the distribution P . Recall that thet t
essential supremum of a random variable is the greatest lower bound of the

.set of constants that bound the random variable with probability one. Note
Ž .that d T is the worst-case average delay under P , where the worst case ist t

Ž .taken over all realizations of X , X , . . . , X . The desire to make d T small0 1 t�1
must be balanced with a constraint on the rate of false alarms. The rate of
false alarms can be quantified by the mean time between false alarms,

� 46 f T � E T ,Ž . Ž . �

and a useful design criterion is then given by

7 inf d T subject to f T � � ,Ž . Ž . Ž .
T�TT

where � is a constant. That is, we seek a stopping time that minimizes the
worst-case delay within a lower-bound constraint on the mean time between
false alarms.

Ž . Ž .The solution to 7 for the linear-delay-penalty � � 1 case was demon-
Ž .strated in Moustakides 1986 . Here, we extend this solution to the case of

general � . To do so, for h � 0 we define a stopping time

�8 T � inf k � 0 S � h ,� 4Ž . h k

where
k

� 49 S � max �L X � �L X max S , 1 , k � 1,Ž . Ž . Ž .Łk l k k�1ž /1	j	k l�j

and S � 0.0
We then have the following result.

THEOREM 2.1. Suppose h � 0 and

10 P �L X � 1 � 0.Ž . Ž .Ž .� 1

Ž . Ž .Then T solves 7 with � � f T . That is,h h

11 f T � f T � d T � d T .Ž . Ž . Ž . Ž . Ž .h h
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Ž .REMARK 2.2. Note that condition 10 is trivially satisfied if � � 1.

PROOF. In proving this result, we will make heavy use of Moustakides’
� Ž .�method of proof for the linear-delay case Moustakides 1986 . For the case in

Ž � .which log � � D Q Q , the extension to exponential cost is rather straight-b a
forward. For larger � , some variations are needed. These considerations will

Žarise in the proof of Lemma 2.4 below. Since the case h � 0 is trivial, we
.consider only h � 0.

Ž .It is easily seen that, in seeking solutions to 7 , we can restrict attention
Ž .to stopping times that achieve the constraint on f T with equality. This

Ž .follows since, if � � f T � �, then we can produce a stopping time that
achieves the constraint with equality without increasing the worst-case expo-
nential delay, simply by randomizing between T and the stopping time that

Žis identically zero. Such randomized stopping times are in TT by virtue of the
. Ž .inclusion of FF in the filtration. Stopping times for which f T � � can be0

eliminated from consideration, since for this case we can choose sufficiently
Ž � 4. Ž � 4. Ž .large n so that f min T, n � � , and we always have d min T, n 	 d T .

� Ž . �That f T � � follows from Theorem 3.1 below.h
We now state the following two intermediate results, whose proofs are

given in Appendix A and from which the theorem follows.

Ž .LEMMA 2.3. Suppose T � TT is such that 0 � f T � �. Then
T�1 � 4E Ý max S , 1� 4� k�0 k

12 d T � d T 
Ž . Ž . Ž . �T�1E Ý 1 � SŽ .� 4� k�0 k

with equality if T � T .h

Ž .LEMMA 2.4. Suppose 10 holds. Then T solves the following maximiza-h
� .tion problem for all continuous nonincreasing functions g: 0, � � �:

T�1

13 sup g S subject to f T � � .Ž . Ž . Ž .Ý k½ 5
T�TT k�0

Ž . � 4 Ž . Ž .�Taking g x � �max x, 1 and g x � 1 � x , respectively, Lemma 2.4
asserts that T simultaneously minimizes the numerator and maximizes theh

Ž . Ž . Ž . Ž .denominator of d T within the constraint f T � � . Since d T � d T ,h h
the theorem follows. �

Theorem 2.1 asserts the optimality of the stopping time based on the first
� .exit of S from the interval 0, h . We henceforth assume that h � 1, ink

which case the stopping time T can be written equivalently ash

�14 T � inf k � 0 m � log h ,� 4Ž . h k

where

� 415 m � log max S , 1 , k � 0, 1, . . . .Ž . k k
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� 4It is easily seen that the sequence m can be computed recursively viak

16 m � max m � log L X � log � , 0 , k � 1, 2, . . . ,� 4Ž . Ž .k k�1 k

with m � 0. That is, the test based on T accumulates the adjusted log-like-0 h
Ž .lihoods, log L X � log � , resetting the accumulation to zero whenever itk

goes negative. The alarm is sounded when this accumulation crosses the
upper threshold log h. With � � 1 the stopping time T thus reduces to theh

Ž .classical CUSUM test of Page 1954 . For � � 1, the test is more or less
aggressive in sounding alarms than is Page’s test, depending on whether
� � 1 or � � 1. This is, of course, completely consistent with intuition, since
larger values of � correspond to greater penalties on delay.

3. Performance analysis. In the preceding section, we showed that the
stopping time T is optimal in the sense of Theorem 2.1. In this section, weh
consider the performance of this stopping time by determining the quantities
Ž . Ž .d T and f T .h h

We begin with the following result, which gives exact expressions for these
Žtwo quantities. Here, and throughout this paper, 1 denotes the indicatorA

.function of the event A.

Ž .THEOREM 3.1. Suppose h � 1, and 10 holds. Then

� 4E N�
17 f T � � �Ž . Ž .h 1 � P FŽ .� 0

and

� N 4E � � 11
18 d T � ,Ž . Ž .h N1 � � 1 � E � 1Ž . � 4ž /1 F0

where N is the stopping time

n

19 N � min n � 1 log L X � log � � 0, log h ,Ž . Ž . Ž .Ý l½ 5
l�1

and where F denotes the event0

N

20 log L X � log � 	 0 .Ž . Ž .Ý l½ 5
l�1

REMARK 3.2. The proof of this result relies on the renewal properties of
Ž .the accumulated sum m of 16 , arising from the resetting of this sum eachk

time it crosses zero. This analysis is similar to the classical analysis of Page’s
� Ž .CUSUM e.g., Basseville and Nikiforov 1993 , pages 195�197 or Siegmund

Ž . �1985 , Section II.6 . However, a distinction between this result and that for
Ž .Page’s CUSUM arises in the treatment of the exponential delay, d T , andh

so a proof is included in Appendix B.
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Ž .Since N of 19 is the first exit time of a random walk from an interval, its
statistical behavior can be analyzed via the classical methods of Wald approx-

�imation, diffusion approximation, and so on cf. James, James and Siegmund
Ž . Ž . Ž .�1988 , Khan 1978 or Siegmund 1985 . However, even without Theorem

Ž . Ž .3.1, f T and d T can be estimated directly by approximating the behaviorh h
of T with that of the stopping timeh

˜ �21 T � inf u � 0 Z � min Z � log h ,Ž . ½ 5h u s
0	s	u

� 4where Z ; u � 0 is a Brownian motion approximating the random walku

n

22 log L X � log � , n � 1, 2, . . . .Ž . Ž .Ý l
l�1

Approximation of this type for linear delay penalty and the classical Page test
Ž .has been considered by Reynolds 1975 . Analogous results can be obtained

for the exponential-penalty case, as we now develop.
Consider the case in which the observations are in � n, and Q and Q areb a
Ž . Ž .NN � , 	 and NN � , 	 distributions, respectively, with 	 positive definite.0 1

Then, under P we may use the model�

'23 Z � 2 D B � D 
 � 1 u , u � 0,Ž . Ž .u u

and under P we may use the model1

'24 Z � 2 D B � D 
 � 1 u , u � 0,Ž . Ž .u u

� 4 Ž � .where B ; u � 0 is a standard Brownian motion, D � D Q Q , withu b a
Ž � . Ž .D Q Q given by 3 , and the constant 
 is defined asb a

log �
25 
 � .Ž .

�D Q QŽ .b a

Ž .� �1Ž . � Ž .Here, of course, D � � � � 	 � � � �2. Note that the model 231 0 1 0
Ž .and 24 can also be used in the local testing case if the two distributions

Q and Q are sufficiently close to one another that the asymptotesa b
Ž Ž .. Ž Ž .. � Ž .4 � Ž .4Var log L X � Var log L X � 2 D and E log L X � �E log L X� 1 1 1 1 1 � 1

.� D give accurate approximations.
Ž .The statistics of stopping times of the form 21 have been analyzed in

Ž . Ž . Ž .several works, including Kennedy 1976 , Lehoczky 1977 and Taylor 1975 .
� Ž . Ž .We can conclude from this analysis cf. equations 3.1.104 and 3.1.105 of

Ž .� Ž . Ž .Basseville and Nikiforov 1993 that, under the model 23 and 24 , we have

2� log h �2, 
 � 1,Ž .
1�
�˜ h � 126 D 	 f T �Ž . Ž .h � log h 1 � 
 , 
 � 1Ž .
ž /1 � 
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and

D ˜e � 1 	 d TŽ . Ž .h

h � 1 � log h � 1 � log h , 
 � 1,Ž . Ž .
� 1�
 
 
½ 1 � 
 h � h � 
h � h � 
 h , 
 � 1.Ž . Ž .Ž .

27Ž .

Ž 
D . Ž .Recall that e � � . As 
 � 0 i.e., � � 1 these expressions reduce to
Ž .those of Reynolds 1975 for the diffusion approximation to the performance

of Page’s test under linear delay penalty.
Ž . Ž .Note that, for large � and consequently large h , 26 implies

21�
h � 1 � 
 , 
 � 1,Ž .˜28 D 	 f T �Ž . Ž .h ½ log h� 
 � 1 , 
 � 1Ž .
and so

OO � 
�Ž1�
 . , 0 � 
 � 1,Ž .˜29 d T �Ž . Ž .h Ž� DŽ 
�1..½ OO exp , 
 � 1.Ž .
Thus, the asymptotic behavior of the expected delay penalty is fundamentally
different depending on whether the rate of delay-penalty increase is greater
or less than the rate at which discrimination information between prechange
and postchange distributions accumulates.

Ž .It is interesting to compare 27 with the performance of Page’s test under
˜exponential delay penalty. To do so, let us denote by T the stopping timeP

Ž . � 421 where the Brownian motion Z ; u � 0 approximates the random walku
n

30 log L X , n � 1, 2, . . . .Ž . Ž .Ý l
l�1

Again assuming Gaussian observations as above, this Brownian motion
Ž . Ž .behaves statistically as 23 with 
 � 0 and as 24 with 
 � 0, respectively,

˜under prechange and postchange conditions. The statistical behavior of TP
Ž .thus approximates the statistical behavior of Page’s test. Applying 26 with


 � 0 yields
h � 1 � log h˜31 f T � .Ž . Ž .P D

˜Ž .To analyze d T for � � 1, we consider two cases, 
 � 1�4 and 
 � 1�4.P
Ž . Ž .For 
 � 1�4, equation 3.1.104 of Basseville and Nikiforov 1993 straight-

forwardly yields
21�� �' '2� h � � � 1 h � � � 1Ž .Ž . Ž .˜32 d T � ,Ž . Ž . 2P �
 D 'e � 1 � � 1 h � � � 1Ž . Ž . Ž .

'with � � 1 � 4
 . It follows that, asymptotically in the false-alarm con-
straint � , we have

˜ Ž ��4
 .�233 d T � OO � , 0 � 
 � 1�4.Ž . Ž .Ž .P
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˜Ž .Alternatively, for 
 � 1�4, we can show that d T � �. In particular, weP
˜Ž .note that, for any x � 0, log h , T is no smaller than the first exit time ofP

� 4 Ž .Z ; u � 0 from the interval 0, log h after the first time that Z � x.u u
�Statistically this latter time is no smaller than the first exit of Z � x;u

˜ x4 Ž .u � 0 from 0, log h , a stopping time that we denote by T . It follows from
Ž . � Ž .page 258 of Dvoretsky, Kiefer and Wolfowitz 1953 see also equation A:194

˜ xŽ .�of Wald 1947 that, under the postchange conditions, T has a probability
density that is a mixture of densities of the form

� �2 Dti i
34 exp � � , t � 0,Ž . 3�2 ½ 54t 42
 1�2 tŽ .

where the � ’s are positive constants. Clearly, then, we havei

T̃P� 435 E � � �,Ž . 1

if log � � D�4.
So we see that the delay penalty incurred by the continuous-time version

of Page’s test in this case is infinite if the rate of penalty increase is greater
than one-fourth the rate at which discrimination information between
prechange and postchange distributions accumulates. Even for smaller 
,
Ž . Ž .29 and 33 imply that

˜d TŽ .P �36 � OO � , 0 � 
 � 1�4,Ž . Ž .˜d TŽ .h

Ž . Ž .with � � ��2 � 
 1 � 2
 � 1 � 
 . Since � is strictly positive, the optimiza-
tion problem posed in the preceding section clearly yields a significantly
better test under exponential penalty than does the classical linear-penalty
formulation.

4. A Bayesian solution: the exponential disorder problem. We now
turn to a Bayesian version of the quickest detection problem, in which the
change point t is assumed to be a random variable with a known prior
distribution on the nonnegative integers. In particular, we consider the
general set-up of Section 2, with an additional probability distribution P on
Ž .�, FF under which t has the given prior distribution and the P ’s consideredk

� 4previously are the conditional distributions given the events t � k . Here we
Ž .do not need the assumptions that L X is nonatomic under Q and thatk b

Ž � .D Q Q is finite, and so we drop them. Additionally, as randomization willb a
not be needed here either, we can replace the uniform random variable X0
with a constant.

In this situation, for a stopping time T, as a measure of delay we can adopt
the expected exponential delay,

� ŽT�t�1.�� 1
37 E ,Ž . ½ 5� � 1
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� 4where E � denotes expectation under the measure P. Similarly, as a measure
of false-alarm rate we can adopt the false-alarm probability,

38 P T � t .Ž . Ž .
Analogously with the case of minimax design, we would like to determine
stopping times T that effect optimal trade-offs between the two objectives of
small detection delay and small false-alarm rate. A convenient way of imple-
menting such a trade-off is to seek T � TT to solve the optimization problem

�ŽT�t�1.� � 1
39 inf P T � t � cE ,Ž . Ž . ½ 5� � 1T�TT

where c � 0 is a constant controlling the relative importance of the two
performance indices.

Ž ŽT�t�1.� . Ž . ŽNote that, if we replace � � 1 � � � 1 with its � � 1 limit T � t
.� Ž .� 1 , then the criterion 39 reduces to the classical Kolmogorov�Shiryayev

� Ž .�criterion for detection of a ‘‘disorder’’ see Shiryayev 1963 , with the excep-
Ž . Ž .� Ž .�tion that Shiryayev 1963 uses T � t in place of T � t � 1 . We could

Ž .� Ž .�have equivalently considered the delay T � t rather than T � t � 1 . In
Ž .particular, since T and t are integer valued, it is easy to see that 39 is

equivalent to
�ŽT�t .� � 1

40 inf 1 � c P T � t � �c E .Ž . Ž . Ž . ½ 5� � 1T�TT

Ž . Ž .Interestingly, 40 implies that, with c � 1, the optimal stopping time for 39
is T � 0.

It is also noteworthy that, for � � 1, a delay penalty of the ‘‘opportunity-
loss’’ form,
41 1 � � ŽT�t�1.�,Ž . �T � t4

Ž .is easily treated via 39 by appropriate adjustment of the constant c. In
particular, the problem

�
 ŽT�t�1.42 inf P T � t � c E 1 � � ,Ž . Ž . � 4�T � t4
T�TT


 Ž . 
Ž . Ž 
 .with c � 0, is equivalent to 39 with c � c 1 � � � 1 � c � 1.
As in previous analyses of the Bayesian disorder problem, we will assume

a prior distribution on the change point t of the form
�43 P t � 0 � � and P t � k t � k � � ,Ž . Ž . Ž .

Ž .where � and � are two constants lying in the interval 0, 1 . That is, there is
a probability � that a change has already occurred when we start observing
the sequence; and there is a conditional probability � that the sequence will
transition to the postchange state at any time, given that it has not done so
prior to that time. This model gives rise to a geometric prior distribution

� , if k � 0,
44 P t � k �Ž . Ž . k�1½ 1 � � � 1 � � , if k � 1, 2, . . . .Ž . Ž .
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Ž . Ž .The solution to problem 39 with the geometric prior 44 is summarized
in the following result.

THEOREM 4.1. For appropriate chosen threshold R� � 0, the stopping time

� �45 T � inf k � 0 R � R� 4Ž . B k

with

�L X ��Ž .k
46 R � R � � , k � 1, 2, . . . , R � ,Ž . Ž .k k�1 01 � � 1 � �

� Ž . Ž .�is Bayes optimal i.e., it solves 39 with the geometric prior 44 . Moreover,
if c � 1, then R� � 0.

REMARK 4.2. The stopping time T can be written equivalently asB

� � �47 T � inf k � 0 r � R � 1 � R ,� 4Ž . Ž .B k

Ž .where r � R � 1 � R satisfies the recursionk k k

�L X r � � 1 � rŽ . Ž .k k�1 k�1
r � ,k48Ž . �L X r � � 1 � r � 1 � � 1 � rŽ . Ž . Ž . Ž .k k�1 k�1 k�1

k � 1, 2, . . . ,
with

��
49 r � .Ž . 0 1 � � � ��

Ž � .With � � 1 it is easily seen that r � � 
 P t 	 k FF , and the result ofk k k
Ž .Theorem 4.1 reduces to that of Shiryayev 1963, 1978 .

REMARK 4.3. A proof of Theorem 4.1 is given in Appendix C. The basic
Ž .idea of this proof is to first convert 39 to a standard optimal stopping

Ž . � 4problem by rewriting the objective of 39 as E Y , whereT

�Žk�t�1.� � 1
50 Y � E 1 � c FF , k � 0, 1, . . . , �.Ž . k �k � t4 k½ 5� � 1

This can be done because of the nonnegativity of the Y ’s and the monotonek
� 4convergence theorem. The sequence Y is given explicitly byk

c
51 Y � 1 � � l R � , k � 0, 1, . . . ,Ž . Ž . Ž .k k k � � 1

where l is the line

� � 1 � c � cR
52 l R �Ž . Ž .

� � 1
Ž � . �and where � is defined as in Remark 4.2; that is, � � P t 	 k FF . We alsok k k

Ž . � Ž .have Y � � if � � 1 and Y � c� 1 � � if � � 1. Since � , R forms a� � k k
Ž .homogeneous Markov process, 39 thus reduces to a Markov optimal stop-
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Žping problem, which can be solved by standard methods i.e., dynamic pro-
.gramming . In particular, the pay-off resulting from the initial condition

Ž . Ž .� , R � � , R can be shown to be0 0

c
� 453 inf E Y � 1 � � s R � ,Ž . Ž . Ž .T � � 1T�TT

where s is a function satisfying the condition
� � �54 s R � l R � R � R where R � inf R � 0 s R � l R .� 4Ž . Ž . Ž . Ž . Ž .

Markov optimal stopping theory then implies that the optimal stopping time
is given by

� � �55 T � inf k � 0, 1, . . . l R � s R � inf k � 0, 1, . . . R � R ,� 4� 4Ž . Ž . Ž .opt k k k

which equals T .B

REMARK 4.4. It follows from the proof of Theorem 4.1 given in Appendix C
Ž .that the function s appearing in the payoff 53 is the pointwise monotone
� n 4limit from above of the sequence of functions QQ l; n � 0, 1, . . . where l is

Ž . Ž .the line 52 and where the operator QQ is defined in 125 . It can be shown
Ž . � n 4see Appendix C that QQ l; n � 0, 1, . . . is a monotone nonincreasing se-

� �4quence of continuous functions, from which it follows that the sequence Rn
defined by

� � n56 R � inf R � 0 QQ l R � l R , n � 0, 1, . . .� 4Ž . Ž . Ž .n

converges upward to the decision threshold R�. Thus, computation of the
threshold and optimal cost can be performed iteratively.

5. Quickest detection with path-dependent exponential costs.
Thus far, we have considered delay penalties that depend on the sample path
of observations only through the stopping time T. It is also of interest to allow
for delay penalties that depend on the sample path in more direct ways. For
example, we might wish to replace the exponential penalty � ŽT�t�1.� with

T

57 � ,Ž . Ł k
k�t

� 4 Žwhere � is a nonnegative sequence adapted to the observations. We adoptk
b b .the conventions Ł � 1 if b � a, and Ý � 0 if b � a. Such a penalty mighta a

arise, for example, in the detection of changes in financial time series, where
the quantity � is the return that an investment would have generatedk

�during time period k had it been in force then. For a related problem, see
Ž . �Beibel and Lerche 1997 .

It is straightforward to show that the replacement of the linear penalty on
Ž .� T Ž .T � t � 1 with path-dependent penalties of the form Ý � X , where �k� t k

Ž . Ž .is a real-valued, measurable function satisfying 0 � H� x Q dx � �, doesa
not materially change the form of the solutions of the Lorden and Shiryayev
problems. In this section, we provide results analogous to those of Sections 2
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through 4 for certain problems of this type in which the path-dependent costs
are exponential.

Ž .We first consider the cost structure of 57 in the Bayesian case. In
particular, we generalize Theorem 4.1 as follows.

THEOREM 5.1. Consider the model of Section 4 and the problem
TŁ � X � 1Ž .k� t k

58 inf P T � t � cE ,Ž . Ž . ½ 5� � 1T�TT

where c � 0, and � is a real-valued, nonnegative function satisfying

59 � 
 � x Q dx � �Ž . Ž . Ž .H a

�̂� 4and � � 0, 1 . Then, for appropriately chosen threshold R � 0, the stopping
time

ˆ ˆ �̂�60 T � inf k � 0 R � RŽ . ½ 5B k

with

� X L X � X �Ž . Ž . Ž .k k 0ˆ ˆ ˆ61 R � R � � , k � 1, 2, . . . , R � ,Ž . Ž .k k�1 01 � � 1 � �

� Ž . Ž .�is Bayes optimal i.e., it solves 58 with the geometric prior 44 . Moreover,
ˆ�if c � 1, then R � 0.

PROOF. The key to this theorem is the following result, a proof of which is
found in Appendix D.

LEMMA 5.2. Consider the model of Section 4 with the constant � � H� dQa
ˆ� 1 and the post-change distribution Q replaced with Q given bya a

� x Q dxŽ . Ž .aˆ62 Q dx � .Ž . Ž .a �

ˆ Ž .Let P denote the new probability measure on �, FF defined by this change.
Ž .Then 58 is solved by the solution to the following problem:

�ŽT�t�1.� � 1ˆ ˆ63 inf P T � t � cE ,Ž . Ž . ½ 5� � 1T�TT

ˆ ˆ� 4where E � denotes expectation under P.

ˆ Ž . Ž .Since T is the optimal stopping time for 63 via Theorem 4.1 , theB
theorem follows. �

We now turn to the analogous problem in the minimax setting of Section 2.
We have not been able to generalize Theorem 2.1 to the case of a direct

Ž . ŽT�t�1.� Ž . Ž .substitution of 57 for � in 5 . However, from 2 we see that an
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Ž .alternative substitution of interest is to replace 1 with
T l�1

64 � X ,Ž . Ž .Ý Ł j
j�tl�t

where � is a positive, real-valued measurable function on the range of the
Ž . Ž . Ž . Ž .observation X such that H� x Q dx � � and such that � X L X has nok a k k

atoms under Q . That is, we can consider the following problem:b

ˆ65 inf d T subject to f T � � ,Ž . Ž . Ž .
T�TT

where
T l�1

ˆ66 d T � sup ess sup E � X FF .Ž . Ž . Ž .Ý Łt j t�1½ 5j�tt�1 l�t

Ž . Ž .Of course 65 reduces to 7 when � � � .
In this connection, we consider stopping times of the form

ˆ ˆ�67 T � inf t � 0, 1, 2, . . . S � h ,Ž . � 4h k

with
k

ˆ ˆ68 S � max � X L X � � X L X max S , 1 , k � 1,Ž . Ž . Ž . Ž . Ž . � 4Łk l l k k k�1ž /1	j	k l�j

ˆwhere S � 0 and L � dQ �dQ . We then have the following result.0 a b

THEOREM 5.3. Consider the probability model of Section 2 and suppose
that h � 0 and

69 P � X L X � 1 � 0.Ž . Ž . Ž .Ž .� 1 1

ˆ ˆ ˆŽ . Ž . Ž .Then T solves 65 with � � f T . Moreover, if h � 1, the quantities f Th h h
ˆ ˆŽ . Ž . Ž .and d T are given by 17 and 18 , respectively, with N replaced with theh

random variable

n
ˆ70 N � min n � 1 log L X � log � X � 0, log h .Ž . Ž . Ž . Ž .Ý l l½ 5

l�1

PROOF. Analogously to the situation with Theorem 5.1, Theorem 5.3
follows as a corollary to Theorems 2.1 and 3.1, after we note the following
result, which is proved in Appendix D.

LEMMA 5.4. Consider the model of Section 2 with � chosen as in Lemma
ˆ5.2 and with Q replaced with Q as in Lemma 5.2. Suppose T � TT is sucha a

Ž .that 0 � f T � �. Then
�ŽT�t�1.� � 1ˆ ˆ71 d T � sup ess sup E FF ,Ž . Ž . t t�1½ 5� � 1t�1
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ˆ ˆ� 4 Ž .where E � denotes expectation under the measure P on �, FF correspondingt t
ˆto a change point at t and a postchange distribution Q .a

The theorem follows immediately. �

6. Conclusion. We have considered the quickest detection problems of
Lorden and Shiryayev when the linear penalty on detection delay is replaced
with a possibly path-dependent exponential delay penalty. We have seen that
each of these problems is solved by replacing, in the corresponding linear-
penalty optimal stopping rules, the likelihood ratio between pre- and
postchange distributions with a scaled version of itself. We have also explored
the issue of performance analysis in each of these problems. In the minimax
problem this involves separate analysis of the exit statistics of the optimal
stopping rule; whereas in the Bayesian problem this involves the computa-
tion of the payoff function, which is an adjunct to the determination of the
optimal stopping rule.

In each of the problems considered, we have examined the tradeoff of
Ž . Ž .opposing performance indices: d T and f T in the minimax formulation

Ž . �Ž ŽT�t�1.� . 4and P T � t and E � � 1 �� � 1 in the Bayesian formulation. In
the minimax case, the tradeoff was effected by minimizing one of these
indices with a constraint on the other, and in the Bayesian formulation we
opted for the minimization of a linear combination of the two indices. These
optimization criteria were chosen because they are the traditional ones for
their respective change-detection formulations. However, we could of course
have considered alternatives such as a linear combination of the performance
indices in the minimax case, or a false-alarm constrained minimization in the
Bayesian case. As with their linear-delay counterparts, these alternative

Žproblems should have essentially the same solutions aside from the choice of
. �threshold as the problems presented here cf. Theorem 4.10 of Shiryayev

Ž .�1978 . Similarly, one might also introduce other combinations of perfor-
mance indices, such as trading false-alarm probability against minimax delay
� Ž .�e.g., Yakir 1996 .

Several other problems of interest are suggested by this work. For exam-
ple, it may be interesting to explore formal connections between the minimax
and Bayesian formulations of this problem, as has been done in the case of

Ž . Ž .linear delay penalty in Beibel 1996 , Bojdecki and Hosza 1984 and Ritov
Ž .1990 . Also, continuous-time versions are of interest; in the minimax case,

Ž . Ž .they formalize the connection between results such as 26 and 27 and
� Ž .�optimal stopping solutions cf. Beibel 1996 ; and in the Bayesian case, they

�can give rise to closed-form solutions for the payoff e.g., Theorem 4.9 of
Ž .�Shiryayev 1978 . Moreover, continuous-time solutions are sometimes partic-

�ularly simple when viewed as ‘‘generalized parking’’ problems see, e.g.,
Ž . Ž .�Beibel 1994 or Beibel and Lerche 1997 . Finally, alternative ways of

invoking exponential penalties may be of interest. For example, it is common
to consider problems of optimal stopping in which the rewards are exponen-
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� Ž .�tially discounted by a deflator see, e.g., Dubins and Teicher 1967 . A similar
formulation in which the deflator changes at an unknown time could be used
to model an exponential cost of delay in quickest detection problems.

APPENDIX

A. Proofs for Section 2.

PROOF OF LEMMA 2.3. This result is the exponential-delay analog of
Ž .Lemma 3 of Moustakides 1986 , the proof of which can be adapted straight-

forwardly to this case. In particular, we define
�ŽT�t�1.� � 1

72 b T � E FF .Ž . Ž .t t t�1½ 5� � 1

Ž .On applying the identity 2 we can write
� k�t

l � �73 b T � � P T � k FF � b P T � � FF ,Ž . Ž . Ž . Ž .Ý Ýt t t�1 � t t�1
k�t l�0

Ž .with b � 1� 1 � � if � � 1, and b � � if � � 1. We can then write� �

�
k� t �b T � � P T � k FFŽ . Ž .Ýt t t�1

k�t

� k�1
k� t� � E L X 1 FFŽ .Ý Ł� l �T � k4 t�1½ 5

l�1k�t
74Ž .

T k�1

� E �L X FF .Ž .Ý Ý� l t�1½ 5
k�t l�t

Ž .Also, analogously to Lemma 1 of Moustakides 1986 , the sequence U �n
� 4max S , 1 has the properties that, for any n � m � 1 and for fixedn

� 4X , . . . , X , S is a nondecreasing function of U , and thatm� 1 n n m

n�1 n
�

75 U � 1 � S �L X .Ž . Ž . Ž .Ý Łn l�1 l
j�ll�1

With these modifications, Lemma 2.3 follows by an argument identical to
Ž . � Ž . Ž .that used in Lemma 3 of Moustakides 1986 namely, equations 11 � 14 of

Ž .�Moustakides 1986 . �

PROOF OF LEMMA 2.4. In proving this result, we distinguish three cases:

 � 1, 
 � 1 and 
 � 1, where

log �
76 
 � ,Ž .

�D Q QŽ .b a

Ž � . Ž .with D Q Q from 3 .b a
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Case 1: 
 � 1. Lemma 2.4 is the exponential-delay analog of Theorem 1 of
Ž .Moustakides 1986 . The proof of Theorem 1 of Moustakides applies almost

exactly to Lemma 2.4 in this case, with the exception that Lemma 4 of
Moustakides must be generalized to assert that the moments of the stopping
time

�77 � � inf n � 0 S 	 1� 4Ž . 1 n

are finite under P . To see that this is true, we first note that 
 � 1 implies,�

Ž . Ž .via Lemma 2.8 of Chow, Robbins and Siegmund 1971 , that P � � � � 1.� 1
For each integer r � 0, we can write

� k�1
r r78 E � 	 k P �L X � 1 ,Ž . Ž . Ž .� 4 Ý Ł� 1 � lž /l�1k�1

where we have used the fact the

k�1

� 4 � 4� � k � S � 1, . . . , S � 1 � �L X � 1 .Ž .Ł1 1 k�1 l½ 5
l�1

Ž .The probability in the summand in the right-hand term in 78 is the
probability that a random walk with finite, negative mean exceeds zero. Since

� 4 ��Ž .�� r4 �Ž .E �L � � � � � E log �L � �, for all integers r � 0, Theorem 1 i� �

Ž .� Ž . Ž .� x of Janson 1986 implies that the right-hand side of 78 is finite. Thus,
we conclude that all moments of � are finite under P , as required.1 �

Ž .With this generalization of Lemma 4 of Moustakides 1986 it is easily
checked that the remainder of the proof of Theorem 1 of Moustakides goes
through exactly for the exponential delay case with the substitution of

Ž . Ž .�L X for L X .k k
Case 2: 
 � 1. Fix the distributions Q and Q and consider variation in 
b a

� 
 4 � 4due to variation in � only. For 
 	 1, let S denote the sequence Sk k
defined by the corresponding choice of � . Note that S 
 is strictly increasingk

Ž .in 
 for each k � 1, and thus we have recall that g is nonincreasing

T�1 T�1
1 
79 sup E g S 	 sup E g S �
 	 1,Ž . Ž . Ž .Ý Ý� k � k½ 5 ½ 5

k�1 k�1T�TT T�TT� �

where TT denotes the set of all elements of TT satisfying the constraint�

Ž .f T � � .

� �For each 
 � 0, 1 , let T denote the element of TT defined by T for the� h

Ž .corresponding value of � . Since L X has no atoms under P and since g isk �

 1 Ž 
 . Ž 1.continuous, we have that T � T and g S � g S almost surely underk k

P , as 
 �1. Thus, we conclude that�

T 
�1 T 1�1

 1 � �80 lim g S � g S a.s. P .Ž . Ž . Ž .Ý Ýk k �


 �1 k�1 k�1
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 � �Let h denote the threshold used in T . Then, for 
 � 0, 1 , we have



T �1

 
g S 	 T max g 0 , g hŽ . Ž .Ž . ½ 5Ý k 
81Ž . k�1


	 T max g 0 , g h , g h ,� 4Ž . Ž . Ž .0 1

where we have used the fact that h is nondecreasing in 
. We can conclude


 
 0 � � � 4 xfurther that T 	 T 	 T a.s. P where, for x � 
, 1 , T denotes the1 1 � 1

x � 04 Ž .first time S crosses h . Since E T � �, the left-hand side of 81 is thusk 1 � 1
� �bounded by a fixed integrable random variable for all 
 � 0, 1 . The domi-

Ž .nated convergence theorem and 80 then imply that
T 
�1 T 1�1


 182 lim E g S � E g S .Ž . Ž . Ž .Ý Ý� k � k½ 5 ½ 5
 �1 k�1 k�1

1Ž . Ž .Combining 79 with 82 , we conclude that T is optimal in TT for 
 � 1, and�

thus Lemma 2.4 follows for this case.
Ž . �Case 3: 
 � 1. The moments of � of 77 are infinite in this case cf. Doob1

Ž .1953 , page 308, for the case 
 � 1. The case 
 � 1 then follows since � is1
�nondecreasing in � . So, it is more difficult to adapt the proof of Theorem 1 of

Ž .Moustakides 1986 to Lemma 2.4. However, it is straightforward to prove
Lemma 2.4 directly in this case.

It suffices to show that there is a � � � such that T solvesh

T�1

83 sup E g S � � .Ž . Ž .Ý� k½ 5
T�TT k�0

Ž .It is easily seen that T solves this problem when � � g 0 , and T solves it0 �

Ž . Ž . Ž .when � 	 g � 
 lim g s � inf g s . So, let us consider the situations�� s� 0
Ž Ž . Ž ..� � g � , g 0 .

Ž Ž . Ž ..Fix � � g � , g 0 and, for all s � 0, define the sequence
n�1

s s84 Y � g S � n�, n � 0, 1, . . . ,Ž . Ž .Ýn k
k�0

where
s s s85 S � max S , 1 �L X , k � 1, 2, . . . , S � s.Ž . Ž .� 4k k�1 k 0

Ž .Note that 83 can be rewritten as

86 sup E Y s ,� 4Ž . � T
T�TT

with s � 0. For each s � 0, we can write
n�1 ��s sY 	 g S � �Ž . Ž .Ž .Ýn k
k�0

n�1 �� k k� 4	 g s � � � g max s, 1 � L � � ,Ž .Ž . Ž .Ž .Ý 1
k�1

87Ž .
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k k s k kŽ . � 4with L � Ł L X , where we use the facts that S � max s, 1 � L and1 j�1 j k 1
that g is nonincreasing. We then have

� ��s k k� 4E sup Y 	 g 0 � � � E g max s, 1 � L � �Ž .Ž . Ž .Ž .Ý� n � 1½ 5 ½ 5
n k�1

�
k k �1 � 4	 g 0 � � P � L � g � �max s, 1 ,Ž . Ž .Ž .Ý � 1

k�0

88Ž .

�1Ž . � � Ž . .4where g � � inf s � 0 g s � � � �. Since 
 � 1, the summand in the
Ž .rightmost term of 88 is the probability that a random walk with finite

positive mean falls below a real threshold. Analogously with the situation in
Ž .78 , this probability is summable, and thus we can conclude that

�s89 E sup Y � �.Ž . Ž .� n½ 5
n

Ž . �It follows from 89 and Theorem 4.5 of Chow, Robbins and Siegmund
Ž . Ž .1971 that 86 is solved by the stopping time

s s s�90 T � inf k � 0 Y � � ,Ž . � 4opt k k

s s� 4 � 4where � is the Snell envelope of Y ,k k

s s91 � � ess sup E Y � FF , k � 0, 1, . . . ,� 4Ž . k � T k
T�TTk

Ž . Žand where TT denotes the subset of TT satisfying P T � k � 1. Recall thatk �

the essential supremum of a family of random variables is the smallest
.random variable that almost surely dominates all members of the family.

s s� 4The homogeneous Markovity of S allows us to represent � ask k

s s92 � � Y � v S , � ,Ž . Ž .k k k

where
93 v s, � � sup E Y s , s � 0.� 4Ž . Ž . � T

T�TT

We can now use an argument similar to that used on page 1386 of
Ž . 0Moustakides 1986 to show that there is a � such that T � T . In particu-opt h

lar, we look for a root of the function

94 b � � g h � � � VV v h , � ,Ž . Ž . Ž . Ž .
with

� 495 VV v s, � � v max s, 1 �L x , � Q dx , s � 0.Ž . Ž . Ž . Ž .Ž .H b

Ž .Since v s, � is the maximum of a family of decreasing, linear functions in �,
Žit is a nonincreasing convex function of �. It follows that b is convex and

. Ž Ž . . Ž Ž ..hence continuous and nonincreasing on g � , � . Since v s, g 0 � 0 and
Ž . Ž . Ž Ž ..g h 	 g 0 we have that b g 0 	 0. Moreover, the nonnegativity of v

Ž Ž . Ž .� Ž Ž . Ž ..implies that b has a root in g � , g 0 if there is a � � g � , g 0 for which
Ž . Ž . Ž . Ž .b � � 0. This is trivially true if g h � g � . If, on the other hand g h �
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Ž . Ž Ž . Ž .. Ž .g � , then this will be true if there is a � � g � , g 0 such that VV v h, � �
Ž Ž . Ž ..0. The latter condition requires only that there be a � � g � , g 0 such that

Ž � 4 Ž . �1Ž ..P max h, 1 L X � g � � 0, a condition that can always be met because� 1
�1Ž .g � can be made arbitrarily small.

sSince S is nondecreasing in s, and g is nonincreasing, it follows thatk
Ž .v s, � is a nonincreasing function of s. Moreover, v satisfies the integral

� Ž .�equation see Theorem II.16 of Shiryayev 1973

96 v s, � � max 0, g s � � � VV v s, � , s � 0,� 4Ž . Ž . Ž . Ž .
where the operator VV is as above. With � chosen as a root of b, it is clear

Ž . 0from 96 that T will equal T .opt h
Thus, Lemma 2.4 follows for 
 � 1 and hence for all 
. �

Ž .B. Proof of Theorem 3.1. We consider first d T . Under the distribu-h
tion P the observations X , X , . . . are i.i.d. with marginal distribution Q .� 1 2 b
It is clear that T arises from a renewal process, with renewals occurringh

Ž .whenever the accumulated sum m of 16 is reset to zero, and with ak
� .termination when m exits from 0, log h . It follows that we can writek

J

� �97 T � N a.s. P ,Ž . Ýh j �
j�1

Ž .where N , N , . . . are i.i.d. repetitions under P of the random variable N of1 2 �

Ž .19 and where J denotes the number of repetitions of N that occur before
the sum exits at the upper boundary log h. Let M denote the indicator of thej
event that the jth repetition of N results in an exit at the upper boundary.

Ž . ŽThen J is a stopping time with respect to the sequence N , M , N ,1 1 2
. � 4M , . . . , which is i.i.d. under P . Since E T clearly exists, the generalized2 � h

� Ž .�Wald identity see, e.g., Robbins and Samuel 1966 allows us to write

� 4 � 4 � 498 E T � E J E N .Ž . � h � �

It is easy to see that, under P , J is a geometric random variable with�

j�199 P J � j � 1 � P F P F , j � 1, 2, . . . ,Ž . Ž . Ž . Ž .� � 0 � 0

Ž . Ž .and the equality in 17 thus follows. To prove the inequality in 17 , we note
Ž . Ž . � 4that 10 implies P F � 1, from which it follows that E J � �. Further-� 0 �

� Ž . �more, a lemma of Stein’s cf. Siegmund 1985 , Proposition 2.19 implies that
� 4 Ž .E N � �, and so the inequality in 17 follows as well.�

Ž .To analyze d T it is useful to note first that the worst-case prechangeh
sample paths are those that lead to a resetting of m just before the changek
point. Consequently, the stopping time T is an equalizer rule, andh

� Th � 1
100 d T � d T � E .Ž . Ž . Ž .h 1 h 1½ 5� � 1

Since, under the measure P , X , X , . . . is an i.i.d. sequence drawn from Q ,1 1 2 a
the analysis of this quantity can proceed in much the same fashion as that of
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Ž . Ž .f T . In particular, using 97 we can writeh

�
T N N N Nh 1 J 1 j �� 4 � 4101 E � � E � ��� � � E � ��� � J � j P J � j ,� 4Ž . Ž .Ý1 1 1 1

j�1

where the second equality follows since � Th � 0.
� N1 Nj � 4 Ž .Consider the summand E � ��� � J � j P J � j . As in the preceding1 1

analysis, we can write
j�1102 P J � j � 1 � P F P F , j � 1, 2, . . . .Ž . Ž . Ž . Ž .1 1 0 1 0

We can further write
j j

N Nl l103 E � J � j � E � M � ��� � M � 0, M � 1 ,Ž . Ł Ł1 1 1 j�1 j½ 5 ½ 5
l�1 l�1

where M , M , . . . are defined as above. The random variables N , N , . . . are1 2 1 2
conditionally independent given the random variables M , M , . . . . Thus,1 2
Ž .103 becomes

j�1N N N c N1 j � � �104 E � ��� � J � j � E � F E � F .� 4Ž . � 4 � 41 1 0 1 0

n � Ž . �Since N is the first exit time of the random walk Ý log L X � log �l�1 l
from an interval, it follows straightforwardly from Proposition IV-4-19 of

Ž .Neveu 1975 that
�1N

105 E L X � 1.Ž . Ž .Ł1 l½ 5l�1

Ž . Ž c. Ž .Moreover, 10 implies that P F � 0 and, since L X is almost surely1 0 k

positive under Q , it further follows thata

�1N

106 E L X 1 � 1.Ž . Ž .Ł1 l F0½ 5l�1

N N Ž . Ž .On F we have that � Ł L X 	 1, and thus 106 implies that0 l�1 l

107 E � N 1 � 1.Ž . � 41 F0

Ž . Ž . Ž . Ž .On combining 101 , 102 , 104 and 107 , we can write

E � N 1 c� 41 F0Th� 4108 E � � ,Ž . 1 N1 � E � 1� 41 F0

Ž .and 18 follows.
This completes the proof of Theorem 3.1. �

C. Proof of Theorem 4.1. In this proof all statements concerning ran-
dom variables and sequences of random variables are taken to hold almost
surely under the measure P.
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In view of Remark 4.2, in proving Theorem 4.1 we need only consider the
case � � 1, which we henceforth assume. Moreover, in view of the discussion

Ž .following 40 , the situation for c � 1 is trivial. Thus, we may also restrict
attention in the remainder of the proof the case c � 1.

Ž .We first note that 51 follows straightforwardly from Bayes’ formula,
which implies

1 R � 1� kŽk�t�1.� �109 E 1 FF � 1 � � � and E � FF � ,Ž . � 4� 4�k � t4 k k k1 � W 1 � Wk k

where
L XŽ .k

110 W � W � � , k � 1, 2, . . . , W � � ,Ž . Ž .k k�1 01 � �

Ž . �and where R is given by 46 . The values of Y follow directly from thek �

definition and from the asymptotic properties of the likelihood ratio; cf.
Ž . �Chung 1968 , Theorem 8.2.5.
� 4Since Y is adapted and is bounded from below, the optimal stopping timek

� � Ž .�see Theorem 4.5 of Chow, Robbins and Siegmund 1971 is
�111 T � inf k � 0 Y � � ,� 4Ž . opt k k

� 4 � 4where � is the Snell envelope of Y ,k k

�112 � � ess inf E Y FF� 4Ž . k T k
T�TTk

Ž .and where TT is the subset of TT that satisfies P T � k � 1.k
In order to determine the Snell envelope, we first prove the following

result.

LEMMA C.1. For each integer n � 0, define a sequence of random variables
n �113 � � ess inf E Y FF , k � 0, 1, . . . , n ,� 4Ž . k T knT�FFk

n Ž .where TT is the subset of TT that satisfies P T 	 n � 1. Then, for all k � 0,k k
n � �114 lim � � � a.s. P .Ž . k k

n��

PROOF. Note first that, for � � 1, Y is bounded from above as well ask
from below, and Lemma C.1 follows immediately from the ‘‘triple limit

� Ž . Ž .�theorem’’ cf. Theorem 4.8 b of Chow, Robbins and Siegmund 1971 . So we
restrict attention to the case � � 1.

Fix k and n with k � n � �. Since Y is bounded from below by zero, itk
� Ž . �follows from Theorem 4.5 of Chow, Robbins and Siegmund 1971 applied

Ž � .�under the conditional probability measure P � FF that there is a stoppingk
Ž � . � � 4time T � TT such that P T � � FF � 1 and � � E Y FF . Since � 	 Y �k k k k k T k k kk

� and T is almost surely finite conditioned on FF , we can writek k
�

� � �115 � � E Y FF � E Y 1 FF � E Y 1 FF ,Ž . � 4 � 4 � 4Ýk n � T k l �T �l4 k n �T � n4 kk k k
l�n�1

� 4where a � b � min a, b .
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Now, again using the fact that � � �, we have thatk
�

�116 lim E Y 1 FF � 0.Ž . � 4Ý l �T �l4 kkn�� l�n�1

� 4On using the facts that FF � FF and T � n � FF , we can writek n k n
�Žn�t�1.� � 1

�E Y 1 FF � E E 1 � c FF 1 FF� 4n �T � n4 k �n� t4 n �T � n4 kk k½ 5½ 5� � 1
�Žn�t�1.� � 1

� E 1 � c 1 FF�n� t4 �T � n4 kk½ 5ž /� � 1
117Ž .

�Žn�t�1.� � � 1
�	 P T � n FF � c E 1 FF .Ž . Ýk k �T �l4 kk½ 5� � 1l�n�1

Since T is almost surely finite conditioned on FF , we have thatk k

�118 lim P T � n FF � 0.Ž . Ž .k k
n��

Consider the summand in the second term to the right of the inequality in
Ž . � 4117 for a fixed l � n. Because FF � FF and T � l � FF we havek l k l

� �Žn�t�1. Žn�t�1.� � 1 � � 1
E 1 FF � E E FF 1 FF�T �l4 k l �T �l4 kk k½ 5 ½ 5½ 5� � 1 � � 1

119Ž . �Ž l�t�1.� � 1
	 E E FF 1 FF .l �T �l4 kk½ 5½ 5� � 1

Ž .We can conclude from 116 that the sum
�Ž l�t�1.� � � 1

120 E E FF 1 FFŽ . Ý l �T �l4 kk½ 5½ 5� � 1l�n�1

converges almost surely to zero conditioned on FF , and it thus follows thatk

�121 lim E Y 1 FF � 0.Ž . � 4n �T � n4 kkn��

Now, since n � T � TT n, it follows from the definition of � n thatk k k

� n122 E Y FF � � ,Ž . � 4n � T k kk

� Ž . Ž . Ž . Ž .�from which we conclude via 115 , 116 , 121 and 122 that

123 � � lim sup � n .Ž . k k
n��

Since we clearly have � 	 � n, the lemma follows. �k k

Lemma C.1 allows us to find the Snell envelope by first considering the
� 4nfinite-horizon problem, inf E Y and then passing to the limit. In viewT � TT T0

of the recursive nature of the sequences � and R , the finite-horizonk k
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�problem can be solved using dynamic programming see, e.g., Theorem 3.2 of
Ž .�Chow, Robbins and Siegmund 1971 . This approach leads straightforwardly

to the representation
c

n124 � � 1 � � lim QQ l R � ,Ž . Ž . Ž .k k k � � 1n��

where the operator QQ is defined as

�L xŽ .
125 QQh R � min l R , 1 � � h R � � Q dx , R � 0.Ž . Ž . Ž . Ž . Ž . Ž .H b½ 5ž /1 � �

� Ž .It is easily seen that the integral in 125 exists when h is any member of
� n 4 �the sequence QQ l .

A straightforward inductive argument shows that each of the functions
n � n 4QQ l is continuous and concave and moreover that QQ l is a pointwise

monotone nonincreasing sequence of functions. So, this sequence has a point-
wise limit s, which, as the monotone pointwise limit from above of a sequence
of concave functions, must also be concave. Further, by the monotone conver-
gence theorem, s must satisfy the nonlinear integral equation
126 s R � min l R , QQs R , R � 0,� 4Ž . Ž . Ž . Ž .

which implies that it is continuous. Thus, we can write
c

127 � � 1 � � s R � , k � 0, 1, . . . ,Ž . Ž . Ž .k k k � � 1
where s is a continuous concave function bounded from above by the line l of
Ž .52 . It thus follows from the above properties that the optimal stopping time
Ž .111 is given by

�128 T � inf k � 0, 1, . . . l R � s R .� 4Ž . Ž . Ž .opt k k

n Ž .A further inductive argument shows that the difference l � QQ l � 0 is a
monotone nonincreasing function for each n, from which we can conclude
that l � s is nonnegative and nonincreasing. This implies that s satisfies
Ž .54 , and in turn that

� �129 T � inf k � 0, 1, . . . R � R ,� 4Ž . opt k
� Ž . Žwhere R is the constant 54 . Note that, for � � 1, it is possible that

� .R � �, in which case the optimal stopping time is T � �. Since T is theopt
same as T , this completes the proof of the theorem. �B

D. Proofs for Section 5.

PROOF OF LEMMA 5.2. Similarly to the situation in Theorem 4.1, the
Ž . � 4objective of the optimization 58 can be written as E Z , whereT

TŁ � X � 1Ž .j�t j
Z � E 1 � c FFk �k � t4 k½ 5� � 1130Ž .

cˆ� 1 � � l R � ,Ž . Ž .k k � � 1
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Ž . Ž .with l R as before and where Z � c� 1 � � for � � 1 and Z � � for� �

Ž� � 1. In this proof, statements concerning random variables are taken to
.hold almost surely under P.

We can write
�

� 4E Z � E Z 1 � Z P T � �� 4 Ž .ÝT k �T�k4 �
k�0

�

ˆ� E 1 � � l R 1Ž . Ž .Ý ½ 5k k �T�k4
k�0

131Ž .

c c
� Z � P T � � � .Ž .�ž /� � 1 � � 1

The summand in the rightmost term of this equation is given by

ˆ ˆ ˆ132 E 1 � � l R 1 � E � 1 � � l R 1 ,Ž . Ž . Ž .Ž . Ž .½ 5 ½ 5k k �T�k4 k k k �T�k4

where � is the Radon�Nikodym derivative of the restriction of P to FF , withk k
ˆ Ž .respect to the restriction of P to FF . It is easily seen that � 1 � � � 1 � �̂k k k k

ˆŽ � .with � � P t 	 k FF , and thus we can writeˆk k

�

ˆ ˆ� 4E Z � E 1 � � l R 1Ž .ˆ Ž .Ý ½ 5T k k �T�k4
k�0133Ž .

c c
� Z � P T � � � .Ž .�ž /� � 1 � � 1

Ž .Now, for � � 1 we have Z � c� � � 1 � 0, and so�

�

ˆ ˆ ˆ ˆ� 4134 E Z � E Y 1 � Y P T � � ,Ž . Ž .½ 5ÝT k �T�k4 �
k�0

with
cˆ ˆ135 Y � 1 � � l R � , k � 0, 1, . . . ,Ž . Ž .ˆ Ž .k k k � � 1

ˆ Ž .and Y � c� 1 � � . From Lemma 4.3, it follows that�

� ŽT�t�1.�� 1ˆ ˆ� 4136 E Z � P T � t � cE ,Ž . Ž .T ½ 5� � 1

and the lemma follows for � � 1.
ˆŽ .Now suppose � � 1. We know from Theorem 4.1 that 71 is solved by TB

�̂Ž .from 60 with R � �. Since
k

137 R � � X L X � �,Ž . Ž . Ž .Łk j j
j�1

ˆ ˆŽ . Ž .we see that P T � � � 1. So, we can conclude from 133 that T alsoB B
Ž .solves 58 , and the lemma follows for � � 1 as well. �
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� Ž .�PROOF OF LEMMA 5.4. Here, we need only note that with b as in 73�

T l�1

E � X FFŽ .Ý Łt j t�1½ 5j�tl�t

� k l�1

� E � X 1 FF � b P T � �Ž .Ž .Ý Ý Łt j �T�k4 t�1 � t½ 5j�tk�t l�t

� k�1

� E � X 1 FFŽ .Ý Łt l �T � k4 t�1½ 5l�tk�t
138Ž .

� k�1

� E � X L X 1 FFŽ . Ž .Ý Ł� l l �T � k4 t�1½ 5
l�tk�t

T�1

� E � X L X FF .Ž . Ž .Ł� l l t�1½ 5
l�t

Thus we see that the constant � and measure Q enter the problem ofa
Ž .Section 2 only through the product � dQ �dQ x , which, by the finala b

expression in the above equation, can be replaced by

ˆdQa
139 � x L x � � y Q dy 	 x .Ž . Ž . Ž . Ž . Ž . Ž .H a dQb

The lemma follows. �
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