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If we wish to estimate efficiently the expectation of an arbitrary func-
tion on the basis of the output of a Gibbs sampler, which is better: determin-
istic or random sweep? In each case we calculate the asymptotic variance
of the empirical estimator, the average of the function over the output, and
determine the minimal asymptotic variance for estimators that use no in-
formation about the underlying distribution. The empirical estimator has
noticeably smaller variance for deterministic sweep. The variance bound
for random sweep is in general smaller than for deterministic sweep, but
the two are equal if the target distribution is continuous. If the components
of the target distribution are not strongly dependent, the empirical esti-
mator is close to efficient under deterministic sweep, and its asymptotic
variance approximately doubles under random sweep.

1. Introduction. The Gibbs sampler is a widely used Markov chain
Monte Carlo (MCMC) method for estimating analytically intractable features
of multi-dimensional distributions. Interest in the method has been spurred
by the resurgence of Bayesian statistics in recent years. While other MCMC
methods can be more suitable in some Bayesian applications, the Gibbs
sampler is often seen as the default option, for example, in the BUGS software
package; see Spiegelhalter, Thomas and Best (1996).

A given MCMC method may be judged by various criteria. One is the speed
at which the Markov chain converges to its target distribution, the stationary
distribution of the chain. This is a well-studied problem; recent references
are Frigessi, Hwang, Sheu and Di Stefano (1993), Ingrassia (1994), Meyn
and Tweedie (1994), Roberts and Polson (1994), Rosenthal (1995), Mengersen
and Tweedie (1996), Roberts and Tweedie (1996) and Roberts and Sahu
(1997).

It is common to discard the initial observations (burn-in) until the sam-
pler is thought to be close to its stationary distribution π. Then, to extract
information from the remaining observations, X0� � � � �Xn say, the empirical
estimator Enf = �1/n�∑ni=1 f�Xi� is used to approximate the expectation πf
of any given function of interest f. Provided the burn-in period is relatively
short, it is reasonable to judge the sampler by the asymptotic variance of
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the empirical estimator. This criterion is utilized by Peskun (1973), Frigessi,
Hwang and Younes (1992), Green and Han (1992), Liu, Wong and Kong (1994,
1995), Clifford and Nicholls (1995), Liu (1996), Fishman (1996) and Frigessi
and Rue (1998).

Here we consider a third criterion by which MCMC methods can be judged:
How much information about πf is contained in the sample X0� � � � �Xn? In
particular: What fraction of the information is exploited by the empirical es-
timator? Is it worthwhile to construct improved estimators?

While the first two criteria are essentially probabilistic, the third is statisti-
cal and appears to have received comparatively little attention. The statistical
approach is to view π as an infinite-dimensional parameter of the transition
distribution driving the sampler. To study the above questions, one needs to
determine the minimal asymptotic variance of estimators of πf in the sense of
an infinite-dimensional version of Hájek’s convolution theorem. The variance
bound is also called the information bound for estimating πf.

We are led to a class of statistical problems on which some progress has
been made recently: Given a family of transition distributions, how well can
one estimate the invariant law on the basis of realizations of the correspond-
ing Markov chain? The answer depends very much on the type of model. If
nothing is known about the transition distribution, then the empirical esti-
mator is efficient for πf; see Penev (1991), Bickel (1993) and Greenwood and
Wefelmeyer (1995). It does not help to know that the chain is reversible; see
Greenwood and Wefelmeyer (1998). If one has a parametric model for π, one
can use what would be the maximum likelihood estimator if the observations
were independent; Kessler, Schick and Wefelmeyer (1998) show that one can
do even better.

In the present paper, we are concerned with the information in the simu-
lated values X0� � � � �Xn, given the knowledge that a Gibbs sampler was used
to generate them. It is assumed that no information about π itself is made
available to the statistician, apart from the link between π and the tran-
sition distribution of the observed Markov chain. Of course, π is known in
principle, and part of that knowledge can sometimes be exploited to improve
upon the empirical estimator. An example is Rao–Blackwellization, which con-
sists of taking an appropriate conditional expectation of the empirical estima-
tor; see Gelfand and Smith (1990, 1991), Schmeiser and Chen (1991), Liu,
Wong and Kong (1994), Geyer (1995) and Casella and Robert (1996). Indeed,
McKeague and Wefelmeyer (1998) show that an estimator of πf with arbi-
trarily small asymptotic variance is obtained, at least theoretically, by re-
peated Rao–Blackwellization of the empirical estimator. Symmetries of π are
exploited in Greenwood, McKeague and Wefelmeyer (1996). If π is a random
field on a lattice and the interactions between the sites are known to be lo-
cal and relatively weak, the so-called von Mises-type statistics of Greenwood,
McKeague and Wefelmeyer (1998) also lead to considerable variance reduc-
tion over the empirical estimator. In the present setting, however, we avoid
the use of any specific structural knowledge about π, so our conclusions apply
to generic Gibbs samplers.



2130 P. E. GREENWOOD, I. W. MCKEAGUE AND W. WEFELMEYER

We consider Gibbs samplers with deterministic and random sweeps. The
chain X0�X1� � � � is formed by updating a single component at each step. Un-
der deterministic sweep, the sampler cycles through the components in some
fixed order. Under random sweep, each step consists of choosing a component
at random and then updating it. In the literature, a deterministic sweep sam-
pler with k components is usually taken to be the subchain X0�Xk�X2k� � � � �
which changes only when a full cycle of updates is completed. The empirical
estimator based on this “coarse” chain is expected to have larger asymptotic
variance than Enf, at least in balanced situations; see Greenwood, McKeague
and Wefelmeyer (1996). Subsampling of the coarse chain further increases the
asymptotic variance, as observed by Geyer (1992), Theorem 3.3 and McEach-
ern and Berliner (1994).

Our principal objective is to assess the efficiency of the empirical estima-
tor Enf based on the “fine” chain observations X0�X1� � � � �Xn under both
deterministic and random sweeps. Here, efficiency is defined as the ratio of
the information bound to the asymptotic variance of the estimator. The main
points are as follows.

1. If π has only two components, then the empirical estimator is fully efficient
under deterministic sweep.

2. For random sweep, the efficiency of the empirical estimator is at best only
slightly more than 50%, but close to 50% if π is continuous.

3. The information bound is smaller for random sweep than for deterministic
sweep except when π is continuous, in which case the bounds coincide. The
information bound for deterministic sweep does not depend on the order of
the sweep.

4. The asymptotic variance of the empirical estimator under random sweep is
no more than twice that under deterministic sweep.

If the components of π are not strongly dependent:

1. The empirical estimator is close to efficient under (any) deterministic
sweep.

2. The asymptotic variance of the empirical estimator under random sweep is
close to twice that under deterministic sweep.

The paper is organized as follows. Section 2 collects various facts about
Gibbs samplers used in the sequel. In Section 3 we calculate the asymptotic
variance of Enf and the information bound of regular estimators of πf under
deterministic sweep. Section 4 develops similar results for random sweep. The
main points above are discussed in Section 5. Two simulation examples are
presented in Section 6. Proofs are collected in Section 7.

2. Preliminaries. In this section we describe Gibbs samplers with deter-
ministic and random sweep and collect some well-known properties of their
transition distributions, which will be used later. The presentation is rather
detailed because our proofs require a careful description of the transition dis-
tributions.



INFORMATION BOUNDS FOR GIBBS SAMPLERS 2131

Let E = E1 × · · · ×Ek be a product of measurable spaces, with product σ-
field, and π a distribution on E. For each j = 1� � � � � k, we can express x ∈ E
by separating out the jth component, x = �xj� x−j�, where x−j is obtained
from x by omitting the jth component xj. Factor π in k different ways,

π�dx� =m−j�dx−j�pj�x−j� dxj�� j = 1� � � � � k�(2.1)

with pj�x−j� dxj� the one-dimensional conditional distribution under π of xj
given x−j, and m−j�dx−j� the �k − 1�-dimensional marginal distribution of
x−j.

Gibbs samplers successively use the transition distributions

Qj�x�dy� = pj�x−j� dyj�εx−j�dy−j��

which change only the jth component of x. Such samplers are defined in-
ductively as follows. At time 0, choose an initial value X0 = �X0

1� � � � �X
0
k�.

At time i, pick an index j and replace Xi−1 by a value Xi generated from
Qj�Xi−1� dy�. It follows from (2.1) that each Qj has invariant law π. At time
n we have created n + 1 realizations X0� � � � �Xn of a Markov chain with in-
variant law π. A specific sampler corresponds to a specific sampling scheme
for picking the indices.

Before describing specific sampling schemes, we recall some properties of
Qj. Let 	·� ·
2 denote the inner product, and � · �2 the norm (or, depending on
the context, the operator norm) on L2�π�. By definition of Qj,

Qj�x�h�=
∫
Qj�x�dy�h�y�=

∫
pj�x−j� dxj�h�x−j� xj�=pj�x−j� h��(2.2)

In particular, Qj�x�dy� does not depend on xj. Hence Qj is idempotent,

Q2
j = Qj�(2.3)

This means that Qj is a projection operator on L2�π�. Indeed, we can write
L2�π� as the orthogonal sum of two subspaces, one consisting of functions h
with Qjh = 0, the other of functions h�x� not depending on xj, and Qj is the
projection on the second subspace along the first. Therefore,

	h� Qjh′
2 = 	Qjh� Qjh′
2 for h�h′ ∈ L2�π��(2.4)

Relation (2.4) implies that Qj, as an operator on L2�π�, is positive,

	h� Qjh
2 = 	Qjh� Qjh
2 ≥ 0 for h ∈ L2�π��(2.5)

and selfadjoint,

	h� Qjh′
2 = 	Qjh� Qjh′
2 = 	Qjh� h′
2 for h�h′ ∈ L2�π��(2.6)

The last relation is seen to be equivalent to detailed balance,

π�dx�Qj�x�dy� = π�dy�Qj�y�dx��(2.7)



2132 P. E. GREENWOOD, I. W. MCKEAGUE AND W. WEFELMEYER

This, in turn, implies again that Qj has invariant law π. From (2.2) we obtain

�Qj1
· · ·Qjs��x�h� = �pj1

· · ·pjs��x−j1
� h� for h ∈ L2�π��

We will occasionally use this identity.
We focus on two particular sampling schemes.

Deterministic sweep. For the Gibbs sampler with deterministic (and cyclic)
sweep, the indices j = 1� � � � � k are numbered in a fixed way, and then the
Qj are applied cyclically according to this numbering. We will not compare
different deterministic sweeps, but the numbering of the indices is arbitrary.
The transition distribution of the corresponding Markov chain at time i =
�q− 1�k+ j is Qj.

The chain is not homogeneous, but the blocks �X�q−1�k+1� � � � �Xqk�, with
q = 1�2� � � � � form a homogeneous Markov chain, with transition distribution
Q1 ⊗ · · · ⊗Qk. For j = 1� � � � � k− 1, the realization X�q−1�k+j is determined by
X�q−1�k and Xqk as �Xqk≤j�X�q−1�k

>j �, where

x≤j = �x1� � � � � xj�� x>j = �xj+1� � � � � xk��
Hence nothing is lost if we observe only the chain X�q−1�k, q = 1�2� � � � � By
“Gibbs sampler” one often means this subchain. The subchain is homogeneous,
with transition distribution

Q�d��x�dy� = �Q1 · · ·Qk��x�dy� =
k∏
j=1

pj�y<j� x>j� dyj��(2.8)

The subscript �d� stands for deterministic. The transition distribution Q�d� is
in general neither positive nor selfadjoint. The adjoint Q∗

�d� of Q�d� is obtained
by reversing the order of the sweep,Q∗

�d� = Qk · · ·Q1. This follows by repeated
application of the basic relation (2.4). For k = 2,

	h� QiQjh′
2 = 	Qih� Qjh′
2 = 	QjQih� h′
2�

Similarly, for j = 1� � � � � k − 1, the subchain �Xqk≤j�X�q−1�k
>j �, q = 1�2� � � � � is

homogeneous, with transition distribution Qj+1 · · ·QkQ1 · · ·Qj.

Random sweep. For the Gibbs sampler with random sweep (with equal
probabilities), each index j is picked according to the uniform distribution on
1� � � � � k, independently at successive time steps. The transition distribution
of the corresponding Markov chain at each time is

Q�r��x�dy� =
1
k

k∑
j=1

Qj�x�dy� =
1
k

k∑
j=1

pj�x−j� dyj�εx−j�dy−j��(2.9)

The subscript �r� stands for random. This chain is homogeneous. Since the
Qj are positive by (2.5), so is their average, Q�r�,

	h� Q�r�h
2 ≥ 0 for h ∈ L2�π��(2.10)
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Since the Qj are selfadjoint by (2.6), so is Q�r�,

	h� Q�r�h
′
2 = 	Q�r�h� h

′
2 for h�h′ ∈ L2�π��(2.11)

For a different argument see Liu, Wong and Kong [(1995), Lemma 3]. Since
powers of positive and selfadjoint operators are positive and selfadjoint, we
obtain that Qs�r� is positive and selfadjoint for all s.

3. Deterministic sweep. In this section we find, for the Gibbs sampler
with deterministic sweep, the asymptotic variance of the empirical estimator,
in two versions, and the minimal asymptotic variance of regular estimators
of πf.

Let X0� � � � �Xn be realizations from the Gibbs sampler for π with deter-
ministic sweep, with n a multiple of k, say n = pk. We want to estimate the
expectation πf of a function f ∈ L2�π�. The most common estimator for πf
is the empirical estimator based on the subchain X0�Xk� � � � �Xpk,

Eknf = 1
p

p∑
q=1

f�Xqk��

The empirical estimator based on the full chain X0� � � � �Xn is

Enf = 1
n

n∑
i=1

f�Xi� = 1
k

k∑
j=1

Ejnf

with

Ejnf = 1
p

p∑
q=1

f≤j�X�q−1�k�Xqk�

and

f≤j�x�y� = f�y≤j� x>j��
To fix things, by asymptotic distribution of an estimator Tn, we will mean

the asymptotic distribution of n1/2�Tn − πf�, even though standardizing by
p1/2 rather than n1/2 is more common for the empirical estimator Ejnf.

Meyn and Tweedie [(1993), page 382], say that a Markov chain with tran-
sition distribution Q and invariant law π is V-uniformly ergodic if V� E→ R
with V ≥ 1 and

sup
x
V�x�−1 sup

�v�≤V
�Qn�x� v� − πv� → 0 for n→ ∞�

The following propositions are consequences of their version of the central
limit theorem for Markov chains [Meyn and Tweedie (1993), page 411, Theo-
rem 17.0.1]. Proofs are in Section 7.
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Proposition 1. Assume that the Gibbs sampler for π with deterministic
sweep is positive Harris recurrent and the subchains are V-uniformly ergodic,

and that f2 ≤ V. Then the empirical estimator E
j
nf is asymptotically normal

with variance

σ2
j = kσ2

f + 2k
∞∑
s=1

〈
f− πf� pcycl sk

j �f− πf�〉2�

where p
cycl s
j = pjpj+1 · · ·pkp1p2 · · · with s terms, and σ2

f is the variance of
f under π.

Proposition 2. Under the assumptions of Proposition 1, the empirical es-
timator Enf is asymptotically normal with variance

σ2
�d� = σ2

f + 2
∞∑
s=1

1
k

k∑
j=1

〈
f− πf� pcycl s

j �f− πf�〉2�(3.1)

Because the empirical estimator Eknf based on the subchain is often used
in practice, we have included the description of its asymptotic variance in
Proposition 1. However, we do not recommend this estimator; the simulations
in Section 6 show that Eknf can be considerably worse than Enf. This is
true even when π has only two components; see Greenwood, McKeague and
Wefelmeyer (1996).

To determine the information bound of (regular) estimators of πf, we must
prove that the model is locally asymptotically normal. A local model around
π is obtained by perturbing π,

πnh�dx� = π�dx��1 + n−1/2h�x���(3.2)

with local parameter h running through

H = �h� E→ R measurable, bounded, πh = 0��(3.3)

Write pj�nh�x−j� dxj� for the one-dimensional conditional distribution under
πnh�dx� of xj, given x−j. The effect of the perturbation of π on pj can be
described as follows.

Lemma 1. For h ∈H�

pj�nh�x−j� dxj� = pj�x−j� dxj�
(
1 + n−1/2hj�x� + sj�nh�x�

)
(3.4)

with

hj�x� = h�x� −Qj�x�h� = h�x� − pj�x−j� h�(3.5)

and sj�nh�x� of order O�n−1� uniformly in x.
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Write Q�d�nh for the transition distribution (2.8) of the Gibbs sampler for
πnh with deterministic sweep,

Q�d�nh�x�dy� = �Q1� nh · · ·Qk�nh��x�dy� =
k∏
j=1

pj�nh�y<j� x>j� dyj��

It follows easily from Lemma 1 that Q�d�nh is obtained by perturbing Q�d� as
follows. Uniformly in x and y,

Q�d�nh�x�dy� = Q�d��x�dy�
(
1 + n−1/2�K�d�h��x�y� +O�n−1�)(3.6)

with

�K�d�h��x�y� =
k∑
j=1

hj�y≤j� x>j��(3.7)

In short, if π is perturbed by h, thenQ�d� is perturbed byK�d�h up toO�n−1/2�.
Of course, for Q�d�nh�x�dy� to be a transition distribution, we must have
Q�d��x�K�d�h� = 0. Indeed,

∫
Q�d��x�dy�hj�y≤j� x>j� = �Q1 · · ·Qj��x�hj� = 0

and hence Q�d��x�K�d�h� = 0.
Our statement of local asymptotic normality will involve a new inner prod-

uct. Note first that the closure of the local parameter space H in L2�π� is

L2�0�π� = �h ∈ L2�π�� πh = 0��
The operator K�d� maps L2�0�π� into L2�π ⊗ Q�d��. It induces a new inner
product on L2�0�π�,

	h� h′
�d� =
1
k
π ⊗Q�d��K�d�hK�d�h

′� for h�h′ ∈ L2�0�π��(3.8)

The corresponding norm is denoted �h��d�. The factor 1/k is included here to
avoid its repeated appearance later.

Write P�d� for the joint distribution of X0�Xk� � � � �Xpk if π is true, and
P�d�nh if πnh is true. Relation (3.6) implies that Q�d�nh is Hellinger differen-
tiable,
∫
Q�d��x�dy�

((
dQ�d�nh
dQ�d�

�x�y�
)1/2

− 1 − 1
2
n−1/2�K�d�h��x�y�

)2

≤ n−1rn�x�

for h ∈ H, where rn decreases to 0 pointwise and is π-integrable for large
n. This version of Hellinger differentiability is adapted from Höpfner, Jacod
and Ladelli (1990). From Höpfner (1993) we obtain a nonparametric version
of local asymptotic normality: if the Gibbs sampler for π with deterministic
sweep is positive Harris recurrent, then we have for h ∈H,

log dP�d�nh/dP�d� =n−1/2
p∑
q=1

�K�d�h��X�q−1�k�Xqk�− 1
2�h�2

�d� + oP�d� �1�(3.9)
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with

n−1/2
p∑
q=1

�K�d�h��X�q−1�k�Xqk� ⇒N�h��d� under P�d��

where Nσ denotes a normal random variable with mean 0 and variance σ2.
Call an estimator Tn regular for πf with limit L if

n1/2�Tn − πnhf� ⇒ L under P�d�nh for h ∈H�
The desired minimal asymptotic variance of regular estimators of πf is the
squared length of the gradient of πf with respect to the new inner product
(3.8). To define this gradient, we note that by definition (3.2) of πnh, and since
πh = 0,

n1/2�πnhf− πf� = πhf = 	h� f− πf
2 for h ∈H�(3.10)

Hence f− πf ∈ L2�0�π� is the gradient of πf with respect to the usual inner
product 	h� h′
2 on L2�0�π�. The gradient g�d� ∈ L2�0�π� with respect to the
new inner product (3.8) is now implicitly defined by

	h� f− πf
2 = 	h� g�d�
�d� for h ∈H�(3.11)

By a nonparametric version of Hájek’s (1970) convolution theorem, the limit
L of a regular estimator has the form L =N�g�d���d� +M withM independent of
N�g�d���d� . It follows that the information bound B�d� (the minimal asymptotic

variance of regular estimators of πf) is given by �g�d��2
�d�. A convenient refer-

ence for the appropriate convolution theorem is Greenwood and Wefelmeyer
(1990).

We wish to find an explicit form of g�d� and B�d�. Our main tool is the
following lemma. It expresses the new inner product (3.8) in terms of the
natural inner product on L2�0�π�.

Lemma 2. The inner product (3.8) can be written

	h� h′
�d� = 	h� �I−Q�r��h′
2 for h�h′ ∈ L2�0�π��

Surprisingly, this inner product for deterministic sweep involves the tran-
sition distribution for random sweep. To calculate the gradient, we need the
inverse of I−Q�r�.

Lemma 3. If �Qt�r��2 < 1 for some t, then the operator I−Q�r� has a bounded

inverse on L2�0�π��

�I−Q�r��−1 =
∞∑
s=0

Qs�r� = I+
∞∑
s=1

1
�k− 1�s

k∑
j1�����js=1
jr �=jr+1

Qj1
· · ·Qjs�

The main result of this section now follows easily.
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Theorem 1. If �Qt�r��2 < 1 for some t, then the functional πf has gradient

g�d� = �I−Q�r��−1�f− πf�

= f− πf+
∞∑
s=1

1
�k− 1�s

k∑
j1�����js=1
jr �=jr+1

pj1
· · ·pjs�f− πf��

and the information bound is

B�d� = 	f− πf� �I−Q�r��−1�f− πf�
2

= σ2
f +

∞∑
s=1

1
�k− 1�s

k∑
j1�����js=1
jr �=jr+1

	f− πf� pj1
· · ·pjs�f− πf�
2�

(3.12)

If the Gibbs sampler for π with deterministic sweep is positive Harris re-
current, then local asymptotic normality (3.9) holds, and (3.12) is the minimal
asymptotic variance of regular estimators of πf. Note that B�d� does not de-
pend on the order of the deterministic sweep; it only depends on π and f.

4. Random sweep. In this section we determine the asymptotic variance
of the empirical estimator for the Gibbs sampler with random sweep and the
minimal asymptotic variance of regular estimators of πf under this sweep.

Let X0� � � � �Xn be realizations from the Gibbs sampler for π with random
sweep. The usual estimator for the expectation πf of a function f ∈ L2�π� is
the empirical estimator Enf = �1/n�∑ni=1 f�Xi�.

Proposition 3. Assume that the Gibbs sampler for π with random sweep
is positive Harris recurrent and V-uniformly ergodic. Then, for f ∈ L2�π�, the
empirical estimator Enf is asymptotically normal with variance

σ2
�r� = σ2

f + 2
∞∑
s=1

〈
f− πf� Qs�r��f− πf�〉2

= σ2
f + 2

∞∑
s=1

1
�k− 1�s

k∑
j1�����js=1
jr �=jr+1

	f− πf� pj1
· · ·pjs�f− πf�
2�

Notice that the last term in the deterministic sweep information bound
B�d�, given in Theorem 1, appears in σ2

�r�, so we find that B�d� = 1
2�σ2

f + σ2
�r��.

As in the previous section, we want to determine the minimal asymptotic
variance of regular estimators of πf, with f ∈ L2�π�. To introduce a local
model, we define sequences πnh as in (3.2), where h is in the space H defined
in (3.3). Then the corresponding pj�nh are obtained by perturbing pj as in
Lemma 1. Write Q�r�nh for the transition distribution of the Gibbs sampler
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with random sweep for πnh,

Q�r�nh�x�dy� =
1
k

k∑
j=1

Qj�nh�x�dy� =
1
k

k∑
j=1

pj�nh�x−j� dyj�εx−j�dy−j��

The following lemma describes howQ�r�nh is obtained by perturbingQ�r�. This
is less straightforward than the corresponding perturbation (3.6) for determin-
istic sweep. The perturbation now involves the probabilities of not changing
the value when updating a component. The reason is that the transition dis-
tribution Qj�x�dy� is supported by the line through x parallel to the jth
coordinate axis, �y� y−j = x−j�. Hence the support of Q�r��x�dy� is contained
in the union of the k lines. The supports of the Qj�x�dy� are disjoint except
for the point x, which may be charged by some or all of them. Therefore, to
calculate the Q�r��x�dy�-density of Q�r�nh�x�dy�, we must treat x separately.
We assume that the σ-field on each Ej contains the one-point sets, which will
be the case in all applications.

Lemma 4. For h ∈H, and uniformly in x and y,

Q�r�nh�x�dy� = Q�r��x�dy�
(
1 + n−1/2�K�r�h��x�y� +O�n−1�)(4.1)

with

�K�r�h��x�y� =
k∑
j=1

�Kjh��x�y��(4.2)

�Kjh��x�y� =
(

1�y−j = x−j� yj �= xj� +
rj�x�
r�x� 1�y = x�

)
hj�x−j� yj�

(4.3)
=

(
1�y−j = x−j� −

(
1 − rj�x�

r�x�
)

1�y = x�
)
hj�x−j� yj��

rj�x� = pj�x−j� �xj��� r�x� =
k∑
j=1

rj�x��(4.4)

where hj�x� = h�x� − pj�x−j� h� as in (3.5), and 0/0 = 0.

In short, if π is perturbed by h, then Q�r� is perturbed by K�r�h up to
O�n−1/2�. For Q�r�nh�x�dy� to be a transition distribution, we must have
Q�r��x�K�r�h� = 0. Indeed,

Qj�x�Kjh� = −�1 − rj�x�/r�x��rj�x�hj�x��

and for i �= j,

Qi�x�Kjh� = ri�x� − �1 − rj�x�/r�x��ri�x�hj�x��
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so that

Q�r��x�Kjh� =
1
k

k∑
i=1

Qi�x�Kjh� = 0

and hence Q�r��x�K�r�h� = 0.
The operator K�r� maps L2�0�π� into L2�π ⊗Q�r��. It induces a new inner

product on L2�0�π�,
	h� h′
�r� = π ⊗Q�r��K�r�hK�r�h

′� for h�h′ ∈ L2�0�π��(4.5)

The corresponding norm is denoted �h��r�.
Write P�r� for the joint distribution of X0� � � � �Xn if π is true, and P�r�nh

if πnh is true. Relation (4.1) implies that Q�r�nh is Hellinger differentiable. As
in Section 3 we obtain a nonparametric version of local asymptotic normality.
If the Gibbs sampler for π with random sweep is positive Harris recurrent,
then we have, for h ∈H,

log dP�r�nh/dP�r� = n−1/2
n∑
i=1

�K�r�h��Xi−1�Xi� − 1
2�h�2

�r� + oP�r� �1�(4.6)

with

n−1/2
n∑
i=1

�K�r�h��Xi−1�Xi� ⇒N�h��r� under P�r��

Exactly as in Section 3, the desired minimal asymptotic variance B�r� of reg-
ular estimators of πf is the squared length �g�r��2

�r� of the gradient g�r� ∈
L2�0�π� of πf with respect to the new inner product (4.5). This gradient is
now [compare (3.11)] defined by

	h� f− πf
2 = 	h� g�r�
�r� for h ∈H�(4.7)

To calculate g�r� and �g�r���r�, we use the following lemma (compare Lemma 2),
which expresses the new inner product (4.5) in terms of the natural inner
product on L2�0�π�.

Lemma 5. The inner product (4.5) can be written

	h� h′
�r� =
〈
h� �I−Q�r� +S�h′

〉
2 for h�h′ ∈ L2�0�π�

with

Sh = 1
k

k∑
i� j=1

Qi�RijQjh��(4.8)

Rij�x� = δijrj�x� − ri�x�rj�x�/r�x��(4.9)

The matrix R�x� = �Rij�x��i� j=1�����k is symmetric, and both R�x� and I−R�x�
are positive semidefinite, where I = �δij�i� j=1�����k is the identity matrix. The
operator S is selfadjoint on L2�π�, and both S and Q�r� − S are positive. The
operators I−Q�r� and I−Q�r� +S are positive.
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The properties of R and S will be used in Section 5. The main result of this
section follows easily from Lemma 5.

Theorem 2. If ��Q�r� − S�t�2 < 1 for some t, then the functional πf has
gradient

g�r� = �I−Q�r� +S�−1�f− πf�

= f− πf+
∞∑
s=1

�Q�r� −S�s�f− πf��

and the information bound is

B�r� =
〈
f− πf� �I−Q�r� +S�−1�f− πf�〉2

= σ2
f +

∞∑
s=1

〈
f− πf� �Q�r� −S�s�f− πf�〉2�

(4.10)

If the random sweep Gibbs sampler for π is positive Harris recurrent, then
local asymptotic normality (4.6) holds, and (4.10) is the minimal asymptotic
variance of regular estimators of πf.

5. Discussion. In this section we explain how the main points in the
Introduction are a consequence of the results in Sections 3 and 4. We first
compare the information bounds under deterministic and random sweeps.
Then we compare the efficiencies of the empirical estimator under the two
sweeps.

Information bounds for deterministic and random sweep. We first show
that the information bound is no larger for random sweep than for determin-
istic sweep.

To compare the bounds given by Theorems 1 and 2, consider transition
kernels K�x�dy� as operators on L2�π� and write K ≥ L if K−L is positive,
that is, 	h� �K − L�h
2 ≥ 0 for h ∈ L2�π�. The operator S defined in (4.8) is
positive by Lemma 5. Hence I−Q�r� +S ≥ I−Q�r� and therefore �I−Q�r� +
S�−1 ≤ �I −Q�r��−1. Thus the variance bound is no larger for random sweep
than for deterministic sweep, B�r� ≤ B�d�.

Suppose that π is continuous in the sense that it is absolutely continu-
ous with respect to the product of its marginals, and the marginals have
no atoms. Then pj�x−j� dxj� has no atoms for m−j�dx−j�-a.s. x−j. Hence
rj�x� = pj�x−j� �xj�� = 0 for π-a.s. x, and therefore R�x� = 0 for π-a.s. x,
and the operator S reduces to 0. This implies that the information bound for
random sweep coincides with the information bound for deterministic sweep,
B�r� = B�d�.

Two-step samplers. Of particular interest is the case of a two-dimensional
π. In this case, if we are interested in only one of the two marginal distribu-
tions of π, the corresponding Gibbs sampler is called an auxiliary variable
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method [Swendsen and Wang (1987)], data augmentation algorithm [Tan-
ner and Wong (1987)] or successive substitution sampler [Gelfand and Smith
(1990)]. See also Higdon (1998).

For this case, k = 2, the variances and information bounds simplify consid-
erably. The asymptotic variance of the empirical estimator Enf for determin-
istic sweep is, by Proposition 2,

σ2
�d� = σ2

f +
∞∑
s=1

〈
f− πf� �pcycl s

1 + pcycl s
2 ��f− πf�〉2

and for random sweep,

σ2
�r� = σ2

f + 2
∞∑
s=1

〈
f− πf� �pcycl s

1 + pcycl s
2 ��f− πf�〉2

by Proposition 3, where now pcycl s
1 = p1p2p1 · · · and pcycl s

2 = p2p1p2 · · · with
s terms. Hence, if the leading term σ2

f of the variances is relatively small (as
in most applications), then the variance σ2

�r� for random sweep is nearly twice
as large as the variance σ2

�d� for deterministic sweep.
For k = 2, the deterministic sweep information bound (3.12) equals σ2

�d�.
Hence, for the two-step Gibbs sampler with deterministic sweep, the em-
pirical estimator Enf is efficient. This result was mentioned in Greenwood,
McKeague and Wefelmeyer [(1996), Section 1]. If π is continuous, then the
information bound for random sweep equals the information bound for deter-
ministic sweep. Since σ2

�r� > σ
2
�d�, as seen above, it follows that the empirical

estimator for random sweep is not efficient. Indeed, σ2
�r� ≈ 2σ2

�d� = 2B�d�, so
the efficiency of the empirical estimator for random sweep is close to 50%.

Variance of the empirical estimator. From Proposition 3, the second sum-
mation in σ2

�r� contains k�k−1�s−1 terms, each being an s-order autocovariance
of the form 	f − πf� pj1

· · ·pjs�f − πf�
2 ≡ σ2
j1�����js

. From Proposition 2, the
s-order term in σ2

�d� is an average of k of these s-order autocovariances, those

of the form 	f − πf� pcycl s
j �f − πf�
2 ≡ σ2

j� cycl s. Thus, unless the averages of
the s-order autocovariances in σ2

�r� and σ2
�d� are systematically different from

one another, we expect σ2
�r� ≈ �k/�k−1��σ2

�d�, or that σ2
�r� is slightly larger than

σ2
�d�. Such a result holds if one considers a random sweep without repetition;

see Fishman (1996), Theorem 8. The simulations reported in the next section
show, however, that σ2

�r� can be up to twice as large as σ2
�d�, even if k is large.

The reason is that the higher-order terms in σ2
�r� can decay more slowly than

those in σ2
�d�. This is seen clearly in the following special case.

Independent components. Relatively simple formulas for σ2
�r� and σ2

�d� can
be obtained when π has independent components, which we now assume.
Now σ2

j� cycl s vanishes for s ≥ k, because integration of f�x� cyclically over
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k components gives πf. However, σ2
j1�����js

vanishes only if all k components
are present among j1 � � � � js. Also, if some of the jr are equal, fewer than s
components are integrated out, so σ2

j1�����js
is larger than any σ2

j� cycl s “covering”
j1 � � � � js.

To simplify the expression for σ2
�r�, note that the Qj are now not only idem-

potent but also commute, so we have

Qt�r� =
k∑
s=1

ats
kt

∑
�j1�����js�⊂�1�����k�

Qj1
· · ·Qjs�

where ats is the number of ways of placing t different objects into s different
cells, with no cell empty; ats/s! is a Stirling number of the second kind. We
may interpret ats/kt as the probability that, over t steps of the random sweep
sampler, each member of a given set of s components is updated at least once
and none of the remaining components are updated. Now we find that

σ2
�r� = σ2

f + 2
k−1∑
s=1

bs

(
k

s

)
σ2
s �

where

bs =
∞∑
t=s

ats
kt

=
(
k− 1

s

)−1

and σ2
s is the average of the s-order autocovariances over distinct components.

The last identity above is proved by relating bs to certain expected values
arising in a classical occupancy problem; see Lemma 6 at the end of Section
7. We may interpret bs as the expected number of times, during an infinite
run of the random sweep sampler, at which a given set of s components have
been updated at least once and the remaining components have not yet been
updated.

The average σ2
s of the s-order autocovariances takes the value σ2

f at s = 0,
and it decreases to zero at s = k. Linear interpolation between these two
values gives the approximation

σ2
�r� ≈ σ2

f + 2
k−1∑
s=1

bs

(
k

s

)(
1 − s
k

)
σ2
f = �2k− 1�σ2

f�

A similar approximation involving the autocovariances appearing in the first
k terms of (3.1) gives

σ2
�d� ≈ σ2

f + 2
k−1∑
s=1

(
1 − s
k

)
σ2
f = kσ2

f�

so σ2
�r� is close to twice as large as σ2

�d�. Also note that (in general) σ2
�r� can never

be more than twice as large as σ2
�d�, because σ2

�r� = 2B�d� − σ2
f ≤ 2σ2

�d� − σ2
f.
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If f depends on only one of the k components (and π has independent
components), the above approximations for σ2

�d� and σ2
�r� are exact and the de-

terministic sweep information bound B�d� can be computed explicitly: B�d� =
1
2�σ2

f + σ2
�r�� = kσ2

f. In this case the empirical estimator is efficient under de-
terministic sweep, but has an efficiency of no more than 1/�2 − k−1� under
random sweep.

Efficiency of the empirical estimator. Under deterministic sweep, the em-
pirical estimator is close to efficient when the components of π are not strongly
dependent. Indeed, π can then be considered as a perturbation of a distribu-
tion having independent components, so the above approximations and a con-
tinuity argument give σ2

�d� ≈ σ2
�r�/2 = B�d� − σ2

f/2, showing that the empirical
estimator comes close to attaining the information bound.

Under random sweep, the efficiency of the empirical estimator is at best
only slightly more than 50%, because σ2

�r� = 2B�d� − σ2
f ≥ 2B�r� − σ2

f. However,
its efficiency is close to 50% when π is continuous, as we have σ2

�r� = 2B�r� − σ2
f

in that case.
More work is needed to determine the efficiency of the empirical estima-

tor under deterministic sweep when π has strongly dependent components.
Then we are not able to exclude the possibility that there is a poor choice of
deterministic sweep for which the empirical estimator is far from efficient,
or with an asymptotic variance larger than under random sweep. Random
sweep is a reasonable but conservative alternative; we are guaranteed a rel-
ative efficiency no worse than 50% of the best deterministic sweep, and its
overall efficiency is roughly 50% if π is continuous. Based on the simulations
in Section 5, we suspect that the empirical estimator is always close to being
efficient under deterministic sweep, but we have only proved this in the case
of two component Gibbs samplers (where we have full efficiency).

Variance reduction under deterministic sweep. We have seen that the em-
pirical estimator has a much smaller asymptotic variance for deterministic
than for random sweep when the components of π are not strongly depen-
dent. This is due to a particular feature of the Gibbs sampler: the transition
distribution Qj used to update component j does not use the present value
of that component. Hence Qj is idempotent (2.3), and an s-order autocovari-
ance σ2

j1�����js
reduces to a lower-order autocovariance whenever two adjacent

indices jr and jr+1 are equal. Other samplers use xj to update component j.
Their transition distributions are of the form

Qj�x�dy� = qj�x�dyj�εx−j�dy−j��(5.1)

with qj�x�dyj� depending on xj. The proof of Proposition 3 shows that the
asymptotic variance of Enf for the corresponding sampler with random
sweep is

σ2
f + 2

∞∑
s=1

1
ks

k∑
j1�����js=1

	f− πf� qj1
· · ·qjs�f− πf�
2�
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This is about the size of the asymptotic variance for deterministic sweep. The
s = 1 term is exactly the same as the corresponding term for deterministic
sweep.

Among transition distributions Qj of the form (5.1), with Qj in detailed
balance with π, the transition distribution of the Gibbs sampler is the only one
that does not use the present xj. To see this, consider qj�x�dyj� = qj�x−j� dyj�
not depending on xj. Write

π�dx�Qj�x�dy� =m−j�dx−j�pj�x−j� dxj�qj�x−j� dyj�εx−j�dy−j�
and

π�dy�Qj�y�dx� =m−j�dy−j�pj�y−j� dyj�qj�y−j� dxj�εy−j�dx−j�
=m−j�dx−j�pj�x−j� dyj�qj�x−j� dxj�εx−j�dy−j��

Detailed balance (2.7) implies

pj�x−j� dxj�qj�x−j� dyj� = pj�x−j� dyj�qj�x−j� dxj� m−j�dx−j�-a.s.

Now integrate on yj to obtain

pj�x−j� dxj� = qj�x−j� dxj� m−j�dx−j�-a.s.

6. Simulation examples. In this section we show how simulation can be
used to estimate information bounds for Gibbs samplers, and we demonstrate
the method in two simple examples. The examples are designed to compare
the performance of the various empirical estimators with the corresponding
information bounds and to study how they are affected by parameters in the
model.

The second term in B�d�, as given by (3.12), is difficult to evaluate directly,
but since this term appears doubled in σ2

�r�, we have B�d� = 1
2�σ2

f+σ2
�r��. Thus,

B�d� can be estimated by running the corresponding random sweep sampler
and estimating the asymptotic variance of the empirical estimator. If π does
not have atoms (as in the examples), then this method also gives the random
sweep information bound, since B�r� = B�d� in that case.

The function f is taken to be the indicator that the random field exceeds a
unit threshold: f�x� = 1�maxj xj > 1�. The asymptotic variances and infor-
mation bounds are found over a fine grid of values of a parameter that controls
the correlation structure of π; they are divided by kσ2

f and then smoothed for
display in the plots.

Exchangeable normal variables. Let π be an exchangeable k-dimensional
multivariate normal distribution in which each component has zero mean and
unit variance, and all the pairwise correlations are identical. This example has
been widely used in the literature for studying convergence rates of Gibbs sam-
plers; see, for example, Raftery and Lewis [(1992), Example 3], and Roberts
and Sahu (1997). The results for 10 and 20 dimensions are shown in Figure 1.

The asymptotic variance of Enf is close to the deterministic sweep informa-
tion bound B�d�, indicating that Enf is close to being efficient. Under random
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Fig. 1. Exchangeable k-dimensional normal example. The information bounds for both random
and deterministic sweep �solid line� and the asymptotic variances �in units of kσ2

f� of the “common”
empirical estimator Eknf under deterministic sweep �dotted line�� and the “full chain” empirical
estimator Enf under deterministic sweep �short dashed line� and random sweep �long dashed
line�.

sweep, the asymptotic variance of Enf almost doubles (as the discussion in
Section 5 led us to expect), despite the fact that B�r� = B�d�. On the other
hand, random sweep can be shown to have a better convergence rate than de-
terministic sweep when the pairwise correlation is negative; see Roberts and
Sahu [(1997), Section 3.2].

For moderate correlations, B�d� is considerably less than the asymptotic
variance of the “common” empirical estimator Eknf. For high positive corre-
lation, the curves for deterministic sweep in each plot increase exponentially
and come closer together, leaving less room for potential improvements over
Enf. Increasing the dimension k has the effect of increasing the information
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Fig. 2. Gaussian conditional autoregression example. See Figure 1 for key.

bound under positive correlation, but decreasing it under negative correla-
tion.

Gaussian conditional autoregressions. View each component xj of x as be-
ing located at a site j on a square lattice. Suppose that the local characteristics
of π are Gaussian with conditional mean and variance at each site j given by
λx̄j and κ/nj, respectively, where λ ∈ �0�1�, x̄j is the mean of the components
of x that are neighbors of site j, κ > 0 and nj is the number of neighbors of
site j. This is the simplest example of a Gaussian conditional autoregression
with some practical value in spatial statistics and image processing; see Besag
and Kooperberg (1995) for discussion and references. We use the (standard)
deterministic sweep strategy known as checkerboard updating, which updates
each site of even parity and then each site of odd parity.

Figure 2 displays the simulation results for a 6×6 lattice with free boundary
conditions and κ = 1. This plot has similar features to Figure 1, but the
increase in the asymptotic variances with increasing λ is less pronounced than
what it was with the pairwise correlation. The empirical estimator is close to
efficient under checkerboard updating, but has an efficiency of only about 50%
under random sweep. Our results are consistent with results on convergence
rates; Roberts and Sahu [(1997), Example 1], show that the Markov chain in
this example has a faster rate of convergence under the checkerboard sweep
than under random sweep.

7. Proofs.

Proof of Proposition 1. By a central limit theorem [Meyn and Tweedie
(1993), page 411, Theorem 17.01] applied to the subchain �Xqk≤j�X�q−1�k

>j �, q =
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1�2� � � � � the empirical estimator Ejnf is asymptotically normal with variance

σ2
j = kπ ⊗Q�d��f≤j − π ⊗Q�d�f≤j�2

+ 2k
∞∑
s=1

π ⊗Q�d�
(�f≤j − π ⊗Q�d�f≤j�Qs�d��f≤j − π ⊗Q�d�f≤j�

)
�

The function f≤j�x�y� depends only on �y≤j� x>j�, and the chain �Xqk≤j�
X

�q−1�k
>j �, q = 1�2� � � � � has transition distribution Qj+1 · · ·QkQ1 · · ·Qj and

invariant law π. Hence we can write

σ2
j = kσ2

f + 2k
∞∑
s=1

〈
f− πf� pcycl sk

j �f− πf�〉2� ✷

Proof of Proposition 2. Write

Enf = 1
n

p∑
q=1

F�X�q−1�k�Xqk�

with

F�x�y� =
k∑
j=1

f≤j�x�y��

By the central limit theorem used in the proof of Proposition 1, the empirical
estimator Enf is asymptotically normal with variance

σ2
�d� =

1
k
π ⊗Q�d��F− π ⊗Q�d�F�2

+ 2
k

∞∑
t=1

π ⊗Q�d�
(�F− π ⊗Q�d�F�Qt�d��F− π ⊗Q�d�F�

)
�

We calculate each term on the right side separately. As in the proof of Propo-
sition 1, we make use of the fact that f≤j�x�y� depends only on �y≤j� x>j�,
and that the chain �Xqk≤j�X�q−1�k

>j �, q = 1�2� � � � has transition distribution
Qj+1 · · ·QkQ1 · · ·Qj and invariant law π:

π ⊗Q�d��F− π ⊗Q�d�F�2

=
k∑
i=1

k∑
j=1

π ⊗Q�d�
(�f≤i − πf��f≤j − πf�)

= kσ2
f + 2

k∑
j=1

k−j∑
i=1

〈
f− πf� pcycl i

j �f− πf�〉2
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and, for t = 1�2� � � � �

π ⊗Q�d�
(�F− π ⊗Q�d�F�Qt�d��F− π ⊗Q�d�F�

)

=
k∑
i=1

k∑
j=1

π ⊗Q�d�
(�f≤i − πf�Qt�d���f≤j − πf��)

=
k∑
j=1

k∑
i=k−j+1

〈
f− πf� pcycl �t−1�k+i

j �f− πf�〉2

+
k∑
j=1

k−j∑
i=1

〈
f− πf� pcycl tk+i

j �f− πf�〉2�
Collecting autocovariances of equal order,

σ2
�d� = σ2

f + 2
∞∑
s=1

1
k

k∑
j=1

〈
f− πf� pcycl s

j �f− πf�〉2� ✷

Proof of Lemma 1. Factor π and πnh as in (2.1) to obtain

πnh�dx�
π�dx� = m−j�nh�dx−j�pj�nh�x−j� dxj�

m−j�dx−j�pj�x−j� dxj�
�(7.1)

By definition (3.2) of πnh, the left side is 1 + n−1/2h�x�, and

m−j�nh�dx−j� =m−j�dx−j�
∫
pj�x−j� dxj��1 + n−1/2h�x��

=m−j�dx−j�
(
1 + n−1/2pj�x−j� h�

)
�

Now solve (7.1) for pj�nh. ✷

Proof of Lemma 2. By definition (3.7) of K�d� and definition (2.8) of Q�d�,
the inner product (3.8) is

	h� h′
�d� =
1
k
π ⊗Q�d��K�d�hK�d�h

′�

= 1
k

k∑
i� j=1

∫∫
π�dx��Q1 · · ·Qk��x�dy�hi�y≤i� x>i�h′j�y≤j� x>j��

The functions hi�y≤i� x>i� and h′j�y≤j� x>j� are orthogonal with respect to
	·� ·
�d� for i �= j since for i < j the function hi�y≤i� x>i� does not depend on
yj, and Qjhj = 0 by definition (3.5) of hj. Again using Qjhj = 0, we obtain

Qjhjh
′
j = Qjhh′j�

Since π is invariant under all Qi, the distribution of �y≤i� x>i� under π⊗Q�d�
is π. We arrive at

	h� h′
�d� =
1
k

〈
h�

k∑
j=1

h′j

〉
2
= 	h� �I−Q�r��h′
2� ✷
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Proof of Lemma 3. A von Neumann expansion gives, when �Qt�r��2 < 1
for some t,

�I−Q�r��−1 = I+
∞∑
t=1

Qt�r��

To calculate Qt�r�, we recall that the Qj are idempotent, (2.3). Hence a product
Qj1

· · ·Qjt reduces to a product with s ≤ t factors whenever it consists of s
blocks with identical components in each block, but different components in
consecutive blocks. We obtain

Qt�r� =
1
kt

k∑
j1�����jt=1

Qj1
· · ·Qjt =

1
kt

t∑
s=1

(
t− 1
s− 1

) k∑
j1�����js=1
jr �=jr+1

Qj1
· · ·Qjs�

Noting that
∞∑
t=s

(
t− 1

s− 1

)
zt =

(
z

1 − z
)s

for 0 ≤ z < 1� s = 1�2� � � �

and interchanging sums, we find
∞∑
t=1

Qt�r� =
∞∑
t=1

1
kt

t∑
s=1

(
t− 1

s− 1

) k∑
j1�����js=1
jr �=jr+1

Qj1
· · ·Qjs

=
∞∑
s=1

1
�k− 1�s

k∑
j1�����js=1
jr �=jr+1

Qj1
· · ·Qjs� ✷

(7.2)

Proof of Theorem 1. By definition (3.11) and Lemma 2, the gradient
g�d� ∈ L2�0�π� of πf is defined by

	h� f− πf
2 = 	h� g�d�
�d� =
〈
h� �I−Q�r��g�d�

〉
2 for h ∈H�

Lemma 3 gives us the bounded inverse of the operator I−Q�r�. We obtain

g�d� = �I−Q�r��−1�f− πf�

= f− πf+
∞∑
s=1

1
�k− 1�s

k∑
j1�����js=1
jr �=jr+1

pj1
· · ·pjs�f− πf��

Again by Lemma 2,

�g�d��2
�d� = 	g�d�� �I−Q�r��g�d�
2

= 〈
f− πf� �I−Q�r��−1�f− πf�〉2

= σ2
f +

∞∑
s=1

1
�k− 1�s

k∑
j1�����js=1
jr �=jr+1

	f− πf� pj1
· · ·pjs�f− πf�
2� ✷
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Proof of Proposition 3. By Meyn and Tweedie [(1993), Theorem 16.0.1],
V-uniform ergodicity implies V-uniform ergodicity with an exponential rate.
There exist ρ < 1 and C > 0 such that

sup
x
V�x�−1 sup

�v�≤V
�Qn�x� v� − πv� ≤ Cρ−n�

The Gibbs sampler with random sweep is reversible. Roberts and Rosenthal
[(1997), Corollary 2.1], prove that these assumptions suffice for the central
limit theorem of Kipnis and Varadhan (1986). It follows that the empirical
estimator Efn is asymptotically normal with variance

σ�r� = σ2
f + 2

∞∑
t=1

〈
f− πf� Qt�r��f− πf�〉2�

The power series
∑∞
t=1Q

t
�r� was already calculated in (7.2). ✷

Proof of Lemma 4. Recall that Qj�x�dy� = pj�x−j� dyj�εx−j�dy−j� lives
on the line �y� y−j = x−j� through x parallel to the jth coordinate axis. Hence

Qj�x�dy�
Q�r��x�dy�

= k on �y� y �= x��

By definition (4.4) of rj and r,

Qj�x� �x��
Q�r��x� �x��

= krj�x�
r�x� �

Hence a version of the Q�r��x�dy�-density of Qj�x�dy� is

k

(
1�y−j = x−j� yj �= xj� +

rj�x�
r�x� 1�y = x�

)

= k
(

1�y−j = x−j� −
(

1 − rj�x�
r�x�

)
1�y = x�

)
�

By Lemma 1,

Qj�nh�x�dy� = Qj�x�dy�
(
1 + n−1/2hj�x−j� yj� + sj�nh�x−j� yj�

)
�

Hence

Q�r�nh�x�dy� =
1
k

k∑
j=1

Qj�nh�x�dy�

= 1
k

k∑
j=1

Qj�x�dy�
(
1 + n−1/2hj�x−j� yj� + sj�nh�x−j� yj�

)
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= Q�r��x�dy�
(

1+n−1/2
k∑
j=1

(
1�y−j=x−j�

−
(

1− rj�x�
r�x�

)
1�y=x�

)
hj�x−j� yj�

+
k∑
j=1

sj�nh�x−j� yj�
)

= Q�r��x�dy�
(
1 + n−1/2�K�r�h��x�y� + snh�x�y�

)
with

snh�x�y� =
k∑
j=1

(
1�y−j = x−j� −

(
1 − rj�x�

r�x�
)

1�y = x�
)
sj�nh�x−j� yj�

of order O�n−1� uniformly in x and y. ✷

Proof of Lemma 5. Since �y� y−j = x−j� yj �= xj� and �y = x� are
disjoint, we have

�Kih��x�y��Kjh′��x�y�

=
(

1�y−i = x−i� yi �= xi� +
ri�x�
r�x� 1�y = x�

)

×
(

1�y−j = x−j� yj �= xj� +
rj�x�
r�x� 1�y = x�

)
hi�x−i� yi�h′j�x−j� yj�

=
(
δij1�y−j=x−j� yj �=xj�+

ri�x�rj�x�
r�x�2

1�y=x�
)
hi�x−i� yi�h′j�x−j� yj��

Hence

Q�r��x�Kih ·Kjh′� =
1
k
δij

∫
Qj�x�dy�1�yj �= xj�hj�x−j� yj�h′j�x−j� yj�

+ 1
k

ri�x�rj�x�
r�x� hi�x�h′j�x�

= 1
k
δijQj�x�hjh′j� −

1
k
hi�x�Rij�x�h′j�x��

with Rij defined in (4.9). We obtain

	h� h′
�r� = π ⊗Q�r��K�r�hK�r�h
′�

= 1
k

k∑
j=1

	hj� h′j
2 −
1
k

k∑
i�j=1

	hi� Rijh′j
2�
(7.3)

Since hj = h−Qjh, we have Qjhj = 0 and therefore

	hj� h′j
2 = 	h� h′j
2�(7.4)
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The matrix R�x� is symmetric. It has row and column sums 0,

k∑
j=1

Rij = rj −
k∑
j=1

ri�x�rj�x�
r�x� = 0�

Hence, using selfadjointness (2.6) of Qi,

k∑
i� j=1

	hi� Rijh′j
2 =
k∑

i� j=1

〈
h−Qih� Rij�h′ −Qjh′�

〉
2

=
k∑

i� j=1

	Qih� RijQjh′
2

=
k∑

i� j=1

〈
h� Qi�RijQjh′�

〉
2�

(7.5)

Applying (7.4) and (7.5) to (7.3), we can write

	h� h′
�r� =
〈
h�

1
k

k∑
j=1

h′j

〉
2
−

〈
h�

1
k

k∑
i� j=1

Qi�RijQjh′�
〉

2

= 	h� �I−Q�r��h′
2 − 	h� Sh′
2

with S defined in (4.8).
The matrix R�x� is positive semidefinite,

k∑
i� j=1

aiRijaj =
k∑
j=1

a2
jrj −

1
r

k∑
i� j=1

airirjaj�

and by the Schwarz inequality,

k∑
i� j=1

airirjaj =
k∑
j=1

�r1/2
j ajr

1/2
j �2

≤
k∑
j=1

rj

k∑
j=1

a2
jrj = r

k∑
j=1

a2
jrj�

The matrix I−R�x� is also positive semidefinite,

k∑
i� j=1

ai�δij −Rij�aj =
k∑
j=1

a2
j −

k∑
j=1

a2
jrj +

1
r

k∑
i� j=1

airirjaj

=
k∑
j=1

a2
j�1 − rj� +

1
r

( k∑
j=1

ajrj

)2

≥ 0�
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Since R�x� is positive semidefinite, the operator S is positive. Use selfadjoint-
ness (2.6) of Qi to write

	h� Sh
2 = 1
k

k∑
i� j=1

	h� Qi�RijQjh�
2 = 1
k

k∑
i� j=1

	Qih� RijQjh
2 ≥ 0�

Similarly, use property (2.4) of Qj to obtain

	h� Q�r�h
2 = 1
k

k∑
j=1

	h� Qjh
2 = 1
k

k∑
j=1

	Qjh� Qjh
2

and hence

〈
h� �Q�r� −S�h

〉
2 = 1
k

k∑
i� j=1

	Qih� �δij −Rij�Qjh
2�

Since the matrix I−R�x� is positive semidefinite, it follows that the operator
Q�r� −S is positive.

Since R�x� is symmetric and the Qj are selfadjoint, S is selfadjoint,

	h� Sh′
2 = 1
k

k∑
i� j=1

	h� Qi�RijQjh′�
2 = 1
k

k∑
i� j=1

	Qih� RijQjh′
2

= 1
k

k∑
i� j=1

	RjiQih� Qjh′
2 = 1
k

k∑
i� j=1

	Qj�RjiQih�� h′
2 = 	Sh� h′
2�

The operator I−Q�r� is positive,

	h� �I−Q�r��h
2 = 1
k

k∑
j=1

	h� hj
2 = 1
k

k∑
j=1

�hj�2
2 ≥ 0�

The operator I − Q�r� + S is positive as sum of the two positive operators
I−Q�r� and S. ✷

Proof of Theorem 2. By definition (4.7) and Lemma 5, the gradient
g�r� ∈ L2�0�π� of πf is defined by

	h� f− πf
2 = 	h� g�r�
�r� =
〈
h� �I−Q�r� +S�g�r�

〉
2 for h ∈H�

Since ��Q�r� − S�t�2 < 1 for some t, the operator I −Q�r� + S has a bounded
inverse on L2�0�π�, and we obtain

g�r� = �I−Q�r� +S�−1�f− πf��
Again by Lemma 5,

�g�r��2
�r� =

〈
g�r�� �I−Q�r� +S�g�r�

〉
2 = 〈

f− πf� �I−Q�r� +S�−1�f− πf�〉2�
The alternative forms of g�r� and �g�r���r� stated in Theorem 2 are obtained
by a von Neumann expansion of �I−Q�r� +S�−1. ✷
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The following lemma was used in Section 5 to argue that the empirical
estimator has larger variance under random sweep than under deterministic
sweep when π has independent components. We have been unable to find a
reference for this result in the literature, so it is included here for complete-
ness.

Lemma 6. Let ats be the number of ways of placing t different objects into
s different cells, with no cell empty. Then,

∞∑
t=s

ats
kt

=
(
k− 1

s

)−1

for all k ≥ 2 and s = 1� � � � � k− 1.

Proof. Consider k boxes, labeled 1� � � � � k, into which balls are thrown
successively and at random. Let Ns denote the number of balls thrown from
the time at which s of the boxes are occupied until s+1 of them are occupied.
Note that Ns is a geometric random variable with expectation k/�k − s�, for
s = 1� � � � � k − 1. This expectation can also be written in the form ENs =(
k
s

)
EN∗

s , where N∗
s = ∑∞

t=s 1Ats and Ats is the event that, immediately after
the first t balls have been thrown, the only occupied boxes are 1� � � � � s. We
conclude that

∞∑
t=s

ats
kt

= EN∗
s =

(
k

s

)−1

� ENs =
(
k− 1
s

)−1

� ✷
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