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HYPOTHESIS IN HAZARD BASED MODELS1
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� Ž . 4Consider a counting process N t , t � TT with compensator process
� Ž . 4 Ž . t Ž . Ž . � Ž . 4A t , t � TT , where A t � H Y s � s ds, Y t , t � TT is an observable0 0

Ž .predictable process, and � � is an unknown hazard rate function. A0
general procedure for extending Neyman’s smooth goodness-of-fit test for

Ž . � Ž . q4the composite null hypothesis H : � � � CC � � �; � : � � � � � is0 0 0
proposed and developed. The extension is obtained by embedding CC in the

Ž . � t Ž .4 Ž .class AA whose members are of the form � �; � exp � � �; � , �, � � �k 0
k Ž . Ž Ž . Ž ..t� � , where � �; � � � �; � , . . . , � �; � is a vector of observable1 k

random processes satisfying certain regularity conditions. The tests are
� Ž . Ž .based on quadratic forms of the statistic H � s; � dM s; � , whereˆ ˆ0

Ž . Ž . t Ž . Ž .M t; � � N t � H Y s � s; � ds and � is a restricted maximum likeli-ˆ0 0
hood estimator of �. Asymptotic properties of the test statistics are
obtained under a sequence of local alternatives, and the asymptotic local
powers of the tests are examined. The effect of estimating � by � isˆ
ascertained, and the problem of choosing the �-process is discussed. The

Ž .procedure is illustrated by developing tests for testing that � � belongs0
Ž . Ž .to i the class of constant hazard rates and ii the class of Weibull hazard

rates, with particular emphasis on the random censorship model. Simula-
tion results concerning the achieved levels and powers of the tests are
presented, and the procedures are applied to three data sets that have
been considered in the literature.

1. Introduction and setting. The problem of goodness-of-fit testing is
one of the central themes of statistical theory and practice. In this paper we
revisit the goodness-of-fit problem of testing a composite hypothesis by de-

Ž .scribing and implementing a new formulation for extending Neyman’s 1937
smooth goodness-of-fit test to models which are specified through hazard or
intensity functions. The new formulation is applicable even when the avail-
able data is incomplete because of censoring or truncation, hence the pro-
posed goodness-of-fit procedures are applicable to survival models, dynamic
reliability models, econometric models and other models which utilize the

Ž .counting process framework. A related paper dealing with the Cox 1972
Ž . �proportional hazards model is Pena 1998 . Smooth goodness-of-fit tests see˜

Ž . Ž . �Neyman 1937 or Rayner and Best 1989 for the classical formulation have
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the appealing property of having good power over a wide range of alternatives
compared to other goodness-of-fit tests, to the extent that Rayner and Best
Ž .1990 implored practitioners to use a smooth test rather than other methods.
Interest in this class of tests have recently increased as evidenced by the

Ž . Ž .recent papers of Bickel and Ritov 1992 , Eubank and Hart 1992 , Fan
Ž . Ž .1996 , Inglot, Kallenberg and Ledwina 1994 , Kallenberg and Ledwina
Ž . Ž .1995 , and Ledwina 1994 .

� Ž .In this paper we consider a univariate counting process N � N t : t � TT

� �4 Ž .� 0, � defined on some filtered probability space 	, FF, P with filtration
� 4 � Ž .F � FF : t � TT , together with an observable predictable process Y � Y t :t
4 N � N 4t � TT . The filtration F is usually the natural filtration F � FF : t � TT ,t

N �Ž Ž . Ž .. 4where FF is the 
-field generated by N s , Y s : s � t and FF , the lattert 0
containing all information at time zero. The statistical model of interest

� Ž . 4postulates that the compensator process of N is A � A t : t � TT , where
Ž . t Ž . Ž . Ž .A t � H Y w � w dw and � � is some unknown hazard rate function. This0

Ž . �is a special case of Aalen’s 1978 multiplicative intensity model see also
Ž . Ž .�Andersen, Borgan, Gill and Keiding 1993 and Andersen and Gill 1982 ,

and it subsumes many incomplete data models in survival analysis and
reliability such as the random censorship model, Type � censorship model
and left-truncation models. The goodness-of-fit problem is to test the null

Ž .hypothesis H which states that � � belongs to a parametric class CC �0
� Ž . q4 Ž .� �; � : � � � � � of hazard rate functions e.g., the Weibull class , versus0

Ž .the alternative hypothesis H which states that � � does not belong to CC.1
Ž . �Ž Ž . Ž ..The goodness-of-fit test is to be based on a realization of N, Y � N t , Y t :

4t � TT .
Ž . n � 4 Ž . Ž . � 4If N t � Ý I T � t and Y t � n � N t � , where I � denotes thei�1 i

indicator function and T , . . . , T are independent and identically distributed1 n
Ž . Ž .i.i.d. random variables with common distribution function F � , then this

Ž .reduces to the classical problem of testing that F � belongs to the parametric
� Ž . 4 Ž .class of distribution functions given by F �; � : � � � where F �; � � 1 �0 0

� � Ž . 4exp �H � w; � dw . This problem has been the subject of many important�� 0
Ž . Žpapers, notably those of Chernoff and Lehmann 1954 , Khmaladze 1981,

. Ž .1993 , Rao and Robson 1974 and many others. We refer the reader to
Ž .Stephens 1992 for a historical review of this problem in the classical setting.

However, whereas in this classical setting the only nuisance parameter is
�, in survival and reliability models where incomplete data is prevalent,
other nuisance parameters associated with the mechanisms causing the
incompleteness are also present in the model. Furthermore, when dealing
with failure time data, the counting process framework affords more general-

� Ž .ity in terms of models and results cf. Aalen 1975 , Andersen, Borgan, Gill
Ž . Ž .and Keiding 1993 , Andersen and Gill 1982 and Fleming and Harrington

Ž .�1991 . Several papers dealing with the goodness-of-fit problem in the pres-
ence of censored or truncated data have appeared in the literature. Among

Ž .those which consider the composite null hypothesis case are Akritas 1988 ,
Ž . Ž . Ž .Gray and Pierce 1985 , Habib and Thomas 1986 , Hjort 1990 , Khmaladze

Ž . Ž . Ž .1981, 1993 , Kim 1993 , and Li and Doss 1993 .
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The class of goodness-of-fit tests described in this paper extends Neyman’s
Ž .1937 idea, but in a formulation more suitable and natural in the context of
models specified through hazard functions. Neyman’s smooth test has been

Ž .extended to right-censored data by Gray and Pierce 1985 , but as in Neyman
Ž . Ž .1937 and Thomas and Pierce 1979 , their formulation utilized density

Ž .functions. In contrast, ours will be anchored on the hazard rate functions � � .
Although there is a bijection between density and hazard rate functions, we
will see that the hazard-based formulation leads to more generality. The
extension is obtained by embedding the class CC in a larger family

Ž .parametrized by a smoothing parameter k and � , � , and defined via

1.1 AA � � �; � , � � � �; � exp � t� �; � : � � � k ,� 4Ž . Ž . Ž . Ž .� 4k k 0

t Ž .t Ž .where denotes vector�matrix transpose, � � � , . . . , � , and � �; � �1 k
Ž Ž . Ž ..t Ž .� �; � , . . . , � �; � is a vector of possibly random processes, for which a1 k

Ž .precise set of properties will be given later. Allowing � �; � to be random
leads to more generality and enables the extension to be applicable in general
dynamic models in reliability and in other areas. Note that AA reduces to CCk
when � � 0. With this embedding of CC into AA , we propose to develop thek
goodness-of-fit procedure as a test for the hypotheses

1.2 H : � � 0, � � � versus H : � � 0, � � �.Ž . 0 1

It should be pointed out that aside from �, there are other nuisance parame-
ters, associated with the incompleteness mechanism and possibly infinite-
dimensional, which are also left unspecified. One of the benefits of our
formulation and our adoption of the stochastic process framework is that of
being able to bypass direct estimation of these other nuisance parameters.

We outline the contents of this paper. Section 2 presents the development
of the smooth goodness-of-fit test. The asymptotic properties of the test
statistics are presented in Section 3, but their proofs are deferred to an
Appendix. In particular, we present the limiting distribution of the test
statistics under a sequence of local alternatives. The effects of estimating the
nuisance parameter � are discussed in Section 4. Particular attention is given
to the issue of when these effects disappear, an adaptiveness property akin to
that in semiparametric inference. The choice of the process � is addressed in
Section 5, and some specific choices are illustrated in Section 8. The local
asymptotic powers of the tests are examined in Section 6, and the issue of
whether it is necessary to make the �-process orthogonal to the gradient of

Ž .the logarithm of � �; � in order to achieve optimal asymptotic local power is0
resolved. In Section 7 the loss in efficiency under two types of model misspeci-
fication are examined, with the relative efficiency of tests measured using the

Ž .local asymptotic relative efficiency of Woolson and Sen 1974 . Section 9
presents results of simulation studies performed to ascertain the achieved
levels and powers of the tests for small to moderate sample sizes. In Section
10 we present the results of applying specific smooth goodness-of-fit tests to
three data sets considered in the literature. A summary and some concluding
remarks are contained in Section 11.
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2. Development of the smooth test. We assume the following basic
Ž .conditions on the � �; � process and the class CC. If H is true, we let �0 0

Ž .denote the true value of �. Furthermore, � �; � is a locally bounded and
Ž . Ž . Ž . Ž .predictable process, and �� � �; � exists with � t; � � 0 for each t, �0 0

Ž . �� TT � �. Under our model, the partial log-likelihood process for � , � it will
be the full log-likelihood under additional assumptions such as noninforma-

� � Ž .�tive censoring is given by Andersen, Borgan, Gill and Keiding 1993
Ž . t � Ž . Ž .� Ž . t Ž . Ž . Ž .l t; � , � � H log Y s � s; � , � dN s � H Y s � s; � , � ds. Let M t; � , �0 k 0 k

Ž . t Ž . Ž .� N t � H Y s � s; � , � ds, t � TT. Then, under the condition that differ-0 k
entiation with respect to � and the integration operation can be inter-
changed, the score process is

� s ; �Ž .
U t ; � , �Ž . t1 U t ; � , � � � dM s ; � , � ,Ž . Ž .H log � s ; � , �U t ; � , � Ž .Ž . 0 k2 �

Ž . Ž .which, when evaluated at � , � � 0, � , becomes0

U t ; �Ž . t1 02.1 U t ; � � � H s ; � dM s ; � ,Ž . Ž . Ž . Ž .H0 0 0U t ; �Ž . 02 0

Ž . � Ž .t Ž .t � t Ž . Ž . Ž . Ž .where H s; � � � s; � , � s; � , � s; � � �� log � s; � and M s; �0
Ž . � Ž . 4� M s; 0, � . Under H , M t; � : t � TT is a square-integrable local martin-0 0

² Ž .:Ž . Ž .gale, and its predictable variation process is M �; � t � A t; � �0 0
t Ž . Ž . � Ž . 4H Y s � s; � ds. Since H t; � : t � TT is a locally bounded predictable0 0 0 0

� Ž . 4process, then under H , U t; � : t � TT is a square-integrable local martin-0 0
gale with predictable quadratic variation process

t 	2² :2.2 U �; � t � H s ; � Y s � s ; � ds,Ž . Ž . Ž . Ž . Ž . Ž .H0 0 0 0
0

where for a vector v, v	0 � 1, v	1 � v and v	2 � vvt. If, under H , the true0
Ž .value � is known, a test of H can be based on the statistic U � ; � �0 0 1 0

� Ž . Ž .H � s; � dM s; � . However, since � is unknown, an asymptotically opti-0 0 0 0
� Ž . Ž .mal test cf. Bhat and Nagnur 1965 , Choi, Hall and Schick 1996 and
Ž .�Neyman 1959 can be obtained from the efficient score vector

�1Ũ � ; � � U � ; � � � � ; � � � ; � U � ; � ,Ž . Ž . Ž . Ž . Ž .1 0 1 0 12 0 22 0 2 0

upon replacing � by a suitable estimator, and where0

� �11 12
� �

� �21 22

Ž .is a possibly limiting covariance matrix of U. We propose to replace � by its0
Ž .restricted maximum likelihood estimator RMLE � obtained under the re-ˆ

Ž . � Ž . Ž .striction � � 0. This RMLE satisfies U � ; � � H � s; � dM s; � � 0 and isˆ ˆ ˆ2 0
Ž . Ž .the maximum likelihood estimator MLE of � under the condition that � �

belongs to CC. Asymptotic properties of this estimator have been obtained in
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Ž . � Ž .�Borgan 1984 see also Andersen, Borgan, Gill and Keiding 1993 . Upon
substituting � for � , the estimated efficient score vector becomesˆ 0

�
˜2.3 U � ; � � U � ; � � � s ; � dM s ; � .Ž . Ž . Ž . Ž . Ž .ˆ ˆ ˆ ˆH1 1

0

� Ž . 4 �The process M t; � : t � TT is called a ‘‘martingale’’ residual process cf.ˆ
Ž . Ž .�Barlow and Prentice 1988 , Therneau, Grambsch and Fleming 1990 , al-

though since � depends on information in FF , it is not a bonafide martingale.ˆ �

Ž .One may therefore view U � ; � as a weighted martingale residual, withˆ1
Ž .weights determined by the � �; � process introduced in the class AA . We willk

discuss the choice of this process in later sections. To obtain the exact form of
Ž .the test, we need the sampling distribution of U � ; � and its covarianceˆ1

Ž . �matrix � � ; � under H . With A denoting a generalized inverse of a0 0
matrix A, the proposed smooth goodness-of-fit test for H of order k associ-0

Ž .ated with � �; � takes the form
�t ˆ2.4 Reject H if S � ; � � U � ; � � � ; � U � ; � 
 c ,Ž . Ž . Ž . Ž . Ž .ˆ ˆ ˆ ˆ0 k 1 1 �

� Ž . � 4where c is such that P S � ; � 
 c H equals � , or converges to � inˆ� k � 0
some suitable asymptotic sense.

Ž .In general, the exact sampling distribution of U � ; � , and hence that ofˆ1
Ž .S � ; � , is difficult to obtain analytically. Computer-intensive methods mayˆk

provide a viable way of approximately assessing the significance of an ob-
Ž .served value of S � ; � . In this paper we focus on the asymptotic propertiesˆk

� Ž . 4 Ž .of U � ; � : t � TT under a sequence of local alternatives in � . This willˆ1
enable us to assess the effects of substituting � for � , and to see how theˆ 0

Ž . Ž .asymptotic properties of U �; � , and also of S � ; � , are affected by chang-ˆ ˆ1 k
Ž .ing the � �; � process. Knowledge of such effects may provide guidance in

Ž .choosing the order k and the � �; � process to achieve certain desirable
properties of the test.

3. Asymptotics. For our asymptotic analysis we consider a sequence of
�Ž Žn.Ž . Žn.Ž .. 4 Ž .processes N t , Y t : t � TT , n � 1, 2, . . . , with the nth member of

Ž Žn. Žn. Žn..the sequence defined on a probability space 	 , FF , P with filtration
Žn. � Žn. 4F � FF : t � TT . The sequence of compensator processes satisfiest

tŽn. Žn. Žn.A t ; � , � � Y s � s ; � , � ds, n � 1, 2, . . . ,Ž . Ž . Ž .H k
0

where

�Žn. s ; � , � � � s ; � exp � t� Žn. s ; � ,� 4Ž . Ž . Ž .k 0

Žn.Ž . Ž Žn.Ž . Žn.Ž ..tand with � �; � � � �; � , . . . , � �; � also depending on n. Note that1 k
Ž .k, as well as � �; � , do not depend on n. The normalizing sequence of0

� 4constants a : n � 1, 2, . . . is an increasing sequence of positive real num-n
bers. The sequence of hypotheses is

H : � Žn. � 0, � � � versus H : � Žn. � � 1 � o 1 �a , � � � ,Ž .Ž .0 n 1n n
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where we assume that the true value of �, under H , is � and is indepen-0 n 0
dent of n, and � is some q � 1 vector of real numbers. The restricted MLE

Žn. Žn.Ž .of � for the nth model is � which solves the equation U � ; � � 0,ˆ 2
Žn.Ž . t Žn.Ž . Žn.Ž . Žn.Ž . Ž . Ž .where U t; � � H � s; � dM s; � , � s; � � � n log � s; � ,2 0 0

Žn.Ž . Žn.Ž . t Žn.Ž . Ž .and M s; � � N s � H Y s � s; � ds. The score test statistic is0 0
therefore

tŽn. Žn. Žn. Žn. Žn. Žn.U t ; � � � s ; � dM s ; � , t � TT.Ž . Ž . Ž .ˆ ˆ ˆH1
0

Having just indicated which quantities or processes depend on n, for brevity
we shall henceforth suppress writing the superscript Žn., except in cases
where confusion may arise.

We present the major asymptotic result needed for developing the smooth
goodness-of-fit test. The proof of the theorem is deferred to the Appendix,
together with intermediate results needed in its proof. The regularity condi-
tions for the asymptotic results are also enumerated in the Appendix. Some of
these conditions are needed to obtain results pertaining to the restricted

Ž .MLE �, and are similar to those in Borgan 1984 , while others pertain to theˆ
Ž .behavior of the � �; � processes. The matrix function

� �11 12
� � ,

� �21 22

Ž .which appears in the statement of Theorem 3.1, is defined in condition V in
the Appendix. For ease of reference, the definition of its submatrices are

Ž . t Ž0 .Ž .	 2 Ž . Ž . Ž .given by � t ; � � H � s ; � y s � s ; � ds, � t ; � �11 0 0 12
t Ž0.Ž . Ž .t Ž . Ž . Ž . t Ž .	2 Ž . Ž .H � s; � � s; � y s � s; � ds, � t; � � H � s; � y s � s; � ds, and0 0 22 0 0

t Ž0.Ž . Žn.Ž . Ž .� � � , where � �; � is the limiting function of � �; � , and y � is a21 12
Žn.Ž .limiting function of the standardized at-risk process Y � . For precise

Ž .descriptions of these functions, see condition IV in the Appendix.

Ž . Ž .THEOREM 3.1. If conditions I � VIII are satisfied, then under H ,1n
�1 Ž . � � ka U �; � converges weakly, on Skorohod’s space DD 0, � , to a Gaussianˆn 1

˜ Ž .process Z �; � with mean function1 0

�1˜E Z �; � � � �; � � � �; � � � �; � � � ; � � � ; � �Ž . Ž . Ž . Ž . Ž . Ž .� 4 � 41 0 1 0 11 0 12 0 22 0 21 0

and covariance matrix function

˜ ˜Cov Z t ; � , Z t ; �Ž . Ž .� 41 1 0 1 2 0

�1˜� � t , t ; � � � t � t ; � � � t ; � � � ; � � t ; � .Ž . Ž . Ž . Ž . Ž .1 1 2 0 11 1 2 0 12 1 0 22 0 21 2 0

˜Ž . Ž .With � t; � � � t, t; � , the quantity11 .2 0 1 0

�t�2S � ; � � a U � ; � � � ; � U � ; �Ž . Ž . Ž . Ž .ˆ ˆk 0 n 1 11 .2 0 1

converges in distribution, under H , to a noncentral chi-squared distribution1n
� Ž Ž ..with degrees-of-freedom k � rank � � ; � and noncentrality parameter11 .2 0

t Ž .� � � ; � � .11 .2 0
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Ž .The quantity S �; � depends on the unknown parameter � throughk 0 0
Ž .� � ; � , hence is not a test statistic. To construct a test for H we need to11 .2 0 0

Ž . Ž .�estimate � � ; � , or equivalently � � ; � , consistently. Two possible11 .2 0 11.2 0
Ž .estimators of � �; � are0

	2
�1 � s ; �Ž .ˆ

�̂ �; � � Y s � s ; � ds ;Ž . Ž . Ž .ˆ ˆH 02 � s ; �a Ž .ˆ0n

	2
�1 � s ; �Ž .ˆ

�̆ �; � � dN s .Ž . Ž .H2 � s ; �a Ž .ˆ0n

These estimators, which are based on the predictable quadratic variation
process and the optional variation process, respectively, are uniformly consis-

Ž .tent estimators of � �; � under H . Our numerical studies indicate that for0 1n
finite sample sizes it is advantageous to utilize a convex combination of the
two estimators. In particular, we propose to use the estimator

1 ˆ ˘3.1 � �; � � � �; � � � �; � .Ž . Ž . Ž . Ž .ˆ ˆ ˆ2

As estimator of
�1

�̃ t , t ; � � � t � t ; � � � t ; � � � ; � � t ; � ,Ž . Ž . Ž . Ž . Ž .1 1 2 0 11 1 2 0 12 1 0 22 0 21 2 0

˜Ž .we use � t , t ; � obtained by replacing the submatrices consisting of � byˆ1 1 2 1

Ž .the corresponding submatrices in �. Note that � �; � may also depend on11 .2 0
nuisance parameters associated with the incompleteness mechanism. How-
ever, our estimator of this covariance matrix allows us to bypass the direct
estimation of these nuisance parameters, an important consideration because
the incompleteness mechanism need not be restrictive.

Our proposed quadratic test statistic now becomes
�t�23.2 S � ; � � a U � ; � � � ; � U � ; � ,Ž . Ž . Ž . Ž . Ž .ˆ ˆ ˆ ˆk n 1 11 .2 1

which has an asymptotic chi-squared distribution with k� degrees-of-freedom
under H . The asymptotic �-level smooth test then rejects H whenever0 n 0

�2 ˆŽ . Ž .S � ; � 
 � , where k is the rank of the covariance matrix � � ; � .ˆ ˆ�k 11.2k̂ , �

4. Effects of estimating the nuisance parameter. From the interme-
diate result in Proposition B.1, we find that if � is known, then the statistic0

�1 Ž . Ž .a U � ; � converges in distribution to a normal random vector Z � ; �n 1 0 1 0
with mean vector and covariance matrix

E Z � ; � � � � ; � � � � ; � � and Cov Z � ; � � � � ; � .� 4 � 4Ž . Ž . Ž . Ž . Ž .1 0 1 0 11 0 1 0 11 0

In contrast, from Theorem 3.1, if � is unknown and is estimated by the0
�1 Ž .restricted MLE �, then the statistic a U � ; � converges in distribution to aˆ ˆn 1

˜ Ž .normal random vector Z � ; � with mean vector and covariance matrix1 0

˜E Z � ; � � � � ; � � � � ; � �Ž . Ž . Ž .� 4 ˜1 0 1 0 11 .2 0

and
˜Cov Z � ; � � � � ; � ,Ž . Ž .� 41 0 11 .2 0
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Ž . Ž . Ž . Ž .�1 Ž .where � � ; � � � � ; � � � � ; � � � ; � � � ; � . Thus, the11 .2 0 11 0 12 0 22 0 21 0
�1 Ž .asymptotic effect of replacing � by � in a U � ; � is manifested by aˆ0 n 1 0

change in the mean vectors, with the magnitude of this change given by
�1

�� � ; � � � � ; � � � � ; � � � � ; � � � ; � � � ; � � ,Ž . Ž . Ž . Ž . Ž . Ž .˜1 0 1 0 1 0 12 0 22 0 21 0

Ž . Ž .�1 Žand a decrease in covariance matrices given by � � ; � � � ; � � � ;12 0 22 0 21
.� . Notice that, in an asymptotic sense, the estimation of � by � has noˆ0 0

�1 Ž . Ž .effect on the distribution of a U � ; � if and only if � � ; � � 0. Recallingˆn 1 12 0
that

² �1 �1 :a U �; � , a U �; � �Ž . Ž . Ž .n 1 0 n 2 0

� tŽ0.� � s ; � � s ; � y s � s ; � ds in probabilityŽ . Ž . Ž . Ž .H 0 0 0 0
0

� � � ; � ,Ž .12 0

Ž0.Ž . Ž .if � �; � and � �; � are orthogonal with respect to the inner product0 0

�
² :f , g � f s g s y s � s ; � dsŽ . Ž . Ž . Ž .H 0 0

0

� � � � Ž .2 Ž . Ž . 4on the Hilbert space HH � h: 0, � � �: H h s y s � s; � ds � � , then, in0 0 0
an asymptotic sense, not knowing � does not matter since it could be0
replaced by the restricted MLE � without altering the limiting distribution ofˆ
the test statistic. This is analogous to the notion of adaptive estimation in the

�presence of nuisance parameters cf. Bickel, Klaasen, Ritov and Wellner
Ž .� �1993 , as well as to the notion of orthogonal parameters cf. Cox and Reid
Ž .� Ž0.Ž . Ž .1987 . On the other hand, if � �; � and � �; � are not orthogonal, then0 0

�1 Ž .substituting � for � in a U � ; � could have an effect on the limitingˆ 0 n 1 0
variance. This result indicates that one should be cognizant that when � is0
replaced by �, though a consistent estimator of � , there could be a substan-ˆ 0
tial change in the distributional properties of the test statistic, with the
magnitude of this change determined by the interplay among the class CC, the

� Ž .�choice of the �-process and the data structure represented by y � . Thus, if
uŽ . Ž .in testing H : � � � CC, one is to use the test statistics S � ; � �ˆ0 k

�2 t � �2 tŽ . Ž . Ž . Ž . Ž . Ža U � ; � � � ; � U � ; � instead of S � ; � � a U � ; � � � ;ˆ ˆ ˆ ˆ ˆn 1 11 1 k n 1 11.2
.� Ž .� U � ; � , then misleading conclusions may arise if the chosen �-processˆ ˆ1

Ž .and the � � associated with CC are highly related in the space HH. In classical
Ž .settings this aspect has also been addressed by Chernoff and Lehman 1954 ,

Ž . Ž . Ž . Ž .Durbin 1973, 1975 , Loynes 1980 , Pierce 1982 , Randles 1982, 1984 and
Ž .Stephens 1976 . These results also have a bearing on the appropriate use of

hazard-based generalized residuals in model validation and diagnostics; for
Ž . Ž .instance, see Aban and Pena 1998 , Baltazar�Aban and Pena 1995 , La-˜ ˜

Ž . Ž .gakos 1981 and Pena 1995, 1998 .˜

5. On the choice of the �-process. In this section we discuss general
characteristics of a desirable choice of the �-process. Note at the outset that
this process determines the class of alternative hazard functions when the
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� Ž . 4 Ž .class CC � � �, � : � � � does not hold. Let � � denote the true but0 0
unknown hazard rate function and define the mapping from � into KK via

� �; �Ž .0
� � � �; � � log ,Ž . ½ 5� �Ž .0

� � Ž .2 Ž . Ž .with the convention that 0�0 � 1, and where KK � � : H � t y t � t dt �0 0
4 ² : � Ž . Ž . Ž . Ž .� . Endow KK with the inner product � , � � H � t � t y t � t dt, and1 2 0 1 2 0'� � ² :norm � � � , � . Let KK be the closure of the subspace of KK whose�

Ž . Ž .members are � �; � , � � �. For a given � � , let � � � be such that0 0
� Ž .� � Ž .� Ž . Ž .� �; � � � �; � for every � �; � � KK , so � �; � is the member of CC0 � 0 0

Ž . Ž . Ž . � Ž . Ž .4closes to � � . Then, for each � � �, � �; � � � �; � � log � �; � �� �; �0 0 0 0 0

� Ž .� 2 � Ž .� 2 � � Ž . Ž .4� 2 � Žand � �; � � � �; � � log � �; � �� �; � . Furthermore, log � �;0 0 0 0 0
. Ž .4 Ž .t Ž . Ž� � 2 . Ž . Ž .� �� �; � � � � � � �; � � o � � � , where � �; � � � n log0 0 0 0 0
Ž . Ž .� �; � . In view of these considerations, for AA in 1.1 to be a suitable class of0 k

alternatives for CC, the �-process should ideally span the linear space of
Ž . Ž .� �; � which is generated as one varies � � in the space AA of hazard rate0 0

functions which could arise when the hypothesized class CC is false. It may
also be more informative if the components of � are orthogonal and each

Ž .indicates certain meaningful and interpretable departures from � �; � . One0
Ž .possible choice of the �-process is for the components to be asymptotically

orthonormal in the sense of satisfying

� 	2Ž0.5.1 � t y t � t dt � I ,Ž . Ž . Ž . Ž .H 0 k
0

Ž . Ž . 2where y � is the true limiting function of Y � �a . In the context of the localn
alternatives studied in the preceding section, this condition becomes

Ž . � Ž0.Ž .	2 Ž . Ž .� � ; � � H � t; � y t; � � t; � dt � I , or equivalently,11 0 0 0 0 0 0 k

Ž .� � ; �0 0 Ž0. �15.2 � t ; � y � t ; � ; � dt � I ,Ž . Ž . Ž .H 0 0 0 0 k
0

Ž0. Ž0.Ž . Ž0.� Ž . �where � is defined according to � t; � � � � t; � ; � . Thus, one may0
choose the � Ž0.-process, or equivalently, the � Ž0.-process, such that � Ž0. has

� �1Ž .�components which are orthonormal with respect to y � �; � over the0 0
� Ž .�region 0, � � ; � .0 0

Ž .However, since the limiting function y � involves elements of the mecha-
nism that leads to incomplete observations, this program of choosing � Ž0. to
be orthogonal may only be feasible in practice if stringent conditions are
imposed on the incompleteness mechanism. To circumvent this potential
difficulty we instead advocate that the � Ž0.-process be chosen, not with the
primary goal of having orthogonal components, but rather that it should span

Ž . Ž .the linear space of � �; � generated by varying � � in the space of hazard0 0
functions which arise when CC does not hold. If feasible, one may then
orthogonalize the components and then use the orthogonalized components.
As will be seen in the next section, in terms of local asymptotic power, one
does not gain any advantage by using an orthogonal �-process. Such a � Ž0.
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Ž0.Ž �1Ž . . i�1may be of polynomial form, for example, � � t; � ; � � t , i � 1, . . . , k,i 0
or it could be chosen at the outset to be well-known orthogonal polynomials
such as Laguerre polynomials. This idea of using polynomial basis functions

Ž .was the one considered by Neyman 1937 and expounded in Rayner and Best
Ž .1989 in classical settings. Other possibilities are �-processes based on

Ž .trigonometric basis functions, and possibly, wavelets such as in Fan 1996 .
This latter possibility will be explored in future research since it possesses
the promise of being able to focus the smooth goodness-of-fit tests on local

Ž .differences between the class CC and the true � � .0

6. Local asymptotic power. Let us examine the asymptotic local power
Ž . Ž0.Ž . Ž0.� Ž . � Ž .of the test in 3.2 if � t; � � � � t; � ; � is chosen to satisfy 5.2 . The0

sequence of true hazard rate functions consists of
Žn. t Žn.� t � � t ; � exp � � � t ; � ; � , n � 1,2, . . . ,Ž . Ž . Ž .� 40 0 0 n 0 0 0

�1 Ž Ž .. Žn. Ž0. Ž .where � � a � 1 � o 1 and � and � satisfy condition IV stated inn n
Section 11. Without loss of generality and for standardization purposes,

2 t� � Ž .assume that � � � � � 1. Using Theorem 3.1, the test statistic S � ; � inˆk
Ž .3.2 converges in distribution to a noncentral chi-squared distribution with

� � Ž .� 2degrees-of-freedom k � rank � � ; � and noncentrality parameter � �11 .2 0
t Ž . 0 Ž . Ž0.Ž . � �1Ž . �� � � ; � � , where, with � � � � ; � , y s; � � y � s; � ; � and11 .2 0 0 0 0
Ž0.Ž . � �1Ž . �� s; � � � � s; � ; � ,0

�1
� � ; � � I � � � ; � � � ; � � � ; � ;Ž . Ž . Ž . Ž .11 .2 0 k 12 0 22 0 21 0

� 0 tŽ0. Ž0. Ž0.� � ; � � � s ; � � s ; � y s ; � ds ;Ž . Ž . Ž . Ž .H12 0 0 0 0
0

and
� 0 	2Ž0. Ž0.� � ; � � � s ; � y s ; � ds.Ž . Ž . Ž .H22 0 0 0

0

Thus, the noncentrality parameter can be written as
2�1�22� � 1 � � � ; � � � ; � � .Ž . Ž .22 0 21 0

Ž . Ž . Ž .The limiting local power ALP of the �-level test in 3.2 is ALP � ; � �0
� 2 Ž 2 . 2 4 2 Ž 2 .� � �P � � 
 � , where � � is a noncentral chi-squared distributedk k ; � k

variable with k� degrees-of-freedom and noncentrality parameter � 2. This
Ž . �power is maximized whenever � � ; � � 0, and in such a case, k � k and12 0

2 Ž .� � 1. Recall from Section 4 that � � ; � � 0 leads to the orthogonality21 0
between � Ž0. and � Ž0. and enables the substitution of � for � while retainingˆ 0

Ž . Ž .the same asymptotic distributions for U �; � and U �; � .ˆ1 0 1
Denote by � Ž0. the limiting �-process which is orthogonal to � Ž0. so it0

Ž . � 0 Ž0.Ž . Ž0.Ž .t Ž0.Ž .satisfies 5.2 and H � s; � � s; � y s; � ds � 0. In principle, such0 0 0 0 0
an orthogonalization can be done using a Gram�Schmidt orthogonalization

� Ž .technique see the earlier version of this manuscript, Pena 1996 , Lem-˜
�ma 5.1 , though implementing the orthogonalization process may be tedious

or require restrictive assumptions on the incompleteness mechanisms. An-
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other approach, implemented in an example in Section 8, is to start with
some appropriate � Ž0., and the desired � Ž0. is obtained via0

�1�2t t t t�1Ž0. Ž0. Ž0. Ž0. Ž0. Ž0. Ž0. Ž0. Ž0.² : ² :² : ² :� � � , � � � , � � , � � , �Ž . Ž . Ž . Ž .0

t t �1Ž0. Ž0. Ž0. Ž0. Ž0. Ž0.² :² :� � � � , � � , � � ,Ž . Ž .
² : � 0 Ž . Ž . Ž0.Ž . Ž .twhere f , g � H f s g s y s; � ds, and for vectors f � f , . . . , f and0 0 1 k

Ž .t ² t: ² :g � g , . . . , g , f , g is the matrix consisting of elements f , g . For the1 k i j
sequence of alternative hazard rate functions

Žn. �1 t Žn.6.1 � � � � �; � exp a � � � �; � ; � ,Ž . Ž . Ž . Ž .� 40 0 0 n 0 0 0 0

t Ž .with � � � 1, the asymptotic local power of the test which rejects H : � � � CC0
Ž0. 2Ž .whenever S � � � , wherek k ; �

2k �1
Ž0. Žn.6.2 S � � � � s ; � ; � dM s ; �Ž . Ž . Ž . Ž .ˆ ˆ ˆÝ Hk 0 i 02a 0n i�1

� 2Ž . 2 4is P � 1 
 � . Note the simple form of the test statistic which arisesk k ; �

because of the assumed asymptotic orthonormality of the � Žn. and its asymp-0

totic orthogonality with � Ž0..
Suppose now that � Ž0. is another limiting � Ž0.-process which is not orthog-1

onal to � Ž0. and representable via

6.3 � Ž0. �; � � A � � Ž0. �; � � B � � Ž0. �; � ,Ž . Ž . Ž . Ž . Ž . Ž .1 0 0 0 0 0 0

Ž .where A � is a k � k-nonsingular matrix. We inquire whether the asymp-0
Ž0. � Žn.4totic local power of the test based on � or its associated � sequence is1 1

different from the ALP of the test based on � Ž0. under the same local0
Ž . � Žn.4alternatives in 6.1 . With respect to the sequence � , the local alternatives1

Ž .in 6.1 become

Žn. �1 t Žn.6.4 � � � � �; � exp a �	�	 � �; � ; � ,Ž . Ž . Ž . Ž .� 40 0 0 n 0 0 0

where
tt tŽn. Žn. Ž0.�	 �; � � � t ; � , � �; � ;Ž . Ž . Ž .Ž .0 1 0 0

t�1 �1 tt t�	 � � A � , �� A � B � .Ž . Ž . Ž .Ž .0 0 0

It is then easy to show that the limiting covariance matrices associated with
� Žn.4the �	 sequence are

	2 t
0 A � B� B B�	2 22 22�� Ž0. Ž0.� � ; � � �	 s ; � y s ; � ds � ;Ž . Ž . Ž .Ž .H11 0 0 0 t� B �0 22 22

0 B�t� 22� Ž0. Ž0. Ž0.� � ; � � �	 s ; � � s ; � y s ; � ds � .Ž . Ž . Ž . Ž .Ž .H12 0 0 0 0 �0 22



˜E. A. PENA1946

Therefore,

�1� � � � �� � ; � � � � ; � � � � ; � � � ; � � � ; �Ž . Ž . Ž . Ž . Ž .11 .2 0 11 0 12 0 22 0 21 0

	2A � 0Ž .0� ,
0 0

which has rank k. The noncentrality parameter of the limiting chi-squared
� Žn.4distribution of the � -based test statistic given by1

t�1 ��Ž1. Žn.S � � �	 � t ; � ; � dM t ; � � � ; �Ž . Ž . Ž . Ž .ˆ ˆ ˆ ˆHk�q 0 11 .22a 0n

�
Žn.� �	 � t ; � ; � dM t ; �Ž . Ž .ˆ ˆ ˆH 0

0

2 t � Ž . t �1 	2Ž �1 .t tbecomes �	 � �	� � ; � �	 � � A A A � � � � � 1. The asymp-11 .2 0

� Žn.4totic local power of the � -based test therefore coincides with that of the1
� Žn.4� -based test with respect to the same sequence of local alternatives. This0
shows that it is not necessary to choose the � Ž0.-process to be orthogonal to
� Ž0. to achieve optimum power. However, if one is able to feasibly choose the
� Ž0.-process to be orthogonal to the � Ž0.-process, aside from satisfying condi-

Ž .tion 5.2 , the test statistic becomes parsimonious as it is just a sum of
� Ž .� Ž .squared components see the test statistics in 6.2 . The ith i � 1, . . . , k

component of the test statistic, given by

2�1
Žn.6.5 S � � � � s ; � ; � dM s ; � ,Ž . Ž . Ž . Ž .ˆ ˆ ˆHk , i 0 i 02a 0n

may be used to develop a directional test for the null hypothesis H : � � 00
Ž . Ž0.versus the alternative hypothesis H : � � 0; � � 0 j � i . If the � are1 i j 0

properly chosen, then results of such directional tests could indicate the type
Ž .of departure of the true hazard rate � � from the class CC if H is rejected.0 0

In addition, for such a choice of � Ž0., the unknown nuisance parameter � does0
not pose any difficulties since it can be replaced by its restricted MLE and no
adjustments are needed.

7. Efficiency loss from misspecified models. We explore in this sec-
tion the loss of efficiency under two types of model misspecification: over-
smoothing and undersmoothing. As a consequence of the results of Section 5,

Ž0. Ž Ž0. Ž0..twithout loss of generality, we may assume that � � � , . . . , � satisfies1 k

� 	2Ž0.� t y t � t ; � dt � I,Ž . Ž . Ž .H 0 0
07.1Ž .

� Ž0. tŽ0.� t � t y t � t ; � dt � 0Ž . Ž . Ž . Ž .H 0 0
0
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� 4and, under the sequence of local alternatives H ,1n

�Žn. tŽ .0 t Ž0. ta log � � � t � � � t � o 1Ž . Ž . Ž .n p½ 5� t ; �Ž .0

k q Žn. Ž Žn. Žn..tfor some � � � and � � � . Denote by � � � , . . . , � the observable1 k

Ž . Ž Žn. Žn.process satisfying equation IV in the Appendix with � replaced by � ,
Ž0. Ž0..and � replaced by � .

The first type of misspecification is ‘‘oversmoothing.’’ In this situation
� 4suppose that there is a k with 1 � k � k such that, under H , � �1 1 1n 2

Ž .t Ž t t .t Ž0. Ž Ž0. Ž0..t� , . . . , � � 0, where � � � , � . Equivalently, � � � , . . . , �k �1 k 1 2 2 k �1 k1 1

is not needed in describing the alternative space. Suppose we use the test
which rejects H whenever0

2
�1

ov Žn. 27.2 S � � � t dM t ; � 
 � .Ž . Ž . Ž . Ž .ˆHk k ; �2a 0n

Ž .From Theorem 3.1, and by virtue of the condition in 7.1 , the limiting
ov Ž . � 4 2Ž 2 . 2distribution of the test statistic S � , under H , is � � , where � �k 1n k ov ov

t t � � 2� � � � � � � since � � 0. Under the assumed conditions the appropri-1 1 1 2
ate test should reject H whenever0

2
�1

op1 Žn. 27.3 S � � � t dM t ; � 
 � ,Ž . Ž . Ž . Ž .ˆHk 1 k ; �21 1a 0n

Žn. Ž Žn. Žn..t op1Ž . � 4where � � � , . . . , � . The limiting distribution of S � , under H ,1 1 k k 1n1 12Ž 2 . 2 t � � 2is � � , where � � � � � � . Employing the local asymptotic relativek op1 op1 1 1 1
Ž . Ž .efficiency LARE criterion of Woolson and Sen 1974 , we find the LARE of

Ž . Ž . Ž� ov 4the oversmoothed test in 7.2 with respect to the test in 7.3 to be LARE S :k
� op14. Ž . � 4 Ž .S � R k , k, � where, for k , k � 1, 2, . . . , � � 0, 1 ,k 1 1 21

P � 2 
 � 2 � �� 4k �2 k ; �2 2R k , k , � � .Ž .1 2 2 2P � 
 � � �� 4k �2 k ; �1 1

Ž . Ž .Values of R k , k , � were tabulated in Woolson and Sen 1974 for � �1 2
� 4 � 40.10, 0.05, 0.01, 0.005 and k , k � 1, 2, . . . , 10 , or can be easily obtained1 2
using a statistical computer package. Since k � k , it is immediate that1

Ž� ov 4 � op14.LARE S : S � 1, and, examining Tables 1 and 2 in Woolson and Senk k1
Ž .1974 , there could be a substantial loss in efficiency with excessive over-

Ž� ov 4smoothing. For example, with � � 0.05, if k � 8 and k � 3, then LARE S :1 k
� op14.S � 0.55.k1

The second type of misspecification is ‘‘undersmoothing.’’ In this situation
we utilize a test which rejects H whenever0

2
�1

un Žn. 27.4 S � � � t dM t ; � 
 � ,Ž . Ž . Ž . Ž .ˆHk 1 k ; �21 1a 0n
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Ž .twhere k � k, when in reality � � � , . . . , � is not equal to 0. But the1 2 k �1 k1

appropriate test should reject H whenever0

2
�1

op2 Žn. 27.5 S � � � t dM t ; � 
 � .Ž . Ž . Ž . Ž .ˆHk k ; �2a 0n

op2Ž . � 4 2Ž 2 . 2The limiting distribution of S � , under H , is � � , where �k 1n k op2 op2
t � � 2 unŽ .� � � � � . On the other hand, the limiting distribution of S � , underk1

2Ž 2 . 2 t � � 2H , is � � , with � � � � � � . Consequently, the LARE of the1n k un un 1 1
Ž . Ž . Ž� un4 � op24.undersmoothed test in 7.4 relative to that in 7.5 is LARE S : S �k k1

Ž .Ž � � 2 � � 2 . Ž . � � 2 � � 2R k, k , � � � � . Since k � k , then R k, k , � � 1, and since � � �1 1 1 1 1
Ž� un4 � op24.� 1, it is possible for LARE S : S to exceed unity for a specifick k1

direction of approach, determined by � , of the local alternatives to the null
Ž� un4specification. For example, if k � 2, k � 1, and � � 0.05, then LARE S :1 k

� op24. 2 2S � 1 whenever � �� � 0.53. The main problem, however, with thek 1 21

undersmoothed test is that it could be inconsistent and extremely inefficient
for some other directions � . This is evident by noting that when � � 0, and1

Ž� un4 � op24.since � � 0, then LARE S : S � 0. This is a manifestation of the fact2 k k1

that for such a direction, the test is not even consistent. By comparing the
consequences of these two types of misspecification based on their LAREs,
undersmoothing is therefore a more serious problem than oversmoothing. On
the other hand, if the directions or departures from the null specification
determined by � and�or � are not of primary interest, then such undesir-2 2
able consequences of undersmoothing may be ignored. Thus, it is evident that
the determination of the smoothing order k is a very important problem, and
this issue will be addressed in future work. It has been the subject of recent

Ž . Ž .papers by Bickel and Ritov 1992 , Kallenberg and Ledwina 1995 and
Ž . Ž .Ledwina 1994 in classical settings, and Fan 1996 in relation to the use of

wavelet transforms.

8. Concrete examples. A total-time-on-test specification. We illustrate
the proposed smooth goodness-of-fit tests by considering specific choices of the
�-process and testing the class of constant hazard rates and the two-parame-
ter Weibull class of hazard rate functions. The first specification is one-
dimensional with � Ž0. defined via1

r Ž0. t 1Ž .
Ž0.8.1 � t � � ,Ž . Ž .1 Ž0. 0 2r �Ž .

Ž0.Ž . t Ž0.Ž . � 0 � 0 Ž .where r t � H y s ds, t � 0, � and � � � � ; � . For this choice,0 0
Ž0.Ž . Ž0.Ž .noting that dr t � y t dt, then

0 2�2Ž0. Ž0. Ž0. Ž0. Ž0. Ž0. 0² : � �� , � � � � � t y t dt � r � �12.Ž . Ž . Ž .H1 1 1 1
0

² : � 0 Ž0. ² Ž0. Ž Ž0..t: �1 Ž² Ž0. Ž Ž0..t:.�1With f , g � H fg dr , let � � � , � and � � � , � .0 1 1
Ž . Ž0.Ž . Ž0.Ž .Applying the orthogonalization method in 6.1 to � � yields � � , which1 1



SMOOTH GOODNESS-OF-FIT TEXTS 1949

Ž0.Ž .is of unit norm and is orthogonal to � � and given by
1Ž0. Ž0. 0 �1 Ž0.r t �r � � � � � � tŽ . Ž . Ž .12Ž0.8.2 � t � .Ž . Ž .1 Ž0. 0 �1 t'r � �12 � � � �Ž . 1 1

Žn.Ž . Ž0.Ž . Ž0.Ž .The empirical version, � t , of � t , is obtained by replacing r t by1 1
RŽ . 2 RŽ . � �1Ž .� RŽ . t RŽ . Ž0.Ž .R t �a , where with Y t � Y � t; � , R t � H Y s ds; y t byˆ0 n 0 0 0 0 0
RŽ . 2 Ž0.Ž . Ž0.Ž . � �1Ž . � 0 Ž .Y t �a ; � by � and � t by � t � � � t; � ; � . Let � � � � ; � .ˆ ˆ ˆ ˆ ˆ ˆ0 n 0 0

Ž . � Ž .The asymptotic �-level smooth goodness-of-fit test of H : � � � CC � � �; � :0 0 0
24 Ž . Ž .� � � generated by the �-process in 8.1 rejects H whenever S � ; � 
 � ,ˆ0 1; �

R �1 �̂ 0 Ž0. R RŽ . � Ž .� � 4where with N t � N � t; � and noting that H � dN � Y ds � 0ˆ ˆ0 0 0 0 0
by definition of �,ˆ

1R R 01 R s �R � �0 Ž . Ž .� 4ˆ0 0 2�̂S � ; � �Ž .ˆ H2
R 0 2 �1 ta 0 ˆn R � � 12 a � � � �Ž .ˆ ˆ ˆ' Ž .0 n 1 1

2

R R� dN s � Y s dsŽ . Ž .� 40 0
8.3Ž .

2R 0 R 0N � Q �Ž . Ž .ˆ ˆ0� ,R 0 0ˆR �Ž .ˆ 1 � 12� �Ž .ˆ0

where
R1 R t 10 Ž .0�̂R 0 R 0 R'8.4 Q � � 12 N � dN t � ;Ž . Ž . Ž . Ž .ˆ ˆ H0 0R 0 R 0½ 52N � R �Ž . Ž .ˆ ˆ00 0

ˆ �1 t� � �ˆ ˆ1 10�̂ � �Ž .ˆ �2 R 0a R �Ž .ˆn 0

t �1
0 0 	2� �ˆ ˆŽn. Ž0. Žn. Ž0. Žn.� � � d� � d�Ž .ˆ ˆH H1 1 1ž / ž /0 0

8.5Ž .

� 0ˆ Žn. Ž0. Žn.� � � d� .ˆH 1 1ž /0

Ž . RŽ 0.The first term in 8.3 converges in probability to one. The statistic Q � inˆ
Ž .8.4 is a generalization of the normalized spacings test statistic introduced

Ž . �by Barlow, Bartholomew, Bremmer and Brunk 1972 see Doksum and
Ž .� Ž R R.Yandell 1984 when applied to the generalized residual processes N , Y .0 0

ˆ 0 �1� Ž .�On the other hand, the term 1 � 12� � represents the variance adjust-ˆ
ment which is needed due to the estimation of the unknown nuisance
parameter � by �. It is interesting to note that, through the framework of thisˆ
paper, the generalized normalized spacings test can be viewed as a score and
a smooth goodness-of-fit test. Recall that such a test in classical settings was
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Ž .shown by Barlow, Bartholomew, Bremmer and Brunk 1972 and Doksum
Ž . Ž .and Yandell 1984 to have good power against increasing failure rate IFR

alternatives.

Ž .EXAMPLE 8.1. Suppose interest is in testing that � � belongs to the0
constant hazard class, equivalently, the class of exponential distributions,

� Ž . 4 Ž0.Ž . �1CC � � t; � � �: � � � . Thus, � t; � � � . ThenE 0

0� 1Ž0. Ž0. 0 Ž0.� � 1�� r t �r � � y t dt � 0,Ž . Ž . Ž . Ž .H1 2
0

ˆ 0Ž . Ž .hence in the test statistic in 8.3 we could set � � to its true value of zero.ˆ
For this constant hazards model, the estimation of � by � has no effect onˆ
the asymptotic distribution. This adaptiveness property was also observed in

Ž . Ž .Aban and Pena 1998 and Baltazar�Aban and Pena 1995 . The resulting˜ ˜
smooth goodness-of-fit test is therefore just the generalized normalized spac-

Ž R R.ings test, applied to the generalized residual processes N , Y .0 0

Ž .EXAMPLE 8.2. Suppose instead that one is interested in testing that � �0
belongs to the two-parameter Weibull class of hazard rate functions CC �2W
� Ž . Ž .Ž .��1 4� t; � , � � �� �t : � � 0, � � 0 . Straightforward calculations yield0
Ž0.Ž . � Ž .Ž .� t Ž Ž0.Ž 0. .� Ž 0.� t� t; � , � � ���, 1�� 1 � log t , � � r � �� 0, C � and1

2� 1
Ž1. 0E �Ž .2 ��Ž0. 0� � r � ,Ž .

1 1
Ž1. 0 Ž2. 0E � E �Ž . Ž .2� �

Ž j.Ž 0. � 0Ž . j Ž0.Ž . Ž . Ž1.Ž 0. Ž0.Ž 0.where, with D � � H log w d� w , j � 0, 1, 2 , E � � D �0 1
Ž1.Ž 0. Ž2.Ž 0. Ž0.Ž 0. Ž1.Ž 0. Ž2.Ž 0. Ž 0. � 0Ž�D � , E � � D � � 2 D � � D � and C � � H 1 �0
. Ž0.Ž . Ž0.Ž . Ž 0. Ž2.Ž 0. � Ž1.Ž 0.�2log w � w d� w . Also, define V � � E � � E � . The empir-1 1

ˆŽ j. 0 ˆŽ j. 0 ˆ 0 ˆ 0Ž . Ž . Ž . Ž .ical versions of these quantities are D � ’s, E � ’s, C � and V � ,ˆ ˆ ˆ ˆ
Ž0.Ž . Žn.Ž . RŽ . RŽ 0.which are found by replacing � � with � � � R � �R � � 1�2 inˆ1 1 0 0

Ž .their definitions. The test statistic is then obtained from 8.3 by setting
ˆ 0 ˆ 0 2 ˆ 0Ž . Ž . Ž .� � � C � �V � .ˆ ˆ ˆ

Ž .It is interesting to see what becomes of S � ; � , � in the complete dataˆ ˆ
Ž . � Ž .4 Ž0.Ž . � 4 0situation where y t � exp �� t so y t � exp �t , and when � � � � �.

Ž0.Ž . � 4 Ž0.Ž . � 4In this case r t � 1 � exp �t , � t � 1�2 � exp �t , and by simple1
Ž0.Ž .calculations and with � � �0.5772 . . . being Euler’s constant, D � � 1,

Ž1.Ž . Ž2.Ž . 2 2 Ž1.Ž . Ž2.Ž . 2 ŽD � � �� , D � � � �6 � � , E � � 1 � � , E � � � �6 � 1 �
.2 Ž . Ž . Ž . 2� , C � � log 2 �2 and V � � � �6. Consequently, one finds that for this

Ž .complete data setting, the true variance adjustment factor in 8.3 is

�1218 log 2Ž .�11 � 12� � � 1 � � 8.0802 . . . ;Ž . 2�
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clearly a nonnegligible factor. For this Weibull model, an adjustment on the
variance is therefore needed when one applies the generalized normalized

Ž R R.spacings test on the generalized residual processes N , Y , in contrast with0 0
the case of constant hazard rate functions.

Žn.Ž . Ž0.Ž .A polynomial-type specification. The next specification is � t � � tk k
Ž k�1.t� P � 1, t, . . . , t . In contrast to the preceding specification where ank

orthogonalized version was utilized, for this polynomial-type specification we
forego such orthogonalization. The resulting tests from these specifications
were used in the numerical studies reported in Section 9.

RŽ . � �1Ž .� RŽ . � �1Ž � Ž0.Ž .Recalling that N t � N � t; � , Y t � Y � t; � , � t �ˆ ˆ ˆ0 0 0 0
1�1 Ž0. R R R R R� Ž . � Ž . �� � t; � ; � and � � � � ; � , let dM � dN � Y dt, dL � dN �ˆ ˆ ˆ ˆ0 0 0 0 0 0 02

0R 2 � 	2 R 0ˆ� Ž . Ž . Ž .Y dt , and � � ; � � 1�a H P dL � � � whereˆ ˆ0 11.2 n 0 k 0

�11 0 0t 	2� �ˆ ˆ0 Ž0. R Ž0. R�̂ � � P � dL � dLŽ . Ž . Ž .ˆ ˆ ˆH Hk 0 02 ž / ž /a 0 0n

� 0 tˆ Ž0. R� � P dL .Ž .ˆH k 0ž /0

Ž .Then the test statistic in 3.2 becomes

t1 0 0�� �ˆ ˆR R8.6 S � ; � � P dM � � ; � P dM ,Ž . Ž . Ž .ˆ ˆH Hk k 0 11 .2 k 02a 0 0n

Ž .and the asymptotic �-level smooth goodness-of-fit test rejects H : � � �0 0
�2 ˆ� Ž . 4 Ž . � Ž .�CC � � �; � : � � � whenever S � ; � 
 � , where k � rank � � ; � .ˆ ˆ�0 k 11.2k̂ ; �

To achieve more concreteness, assume that the incomplete data mecha-
nism is the random censorship model, where T , T , . . . , T are i.i.d. failure1 2 n

Ž .times with common hazard rate function � � , and C , C , . . . , C are i.i.d.0 1 2 n
censoring variables with some common hazard rate function. With Z �i

� 4 � 4 Ž .min T , C and � � I T � C i � 1, . . . , n , the observable processes arei i i i i
Ž . n � 4 Ž . n � 4N t � Ý I Z � t, � � 1 and Y t � Ý I Z 
 t . For testing H : � �i�1 i i i�1 i 0 0

� Ž . 4 Ž . Ž .CC � � �; � : � � � , denote by R � � Z ; � , i � 1, . . . , n , the Cox�Snellˆ0 i 0 i
� Ž .�generalized residuals Cox and Snell 1968 . The residual processes become

n
R �1 � 4N t � N � t ; � � I R � t , � � 1 ;Ž . Ž .ˆ Ý0 0 i i

i�1
n

R �1 � 4Y t � Y � t ; � � I R 
 t .Ž . Ž .ˆ Ý0 0 i
i�1

For this random censorship model, the sequence of normalizing constants
� 4 2� : n � 1, 2, . . . has a � n, n � 1, 2, . . . . If � is such that Z � � , orn n Žn.
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equivalently, R � � 0, it is straightforward to see thatˆŽn.

n R0 i�̂ R m�18.7 P dM � R � � ;Ž . ÝH k 0 i iž /m0 i�1 m� 1, 2, . . . , k

� 0 	2ˆ RP dLŽ .H k 0
0

n1 Rim �m �21 2� R � � .Ý i iž /2 m � m � 11 2i�1 m , m �1, 2, . . . , k1 2

8.8Ž .

On the other hand, the other two terms in the covariance matrix may be in
closed forms depending on the form of � Ž0..ˆ

EXAMPLE 8.3. If CC � CC , the constant hazards class in Example 8.1, thenE
Ž0.Ž .� t � 1�� andˆ ˆ

n1 1 R0 t i�̂ Ž0. R m�1P � dL � R � � ;Ž .ˆ ÝH k 0 i iž /� 2 mˆ0 m� 1, . . . , ki�1

n1 10 	2�̂ Ž0. R� dL � � � R .Ž .Ž .ˆ ÝH 0 i i2 2�̂0 i�1

Thus, under this random censorship model and when testing the constant
hazards class, the relevant estimator of the covariance matrix is the k � k
matrix

n1 Rim �m �21 2� � R � �Ý11 .2 i i2 ž /½ m � m � 12 a 1 2n i�1 m , m �1, . . . , k1 2

	2�1n n Rim�1� � � R R � � .Ž .Ý Ýi i i iž / 5mi�1 i�1 m� 1, . . . , k

8.9Ž .

Ž . Ž . Ž . Ž .The test statistic S � ; � in 8.6 is then obtained using 8.7 and 8.9 . It isˆk
interesting to note that this statistic is just a function of the generalized

Ž . Ž .residuals R , � , i � 1, . . . , n , and depends on the estimator of the nuisancei i
parameter, �, only through the residuals. Furthermore, there is no need toˆ
estimate the nuisance parameters associated with the censoring mechanism
as this was circumvented through the use of the optional variation and the
predictable variation processes in estimating the covariance matrix.

EXAMPLE 8.4. If CC � CC , the two-parameter Weibull class considered in2W
Example 8.2, the smooth goodness-of-fit test statistic generated by the poly-
nomial specification � Žn. � P is also in computable form. For m � 1, . . . , kk
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and l � 0, 1, 2, let

� 0 lˆŽm , l . m�1 RD̂ � t log t dL ;Ž .H 0
0

l0 l� lˆŽm , l . m�1 R Žm , j.ˆ ˆE � t 1 � log t dL � D .Ž . ÝH 0 ž /j0 j�0

Then it is routine to show that

� 10 ˆt�̂ Ž0. R Žm , 0. Žm , 1.ˆ ˆP � dL � � � E , E ;Ž .Ž .ˆ ˆH k 0 m m�1, . . . , k ž /� �ˆ ˆ0 m� 1, . . . , k

2
� 1ˆ Ž1, 0. Ž1 , 1.ˆ ˆE Ež /0 � �	2 ˆ ˆ�̂ Ž0. R ˆ� dL � � � .Ž .ˆH 0 1 10 Ž1, 1. Ž1 , 2.ˆ ˆE E2� �ˆ ˆ

The k � k covariance adjustment term is therefore

0 �1 tˆ8.10 � � � � � � ,Ž . Ž .ˆ ˆ ˆž /i j i , j�1, . . . , k

ˆ �1 tand explicit expressions for computing the � � � ’s areˆi j

�1 t Ž i , 0. Ž1 , 2. Ž j , 0. Ž i , 0. Ž1 , 1. Ž j , 1.ˆ ˆ ˆ ˆ ˆ ˆ ˆ� � � � E E E � E E Eˆ ˆi j

�12Ž i , 1. Ž1 , 1. Ž j , 0. Ž i , 1. Ž1 , 0. Ž j , 1. Ž1 , 0. Ž1 , 2. Ž1 , 1.ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ� ��E E E � E E E E E � E .

Furthermore, recalling that the generalized residuals in this Weibull case are
�̂ 0Ž .defined via R � �Z , if � 
 R , then straightforward calculations andˆ ˆi i Žn.

ˆŽm , l .integration-by-parts yield the computational forms for the D ’s given by
ln �1 �1Ž .lŽm , l . m�1 lD̂ � � R log R � u exp �u duŽ . Ž .Ý Hi i i l�1½ 5m2 m Ž .�log R ii�1

jln l1 �1 l!R �m log RŽ . Ž .i ilm�1� R � log R � .Ž .Ý Ýi i i l�1½ 52 j!mi�1 j�0

Ž . Ž . Ž . Ž .The test statistic in 8.6 can then be formed from 8.7 , 8.8 and 8.10 .
Again, note that the smooth goodness-of-fit test is just a function of the

Ž .right-censored generalized residuals R , � ’s, and depends on the estimatori i
Ž . Ž .� , � of the nuisance parameter vector � , � only through the generalizedˆ ˆ
residuals.

9. Numerical studies of levels and powers. Achieved levels of tests.
Simulation studies were performed to ascertain the levels and powers, for
small and moderate sample sizes, of the smooth goodness-of-fit tests arising
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Ž k�1.tfrom the specifications P � 1, t, . . . , t . The null distributions consideredk
in the simulations were the exponential and the Weibull distributions. The
right-censored data were generated by assuming that the censoring hazard
function was proportional to the failure time hazard function, the so-called

� Ž .Koziol�Green model of random censorship Koziol and Green 1976 and
Ž .�Chen, Hollander and Langberg 1982 . Theoretical proportions of 0.75 and

0.50 uncensored values were specified. Tests considered in the simulations
were those based on S , S , S and S , arising from the specification P and2 3 4 5 k
described in the preceding section. Three sample sizes were considered:
n � 20, n � 50 and n � 100, while the levels of the tests were set to 1%, 5%
and 10%. The computer code was written in Fortran, and random number
generators and a subroutine for obtaining generalized inverses from the

Ž .IMSL Library 1987 were utilized. The programs were ran on a Silicon
Graphics Power Challenge workstation with four processors running the SGI
Irix 6.2 operating system at Bowling Green State University. For each
combination of simulation parameters, 2000 replications were performed.

Tables 1 and 2 summarize the results of the achieved levels of the tests for
the exponential null and the Weibull null distributions, respectively. To
conserve space, only those associated with asymptotic levels of 5% and 10%
are presented. For each of these null distributions, two sets of parameter
values were specified. Examining these tables, one finds that the achieved

TABLE 1
Simulated levels of the asymptotic smooth goodness-of-fit tests based on the specification

Žn. Ž k� 1.t� � P � 1, t, . . . , t under an exponential null distribution*k k

( )Null dist. Exponential �

Parameters � � 2 � � 5

% Uncensored 75% 50% 75% 50%

Level 5% 10% 5% 10% 5% 10% 5% 10%
n k

2 4.30 10.10 6.40 13.15 6.25 12.10 6.55 11.35
20 3 4.20 9.90 4.95 10.85 5.20 11.30 4.45 10.65

4 6.55 12.40 4.95 12.70 6.15 12.60 4.70 12.60
5 5.45 12.25 4.05 10.15 5.25 11.90 3.30 9.20

2 4.65 9.75 6.65 12.50 5.00 9.45 5.60 11.30
50 3 5.45 10.60 5.50 11.25 4.35 9.75 4.95 11.35

4 6.55 11.40 5.50 10.75 5.10 10.90 5.85 11.50
5 6.40 12.10 5.00 11.10 5.20 11.45 4.20 11.10

2 4.90 9.65 4.75 9.60 4.45 8.90 4.35 9.45
100 3 4.55 9.35 4.35 9.75 4.65 9.50 4.25 9.30

4 5.70 10.80 5.30 10.10 5.10 10.85 4.80 9.95
5 5.75 12.15 4.90 10.35 5.30 9.95 4.75 9.45

* The number of replications was m � 2000, and the right-censoring model is the Koziol�Green
model.
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TABLE 2
Simulated levels of the asymptotic smooth goodness-of-fit tests based on the specification

Žn. Ž k� 1.t� � P � 1, t, . . . , t under a two-parameter Weibull null distribution*k k

( )Null dist. Weibull � , �

( ) ( ) ( ) ( )Parameters � , � � 2, 1 � , � � 3, 2

% Uncensored 75% 50% 75% 50%

Level 5% 10% 5% 10% 5% 10% 5% 10%
n k

2 3.80 8.55 6.20 12.35 5.05 10.00 6.85 13.40
20 3 5.95 12.65 5.60 11.80 6.60 14.30 6.65 14.40

4 5.05 11.90 3.70 10.50 6.45 13.85 5.40 12.30
5 3.90 11.30 2.75 7.35 5.55 12.75 3.55 9.45

2 4.30 9.10 4.80 10.05 4.60 9.20 6.20 11.10
50 3 5.40 12.25 5.15 11.00 6.30 13.20 5.70 12.00

4 4.80 10.85 4.80 11.25 6.10 12.85 5.30 11.35
5 5.25 12.05 3.45 8.75 6.70 13.70 4.60 9.85

2 3.90 8.75 4.95 9.60 4.20 8.15 4.80 9.85
100 3 5.75 11.20 4.65 11.00 5.15 10.60 5.25 10.80

4 5.55 11.00 4.15 9.35 5.00 10.20 4.30 10.10
5 6.00 11.75 4.65 10.55 5.80 11.20 5.30 10.20

* The number of replications was m � 2000, and the right-censoring model is the Koziol�Green
model.

levels are consistent with the specified asymptotic levels, especially for
n � 50 and n � 100. The achieved levels for n � 20 under the Weibull

Ž . Ž .distribution with � , � � 3, 2 at the 75% and 50% uncensored levels were
somewhat anticonservative, but overall it can be concluded that the asymp-
totic approximations is acceptable for moderate sample sizes, at least for the
exponential and Weibull-distributed failure times. It should be mentioned

Ž .that the use of the combined estimator of the covariance matrix � in 3.1 ,
which is a convex combination of the estimator of the predictable quadratic
variation process and the estimator of the optional variation process, consid-

�erably improved the approximations. In previous simulations see simulation
Ž . �results in Pena 1998 when testing for simple hypotheses using either of the˜

estimators, but not a combined estimator, the finite sample behavior of tests
were quite anticonservative for small to moderate sample sizes, possibly
owing to the instability of both estimators. Thus, the use of the combined
estimator, even in other settings, seems worthy of serious consideration and
warrants further theoretical and empirical investigations. We intend to pro-
vide a theoretical justification for the use of this combined estimator in future
work.

Achieved powers of tests. Simulations were also ran to examine the
achieved powers of the tests against specific alternatives and to partially
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address the issue of an appropriate smoothing order k. In particular, the null
hypothesis of an exponential distribution was tested when the failure times
were generated by a Weibull distribution and a gamma distribution. Also, the
test for the Weibull distribution was examined when the underlying distribu-
tion of the failure times was a gamma distribution. Except for the generation
of the failure times, the computer program and the parameters for the level
and power simulations were similar. The smooth goodness-of-fit tests consid-

Ž .ered were those based on S k � 2, 3, 4, 5 , arising from the specification P ,k k
the sample size utilized was n � 100, the number of replications was 2000
and the achieved powers of the asymptotic 5%-level tests are reported here,
although the achieved powers of the 1%-level and 10%-level asymptotic tests
were also available from the simulation outputs. Summaries of the achieved
powers of the tests are presented in Table 3 for testing exponentiality when
the true failure time distribution is Weibull with shape parameter � and
scale parameter � � 1; Table 4 for testing exponentiality when the true
failure time distribution is gamma with shape parameter � and scale param-
eter � � 1 and Table 5 for testing the Weibull distribution when the true
failure time distribution is gamma with shape parameter � and scale param-
eter � � 1.

Examination of these tables reveals that the appropriate smoothing order
k depends on the type of alternatives being considered. For instance, when
testing the exponential distribution but with the true failure time distribu-
tion being Weibull with shape parameter � , then if � � 1 the tests based on
S and S are most preferable among the four tests considered, while if5 3

TABLE 3
Simulated powers of the asymptotic 5%-level smooth goodness-of-fit tests based on the specifica-

Žn. Ž k� 1.ttion � � P � 1, t, . . . , t for testing an exponential null distribution when the truek k
distribution is Weibull with shape parameter � and scale parameter � � 1*

Test statistic

� S S S S2 3 4 5

0.60 97.20 99.25 99.30 99.70
0.70 77.50 89.15 86.40 90.00
0.80 37.95 50.90 44.70 49.65
0.85 21.50 31.25 26.75 30.35
0.90 10.90 14.95 12.45 16.20
0.95 5.65 7.60 7.50 7.60

Ž .H 1.00 4.60 4.45 5.25 5.700

1.05 7.85 5.65 7.10 6.00
1.10 15.15 10.40 11.05 9.90
1.15 27.70 19.90 20.60 18.30
1.20 41.50 31.85 32.85 27.20
1.35 81.90 76.70 77.00 70.95
1.50 97.05 95.70 95.95 94.80
1.75 99.95 99.95 100.00 99.95

* The number of replications was m � 2000.
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TABLE 4
Simulated powers of the asymptotic 5%-level smooth goodness-of-fit tests based on the specifica-

Žn. Ž k� 1.ttion � � P � 1, t, . . . , t for testing an exponential null distribution when the truek k
distribution is gamma with shape parameter � and scale parameter � � 1*

Test statistic

� S S S S2 3 4 5

0.50 83.00 95.50 94.60 97.45
0.60 57.80 80.05 75.50 81.95
0.80 14.30 22.90 19.50 22.65
0.90 6.20 8.80 8.50 9.55

Ž .H 1.00 5.25 5.65 5.65 6.000

1.05 5.20 4.45 6.25 5.00
1.10 9.55 6.60 8.80 7.80
1.15 12.10 9.30 11.65 10.05
1.20 17.65 11.75 15.30 12.45
1.35 35.00 29.45 35.95 30.70
1.50 58.55 55.05 61.85 56.50
1.75 84.50 86.00 90.30 86.90
2.00 95.25 96.65 98.40 97.80
4.00 100.00 100.00 100.00 100.00

* The number of replications was m � 2000.

TABLE 5
Simulated powers of the asymptotic 5%-level smooth goodness-of-fit tests based on the specifica-

Žn. Ž k� 1.ttion � � P � 1, t, . . . , t for testing a Weibull null distribution when the true distributionk k
is gamma with shape parameter � and scale parameter � � 1*

Test statistic

� S S S S2 3 4 5

0.40 32.00 22.35 17.45 14.60
0.50 18.15 12.15 10.20 9.60
0.75 6.90 5.40 4.85 5.15

Ž .H 1.00 4.45 6.00 5.00 5.950

1.50 6.70 10.30 8.60 9.40
2.00 8.60 14.80 13.95 14.40
4.00 22.00 35.40 30.00 31.50
6.00 26.55 41.80 35.50 36.30
8.00 30.25 48.30 41.05 43.25

10.00 34.55 53.00 46.85 49.25
12.00 36.75 55.75 49.15 51.50
15.00 40.95 59.90 52.80 54.20
20.00 42.35 63.05 56.45 58.50
25.00 44.35 65.15 57.70 61.25

* The number of replications was m � 2000.
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� � 1, then the test based on S is preferable. The test based on S however2 3
may serve as a viable omnibus test if one does not possess a good prior
knowledge of the value of � relative to one. If the failure times on the other
hand have a gamma distribution with shape parameter � , then the tests
based on S and S have the most power when � � 1, while when � � 1 then5 3
the S -based test achieved the most power; but if one does not possess a good4
prior knowledge of the value of � relative to one, then the S -based test could4
serve as an omnibus test. When testing for the Weibull distribution with the
failure times having a gamma distribution, the S -based test is most pre-2
ferred for � � 1, and the S -based test achieved the most power when � � 1.3
If one does not have a good idea on the value of � relative to one, then the
S -based test could serve as an omnibus test. Through the results of these3
modest simulation studies, it is therefore seen that the proposed class of
smooth goodness-of-fit tests, which is simple to implement and depends only
on the generalized residuals in the case of the random censorship model,
provides a class of omnibus tests. Further power comparisons of these tests
with smooth tests arising from other specifications of the �-process and other
existing tests are however warranted in future studies to be able to make
definitive conclusions concerning their potential.

10. Applications to real data sets. To illustrate the usefulness of the
proposed smooth goodness-of-fit tests in applied work, we examined three
data sets that have been considered in the literature. The first data set

Ž .consisted of 20 uncensored operational lifetimes of bearings in hours which
Ž . � Žwas presented and analyzed in Angus 1982 see also Rayner and Best 1989,

.�page 90 . Using the smooth goodness-of-fit tests arising from the specifica-
Ž .tion P k � 2, 3, 4, 5 , we tested the null hypothesis that the operationalk

times were generated by an exponential distribution. The values of the test
Žstatistics, together with their associated p-values were S � 10.42 p �2

. Ž . Ž . Ž0.0012 , S � 10.72 p � 0.0047 , S � 11.21 p � 0.0107 and S � 12.60 p3 4 5
.� 0.0134 , so the hypothesis of exponential distribution is rejected. The

Ž .conclusion is consistent with the results of Angus 1982 and those of Rayner
Ž .and Best 1989 , pages 90 and 91. The Weibull model null hypothesis for the

underlying distribution of those operational times was also tested. The maxi-
mum likelihood estimates of the shape and scale parameters under the
Weibull model were � � 2.103575 and � � 0.000103, and the resulting valuesˆ ˆ

Ž . Ž .of the test statistics are S � 0.66 p � 0.4166 , S � 0.71 p � 0.7012 , S �2 3 4
Ž . Ž .0.94 p � 0.8154 and S � 5.05 p � 0.2821 ; hence the Weibull null hypoth-5

esis could not be rejected. The Weibull model may therefore be a viable model
for these operational times, especially so since the p-values are quite high for

Ž .all four tests. The Weibull model was not tested in Rayner and Best 1989
because the smooth goodness-of-fit test arising from the usual density-based

� Ž .�formulation was not yet available see page 139 of Rayner and Best 1989 .
However, using their component analysis of their smooth goodness-of-fit test
for exponentiality, they suggested that an alternative model for the opera-
tional times is a chi-squared distribution with seven degrees-of-freedom.
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The second data set considered consisted of randomly right-censored fail-
Ž .ure times in months arising from a study of cisplatin-based chemotherapy

Ž . �on lung cancer patients found in Gatsonis, Hsieh and Korwar 1985 see also
Ž . �Pena 1998 for the results of tests on simple null hypotheses . There were 86˜

observations with 23 of them right-censored. The hypothesis of exponentiality
with an unspecified scale parameter was tested using the tests based on Sk
Ž .k � 2, 3, 4, 5 . Under the exponential model, the maximum likelihood esti-
mate of the scale parameter was � � 0.06635, so the estimate of the meanˆ
failure time was 15.07 months. The values of the test statistics, together with

Ž .their p-values for the exponentiality test were S � 1.92 p � 0.1661 , S �2 3
Ž . Ž . Ž .1.94 p � 0.3788 , S � 7.56 p � 0.0561 and S � 12.85 p � 0.0121 . Note4 5

that if one is to use either of the tests based on S , S or S , then the2 3 4
exponential model will not be rejected, but if one utilizes the test based on S ,5
then it will be rejected at the 5% level. These results seem to suggest that the
true hazard rate function is quite close to a constant function, but possesses
nonnegligible high frequency terms. In particular, note the steep increase in
values from S to S relative to the change in values from S to that of S .4 5 2 4
The Weibull distribution was also tested for this data set. Based on the

� Ž .results of the tests e.g., S � 8.35 p � 0.0153 and the observed values of S3 4
�and S both indicate rejection of the null hypothesis , the Weibull distribu-5

tion is not a viable model for this failure time data.
Ž .Finally, the two-sample data set arising from autologous auto and allo-

Ž .geneic allo bone marrow transplants described and presented in Section 1.9
Ž .of Klein and Moeschberger 1997 was analyzed using the smooth goodness-

of-fit tests in this paper. This data set was extensively analyzed in Klein and
Ž .Moeschberger 1997 . In particular, it was utilized to illustrate fitting para-
Ž .metric models their Example 12.1 on page 377 and diagnostic plots for

Ž .checking parametric regression models their Section 12.5 . The ‘‘auto’’ sam-
ple consisted of 51 observations of which 23 were right-censored, while the
‘‘allo’’ sample consisted of 50 observations of which 28 were right-censored.
For each of these sample data, the hypothesis of exponentiality of the
underlying failure time distributions were tested. The values of the smooth

Žgoodness-of-fit test statistics are as follows: for the ‘‘allo’’ group, S � 22.33 p2
. Ž . Ž . Ž . 0 , S � 24.54 p  0 , S � 24.58 p  0 and S � 24.65 p  0 , so the3 4 5

exponential model is not viable for the ‘‘allo’’ group failure times. For the
Ž .‘‘auto’’ group, the values of the test statistics were S � 2.36 p � 0.1247 ,2

Ž . Ž . Ž .S � 2.96 p � 0.2274 , S � 11.98 p � 0.0075 and S � 12.37 p � 0.0148 .3 4 5
Thus, on the basis of the observed value of S , the exponential model is not3
also a viable model for describing the failure times for this ‘‘auto’’ group.

The viability of the Weibull distribution as a model for the failure times of
each group was also tested. For the ‘‘allo’’ group, the observed values of the

Ž . Ž .test statistics were S � 8.34 p � 0.0039 , S � 0.12 p � 0.0105 , S �2 3 3

Ž . Ž .10.16 p � 0.0173 and S � 10.16 p � 0.0378 . These results show that the5
Weibull model is not viable. However, relative to the exponential distribution,
the Weibull model provides a better fit to the data. For the ‘‘auto’’ group, the
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Ž .test for the Weibull distribution resulted in the values S � 2.78 p � 0.0952 ,2
Ž . Ž . Ž .S � 5.41 p � 0.0670 , S � 10.72 p � 0.0133 and S � 12.07 p � 0.0168 .3 4 5

These values, especially those for S and S , indicate that the Weibull model4 5
is not a viable model of the failure times for this ‘‘auto’’ group, though
comparing the values of the test statistics for the tests of exponentiality and
Weibullness suggests that, ignoring other possible distributional models, the

�exponential model provides as good a fit as the Weibull distribution see a
Ž . �similar conclusion stated by Klein and Moeschberger 1997 , page 377 . It

should be mentioned also that through hazard plotting, Klein and
�Ž . �Moeschberger 1997 , pages 390 and 391 concluded that the exponential,

Weibull and lognormal models are reasonable models for the two groups with
the exception of the exponential model for the ‘‘allo’’ group. Their conclusions
were based on the fact that the hazard plots appear to be linear. It should be
pointed out, however, that because model nuisance parameters are being
estimated, these hazard plots have a tendency to be more linear if no

�adjustments are made for the effect of such estimation Baltazar�Aban and
Ž .�Pena 1995 . From a theoretical point of view, the tendency of such diagnos-˜

tic plots to become more linear is manifested by the theoretically observed
Ždecrease in the variance of test statistics when applied to quantities such as

. �the generalized residuals with estimated parameters see also the results of
Ž . Ž . �Durbin 1975 and Stephens 1976 in more classical settings . Thus, formal

goodness-of-fit tests, such as those provided by the smooth goodness-of-fit
tests, should be performed and sole reliance on diagnostic plots using general-
ized residuals, especially when nuisance parameters were estimated, should
be avoided to prevent misleading conclusions.

11. Summary and concluding remarks. For a counting process
� Ž . 4 � Ž . 4 Ž .N t , t � TT with compensator process A t , t � TT satisfying A t �

t Ž . Ž . � Ž . 4H Y s � s ds, where Y t , t � TT is an observable predictable process and0
Ž . Ž .� � is an unknown hazard rate function, the problem of testing whether � �

� Ž .belongs to some parametric family of hazard rate function CC � � �; � :0
q4 Ž .� � � � � was considered. A procedure for extending Neyman’s 1937

smooth goodness-of-fit test was formulated and developed, with the formula-
tion being more suitable for models specified in terms of hazard or intensity
functions, now typical in survival and reliability models. The extension was

� Ž . k4obtained by embedding CC in the class AA � � �; � , � : � � �, � � � , wherek k
Ž . Ž . � t Ž .4 Ž . Ž Ž . Ž ..t� �; � , � � � �; � exp � � �; � , and � �; � � � �; � , . . . , � �; � is a vec-k 0 1 k

tor of processes satisfying certain regularity conditions. The test statistics
were quadratic forms of the statistic

�

U � ; � � � s ; � dM s ; � ,Ž . Ž . Ž .ˆ ˆ ˆH1
0

Ž . Ž . t Ž . Ž .where M t; � � N t � H Y s � s; � ds and � is the restricted maximumˆ0 0
�Ž Ž . Ž .. 4likelihood estimator of � based on N t , Y t , t � TT . The resulting test

statistics can also be viewed as functions of generalized residual processes,
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which are processes typically used in model validation and diagnostics.
Asymptotic properties of the test statistics were obtained under a sequence of

Ž .local alternatives. By examining the asymptotic properties of U � ; � and1
Ž .U � ; � , where � is the true parameter value if the hypothesized class holds,ˆ1 0

the effect of estimating � by � was determined. Conditions in order for thisˆ0
substitution to have no effect, an adaptiveness property, were obtained. The
asymptotic local powers of the tests were also examined for the purpose of

Ž .providing guidelines on how to choose � . It turns out that if � �; � is
Ž . Ž . Ž .asymptotically orthonormal and orthogonal to � �; � � � n log � �; �0

when considered as elements of an appropriate Hilbert space, then the
adaptiveness property is satisfied and the resulting tests have simple forms

Ž .aside from having the potential of providing information on how � � differs0
from CC if the hypothesis is rejected. However, choosing the �-process to be
orthonormal and to be orthogonal to � may not be feasible in general
situations since the orthogonalization process requires specific knowledge of
the incompleteness mechanism. Thus, from a practical point of view, k and �

Ž .should be chosen such that � , � should asymptotically span the space of
Ž . � Ž . Ž .4functions obtained by varying � � in a scaled version of log � � �� �; � ,0 0 0

without requiring that � be orthonormal and orthogonal to �. The conse-
quences in terms of efficiency losses of misspecifying k, either by oversmooth-
ing or undersmoothing, were examined. In terms of the criterion of local
asymptotic relative efficiency, it was found that undersmoothing is a more
serious type of problem than oversmoothing, since the resulting test in such a
misspecified model may not have any sensitivity in detecting some types of
alternatives. The general procedure was applied to several concrete situa-
tions, and, in particular, the exact forms of the tests were obtained under the
random censorship model. Furthermore, the specific smooth goodness-of-fit
tests for testing the class of constant hazard rate functions and the class of
two-parameter Weibull hazard rate functions were explicitly expressed. The
results of simulation studies showing that for small to moderate sample sizes
the achieved levels of the tests were acceptable were also presented. Further-
more, the achieved powers of the tests for specific null and alternative models
were described. Finally, the tests for exponentiality and for Weibullness
associated with a polynomial-type of specification of the �-process were used
to reanalyze three data sets that have appeared in the literature. These
applications indicate the potential of the proposed smooth goodness-of-fit
tests in applied work.

We conclude with some remarks. The general methodology for developing
smooth goodness-of-fit tests described in this paper is promising for generat-
ing omnibus, and possibly directional, tests. However, further studies need to
be undertaken in future work. One of the main problems is how to choose,
maybe dynamically, the smoothing order k. A sequential type of procedure for

Ž .deciding the value of k, possibly in the spirit of Bickel and Ritov 1992 , Fan
Ž . Ž .1996 and�or Ledwina 1994 , needs to be explored. Another problem is to
explore other possibilities for the �-process, in particular to examine the
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potential of using wavelet bases which could lead to procedures which are
�sensitive to detecting local departures from the specified null model CC Fan

Ž .�1996 . Furthermore, more extensive power studies using different � speci-
fications and under a variety of alternative models should be undertaken to
see the performance of these smooth goodness-of-fit tests relative to existing
goodness-of-fit tests such as Pearson, Kolmogorov�Smirnov, Cramer�von´
Mises, and more specialized types of goodness-of-fit tests.

APPENDIX

In this Appendix we state the regularity conditions and present and prove
the asymptotic results.

A. Regularity conditions. The following are regularity conditions
t t'Ž . � �needed for the asymptotic results. For a vector v � v , . . . , v , v � v v ,1 m

Ž . � � � �while for a matrix V � v , we let V � max v .i j i, j i j

Ž . Ž .I There exists a neighborhood � � � of � such that on TT � � , � t; �0 0 0 0
Ž . Ž . Ž 2 . Ž .� 0, and the partial derivatives �� � s; � ,  �� � � s; �i 0 i j 0

Ž 3 . Ž .and  �� � � � s; � exist and are continuous at � � � .i j k 0 0
Ž .II On TT � � , the log-likelihood process0

t t
l t ; � , � � log Y s � s ; � , � dN s � Y s � s ; � , � dsŽ . Ž . Ž . Ž . Ž . Ž .H H

0 0

can be differentiated three times with respect to � and with the order
of the differentiation and integration operations being interchange-
able.

Ž . Ž . Ž . Ž 2 . Ž .III On TT � � , the partial derivatives �� � s; � ,  �� � � s; �0 i i j
Ž 3 . Ž .and  �� � � � s; � exist and are continuous at � � � andi j k 0

� Ž . 4 �Ž . Ž . 4with the processes � t; � : t � TT and �� � t; � : t � TT being0 i
locally bounded and predictable.

Ž . Ž . Ž0.Ž .IV There exist deterministic functions y � defined on TT, and � �; �
Ž .defined on TT � � , such that for t, � � TT � � and as n � �,0 0

t 	2�2a � s ; � Y s � s ; � dsŽ . Ž . Ž .Hn 0
0

t 	2Ž0.� � s ; � y s � s ; � ds � 0 in probability;Ž . Ž . Ž .H 0
0

t t�2a � s ; � � s ; � Y s � s ; � dsŽ . Ž . Ž . Ž .Hn 0
0

t tŽ0.� � s ; � � s ; � y s � s ; � ds � 0 in probability;Ž . Ž . Ž . Ž .H 0
0
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t 	2�2a � s ; � Y s � s ; � dsŽ . Ž . Ž .Hn 0
0

t 	2� � s ; � y s � s ; � ds � 0 in probability.Ž . Ž . Ž .H 0
0

Ž .V Defining the matrices of functions on TT � � given by0

t 	2Ž0.� t ; � � � s ; � y s � s ; � ds ;Ž . Ž . Ž . Ž .H11 0
0

tt tŽ0.� t ; � � � t ; � � � s ; � � s ; � y s � s ; � ds ;Ž . Ž . Ž . Ž . Ž . Ž .H12 21 0
0

t 	2
� t ; � � � s ; � y s � s ; � ds,Ž . Ž . Ž . Ž .H22 0

0

Ž . Ž .the k � q � k � q matrix

� t ; � � t ; �Ž . Ž .11 0 12 0
� t ; � �Ž .0 � t ; � � t ; �Ž . Ž .21 0 22 0

Ž .have finite elements for each t � TT, and � � ; � is positive definite.0
Ž .VI For each � � 0 and t � TT, as n � �,

t 2�2a � s ; � I � s ; � � � a Y s � s ; � ds � 0 in probability;� 4Ž . Ž . Ž . Ž .Hn 0 0 n 0 0
0

t 2�2a � s ; � I � s ; � � � a Y s � s ; � ds � in probability.� 4Ž . Ž . Ž . Ž .Hn 0 0 n 0 0
0

Ž .VII There exist functions G and H defined on TT such that for each t � TT,1 1

3
sup � t ; � � G t ;Ž . Ž .0 1� � ���� i j k0

3
sup log � t ; � � H t ,Ž . Ž .0 1� � ���� i j k0

and such that, as n � �,

� �
�2a G s Y s ds � G s y s ds in probability � �;Ž . Ž . Ž . Ž . Ž .H Hn 1 1

0 0

� �
�2a H s Y s � s ; � ds � H s y s � s ; � dsŽ . Ž . Ž . Ž . Ž . Ž .H Hn 1 0 0 1 0 0

0 0

in probability � �;Ž .
� �

�2 2 2a H s Y s � s ; � ds � H s y s � s ; � dsŽ . Ž . Ž . Ž . Ž . Ž .H Hn 1 0 0 1 0 0
0 0

in probability � �.Ž .
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Ž . Ž . �Ž 2 t. ŽVII There exists a predictable process G � with sup  ��� � s;2 � � � i0
.� Ž .� � G s for each i � 1, . . . , k, and such that, as n � �,2

2
� 

�2a � s ; � Y s � s ; � ds � O 1 andŽ . Ž . Ž . Ž .Hn 0 0 0 p�0

� 2�2a G s Y s � s ; � ds � finite number in probability.Ž . Ž . Ž .Hn 2 0 0
0

B. Proofs. Before proving Theorem 3.1 we establish two intermediate
Ž . presults needed in its proof. For II an interval in �, DD II denotes the

Ž . Ž .product space DD II � ��� � DD II endowed with Skorohod’s product topology
� Ž .�Billingsley 1968 .

PROPOSITION B.1. Under a sequence of models with true parameter values
Ž Žn. Žn.. Ž �1 Ž Ž .. . Ž . Ž .� , � � a � 1 � o 1 , � , n � 1, 2, . . . , if conditions I � VI are satis-n 0
fied then as n � �,

�1 1U �; � � s ; �Ž . Ž .1 0 0� dN s � Y s � s ; � ds� 4Ž . Ž . Ž .H 0 0U �; � � s ; �a aŽ . Ž .02 0 0n n

� � k�q Ž . � Ž .t Ž .t � tconverges weakly on DD 0, � to Z �; � � Z �; � , Z �; � , a Gauss-0 1 0 2 0
ian process with mean function

Z �; � � �; �Ž . Ž .1 0 11 0
� �; � � E � �Ž .0 Z �; � � �; �Ž . Ž .2 0 21 0

� Ž . Ž .4 Ž .and covariance matrix function Cov Z t ; � , Z t ; � � � t � t ; � , t , t1 0 2 0 1 2 0 1 2
� TT.

PROOF. Note that

�1 1U �; � � s ; �Ž . Ž .1 0 0 Žn.� dM s ; � , �Ž .H 0U �; � � s ; �a aŽ . Ž .02 0 0n n

t
�1 � s ; �Ž .0 � Žn.� Y s � s ; � , � a � ds,Ž . Ž . Ž .H 0 n2 � s ; � �a Ž .0 0n

Ž Žn. . Ž . s Ž Žn. . � � Žn.�where M s; � , � � N s � H � s; � , � ds, and with � � 0, � , so0 0 0
� Ž . Ž . Ž . Ž . � t Ž .4� � 0 as n � �. Since �� � s; � , � � � s; � � s; � exp � � s; � ,0 0 0 0 0

then
t� s ; �Ž .0 �� s ; � , �Ž .0� s ; � �Ž .0

	2
� s ; �Ž .0 t�� exp � � s ; � � s ; � ,Ž . Ž . Ž .� 40 0 0t

� s ; � � s ; �Ž . Ž .0 0
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Ž . Žn. �1 Ž Ž ..so by condition IV and since � � a � 1 � o 1 ,n

t1 � s ; �Ž .t 0 � Žn.Y s � s ; � , � a � dsŽ . Ž . Ž .H 0 n2 � s ; � �a Ž .0 0n

� t ; �Ž .11 0 Žn. Žn. �1Ž . Žconverges in probability to � . Under the model � , � � a �n� t ; �Ž .21 0

Ž Ž .. . � Ž Žn. . 4� 1 � o 1 , � , M t; � , � : t � TT is a local square-integrable0 0
² Ž Žn. .:Ž .martingale with quadratic variation process M �; � , � t �0

t Ž . Ž Žn. . �1 �� Ž .t Ž .t � t Ž Žn. .H Y s � s; � , � ds. Therefore, a H � s; � , � s; � dM s; � , � is0 0 n 0 0 0 0
a local square-integrable martingale with quadratic variation process given
by

	2
�1 � s ; �Ž .0 Žn.Y s � s ; � , � ds,Ž . Ž .H 02 � s ; �a Ž .0 0n

Ž . Ž . Ž .which by condition IV converges in probability to � �; � . By condition VI ,0
the Lindeberg-type condition of Rebolledo’s martingale central limit theorem
� Ž .�Andersen, Borgan, Gill and Keiding 1993 also holds, so it follows that

�1 �� Ž .t Ž .t � t Ž Žn. . � � k�qa H � s; � , � s; � dM s; � , � converges weakly on DD 0, � to an 0 0 0 0
Ž .zero-mean Gaussian martingale with variance matrix function � �; � . Com-0

�1� Ž .t Ž .t � tbining the two results above, we conclude that a U �; � , U �; �n 1 0 2 0
� � k�q Ž .converges weakly on DD 0, � to Z �; � , where the latter is defined in the0

statement of the proposition.

Ž . Ž .PROPOSITION B.2. If conditions I � VIII are satisfied, then under H ,1n
Ž .the restricted MLE � � � � � 0 is asymptotically normal with asymptoticˆ ˆ

Ž .�1 Ž . Žmean � � � � ; � � � ; � ��a and asymptotic variance � � ;0 22 0 21 0 n 22
.�1 2 Ž . Ž� �a ; and it has the asymptotic representation a � � � � � � ;ˆ0 n n 0 22

.�1 �1 Ž . Ž .� a U � ; � � o 1 . In particular, � is a -consistent for � .ˆ0 n 2 0 p n 0

Ž .PROOF. Since � is a solution of U � ; � � 0, then by a first-order Taylorˆ 2
expansion


�1 �2B.1 0 � a U � ; � � a U � ; � a � � � ,Ž . Ž . Ž . Ž .ˆn 2 0 n 2 n 0½ 5�

where �� lies in the line segment connecting � and �, andˆ0

� � 	2U � ; � � � s ; � dM s ; � � � s ; � Y s � s ; � ds,Ž . Ž . Ž . Ž . Ž . Ž .˙H H2 0� 0 0

Ž . Ž . Ž . Ž . Ž t. Ž .where � s; � � �� log � s; � and � s; � � �� � s; � . Under H ,˙0 0 n
Ž . � 4Borgan 1984 has shown that there exists a unique sequence � such thatˆ

� � � in probability, and furthermore, for any �� � � in probability,ˆ 0 0


�B.2 � U � ; � � � � ; � in probabililty.Ž . Ž . Ž .2 22 0�

Ž . Ž .�1 �1 Ž . Ž .Consequently, under H , a � � � � � � ; � a U � ; � � o 1 . In-ˆ0 n n 0 22 0 n 2 0 p
terest, though, is with respect to H . Denote by P Žn. the probability1n Ž� , � .0
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measure under H and by P the probability measure under H . Then1n � 0 n0

Žn.dPŽ� , � .0 Žn.log � l � ; � , � � l � ; 0, �Ž .Ž .0 0dP�0 FF�

� tŽn.� � � s ; � dN sŽ . Ž . Ž .H 0
0

� tŽn.� exp � � s ; � � 1 Y s � s ; � ds.Ž . Ž . Ž . Ž .H ½ 50 0 0ž /
0

Since
t tŽn. Žn.exp � � s ; � � 1 � � � s ; �Ž . Ž . Ž . Ž .½ 50 0

t 	2�1 Žn. Žn.� exp � s � � s ; � � ,� 4Ž . Ž . Ž . Ž .n 02

� Ž . � Ž Žn..t Ž .�with � s � 0, � � s; � , thenn 0

Žn.dPŽ� , � .0log
dP�0 FF�

� tŽn.� � � s ; � dM s ; �Ž . Ž . Ž .H 0 0
0

�1 t 	2� Žn. Žn.� exp � s � � s ; � � Y s � s ; � ds.� 4Ž . Ž . Ž . Ž . Ž . Ž .H n 0 0 02 0

Žn. �1 Ž Ž ..In addition, since � � a � 1 � o 1 , thenn

Žn.dP �1Ž� , � .0 tlog � � � s ; � dM s ; �Ž . Ž .H 0 0dP a 0� n0 FF�

�1 	2� t� exp � s � � s ; � �� 4Ž . Ž .Ž .H n 022 a 0n

�Y s � s ; � ds � o 1 .Ž . Ž . Ž .0 0 p

Consequently,

Žn.dPŽ� , � .0log
dP�0 FF�

�1a � � �Ž .ˆn 0

t� � s ; �� Ž .1 0� dM s ; �Ž .H 0�1a 0 � � ; � � s ; �Ž . Ž .n 22 0 0

B.3Ž .

	2� t�1 exp � s � � s ; � �� 4Ž . Ž .Ž .n 0� Y s � s ; � ds,Ž . Ž .H 0 022 a 0n 0
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Ž .which, under H , converges in distribution to a 1 � q -dimensional normal0 n
1 t Ž .� � � � ; � �11 02distribution with mean vector and covariance matrix

0

�1t t� � � ; � � � � � ; � � � ; �Ž . Ž . Ž .11 0 12 0 22 0B.4 .Ž . �1 �1
� � ; � � � ; � � � � ; �Ž . Ž . Ž .22 0 21 0 22 0

� Ž .�By LeCam’s third lemma cf. Andersen, Borgan, Gill and Keiding 1993 , it
Ž . Ž .follows that under H , B.3 converges in distribution to a 1 � q -1n

Ž .dimensional normal distribution with covariance matrix given by B.4 and
mean vector

1
t� � � ; � �Ž .11 02 .

�1
� � ; � � � ; � �Ž . Ž .22 0 21 0

�1Ž . Ž Ž .�1 Ž . Ž .�1 .Thus, under H , a � � � � N � � ; � � � ; � � , � � ; � ,ˆ1n n 0 d q 22 0 21 0 22 0
Ž . Ž .hence � � � in probability. From B.1 and B.2 , it follows that under H ,ˆ 0 1n

Ž . Ž .�1 �1 Ž . Ž .a � � � � � � ; � a U � ; � � o 1 .ˆn 0 22 0 n 2 0 p

�1 Ž .PROOF OF THEOREM 3.1. By a first-order Taylor expansion, a U �; � �ˆn 1
�1 Ž . � �2 Ž . Ž � .4 Ž . Ž . � Ža U �; � � a �� U �; � a � � � . Since U �; � � H � s;ˆn 1 0 n 1 n 0 1 0
.� Ž . Ž . Ž . 4� dN s � Y s � s; � ds , then0

� ˙U �; � � � s ; � dN s � Y s � s ; � ds� 4Ž . Ž . Ž . Ž . Ž .H1 0t� 0

� t� � s ; � � s ; � Y s � s ; � ds,Ž . Ž . Ž . Ž .H 0
0

˙ tŽ . Ž . Ž . Ž . Ž . Ž .where � s; � � �� � s; � . By conditions I , IV and V and by conti-
Ž . �nuity of � s; � with respect to �, and since � � � in probability,0

� t� � ��2a � s ; � � s ; � Y s � s ; � ds � � �; � in probability.Ž . Ž . Ž . Ž . Ž .Hn 0 0
0

On the other hand,

�
� ��2 ˙a � s ; � dN s � Y s � s ; � ds� 4Ž . Ž . Ž . Ž .Hn 0

0

�
��2 Žn.˙� a � s ; � dM s ; � , �Ž . Ž .Hn 0

0

�
� ��2 Žn.˙� a � s ; � Y s � s ; � , � � � s ; � ds .Ž . Ž . Ž .Ž .Hn 0 0

0
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˙ � ˙ ¨ �� �Ž . Ž . Ž .Ž .By a first-order Taylor expansion, � �; � � � �; � � � �; � � � �0 0
�� � � �with � � � , � , so0

�
��2 Žn.˙a � s ; � dM s ; � , �Ž . Ž .Hn 0

0

�
�2 Žn.˙� a � s ; � dM s ; � , �Ž . Ž .Hn 0 0

0

�
�� ��2 Žn.¨� a � s ; � dM s ; � , � � � � .Ž . Ž .Ž .Hn 0 0ž /0

� ˙ Žn.Ž . Ž . Ž .By condition III , H � s; � dM s; � , � is a local square-integrable mar-0 0 0
tingale, and by Lenglart’s inequality,

t�2 Žn.˙P sup a � s ; � dM s ; � , � 
 �Ž . Ž .Hn 0 0½ 5
0t�TT

�� 2�4 ˙� � P a � s ; � Y s � s ; �Ž . Ž . Ž .Hn 0 0 02 ½� 0

tŽn.�exp � � s ; � ds 
 � ,Ž . Ž .½ 50 5
Ž .so by condition VIII the right-hand side can be made arbitrarily small.

�2 � ˙ Žn.Ž . Ž . Ž .Thus, a H � s; � dM s; � , � � o 1 . On the other hand,n 0 0 0 p

�
���2 Žn.¨a � s ; � dM s ; � , �Ž . Ž .Hn 0

0

�
���2 ¨� a � s ; � dN sŽ . Ž .Hn

0

� t���2 Žn.¨� a � s ; � Y s � s ; � exp � � s ; � dsŽ . Ž . Ž . Ž . Ž .H ½ 5n 0 0 0
0

�
�2� a G s dN sŽ . Ž .Hn 2

0

� t�2 Žn.� a G s Y s � s ; � exp � � s ; � ds.Ž . Ž . Ž . Ž . Ž .H ½ 5n 2 0 0 0
0

Ž .By condition VIII and the Cauchy�Schwarz inequality, the last term can be
shown to converge in probability to a finite quantity. Next, since

t� �Žn. Žn.� s ; � , � � � s ; � � � s ; � exp � s � � s ; �� 4Ž . Ž . Ž . Ž . Ž .Ž .0 0 0 0 0

t
�� �� � s ; � � � �Ž . Ž .0 0�

� a�1� t� s ; � exp � � s � s ; � 1 � o 1� 4Ž . Ž . Ž . Ž .Ž .n 0 0 0

t
�� � ��� log � s ; � � � � � s ; � ,Ž . Ž . Ž .0 0 0�
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�2 � ˙ � Žn. �� Ž . Ž .� Ž . Ž .� � Ž .then a H � s; � Y s � s; � , � � � s; � ds � o 1 . Therefore,n 0 0 0 p
�2 Ž . Ž � . Ž . Ž . �1 Ž . �1 Ža �� U �; � equals �� �; � � o 1 , hence a U �; � � a U �;ˆn 1 12 0 p n 1 n 1
. � Ž . Ž .� Ž . Ž .� � � �; � � o 1 a � � � . Using the representation of a � � �ˆ ˆ0 12 0 p n 0 n 0

in Proposition B.2, we obtain

a�1U �; � � a�1U �; �Ž . Ž .ˆn 1 n 1 0

�1 �1� � �; � � o 1 � � ; � a U � ; � � o 1Ž . Ž . Ž . Ž . Ž .� 4 ½ 512 0 p 22 0 n 2 0 p

�1�1 �1� a U �; � � � �; � � � ; � a U � ; � � o 1Ž . Ž . Ž . Ž . Ž .n 1 0 12 0 22 0 n 2 0 p

�1a U �; �Ž .n 1 0�1� I � � �; � � � ; � � o 1 .Ž . Ž . Ž .12 0 22 0 p�1a U � ; �Ž .n 2 0

�1 Ž .From Proposition B.1, it follows that a U �; � converges weakly to aˆn 1
˜ Ž . Ž .Gaussian process Z �; � with mean function � �; � and covariance matrix1 0 1 0

˜ Ž .function � t , t ; � , where these vector�matrix functions are defined in the1 1 2 0
statement of the theorem. �
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