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THE PROBLEM OF REGIONS
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In the problem of regions, we wish to know which one of a discrete
set of possibilities applies to a continuous parameter vector. This problem
arises in the following way: we compute a descriptive statistic from a set of
data, notice an interesting feature and wish to assign a confidence level to
that feature. For example, we compute a density estimate and notice that
the estimate is bimodal. What confidence can we assign to bimodality? A
natural way to measure confidence is via the bootstrap: we compute our de-
scriptive statistic on a large number of bootstrap data sets and record the
proportion of times that the feature appears. This seems like a plausible
measure of confidence for the feature. The paper studies the construction of
such confidence values and examines to what extent they approximate fre-
quentist p-values and Bayesian a posteriori probabilities. We derive more
accurate confidence levels using both frequentist and objective Bayesian
approaches. The methods are illustrated with a number of examples, in-
cluding polynomial model selection and estimating the number of modes
of a density.

1. Introduction. The title of this paper refers to a class of problems that
combine elements of both hypothesis testing and estimation. Figure 1 illus-
trates an example we are going to discuss concerning the choice of a poly-
nomial regression model. We have observed a K-dimensional multivariate
normal vector y having unknown expectation vector u and covariance matrix
the identity,

(1.1) y ~ Ng(u, I).

K = 2 in the illustration. The space of possible u vectors is partitioned into
regions called Z ., Ziin, #quad> @and the maximum likelihood estimate (MLE)
@ =y is observed to lie in #,,q. How confident should we be that wu itself lies
in '@quad?

The meaning of “confidence” here will be approached in two complementary
ways: in the classical frequentist manner of p-values and confidence levels,
and also from a Bayesian viewpoint involving objective (uninformative) priors.
We will develop a bootstrap methodology that gives reasonably good answers
from both points of view.

A first, possibly naive, answer to the question posed in Figure 1 is obtained
by resampling from model (1.1) with & replacing the unknown vector w, say

(1.2) ¥~ Ng(@, D).
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FIG. 1. An example of the problem of regions: a normally distributed vector y = u, with covari-
ance I, is observed to lie in the region Rqyaq- With what confidence can we say that the true expec-
tation vector w lies in Rquaq? This example, which concerns the choice of a polynomial regression
model using the C,, criterion, is discussed in Section 5.

One thousand “parametric bootstrap” vectors y* obtained independently ac-
cording to (1.2) included 18 in #,,, and 117 in #;,, with the remaining 865
falling into % uaq- It seems plausible to say that there is a 1.8% chance that
n € Hoon and an 11.7% chance that u € #;;,, leaving 86.5% confidence that
K € Ryuad- We will call this a first-order bootstrap analysis.

The first-order answer turns out not to be a bad first guess. However, more
elaborate resampling procedures are necessary if we want “confidence” to bet-
ter agree with either its frequentist or Bayesian meanings. The shapes of
the regional boundaries play an important role, leading to second-order cor-
rections of the first-order analysis. Sections 2 and 3 show that the fact that
the boundary between #,, and #,,.q curves away from @ should increase
our belief that u € #,, and decrease our confidence that u € #,,,q- The
bootstrap methods presented in Sections 2 through 6 make these corrections
automatically, without requiring detailed geometrical knowledge of the shapes
or distances of the boundaries. This is crucial for practical applications, where
the situation can easily be much more complicated than Figure 1.

The problem of regions arises when we wish to know which one of a discrete
set of possibilities applies to a continuous parameter vector. Figure 1 actually
concerns a regression situation where we are trying to choose the degree of a
polynomial model using the C, criterion. #,,, Hjin Or Hguaq are the regions
where a constant, linear or quadratic model would be preferred (see Section 5).
In other words, we are trying to assign a measure of statistical uncertainty to
the data-based choice of “quadratic” as the best-fitting polynomial regression
model. Similar questions include:

1. How many modes does a density function have? (See Section 7.)
2. How many terms should be included in a principal components or factor
analysis?
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3. The bioequivalence problem: does a newly produced drug have efficacy be-
tween 80% and 125% of its predecessor?

4. Ranking and selection: how confident should we be that an apparently best
treatment is actually best?

5. Simultaneous significance testing: given K observed treatment effects, with
what confidence can we say that some treatments are better or worse than
others?

The normal model (1.1) is convenient for exposition, and we will follow it in
the first several sections of this paper, but it does not play a critical role in our
theory. Section 6 generalizes (1.1) to all multiparameter exponential families.
A particularly important case is the multinomial family, which has a central
role in nonparametric applications of our theory.

The first-order bootstrap analysis above was introduced by Felsenstein
(1985) as a method of assigning confidence values to phylogenetic trees con-
structed on the basis of genetic sequence data. Felsenstein’s method, which is
an application of nonparametric bootstrapping, is discussed from the point of
view of this paper in Efron, Halloran and Holmes (1996), where the regions
problem was introduced. The regions problem becomes much more intricate
in the trees context, having enormous numbers of regions separated by com-
plicated and hard-to-locate high-dimensional boundaries. Our bootstrap-based
methods are designed to function in these difficult situations. A key feature
is that they do not depend on metric properties such as “distances between
trees,” and so can be applied automatically without requiring a detailed anal-
ysis of specific problems.

There are three main themes in this paper: frequentist confidence levels,
objective Bayesian posterior probabilities and bootstrap methods. Sections 2,
3 and 4 carry these themes through for the normal model (1.1). The frequen-
tist methods work well for two regions but can give unreasonable answers for
more than two. The Bayesian approach is simple and works for any number of
regions, but is strongly dependent on the choice of prior. The objective Bayes
approach, implemented through bootstrap sampling, combines the objectiv-
ity of the frequentist method with the conceptual simplicity of the Bayesian
framework. Section 5 applies this theory to the C, problem of Figure 1. The
theory is extended to general exponential family probability models in Sec-
tion 6, and applied in Section 7 to estimating the number of modes of a density
function. We conclude with a few remarks in Section 8. A longer version of
this paper, Efron and Tibshirani (1996), is available as a hardcopy technical
report or on the web site http:/stat.stanford.edu/tibs/research.html.

2. Frequentist confidence levels. Familiar versions of what we have
called the problem of regions show up in standard hypothesis testing situa-
tions. These situations have well-accepted frequentist solutions that we will
want our methods to agree with when they apply. This section considers the
regions problem for the normal model y ~ N g(u, I), when there are only two
regions and they are separated by a smooth boundary. Standard frequentist
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confidence levels are available here and we will use them to suggest improve-
ments to the first-order bootstrap method of the Introduction.

Figure 2 shows a schematic diagram of the situation, as well as summariz-
ing some of this section’s notation. The two regions, #, and #;, are separated
by a smooth boundary %. We observe the data vector y = i to lie in #,, at
distance x, from the nearest point on %, and wonder how confident we should
be that u itself lies in %,.

The first-order bootstrap answer, which we will call the confidence value
and denote by a, is

(2.1) a = prob{y* € #;,} where y* ~ Ng(w, I).

However, @ will not match the usual frequentist confidence level, denoted @,
unless the boundary % is flat. We will show that & exceeds a if % curves away
from @ as in Figure 2, and is less than @ if £ curves toward 1.

What is the confidence level @? In the usual frequentist formulation, it is
the probability of being closer than y to the boundary, minimized over the
choice of w in #;. In other words, 1 — @ is the p-value for testing the null
hypothesis that u € #;. “Attained confidence level” would be a more accurate
but cumbersome terminology for @. If, in fact, u € %#;, then a will exceed .90
no more than 10% of time, .95 no more than 5% of time, etc., which is its usual
frequentist interpretation.

EXAMPLE 1. Suppose that
(2.2) Hy=A{w: pll =61}, Ho={w: ||ul > 61},

so that the two regions are separated by a spherical boundary in K dimen-
sions, and that the data vector y ~ N g(u, I) falls into %, say

(2.3) Iyl =r> 6.

{Xo=%}

FI1G. 2. Two regions, #y and #,, separated by a smooth boundary %; data vector y ~ N g(u, I)
is in HRy; nearest point to y = @ not in # is fy; signed distance from g to y is xy. How confident
should we be that u € #y?
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Then according to (2.1),
(2.4) & = prob{x%(r?) = 67},

the notation indicating a noncentral chi-squared random variable with K de-
grees of freedom and noncentrality parameter 2. The confidence level for
n € H#,, or more precisely one minus the p-value against the hypothesis that
JUAS 74 1s is

(2.5) @ = prob{x%(67) < r}.

NOTE. Here we are using a one-sided p-value and behaving as if #; were
preselected to be the null hypothesis region. It is easy to calculate two-sided
p-values [from (2.12), e.g.], but these become problematical in multiregion
problems, nor do they agree with the Bayesian considerations of Sections 3
and 4.

For the case where

(2.6) r=17 6,=5 K=A4,

we compute & = .9880 and a = .9596, so in this situation the confidence value
is much bigger than the confidence level. This is shown more dramatically in
terms of the “non-confidences”

(2.7) B=1-a=.0120, pB=1-a=.0404.
The non-confidence level E, which is the usual p-value, is more than three
times bigger than the non-confidence value S.

Example 1 is misleadingly simple because the minimum distance x, in
Figure 2 is a pivotal quantity, having the same distribution for all u on the
boundary #. This allows us to consider only one distribution in the computa-
tion (2.5) of @. The discussion below shows that, in general, x, acts as a very
good approximate pivotal quantity, for any smooth boundary %, and that we
can use x, to obtain a high-order approximation to a. It will also lead to a
bootstrap method for converting an & value into a good approximation for @,
based on the following result.

THEOREM. 7o second order of accuracy,

(2.8) a=o{dl(a) -2z},
where ® is the standard normal cumulative distribution function (cdf) and
(2.9) Zo = @ H{prob(y; € #)},  ¥5 ~ Nx(io, D).

“Second-order accuracy” means that (2.8) errs by order Op(n‘l) in repeated
sampling situations, in the sense defined below. The theorem allows us to com-
pute a second-order accurate frequentist confidence level @ solely by bootstrap
calculations: first, we calculate @ using the first-order bootstrap method (2.1);
then, Z, is obtained from the second kind of bootstrapping in (2.9); finally,

we get a from (2.8). All of these calculations require only the knowledge of
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whether or not the resampled point falls into %, which makes the algorithm
applicable even to very complicated problems.

We will now verify the theorem, and in fact give better results that are
accurate to a third order of approximation. (Remark A of Section 8 describes
a full third-order bootstrap algorithm for @.) This material is more technical
than the other sections and may be omitted at first reading.

Looking at Figure 2 again, let 1, be a point on %, and let 7, be the (K —1)-
dimensional tangent plane to % through u,. The figure shows a vector v in
7., and also a distance u measured orthogonally to .7, , taken positive in the
direction pointing away from %, and into #;. We assume that thereis a (K—1)
by (K —1) symmetric matrix d(u), not necessarily positive definite, such that
the Taylor series describing the boundary &% for points near p, begins

(2.10) u=v'd(py)v.

The matrix d(u,) measures the curvature of # at u, with d(n,) = 0, corre-
sponding to a flat spot. By £ being smoothly defined we mean that d(u,) ex-
ists and is continuously differentiable. These definitions are spelled out more
carefully in Efron (1985).

The signed distance X, is defined to be the distance from point y to the
nearest point i, on 4, taken positive if y € %, and negative if y € #;. Let

(2.11) d1 (o) = trace(d(uy)), da(po) = trace(d(io)?).

Theorem 1 of Efron (1985) states that if y ~ Ng(u, I) for uy € 4, then X,
is approximately normal,

(2.12) Xo~ N(dl(M0)> {1- d2(M0)}2)-

Approximation (2.12) is highly accurate in the following asymptotic sense:
suppose that Figure 2 applies, but that instead of y ~ Ng(u, I), we observe
a sequence of situations indexed by n, with

(2.13) ¥y~ Ng(u, I/n)

at the nth stage. This would be the case if y = >"7_; y;/n with the y; indepen-
dently distributed as N x(u, I). Multiplying y by /n restores the covariance
matrix in (2.13) to I, but the magnified version of the boundary # has cur-
vature matrix divided by /n. In what follows, we assume that this rescaling
has been done and that d(u,) is of order O(n~1/2). This implies orders

(2.14) di(po) = O(n~'?), dy(pe) = O(n™1),

for the terms in (2.12). Theorem 1 of Efron (1985) shows that (2.12) is third-
order accurate. That is, (2.12) is correct to order O(n~!), only erring by
O(n=%/2). In particular, the skewness and kurtosis of X, are both O(n=3/2).

Now let d = d(jzy) be the curvature matrix of # at u = 1, the closest point
to y = 1, and let

(2.15) &l\l = trace(a), c;l; = trace(az).
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A third-order normal pivotal quantity can be derived from (2.12),

% _ g
(2.16) Z= °—fll ~ N(0, 1),
1-d,

by which we mean that if y ~ Ng(ug, I) for uy € %, then prob{Z < z} =
®(2)+ O(n~3/?) for any fixed z. This is demonstrated in the Appendix of Efron
(1985).

Because Z is a third-order pivotal, it can be used to construct a highly
accurate frequentist confidence level for {u € #,}, namely,

(2.17) &= @(Lfl);
1- 4,

a is the approximate probability that Z is less than its observed value z =
(29 — d1)/(1 —dy), if the true expectation vector lies on the boundary #. It is
shown in the Appendix of Efron and Tibshirani (1996) that @ also equals to
third order the probability that X is less than its observed value x,.

We can also calculate a third-order approximation for the bootstrap confi-
dence value

(2.18) a = proba{y* € #},
where y* ~ N (@, I) as in (1.2). The Appendix shows that

(2.19) &= CD(xO +‘fl> +0,(n7%?),
1+d,

O, indicating stochastic order of magnitude as usual.
Comparing (2.17) with (2.19) and using (2.14) leads to a simple relationship
between @ and a.

LEMMA 1. Define
(2.20) Z=0Ya), Z=da).
Then the third-order relationship between Z and 7 is

(2.21) Z = (1+2dy)(Z — 2d,) + 0,(n"%2).

A less precise second-order relationship is
(2.22) Z =(Z-2d,)+0,(n™").

The improved bootstrap algorithms of this paper work by doing the first-
order bootstrap calculation (2.1) and then improving @ by means of the second-
order correction (2.22). In order to do so, we need a bootstrap method for
approximating &\1 This is provided by the following result, verified in the
Appendix.
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LEMMA 2. Define z, as in (2.9). Then
- d ~
(2.23) 0= —=+0,(n"%?) =d; + 0,(n7"),
1+d,

$0 Z, is a second-order approximation to d;.

Important: the point @, does not have to be determined very accurately;
(2.9) gives second-order accuracy for any i, within O,(1) of the true near-
est point. This is important in the examples of Sections 5 and 7, where the
“nearest points” will be found by bootstrap calculations.

Combining the two lemmas gives

(2.24) Z =7 -2%+ 0,(nh),

which verifies the theorem (2.8). The quantity 2, is O,(n""?), so typically
Z — Z will be O,(n"1/2).

As a check on (2.8), consider Example 1 where #; = {u: |1/ < 6; = 5} and
we have observed a four-dimensional vector y with ||y|| = r = 7. In this case,
we can do the bootstrap computations theoretically, without Monte Carlo, as
in (2.4): @ = prob{x2(49) > 25} = .988, Z = ®~!(a) = 2.26. Definition (2.9)
gives

(2.25) Zo = ©'{prob(x5(25) > 25)} = ®71(.619) = .302,
so (2.8) results in
(2.26) a = d(2.26 — 2(.302)) = .9508.

This compares with the first-order approximation & = .9880 and with the exact
valuea = 1— E =.9596 in (2.7). In this example, the boundary # curves away
from @, as in Figure 2. This makes z, > 0 and @ < &. The opposite happens if
2 curves toward [, in which case a@ would exceed a.

If we want a still better approximation, we can use the third-order formula
(2.21). In this case, the curvature matrix is easy to calculate theoretically,

d = 1/(26,) for any u, with ||ull = 6;, so

(2.27) d, = (K —1)/20, = .300,  dy= (K —1)/46% = .030.
Then (2.21) gives
(2.28) 7Z =1.756, a=.9604,

an order of magnitude more accurate approximation than (2.26) to a = .9596.

Most problems are too complicated to allow these kinds of theoretical cal-
culations. The crucial quantities @ and Z,, in (2.8) have to be estimated from
bootstrap simulations, requiring on the order of 1000 bootstrap replications
of ¥* in (2.1), and another 1000 of y; in (2.9). Section 5 carries out a second-
order bootstrap analysis for the C, example of Figure 1, illustrating some of

p
the practical pitfalls of the theory.
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In some situations, it is possible to directly compute Jl, and use (2.22)
instead of (2.24) to approximate @. This approach is particularly simple and
accurate if the boundary £ in Figure 2 is the level set of a smoothly defined
real-valued parameter 6 = t(u), say 4 = {u: t(n) = 61}. Define

(2.29) to=t(io), o =t(Ho),

where £(w) is the gradient vector (d¢/du;) and #(w) is the second derivative
matrix (9%t/du; du ;) assumed to exist continuously as a function of u. Then
it can be shown that

~ 1ttty ¢ £ .
(2.30) d, = [ 070%0 _ race( 0)} =3,
lIZoll lIZoll

2
This formula assumes that #(u) is increasing as we go from %, to #; in
Figure 2. In Example 1, we could take #(n) = —||u|| and 6; = —5, in order to
get the sign right.

Formula (2.29) is the ABC method of calculating the “bias-correction con-
stant” Z; in the normal family y ~ N g(u, I), as described in DiCiccio & Efron
(1992), Section 2, except that here the calculation is done at the boundary
point 1, rather than at @ = y. The first and second derivatives of ¢(u,) are
computed in a numerically efficient way that requires only 2K + 2 recompu-
tations of #(u).

There are two drawbacks to the ABC approach. It fails for situations where
the boundary % consists of piecewise flat facets, as for the multimodality
example of Section 7. Second, it requires % to be described as a level set of
a known function #(w). This is the kind of mathematical specification we are
trying to avoid with our metric-free methods. Efron and Tibshirani (1996),
Remark K suggests a way of directly calculating c;l\l without the specification
of ¢(u).

The frequentist paradigm is of great help in understanding and improv-
ing upon the first-order bootstrap method. By itself, though, it is not flexi-
ble enough to encompass situations like that in Figure 1, let alone the phy-
logenetic trees of Efron, Halloran and Holmes (1996). Section 3 develops a
Bayesian justification for our second-order bootstrap methods that is less pre-
cise than the frequentist justification but covers a wider range of situations.

3. Bayesian measures of confidence. The Bayesian solution to the
problem of regions is straightforward: we begin with a prior density A(w)
for the unknown parameter vector, and take as our measure of confidence in
A, (the region containing y = @) the a posteriori probability that u € %,, say

(3.1) a = prob{u € %, | y}.

The difficulty of course lies in the choice of the prior A(u), especially for com-
plicated situations such as those of the examples in Sections 5 and 7. This
section and the next one relate our bootstrap methods to objective Bayes solu-
tions, showing that the bootstrap approximates & in (3.1) for choices of A(w)
that can reasonably be termed “uninformative.” The discussion is in terms
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of the normal model y ~ Ng(u, I), with more general results appearing in
Section 6.

Suppose first that the prior density A(w) for the unknown mean vector u
in (1.1) is perfectly flat,

(3.2) h(p) = 1.
Then the a posteriori density for u having observed & = y is
(3.3) ple~ Ng(w, I);

exactly the same as the parametric bootstrap distribution of y* in (1.2), so the
first-order bootstrap method of Section 1 provides an implementation of the
flat-prior Bayes analysis. In other words, &, (2.1), is the same as a.

More generally, suppose that our problem involves J +1 regions %#,, %, ...,
#; that partition Euclidean K-space #X,

J
K
J=

Then the flat-prior Bayes a posteriori probability that u € #;, say
(3.5) B =prob{u € #;| y},

equals what we called the first-order bootstrap non-confidence value J j=
prob;{y* € #;}. The bootstrap probabilities .018 for #,,, .117 for #;;, and
.865 for Ag,.q reported for Figure 1 are, except for simulation error, the a
posteriori probabilities starting from prior (3.2).

This can be taken as support for the first-order bootstrap method, or at least
as an argument that it cannot be systematically biased in some way. [Critics
of Felsenstein’s method had suggested it was biased downward, producing too-
small confidence values; see Efron, Halloran and Holmes (1996).] The trouble
is that the choice of the flat prior (3.2) is rather arbitrary, and can give answers
that disagree with p-values and confidence levels. In Example 1, for instance,
case (2.6), B; equals .0120 as in (2.7), compared to the p-value ,§= .0404.

Welch and Peers (1963) showed how to choose prior densities A(un) that bet-
ter match frequentist confidence levels, providing a more sophisticated theory
of what constitutes an uninformative prior density. For example, the prior

(3-6) R (w) = 1/|u]*

gives good agreement with frequentist confidence levels for the parameter
0 = ||n|| relating to Example 1; see Tibshirani (1989). [Equation (3.6) is the
uniform distribution in polar coordinates on .#*.] With this prior, the Bayesian
non-confidence value (3.5) becomes 3; = .0408, nearly matching ,§= .0404.
In complicated situations such as those considered in Sections 5 and 7, it
becomes impossible to write down the Welch—Peers density. The next section
shows that, in a sense, the second-order bootstrap method (2.8) automatically
carries out the Welch—Peers calculations, so that the second-order bootstrap
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result can be thought of as a Bayesian analysis starting from an uninformative
prior density.

Why should we be interested in Bayesian solutions to the regions problem?
The next example shows that in situations even slightly more complicated
than Figure 2, the frequentist p-value interpretation of confidence levels may
not make much sense. Remark E of Section 8 gives another such example.

EXAMPLE 2. Suppose we augment (2.2) in Example 1 with a third region
Ry = {u: ||l = 09}, 65 > 04, so that A, is reduced to the spherical shell
between %#; and %,,

(3.7) Ho = {w: 01 < |ul < 6.},
and consider the case
(3.8) r= 7, 01 = 5, 62 = 95, K =4.

This is the same situation as in (2.6) except that %, has been reduced by
the subtraction of the outer region %#,. Now how confident should we be that
nE Hy?

Let xy be the distance from y to the nearest u vector not in %, x, = 2
in this case. In the normal family y ~ Ng(u, I), x% equals Wilks’ likelihood
ratio statistic for testing the null hypothesis that u does not lie in %,

2 e
% = -2log| [sup £,(] /[sup £, |
As before, we take the confidence level for {u € #,} to be the probability that

X is less than its observed value, minimized over u in the complement of %,

(3.9) a= ingf?'c{probﬂ(xo < 2)}.
neR

A standard calculation shows that
(3.10) 1—a =B =prob{7? < x}(5%) < 7.5%} = .0283

for case (3.8). Comparing this with (2.7) shows that reducing %, by the sub-
traction of #, has increased our confidence that u € %, from .9596 to .9717!

This kind of paradox cannot occur with Bayesian methods. In the spherical
shell example, the Welch—Peers prior (3.6) gives Bayesian posterior probabil-
ities (3.5)

(3.11) B, =.0408, B, =.0036.

These compare almost perfectly with the frequentist levels for #; and %,
tested separately against #,,

B1 = prob{x2(5%) > 72} = .0404,

(3.12) R
B2 = prob{x3(9.5%) < 7%} = .0035.



1698 B. EFRON AND R. TIBSHIRANI

Looking at (3.11) and (3.12), a reasonable Bayesian or frequentist assess-
ment of confidence for {u € #,} in situation (3.8) is

(3.13) @=1-p,—By=1— B, — By = .956.

This is the recipe we will follow in the more complicated example of Section 5:
we will use second-order bootstrap analyses to estimate non-confidences S

for each alternative region #;, and then take a = 1 — ZJJZI Ej. The theory
presented next provides a Bayesian justification for this recipe.

4. Bootstrap reweighting. Confidence values produced by first-order
bootstrap resampling, as in (2.1), are the same as Bayes a posteriori prob-
abilities starting from a flat prior A(x) = 1. This section shows that using
the second-order bootstrap (2.8) amounts to doing a Bayesian analysis start-
ing from a Welch—Peers uninformative prior, for instance h(u) = 1/||w|%!
in Examples 1 and 2. Moreover, the second-order answers are obtained by
reweighting the first-order resamples according to a simple importance sam-
pling scheme. We continue to work within the normal model y ~ Ng(u, I),
more general results appearing in Section 6. Formally speaking, our state-
ments of accuracy apply to the asymptotics of (2.13)—(2.14), but in any given
situation the notional sample size “n” is fixed and we must, as always, hope
that the asymptotic calculations are a good guide to practice.

Suppose that the boundary % in Figure 2 is the level set of a smoothly
defined function 6 = t(u), say

(4.1) #(01) = {p: t(p) = 0},

with #,(0;) = {u: t(n) < 601} and #(0;) = {u: t(n) > 6;}. Now we will
consider what happens as the value of 6; changes.

For a vector u [an arbitrary point in .ZX not necessarily the true expectation
vector u in (1.1)] and with y = u fixed as its observed value, let W(u) be the
derivative of the confidence level with respect to the confidence value,

(4-2) W(M) = da@/d&m

defined as follows: u determines 6 = t(u), #(0), #,(0) and #,(0), and then
@y = prob;{y* € #y(0)}; it also determines the nearest point 1y(6) in Figure 2,
and 2y, = ®~{prob; (v € #,(0))}, (2.9); these give @, = D(Z, — 2Zy,), (2.8),
where Z, = ®(a,) as in (2.20). Finally, W(u) = [d@,/d0]/[d&,/d6]. In what
follows, we will assume that @, goes from 0 to 1 as 6 goes from —oo to oo.
Differentiating (2.8) gives a simple expression for W(u),

(4.3) W(n) =exp(2(Z3 - 23)) where Z, = Z, — 2%,

Let f,(y) be the normal density corresponding to (1.1),

1 1
(4.4 1) = gy esw (gl - ulP)
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and take y* ~ N (&, I) as in (1.2). Then the non-confidence value Egl =1-a,
equals ft( )26, fz(y*)dy*. Similarly, we have the following.

LEMMA 3. For a given value 01, the non-confidence level Egl =1-a, is
4.5 By, = (W (") dy.
(4.5) Bo=[ ., f0IW()dy

PROOF. Let g(6) be the bootstrap density
(4.6) 2(0) = iG(e) where G(6) = prob,{0* < 6} = a,,

o = t(y*). Integrating over the level sets £(w) on the right-hand side of (4.5)
gives

* * * __ daG
(4.7) [, FaONWOdy = [~ )52 dn
But g(0) = da,/d6, so

(48) Ly FRONOWO Ay = [ ddy =18, = By, 0

Lemma 3 leads to a direct resampling connection between confidence values
and confidence levels. Suppose that there are only two regions #, and .#; as

in Figure 2, that the boundary & is the level set {¢(x) = 6,} and that 0= t(w)
is less than 6, so i € #,. We generate % bootstrap samples from f, say

(4.9) y D @B ~ fa
and approximate the first-order bootstrap non-confidence value 3 = 1 — @ by

(4.10) = Y 1B

H(y*®)>6,

Letting W® = W(y*®), notice that the second-order non-confidence level
B =1 — @ is approximated by

(4.11) B= Y Ww®/B,

H(y*®)>0,

since (4.11) is the usual Monte Carlo estimate of the integral in (4.5). The
weighting factor W(p,) = exp(Z /2— 72 4/2) is just the ratio of the approximate

normal densities for Z , and Z,, so we see that W(u) acts as an importance
sampling factor, converting random variables drawn from & into ones drawn
from fz,.

Lemma 3 also has a Bayesian interpretation. A Welch—Peers objective prior
density A*P(un) such as (3.6) is defined by the fact that it produces Bayesian
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a posteriori probabilities agreeing to second order with frequentist confidence
limits. According to Bayes rule, this means that

—~ hw

where f(i) is the marginal density [ f,()h*?(w)dw. See Tibshirani (1989).
We can rewrite (4.5) as

(4.13) Bo=] , FW@W()dn

A comparison of (4.12) with (4.13) shows that W(w) is a Welch—Peers prior
density, scaled so that it integrates to 1 with respect to the likelihood func-

tion fy,(/‘/'z)’

du,

_ hP ()
(4.14) W(n) = @)

the latter following from (4.13) with #; — —oo. Remark B of Section 8 describes
a more direct connection between a second-order bootstrap analysis and the
Welch—Peers theory of uninformative priors.

All of this has the following interpretation: reweighting the first-order boot-
strap samples according to W(y*) as in (4.11) converts 3 into E; and from a
Bayesian viewpoint it converts the flat-prior a posteriori probability for %,
or for #,, into the appropriate Welch—Peers a posteriori probability.

In practice, the reweighting does not have to be done since the conversion
formula (2.8) gives a or E directly once z, has been calculated. However, (4.11)
and its interpretations are helpful for thinking about complicated regional
problems such as those in Sections 5 and 7.

Figure 3 is a schematic diagram of a hypothetical problem involving four
regions. Resampling from g in %, has given some y*’s in %, #, and #5. Their
proportions are the first-order non-confidence values 3 ;- Reweighting these
proportions according to (4.11) converts each 8 ;j into a non-confidence level

[ Fu@W(w)dp=1,
#K

EJ-. In Figure 3, El would be less than $3; since the %,/ #; boundary curves
toward ;, with the opposite being true for #, and #;. From a Bayesian
point of view, we can imagine starting with a flat prior on u, and bending it to
accommodate the different boundary situations. Except in simple situations
such as Figure 2, it will be difficult to fully describe the bent prior, but it will
behave like the appropriate Welch—Peers prior density near each boundary.

5. The C, example. Figure 1 provides a realistically complicated exam-
ple of a regions problem. It refers to a C, model-selection procedure for the
data set of 201 points shown in the left panel of Figure 4. Each point represents
a participant in the Control group of the Minnesota arm of the LRC-CPRT,
a large-scale investigation of the drug cholostyramine [Efron and Feldman
(1991)]. The two measurements for each man are his percentage compliance
with the intended dose of the drug (actually a placebo) and his decrease in
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FI1G. 3. Schematic diagram of a four-regions problem, @ € Ry; first-order bootstrap sampling
y* ~ [ has yielded some points not in #y; these are shown as minuses in #; and plusses in A,
and R3. The plusses have weights greater than 1, the minuses weights less than 1, in accordance
with the weights assigned by Welch—Peers composite prior density for . (Points y* in #y not
shown.)

total blood cholesterol level over the course of the experiment, this being the
response variable of interest.

We consider models that predict cholesterol decrease as a polynomial func-
tion of compliance. The right panel of Figure 4 traces the C, estimate of
prediction error, defined below, as a function of the model’s degree j, for j
going from 0 to 7. There is a sharp minimum at j = 2, strongly suggesting
a quadratic model. How confident should we be that the quadratic model is
actually best?

The cholesterol decrease values were standardized to have approximate
variance 1, by division by an estimate of their measurement error ¢ = 15.09
based on the residuals from the seventh-degree polynomial model. Then an
appropriate rotation of coordinates made the successive coordinates of the
response vector y = i correspond to the innovations of successive polynomial
models. The first eight coordinates of &t = (g, &1, g, - - -) Were

(5.1) w=(7.20,2.74, -2.55, —0.32, —0.09, 0.78, —0.82, 0.53, .. .).
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FI1G. 4. Cholesterol decrease versus compliance, 201 men in the Minnesota Control group, LRC-
CPRT study. Right panel: C, statistic for model that predicts cholesterol decrease as a jth-degree
polynomial in compliance, j =0,1,...,7. The C, statistic is minimized for the quadratic model,
solid curve in left panel.



THE PROBLEM OF REGIONS 1703

Thus going from a linear to a quadratic model reduced the residual sum of
squares by 2.552. We will take

(5.2) y=p~ Nooy (e, I)

in what follows, assuming normality and ignoring the fact that the standard-
izing constant o = 15.09 was actually an estimate.

The best-fitting quadratic regression curve is shown in the left panel of
Figure 4. The choice of a quadratic model was based on the C, criterion. The
C, value for the jth polynomial model is

201
(5.3) Ci=Y m?+2(j+1),

J+1
this being an unbiased estimate of the model’s prediction error [Mallows
(1973)]. If we are only willing to consider models up to degree </, including
the constant model with j = 0, then the C, criteria partition #°! into J + 1
regions, #; comprising those i where model j is preferred,

(5.4) Hj= {,L’I: éj = 012151316‘}

For the cholesterol data, & € #y = #y.q, the quadratic preference region, for
all choices of J > 2. The question of interest can be phrased as: how confident

can we be that u € %#,?

NoTE. Even though it is notationally convenient to describe the regions in
terms of 1, it is really the region of the vector u we are interested in. Remark C
of Section 8 suggests a different regional set-up that might be preferable here.

Vectors on the boundary between #; and #,,, j < k, must satisfy

k
(5.5) (6=C or | a2=20- ).
i=j+1

Figure 1 shows the situation if we only consider models up to degree 2,
in which case the three possible boundaries are determined by (&, ©y) =
(2.70, —2.55). According to (5.5), the boundary between .#; and %}, is a portion
of a (k— j)-dimensional sphere of radius [2(% — j)]'/2. The ABC formula (2.30)
can be calculated theoretically in this case. For the portion of the jth region’s
boundary with #,, we have

~ _ . lg=2[-1 [+ forj<2,
(5.6) )= * R ey { ~ forj>2
Figure 1’s geometry is reflected in (5.6), with z,; = 0 for the flat A,/ #quaa
boundary, while Z,, > 0 for the Z,,,/#aa boundary, which curves away
from w.

Table 1 presents a regional analysis of the confidence level for u € Zgyq-
We consider four other regions, #, constant, #; linear, #5 cubic, #, quartic.
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TABLE 1
Regional analysis for the cholesterol data C,, problem*

Region: % gl gg g4 gz
Model: constant linear cubic quartic quadratic
ﬁj .019 .096 .142 .076 a=.667

29 250 .000 .000 -.250
ﬁj .057 .096 142 .027 a=.678

*Five polynomial models considered: constant, linear, quadratic, cubic, quartic; it € #gyaq. Value

B ;j is proportion of 1000 bootstrap replications falling into Jjth region; adjusted levels E j=1-a;
from (5.8) with 2, given by ABC formula (5.6). Sum of 3; is 0.328, leaving confidence level 0.678
for u € Zquad-

B = 1000 bootstrap replications of y* ~ N (i, I), perhaps ten times more
than necessary for a first-order analysis, gave empirical probabilities

(5.7) Bi=#y®ex;b=1,2,...,B}/B, j=0,1,34,

these being the non-confidence values pertaining to the four alternative re-
gions. The first two of them differ from the values reported for %, and #;,
in Section 1 because of simulation error, but also because this analysis includes
'%cub and '%quart'

The conversion formula (2.8) can be expressed as an adjustment of the flat-

o~

prior non-confidence values 3 ;j to non-confidence levels ,§j =1-a,,
(5.8) B, =®[dY(B;) +22,].

This is the same as (2.8) when there are only two regions, but it is more
convenient to work with in multiregional situations.
The adjusted values B; appear in the bottom line of Table 1. The adjust-

ments are quite substantial, multiplying B, by 3 and dividing B, by nearly
as much. The objective Bayesian interpretation of these results is as follows:
© € H#o with a posteriori probability

(5.9) a@=1-(.057+.096 + .142 + .027) = .678,

the most likely alternative region being #; with probability .142, etc. Notice
that @ is nearly the same as & despite big changes for regions .%#, and .%,.

The bootstrap formula (2.9) for estimating z, did not work well in the C,
example. Unlike the spherical shell situation of Example 2, this situation
locates @& near three-way and higher-way regional boundaries, for example
the point (+/2, —+/2) in Figure 1. A typical boundary point [, on the boundary
between the constant and quadratic regions, selected as in Section 7, had
Yo ~ Ng(ity, I) falling into #; with these probabilities:

(5.10) Ry: 21% Ry 13% Ry 29% Ry 12% Ry 19%.

This kind of global “leakage” undercuts the local asymptotics behind Lem-
ma 2. The problem did not occur in the other examples of this paper. It can
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be avoided here by following the tactic used in Efron, Halloran and Holmes
(1996) for the tree example, where the alternative regions were considered
one at a time instead of s1multane0usly For example, we can consider just
two regions, whether or not CO exceeds C2, in which case z, obtained from
(2.9) nearly equals the ABC value .250.

6. More general probability families. So far we have considered only
the normal family y ~ Ng(u, I). A similar theory goes through almost as
easily for multiparameter exponential families. The key result for the normal
family was (2.8), which converts first-level bootstrap confidence values & into
second-order frequentist confidence levels a. The analogue of (2.8) for gen-
eral exponential families appears under the names “BC,” and “ABC” in Efron
(1987) and DiCiccio and Efron (1992). Here is a brief review of what we will
call the ABC conversion theory.

We now suppose that the observed data vector y has its density function
fu(y) in a K-parameter exponential family of densities:

(6.1) fu(y)= eny =)

where y is the K-dimensional sufficient statistic, u is the expectation param-
eter vector u = E,{y} and 7 is the natural or canonical parameter vector,
a one-to-one function of w; ¥(7n) is a normalizing function designed to make
f.(y) integrate to 1 with respect to some common carrier density for the fam-
ily. The second derivative matrix of (1) with respect to n gives the covariance
matrix of y, at the corresponding value of u,

(6.2) $(w) = cov, ().

Again we suppose that there are just two regions %, and .#; in K-dimensional
space separated by a boundary & defined by a smooth real-valued parameter

0 = t(pn), say # = {u: t(n) = 01}, with #, = {t(n) < 6,} and #; = {¢(n) > 6,}.
Asin Figure 2, the maximum likelihood estimate & = y determines a “closest”
point 1, on %, which we take to be the restricted MLE of u given #(n) = 6;.

The MLE of 6 is 0 = t(@). For convenience, assume 0 <6,s00 € H#, as in
Figure 2. The first-order bootstrap confidence value for {u € #,} is still given
by (2.1),

(6.3) = probg{y* € #,} = probg{t(y") < 61},
the notation now indicating that

(6.4) Y~ fa

The frequentist confidence level @ can be taken to be
(6.5) @ = prob;, {t(y3) > 0},

where yj is drawn from the f, density having u = 1.
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Corresponding to (2.8), there is a second-order accurate formula for con-
verting @ to @. Letting Z = ®~1(&), the ABC conversion formula is

~ Z -7 R R ~
(66) Z = A—~ZOA — 20 a = (D(Z)
1+a(Z - %)

Here Zz,, is the bias-correction quantity appearing in (2.9),
(6.7) Zo = @ {prob(y; € #)}, Yo~ [y
while @, the acceleration, is another O,(n~(*/?)) quantity, calculated from (6.9)
below. Formula (6.6), like (2.22), errs by order O,(n™?). In the normal family
(1.1), @ = 0, so (6.6) is the same as (2.22), but @ can make a substantial
difference in other families.

To compute a, we first find 7, the natural parameter vector corresponding
to the restricted MLE i, on £, and ¢, = #(&) = (d¢/du;)z,, Wwhich determines

the delta-method estimate of variance for 6 (evaluated at u = fiy),

(6.8) a6 = todolo (o =T (Ro))-
Then the acceleration @ is computed from

2
(6.9) @ = = [hon (o + oto)],_y/(633),

where wu(7n) indicates the vector p expressed as a function of 7. This is formula
(2.9) of DiCiccio and Efron (1992), carried out at 1, instead of . Formula (6.7)
is numerically evaluated by substituting small values of ¢ into the bracketed
term. Section 7 discusses the calculation of @ in the case where we can only
tell whether or not a given vector y* € %,.

A second-order accurate bootstrap algorithm for approximating the confi-
dence level @ proceeds as follows: first-order bootstrap sampling gives a Monte
Carlo estimate of @ as in (6.3); second-level bootstrap sampling, yg ~ f;,, gives
a Monte Carlo estimate of Zz, as in (6.7); the method described in Section 7
gives a; and finally the ABC conversion formula (6.6) gives a. The multimodal-
ity example of Section 7 carries through this algorithm for a case where the
regions have complicated multifaceted linear boundaries.

Here is a much simpler case where we can check the algorithm’s accu-
racy. CD4 counts were measured for 20 HIV-positive subjects before and af-
ter administration of an experimental antiviral drug: x; = (B;, A;) for i =
1,2,...,20. Assuming a bivariate normal family, with unknown mean vector
and covariance matrix [not (1.1)], the K = 5-dimensional sufficient statistic
y= (B, A, B2, BA, A?) was

(6.10) y =7 = (3.29,4.09, 11.44, 14.10, 18.03),

giving sample correlation coefficient 6 = .723. [The data set appears as Ta-
ble 1 of DiCiccio and Efron (1992).] What confidence should we attach to the
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region #, = {6 > .5}, the set of bivariate normal distributions with correla-

tion exceeding 0.50? The exact one-sided p-value of § = 0.723 under the null
hypothesis that 6 = 0.50 is

(6.11) B =.072

in a bivariate normal family.

Four thousand first-order bootstrap vectors y were sampled from the bi-
variate normal distribution determined by (6.10), of which 219 had sample
correlation coefficient 6* < .50, giving

(6.12) B = .0548 = 219/4000.
Several boundary vectors g, were located according to the method described
in Section 7, all of which had @ = .000 and Z;, = .0559 using (6.9) and (6.13)
below. The conversion formula (6.6) then gave E = .068, agreeing with the
exact level (6.11), within the simulation error.

There is an analytic formula like (2.30) for approximating z, without having
to do the Monte Carlo simulations of (6.7):

(6.13) Zo=a+ 3[84,8/5° —tr(ipX,)/7] (8 =3,b0)
Formulas (6.9) and (6.13) are easy to evaluate numerically as shown in DiCi-
ccio and Efron (1992), but they only apply to situations where the boundary
is the level set of a known function 6 = #(u). Section 7 discusses situations
where this is not the case.

These results extend the frequentist theory of Section 2 to multiparameter

exponential families. It is also easy to extend the Bayes/bootstrap theory of
Sections 3 and 4. Differentiating (6.6) gives

1, no 2o \(Zo+2\>2
(6.14) W = exp( (25 - 29)) (552 ).
Zy— 2

in place of (4.3). Lemma 3 and its interpretations go through with just this
change, as shown in Efron and Tibshirani (1996), Section 7.

The Poisson family is a particularly useful exponential family (6.1): we ob-
serve K independent Poisson variates (yq, ys2,..., Yx) = y with expectations

(IU“I’/“L2""’/“LK) =M,
(6.15) y ~ Pog(p).

Then n = log(n) = (log(u1), 10g(ks), ..., log(kk)), ¥(n) = Ze™, X(n) =
diag(w) the K x K diagonal matrix with diagonal elements uq, po, ..., ux and

%2 =YK | y,i2,. The numerator in (6.9) for @ is (72/d?)[2to, exp{Tor+&tor } o-
Another useful case is the multinomial family, where we observe a vector
of proportions p from n independent draws on K categories,

(6.16) p ~ Multg(n, 7)/n.

Here 7 = (mq, m9, ..., mg), the vector of true probabilities, plays the role of u,
with the simplex of possible 7 vectors being partitioned into regions #;.
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It turns out that the Poisson family also applies to the multinomial. Instead
of (6.16), we can assume that the count vector y = np is in the Poisson family
(6.15), with regions 9?’] determined by

(6.17) R, ={u=cmforme #;, c>0}.

Then the second-level bootstrap algorithm will give the same results in the
Poisson and multinomial families, and so will (6.9) and (6.13); see DiCiccio
and Efron (1992). If the regions #; are determined by a real-valued statistic
0= t(p), then we need to take 6= t( y/2y};) in the Poisson formulation.

Nonparametric applications of the bootstrap use the multinomial model
with K = n, the number of independent observations and 7 = (1,1, ..., 1)/n;
see Efron (1987), Section 7. The multimodality example of Section 8 will be
carried out nonparametrically and will make use of the Poisson—-multinomial
relationship to simplify some of the calculations.

7. Multimodality example. This section discusses a nonparametric ex-
ample of the problem of regions, one where it is difficult to describe the regional
boundaries in terms of a real-valued parameter 8 = ¢(u). The process of exe-
cuting Section 6’s two-level bootstrap analysis illustrates some of its practical
and interpretational difficulties, as well as its power.

Figure 5 shows a histogram of the data, the thicknesses in millimeters of
n = 485 stamps issued in 1872, the Hidalgo issue of Mexico, and also a Gaus-
sian kernel estimate of the thickness density. The kernel estimate has two
modes, but how much confidence should we have that the true density func-
tion is bimodal? This is a question of philatelic interest since it is suspected
that the issue might be a mixture, printed on more than one type of paper
[Efron and Tibshirani (1993), Section 16.5; Izenman and Sommer (1988)].

60 80 100
1

40

20
1

0.06 0.08 0.10 0.14

thickness {mm)
F1G. 5. The stamp data; thicknesses of 485 stamps issued in 1872; solid curve a Gaussian kernel

density estimate, is bimodal, suggesting that the stamps were issued on two different papers. How
confident can we be that the true density is bimodal?



THE PROBLEM OF REGIONS 1709

The density estimate in Figure 5 is

~ 12 x — x;
1 = — L =.
(7.1) a0 = p S e(5) (= 0089),
where x = (x1, %9, ..., x,) is the stamp data and ¢(¢) is the normal kernel

exp(—t2/2)v/27. The kernel width 2~ = .0039 was chosen as best by a 10-
fold cross-validation procedure. In what follows, & will be fixed at this value,
though in principle it would be no more difficult to recompute A by cross-
validation for each bootstrap sample.

Bootstrap samples x* = (xj, x5,..., x;) were selected in the usual non-
parametric way as a random sample of size n drawn with replacement from
X1, X9, ..., X,. Each x* gave a bootstrap density estimate (/i\*,

(72) c?<x)*=n—1hiilgo(x‘hxf),

having modality M* defined as follows: let

(7.3) 4t = d(sy)" fors, =.06+.002k (k=0,1,2,...,40),
and define s; as a mode of d* if

(7.4) d > d;, and dj>dj,

(with d* ; and (ﬁl = 0). Then M is the number of such modes for d*, with M =
2 for the original estimate (7.1). We wish to make a statement of confidence for
M, the modality as defined in (7.3)—(7.4), for the trueAdensity d. It should be
noted that the choice A = .0039 is crucial in defining d’s modality [though the
mesh width .002 in (7.3) is not]. For example, A = .0039/2 gives M = 7. This
kind of definitional dependence is important of course, but it has no special
relevance to the regions problem. The analysis which follows could be carried
out in the same way for any choice of A.

One thousand nonparametric bootstrap samples gave the modalities shown
in Table 2. We see, perhaps surprisingly, that there is very little chance of
unimodality, the only substantial alternative being trimodality. With this in
mind, we consider only two regions in what follows:

Hy = {d has 2 or fewer modes} versus

(7.5)
A, = {d has three or more modes},

TABLE 2

Modalities M* of 1000 nonparametric bootstrap density estimates
for the stamp data

Modality 1 2 3 4

Number 4 850 144 2
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called “bimodal” versus “trimodal” for simplicity. Table 2 gives first-order con-
fidence value @ = .854 for #,, or non-confidence 8 =1 — @ = .146.
A nonparametric bootstrap sample x* can be represented by p* = (p3, p3,
.+» Py), where p; is the proportion of bootstrap values x’; equalling the ith
original value x;,

(7.6) p; =#{x =x;}/n fori=12,...,n
The vector p* has a scaled multinomial distribution on n categories,
(7.7) p* ~ Mult, (n, 7)/n, 7=(1,1,...,1)/n;

p* and 7 play the roles of y* and i in the normal model (1.2). We can consider
a nonparametric regional problem in terms of the multinomial family (6.16)
with K = n, where the MLE of 7 is 7 = (1, 1,...,1)/n; see Efron (1987),
Section 8. The multinomial is an exponential family, which allows us to use
the theory of Section 6 for converting & into a second-order accurate confidence
level a.

The triangle in Figure 6 represents the simplex ./, of n-dimensional prob-
ability vectors,

(7.8) !/jlz{p: p; >0 and Zpiz]_}.
i=1

Each probability vector p determines a density

(19) dy) = 3 3 pie( 55,
i=1

this formula agreeing with d* in (7.2) for a bootstrap probability vector p*.
Figure 6 partitions .7, into regions #, and #; corresponding to definition
(7.5). The MLE 7 is in #,, while 146 of the 1000 bootstrap vectors p* fell
into % 1.

Figure 6 shows one of the 146 p* vectors in #;. Also shown is the boundary
point

(7.10) 7o = wp* + (1 —w),

found by the binary search algorithm in Efron, Halloran and Holmes (1996):
starting with w; = .5, we check whether or not w;p* + (1 — w;)7 is in #,.
If it is, then wy = .25; if not, then w, = .75, etc. Twenty steps of the binary
search determines w in (7.10) within 1/22°. Notice that the search process is
metric-free in the sense that the only complltations involve whether or not a
vector p € #,, in this case whether or not d(p) has no more than two modes.

Twenty-five of the 146 p* vectors in #; were selected at random for use in
the second level of bootstrap computations, say p*/) for j =1, 2, ..., 25, each
yielding a boundary vector ﬁéJ ) by the binary search process. Each %éj ) then
gave 400 independently generated second-level bootstrap samples,

(7.11) B ~ Mult,(n, 7”)/n (k=1,2,...,400;n = 485),



THE PROBLEM OF REGIONS 1711

FI1G. 6. Multinomial representation of the multimodality problem; ./, is the probability simplex in
n dimensions; MLE 7™ = (1,1,...,1)/n is in %, the set of probability vectors giving bimodality;
14.6% of the bootstrap vectors p* fall into %, the region of trimodality; each such p* gives a
boundary vector my according to the binary search procedure (7.10).

and an estimate of the bias-correction z,,

(Jk)
=~ () 1 [#(py € Ho)
12 =0 —_—= .
(7 ) 20 { 400

The average of the 25 Eff ) values was -0.152. This says that, in a global
sense, the boundary between %2, and #; curves toward 7, so that @, the
confidence level for bimodality, should be bigger than the confidence value
@=1— B =.854. The average value of the accelerations a{/), computed as
at (7.13) below, was only .006. Using 2, = —.152 and a = .006 in the con-
version formula (6.6) gives B = .089, as shown in the top line of Table 3, so
a=1-p8=.911.

In simple situations such as that of Figure 2, it can be demonstrated that
averaging over the choice of boundary points, 25 of them in this case, pro-
duces second-order accurate confidence levels. There is also a rough Bayesian
justification; see Remark E of Section 8. The main advantage of this tactic is
that it avoids having to calculate a “nearest point” [, or m,. It also provides
a more global picture of the boundary geometry, as further analysis of the
multimodality problem showed.
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TABLE 3
Confidence levels for bimodality, the stamp data*

Region B Zo a B a
Combined trimodal .#; 146 —.152  .006 .089 911
Third mode far right 111 —.264  .008 .042 878
Third mode at .108 .035 202 .002 .080 ’

*Top line assumes a single alternative region #; as in (7.5); bottom
lines partition #; into alternative regions as in text. Both analyses yield
confidence levels for bimodality bigger than the first-order confidence

value @ = 1 — B = .854.

As p passes from %, to #; through boundary point 7, in Figure 6, a third
mode emerges on the density estimate d,(x), say at location s, for point

ﬁéj ). Among the 25 cases, 19 had s(/) > .120, at the far right end of the x-axis

in Figure 5, and for those 19 cases the Egj) values were all negative, averaging
—0.264. The remaining six cases behaved differently, having third mode at
.108, just to the right of the actual second mode in Figure 5, with these éf)J )
averaging +0.202.

In other words, there were two alternative regions for bimodality, one with
the boundary curving toward 7 and the other with the boundary curving away
(as in Example 2 of Section 3 or in the schematic diagram of Figure 3). The
first-order confidence value & = prob-{p* € #,} depends only on %, and not
on how we partition the complement of %,. The second-order answer @ does
depend on the partition, which may be naturally defined as in the C, example
or emerge from the analysis as here. In this case, the bottom lines of Table 3
show that partitioning #, reduces @ from .911 to .878.

Without trying to put too fine a point on our methodology, we can state
the following conclusions: the first-order analysis gives substantial confidence
for bimodality, @ = .85, with trimodality and not unimodality being the only
viable alternative. The second-order analysis suggests that, if anything, & is
too low, a better confidence level being @ in the range .88 to .91.

The values of @ in Table 3 are based on (6.9), which has a simple form in
the nonparametric situation,

n n 3/2
(7.13) a=) 7?Oifgi/[f"\/ﬁ(z ﬁOif%i) }
iz1 i1

t, being an orthogonal vector to # at boundary point 77,, pointing outwards
from %, as in Figure 6. Formula (7.13) comes from the multinomial represen-
tation (7.7) and the Poisson—multinomial connection mentioned after (6.16).
Notice that multiplying #, by any positive constant does not change a. Efron,
Halloran and Holmes (1996) used ¢, = 7, — 7 in (7.13), also replacing 7,; with
1/n, which is easy but not very accurate.
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In this case, it is easy to compute £,. Using the notation of (7.3)~(7.4),
suppose that the density (7.9) corresponding to 7, has its third mode emerging
at s; as we go from %, to #;, with

(714) C’i\k = (z\k_l, (2\]e > &\k-&-l'

(This was the case for all 25 of the selected boundary points 7?(()j ).) Let o, be
the vector with ith element

S, — X; sp—1—x; .
1 L= —_— ") — _ =1 .
(7.15) 0y <P( 5 ) <o< 7 ) i=1,2,...,n

It follows from definition (7.9) that o, is orthogonal to % at 7,, pointing out
of #,, and so £, in (7.13) can be set equal to o, for the estimation of a.

The boundary & in Figure 8 consists of flat facets determined by o}p = 0.
The local curvature of # is zero except where the facets join, but the kind of
global curvature captured by (7.12) is quite substantial. Efron and Tibshirani
(1996), Remark C presents a simple example where this kind of global cur-
vature gives accurate quantitative predictions. Remark F of Section 8 gives a
metric-free algorithm for computing £, in the absence of a theoretical expres-
sion like (7.15).

8. Remarks. We conclude with some remarks.
REMARK A. A third-order bootstrap analysis is possible, based on the idea

of calibration. Working within the normal model y ~ N g (u;1), we first sample
¥ ~ Ng(jg, I) as in (2.9) and then do a second tier of resampling,

(8.1) ¥o ~ Ng(y5, I).
The second-tier quantity
(8.2) a* = prob{yy* € # | ¥4}

is seen to be a bootstrap replication of &, (2.1).
The calibrated value of a is

(8.3) deq = proby {&* < al;

see Hall (1992), Beran (1987) and Loh (1987). The Appendix of Efron and
Tibshirani (1996) shows that, in the context of Section 2, &, is a third-order
accurate estimate of @.

The calibrated confidence level &, is metric-free, third-order accurate and
applies automatically without special programming to any situation. The prob-
lem with using it is the enormous number of bootstrap replications required.
First, we need on the order of 1000 y{ vectors, and for each of these, a compara-
ble number of second-tier replications y;*. This requires checking {y;* € #,}
perhaps 1,000,000 times in all. Also, because &, is defined in terms of frequen-
tist level sets, it can sometimes produce paradoxes of the type encountered in
Example 2.
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REMARK B. In the case where the boundary £ is the level set of a param-
eter 0 = t(un), the curvature of % determines the Welch—Peers uninformative
prior density A*P(u) in the normal family (1.1). Using the notation applying
to (2.29)—(2.30), we have

J - o ~
(8.4) 5 log P (fho + xdo/ || bo )], = 21,

this being true because the authors have shown that (8.4) is equivalent to
Stein’s condition for A¥P(u); see Tibshirani (1989). Note: (8.4) assumes that £,
points away from %, into #;, and that the positive direction for measuring

dy, called u in Figure 2, agrees with £,.

REMARK C. In the C, example, we might set

201
(8.5) D;=Y m+(j+1),

Jj+1

and then define the regions #; by replacing c ; with D ;j in (5.3). This makes
sense because

201
(8.6) Dj=Y pi+(+1)=Eln-80)I%
j+1

where (j) is the MLE of u assuming a polynomial model of degree j, so
A ; now becomes the region of u vectors with 7i(j) having smallest expected
squared error.

Table 4 is the equivalent of Table 1; u still falls into #,, but now there
is increased probability of %5, #,, and decreased probability of #,, #,. The
ABC values z; are V2 times those in Table 1.

REMARK D. The ABC confidence interval theory of DiCiccio and Efron
(1992) evaluates @ and Zz, at w. In Section 2, where we are using hypothe-
sis tests rather than confidence intervals, @ and Z, are evaluated at boundary
points w,. Asymptotically, this causes only a third-order difference that does

TABLE 4
Equivalent of Table 1 if regions defined by (8.5) instead of (5.3)*
Region QO 'Ql gg g4 g2
Model constant linear cubic quartic quadratic
Bj .003 .033 .229 .240 a = .495
20, .354 .000 .000 -.354
[§j .018 .033 .229 .079 a=.641

*Now the cubic and quartic models have greater probabilities, the
constant and linear models less; confidence level @ = .640 for u €
Aquad 1s not much different than before, though & is much smaller.
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not affect the second-order accuracy of our methods. It would be easier to
evaluate a and Zz, at @&, but less appropriate to the objective Bayes theory of
Section 4, and impossible in situations where the boundary is not defined by
a known function 6 = #(u).

The ABC theory is motivated in Efron (1987), Section 2, by assuming that a
monotone transformation ¢ = m(6), ¢ = m(0) produces a normal translation
family, possibly with bias and changing variance,

(8.7) ¢~ N(¢ — zgo4, 03) where g5 =1+ ad.

In this case, the ABC conversion formula (6.6) is exact, with z, = zp and @ = a
evaluated at any value of u.

REMARK E. Frequentist p-values can give misleading results even in prob-
lems having only two regions. Consider again the spherical shell example (2.2),
but now let

(8.8) Ry = {m Il < 61}, Py = {w |l > 61}
The parameter 6 is ||u||. Take 6; = 1.5, K = 2 and suppose we observe y =
= (v/2/4, V/2/4) so that 6 = 0.5. The first-order confidence value is

(8.9) & = prob, (6* < 1.5) = 0.631.

Now the closest point to @ on the boundary between %, and %, is ,L’IO =

(3v/2/4,3+2/4), and the pure frequentist confidence value is prob, ((9* >
0.5) = 0.959. This value is close to 1 because the set {||u| < .5} is so small

that the tail event {0* < 0.5} is not assigned much probability. But & is not
that unlikely when sampling from w,. The Bayes a posteriori probability for
A, is a more reasonable 0.842 under the Weld—Peers prior 1/||u||.

REMARK F. The z, values in Table 5 were obtained by averaging the indi-

vidual Ef)f ) values over the relevant boundary points. There is a rough Bayesian
argument in favor of this tactic. Going back to the normal family y ~ N g(u, I),
suppose ug is a point on the boundary & in Figure 2. The attained significance
level at g, using X, as the test statistic, is

(8.10) a(pg) = PrObuo{Xo <xo} = <1>(x0 - é'\o(Mo)),

with z(ug) = (I)‘l{probﬂo(yﬁ € %)} as in (2.15), (2.21). If instead of a single
point u,, we have a Bayesian distribution £(n) on %, then

a(£) = | (o — Zo(10))é(1o) dpso

= (o) — o(x0) | Zo(k0)E (o) diso.

In other words, we average the Zz, values as in Table 5. [Rather than, say,
averaging ®(z,).] Of course, £(u) is unavailable, but the empirical distribu-
tion of the boundary points obtained from the first-level bootstraps gives a

(8.11)



1716 B. EFRON AND R. TIBSHIRANI

reasonable estimate of &, thought of as the posterior distribution on £ having
observed y.

REMARK G. In most cases, we would not have a formula such as (7.15)
to furnish £, for the computation of a. Here is a metric-free algorithm for
finding #,:

1. Select an orthogonal basis {u;, u,y,...,u,_1} for the (n — 1)-dimensional
subspace orthogonal to 7, — 7.
2. Let v, =7+ eu; fori =1,2,...,n — 1, with ¢ a small value such as .001.

3. Use a one-dimensional search algorithm like that at (7.10) to find v¥ =

wv; + (1 — w)7 on the boundary 4, for i =1,2,...,n — 1.

4. Finally, take £, to be the vector orthogonal to V(l), Vg, ...,Vg_l, and having

positive inner product with 7, — 7.

APPENDIX

The results of Section 2 are based on the Appendix in Efron (1985), and
in particular on this lemma: write z ~ Ng(0,I) as (21, 2(3)), where z) =
(Z(Z)’ 2(3), ey Z(K))/ and let

(A.1) Q(z)=[1+ A(Z(z))]21 + B(2(3)),

A(z(9)) and B(z(y)) being 0,(n"%%). Then the first four cumulants of @ are
(A.2) Q~{E(B),var(B)+ E(1+ A)? 6(cov(A, B)), 12(var(A))} + O(n%/?).
In addition, it was shown that our Figure 2 can always be transformed so that
(A.3) o =0, = (=x,0),

and where the boundary % is approximated near 0 by

(A.4) B = {z: 21 = 2(yyd2(y)].

Hered = d(wy) = d(0) as in (2.15). Using approximation (A.4) causes errors
only at the third level Op(n*?’/ 2). Note: the sign convention in (A.4) is opposite
to that in Efron (1985), in order to accommodate the boundary-oriented theory
of this paper.

PROOF OF (2.19) AND (2.23). Define
(A.5) Q(z) =z — 222) dz),

with d considered as fixed at its observed value. Applying (A.1), (A.2) with
A =0, B=—z4dzgy gives

(A.6) Q(2) ~ {—dy, 1+ 2d5,0,0} + 0,(n~%?),
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using definitions (2.15). In other words, @(z) is approximately normal,
(A7) Q(2) ~ N(=dy, (1+dy)?) + O,(n %),

Result (2.19) concerns first-order bootstrap samples y* ~ N g (i, I). Using
(A.4)—(A.5) gives

(A.8) a = prob; {y* € #,} = probﬁo{Q(y*) < 0}.
Notice that
(A.9) z2=y"+(x9,0) ~ Ng(0, I),

(A.3), so we have

prObﬁO{y’{ — Yo dyp) < 0}

prob{z; — xo — zég) az(2) < 0}
prob{@Q(z) < x¢}

o(3:5)
1+d,
by (A.7), which verifies (2.19).

Lemma 2 involves second-order bootstrap samples y; ~ N g (o, I). Since
o = 0 (A.3), we can take z = yj ~ N (0, I), apply (A.7) and get

(A.10)

(A11) D(Z,) = probo{ys € #} = prob{Q(z) < 0) = cI>< d1A )
1+d,
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