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BREAKDOWN PROPERTIES OF LOCATION M-ESTIMATORS1

By Jian Zhang and Guoying Li

Academia Sinica

In this article, we consider the asymptotic behavior of three kinds
of sample breakdown points. It is shown that for the location M-estimator
with bounded objective function, both the addition sample breakdown point
and the simplified replacement sample breakdown point strongly converge
to the gross-error asymptotic breakdown point, whereas the replacement
sample breakdown point strongly converges to a smaller value. In addition,
it is proved that under some regularity conditions these sample breakdown
points are asymptotically normal. The addition sample breakdown point
has a smaller asymptotic variance than the simplified replacement sam-
ple breakdown point. For the commonly used redescending M-estimators
of location, numerical results indicate that among the three kinds of sam-
ple breakdown points, the replacement sample breakdown point has the
largest asymptotic variance.

1. Introduction. An important concept in robust statistics is the break-
down point, which measures the ability of a statistic to resist the outliers
contained in the data set. The asymptotic and finite sample versions of this
concept are owing to Hampel (1968, 1971) and Donoho and Huber (1983), re-
spectively. The concept was originally used to study the global robustness of an
estimator. Recently, this concept has been improved and extended to other sit-
uations including test statistics, nonlinear regression and test decisions [see,
e.g., He, Simpson and Portnoy (1990), Coakley and Hettmansperger (1992),
Stromberg and Ruppert (1992), Sakata and White (1995) and Zhang (1996)].
There has been much recent interest in positive-breakdown estimators for
location, covariance and regression parameters as well [see, e.g., Rousseeuw
(1994) for a recent survey]. However, there is not much work on the breakdown
points of the location M-estimators with bounded objective functions. These
are important and frequently adopted robust estimators; see Mosteller and
Tukey [(1977), Chapters 10 and 14], Huber [(1981), Section 4.8] and Hampel,
Ronchetti, Rousseeuw and Stahel [(1986), Section 2.6]. A recent application
was provided by Okafor (1990). In this article, we are concerned with the
asymptotic behavior of three kinds of sample breakdown points of location
M-estimators, especially those of the redescending M-estimators.

To motivate the questions studied in this article, we first introduce some
notation. Suppose that X = �x1� � � � � xn� is a sample of size n. We consider
the problem of estimating or testing a hypothesis concerning a p-dimensional
parameter θ� In the following text, T = T�X� denotes an estimator or a test
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statistic of θ� In practical situations, the data set X often suffers from record-
ing errors, transmission errors, “fudging” and so on. So what the data analysts
obtained may not be X, but a contaminated sample, say Y. It seems difficult
to clean Y because the unfortunate data analysts do not know which values
in Y are contaminated [see Coakley and Hettmansperger (1992) for a vivid
description]. There are two approaches to imitating the contamination of a
sample: the replacement contamination and the addition contamination [see
Donoho and Huber (1983)]. Intuitively, the former seems to be more consistent
with what happens in practical situations, but the latter is simpler.

How large is the difference between the sample breakdown points based
on the above contamination approaches? This question of high importance to
data analysts has not been convincingly answered yet. We study this prob-
lem for the one-dimensional location M-estimators. An important finding in
this study is that for the redescending M-estimators of location, the addition
and simplified replacement sample breakdown points are strongly consistent
with the same asymptotic breakdown point, whereas the replacement sample
breakdown point converges to a smaller asymptotic breakdown point. This
implies that, compared with the addition sample breakdown point, the re-
placement is relatively conservative in describing the breakdown robustness
even in the large sample case. Similar results hold for the sample breakdown
points of some tests discussed in Zhang (1996). These results have some nat-
ural extensions to the p-dimensional case.

In the following discussion, we take the replacement contamination as an
example to define the sample breakdown point. Let �m�X� be the set of all Y
which result from replacingm observations inX by any values. For the sake of
notational simplicity, we also let �m denote the class of all measurable vector
maps Y = Y�X� from Rn (the n-dimensional Euclidean space) to Rn which
change at most m components of X� Following Donoho and Huber (1983), for
each subset 0 of Rp (the p-dimensional Euclidean space with the L2 norm
� · ��, we can define the replacement sample breakdown point

ε̂Rn�0� = ε̂Rn�X�T�0�

= 1
n

min�0 ≤m ≤ n	 T�Y� 
∈ 0 for some Y ∈ �m�X���

In the case of location estimation, we choose 0 = �θ0 ∈ Rp	 �θ0 −T�X�� ≤ t0�
with t0 being equal to infinity or some large positive constant. In the case of a
confidence set, if T is used to construct a confidence set, say �θ	 �θ−T� ≤ b��
then we choose 0 = �θ0	 �θ0 −θ� ≤ b�� Similarly, 0 can be found for the situ-
ations considered in Stromberg and Ruppert (1992), Sakata and White (1995)
and Zhang (1996). It is obvious that the variance of ε̂Rn�0� being zero is
equivalent to ε̂Rn�0� being universal (that is, independent of the initial sam-
ple X) almost surely. So, the asymptotic variance of the sample breakdown
point can show the degree of its dependence on the initial sample. The distri-
bution of the sample breakdown point plays an important role in describing
the robust behavior of the corresponding statistical procedures. For example,
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in the case of a confidence set, by the same argument as Zhang (1997), we
can show that the value of the distribution fuction of ε̂Rn�0� at m is just the
maximum of the 1-confidence level over the contamination neighborhood �m�

In the one-dimensional location case, Huber (1984) and Chao (1986) showed
that for the M-estimator with certain unbounded objective function ρ the ad-
dition sample breakdown point (with 0 = R1) is about 1/2 and is indepen-
dent of both ρ and the sample, whereas, for the M-estimator with a bounded ρ
function, Huber (1984) found that the addition sample breakdown point is sur-
prisingly complicated and depends on the shape of ρ, the tuning constant and
the sample configuration. Lopuhaä (1992) gave an extreme example to show,
for the M-estimator with a particular bounded ρ function, that the sample
breakdown point can vary from 1/n to 1/2 because of the different sample
values. A similar phenomenon happens in the case of nonlinear regression
[see, e.g., Stromberg and Ruppert (1992)]. He, Jureková, Koenker and Portnoy
(1990) showed that the monotonicity of the location estimator is a sufficient
condition for ε̂Rn�R1� being universal. Further views on the monotonicity can
be found in Basset (1991) and Rousseeuw (1994). On the other hand, for the
case that 0 
= Rp� the sample breakdown point often depends on the initial
sample, and its distribution is difficult to compute [see Zhang (1996)] even if
the corresponding estimator is monotone. The reason for using ε̂Rn�0� with
0 
= RP is presented in He, Simpson and Portnoy (1990) and Rousseeuw
and Croux (1994). The difficulty in analyzing the dependence of the sample
breakdown point on the initial sample and in obtaining the distribution of the
sample breakdown point can be handled by using an asymptotic theory.

The following two questions are central to asymptotic theory: Which
(asymptotic) distributions do the sample breakdown points follow? How large
are their asymptotic variances? To answer these questions, some alternative
descriptions and variations of the replacement sample breakdown point are
introduced in Section 2. The results of Section 3 show that for the location
M-estimator with certain bounded ρ function, both the addition, simplified
replacement and replacement sample breakdown points are asymptotically
normal. Compared with the simplified replacement sample breakdown point,
the addition sample breakdown point has a smaller asymptotic variance.
Numerical results suggest that the replacement sample breakdown point has
the largest asymptotic variance among the three kinds of sample breakdown
points. The proofs of these results are given in Section 4.

2. Alternative descriptions of breakdown points. The way the sam-
ple breakdown point was defined in the previous section is traditional but
not convenient to developing the asymptotic theory for the sample breakdown
points. In this section, we give some alternative descriptions of the sample
breakdown points which are the bases of the theory in the next section. For
convenience, we consider only the case that p = 1 and 0 = R1�

Let X = �x1� � � � � xn� be a sample of size n from distribution F defined on
a Borel measurable space �R1���, and let T�X� be a statistic. Let Fn be the
empirical distribution based on X. Denote by Xk = �x1� � � � � xk� the first k
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components of X. For Y = �y1� � � � � yk� and Z = �z1� � � � � zl�� denote

Y ∪Z = �y1� � � � � yk� z1� � � � � zl��

For v = 1�2� � � � � write

�v =
{ v⋃
i=1

Ii	 Ii ∩ Ij = �� i 
= j�Ii = �ai� bi� or �ai� bi�� ai� bi ∈ R1�1 ≤ i ≤ v
}
�

For C ∈ �, define

� �C� = {
Y = �y1� � � � � yn�	 yi = xi if xi 
∈X ∩C�yj ∈ R1 if xj ∈X ∩C

}
�

Donoho and Huber’s (1983) addition sample breakdown point ε̂A and re-
placement breakdown point ε̂Rn of T at X are, respectively, of the form

ε̂A = ε̂A�X�T� = ε̂A�X�T�R1�

= min
{

k

n+ k 	 sup
Y∈�k

∣∣T�X ∪Y� −T�X�∣∣ = ∞
}
�

ε̂Rn = ε̂Rn�X�T� = ε̂Rn�X�T�R1�

= min
{
k

n
	 max

D∈�n
#�D∩X�=k

sup
Y∈� �D�

�T�Y� −T�X�� = ∞
}
�

where #�D ∩X� is the cardinal number of D ∩X�
Note that supD∈�n �Fn�D�−F�D�� 
→ 0 [Pollard (1984), page 22]. This makes

ε̂Rn very hard to compute. Fortunately, in the next section for the commonly
used locationM-estimator we can asymptotically reduce �n to �v�where v < n
is a positive constant independent of n� Furthermore, we show that ε̂Rn =
ε̂Rv + op�1/√n�, where for v ≤ n�

ε̂Rv = ε̂Rv�X�T� = ε̂Rv�X�T�R1�

= min
{
k

n
	 max

D∈�v
#�D∩X� =k

sup
Y∈� �D�

�T�Y� −T�X�� = ∞
}
�

For the general case, we introduce the simplified replacement sample break-
down point which is defined by

ε̂SR = ε̂SR�X�T� = ε̂SR�X�T�R1�

= min
{
k

n
	 sup
Y∈Rk

�T�Xn−k ∪Y� −T�X�� = ∞
}
�

This kind of simplification was in Ylvisaker (1977) and Zhang (1996).



1174 J. ZHANG AND G. LI

For T and X, set

m = m�X�T� = min
{
k	 sup

Y∈Rk
�T�Xn−k ∪Y�� = ∞

}
�

m1 = min
{
k	 sup

Y∈Rk
�T�Xn−m ∪Y�� = ∞

}
�

r = min
{
k	 max

D∈�n
#�D∩X� =k

sup
Y∈� �D�

�T�Y�� = ∞
}
�

Then these sample breakdown points have the relationship

ε̂SR�X�T� ≥ ε̂A�Xn−m�T� ≥ ε̂SR�Xn−m+m1
�T��

ε̂Rn�X�T� = ε̂Rr�X�T� ≤ ε̂SR�X�T��
In general, m 
= m1� For example, let T�X� = med�X� and n = 2s − 1� Then
m = s and m1 = s− 1�

To study the asymptotic behavior of these sample breakdown points, we
recall the asymptotic breakdown point ε∗

A based on gross-error neighborhood,
and we introduce another asymptotic breakdown point ε∗

R as follows.
Let � denote the set of all one-dimensional distributions and let F be the

underlying distribution of X. Suppose that the statistic T�X� is a functional
of the empirical distribution, Fn, of X. For notational simplicity, we use the
same T for the functional, that is, T�X� = T�Fn�� For F ∈ � , the gross-error
neighborhood of F is C�F�ε� = ��1−ε�F+εH	 H ∈ � �. Then the asymptotic
breakdown point of T based on C�F�ε� is of the form

ε∗
A = ε∗

A�F�T� = inf
{
ε ≥ 0	 sup

G∈C�F�ε�
�T�G� −T�F�� = ∞

}
�

For C ∈ �, define FR1−C by

FR1−C�A� = F��R1 −C� ∩A�/F�R1 −C� for A ∈ ��

and define Fn�R1−C similarly. Let

CR�F�ε� = {�1 −F�C��FR1−C +F�C�H	 C ∈ ��F�C� ≤ ε�H ∈ �
}
�

CR�F�ε� is increasing in ε and is called the replacement corruption neigh-
borhood of F. The asymptotic breakdown point ε∗

R based on CR�F�ε� can be
expressed as

ε∗
R = ε∗

R�F�T� = inf
{
ε ≥ 0	 sup

G∈CR�F�ε�
�T�G� −T�F�� = ∞

}
�

To find the connection between ε∗
R and ε̂Rn, we introduce a finite-sample

version of the neighborhood CR�F�ε�� For Z = �z1� � � � � zl� ∈ Rl� let H�Z�
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denote the empirical distribution of Z. Define

CR�Fn�k/n� = {(
1 −Fn�C�)Fn�R1−C +Fn�C�H�Z�	 C ∈ ��Fn�C� ≤ k/n�

Z ∈ Rl� l = nFn�C�}

for 1 ≤ k ≤ n� For

Gn = �1 −Fn�C��Fn�R1−C +Fn�C�H�Z� ∈ CR�Fn�k/n��

we denote by xi1� � � � � xil the data points in X ∩ C� Define yj = xj if xj ∈
X ∩ �R1 −C�, yij = zj, 1 ≤ j ≤ l, and Y = �y1� � � � � yn�� Then T�Y� = T�Gn�
and

ε̂Rn = inf
{
k

n
	 sup
Gn ∈CR�Fn�k/n�

�T�Gn� −T�Fn�� = ∞
}
�

Hence, ε̂Rn can be viewed as a finite-sample version of ε∗
R�

3. Asymptotic properties of sample breakdown points. Let X =
�x1� � � � � xn� be an independent and identically distributed sample with com-
mon distribution F�·� = F0�· − θ� and ρ a real function defined in R1. The
location M-estimator T�X� of θ corresponding to a function ρ is defined as
the set of the solutions of the minimization problem

n∑
i=1

ρ�xi −T�X�� = min!�(3.1)

The functional T�·� associated with the M-estimator and defined by (3.1) is
the set of all solutions to the minimization problem

∫ (
ρ�x−T�F�� − ρ�x��dF�x� = min!�(3.2)

Note that M-estimators may not be uniquely determined by the correspond-
ing implicit equation. In this case, all the definitions in the previous sec-
tion are still suitable if T�X� denotes the set of all the solutions and de-
fine �T�X�� = sup��t�	 t ∈ T�X��. In the following text we will study the
M-estimators induced by ρ functions satisfying, respectively, the following
conditions:

(Bρ) ρ�x� attains its minimum −1 at x = 0; ρ is nonincreasing for x < 0 and
nondecreasing for x > 0� Furthermore, ρ�x� → 0 as �x� → ∞�

(Uρ) ρ�x� attains its minimum 0 at x = 0; ρ�x� is symmetric about 0; ρ�x� is
nondecreasing for x > 0 and lim�x� → ∞ ρ�x� = ∞� ψ = ρ′ is continuous in
R1, and there exists x0 ≥ 0 such that ψ is nondecreasing in �0� x0� and
nonincreasing in �x0�∞��

(Cρ) ρ�x� is convex, ψ�x� 	=ρ′�x� exists everywhere and ψ�−∞�<0<ψ�+∞��
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Obviously, any bounded ρ function can be transformed to satisfy −1 ≤ ρ ≤ 0
by a linear mapping. In this sense, all the commonly used redescending M-
estimators of location satisfy the conditions (Bρ). The Huber type location
M-estimators satisfy both conditions (Uρ) and (Cρ�. Also, under (Cρ), (3.1)
and (3.2) are, respectively, equivalent to the problems of solving the equations

1
n

∑
x∈X

ψ�x−T�X�� = 0�
∫
ψ�x−T�F��dF�x� = 0�

3.1. Breakdown points. This subsection continues the works of Huber
(1981, 1984), He, Jureková, Koenker and Portnoy (1990) and Lopuhaä (1992).
For completeness, their results are also included in the following theorems.
Throughout this article �b� denotes the integer part of b and �b� denotes the
smallest integer larger than or equal to b.

Theorem 3.1. Suppose ρ satisfies condition (Uρ). Then for each sample of
size n and 1 ≤ v ≤ n, ε̂A = 1/2 and ε̂SR = ε̂Rv = ��n+ 1�/2�/n�

Theorem 3.2. Suppose ρ satisfies condition (Bρ�. For a given sample X =
�x1� � � � � xn�� set

A0 = 0� Bvn�0 = 0�

Ak = sup
�t�<∞

k∑
i= 1

−ρ�xi − t�� k = 1�2� � � � � n�

Bvn�n−k = min
D∈�v

#�D∩X� =k

sup
�t�<∞

∑
x∈X−X∩D

−ρ�x− t�� 1 ≤ k� v ≤ n�

mn = min
{
k	 k ≥ An−k

}
� rnv = min

{
k	 k ≥ Bvn�n−k

}
�

Let an be an integer satisfying �An� ≤ an ≤ �An� + 1� Then ε̂A = an/�n+ an��
mn/n ≤ ε̂SR ≤ �mn + 1�/n� rnv/n ≤ ε̂Rv ≤ �rnv + 1�/n and ε̂Rn = ε̂Rrnn with
rnn ≤ �n + 3�/2� In addition, if there is a 0 < c < ∞ such that ρ�x� = 0 for
�x� ≥ c� then an = �An�, ε̂SR =mn/n and ε̂Rv = rnv/n�

Theorem 3.3. For ρ satisfying �Cρ�, any sample of size n and 1 ≤ v ≤ n,

ε̂SR = ε̂Rv = ε̂A = min
{ −ψ�−∞�
ψ�∞� − ψ�−∞� �

ψ�∞�
ψ�∞� − ψ�−∞�

}
�

if ψ is bounded, and ε̂A = 1/�n+ 1�� ε̂SR = ε̂Rv = 1/n if ψ is unbounded.

Theorem 3.4 below will give the asymptotic breakdown points of location
M-estimators for the bounded ρ and unbounded ρ in the sense of the gross-
error neighborhood and replacement corruption neighborhood, respectively. To
state this theorem, we define a function B�·� on �0�1� by

B�ε� = inf
C∈��
F�C� ≤ ε

sup
�t�<∞

∫
R1−C

−ρ�x− t�dF�x��
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Denote

ε0 = inf�ε ≥ 0	 ε ≥ B�ε���
Observe that, for ρ satisfying (Bρ), B�0� > 0, B�ε� ≤ 1 − ε and B�ε� is de-
creasing. Thus, it is easy to show that 0 ≤ ε0 ≤ 1/2 and that ε > B�ε� if ε > ε0
and ε < B�ε� if ε < ε0� Therefore, ε0 is the unique solution of the equation
ε = B�ε� if B�ε� is continuous.

Theorem 3.4. (i) Under condition (Bρ), we have ε∗
A�F�T� = A∗/�1 +A∗�

with A∗ = supt∈R1

∫ �−ρ�x− t��dF�x� and ε∗
R�F�T� = ε0�

(ii) If ρ satisfies (Uρ) and
∫ �x�dF <∞� then ε∗

A�F�T� = ε∗
R�F�T� = 1/2�

(iii) Assume that ρ satisfies �Cρ�. If ψ is unbounded, then ε∗
A�F�T� =

ε∗
R�F�T� = 0� If ψ is bounded, then

ε∗
A�F�T� = ε∗

R�F�T� = min
{ −ψ�−∞�
ψ�+∞� − ψ�−∞� �

ψ�+∞�
ψ�+∞� − ψ�−∞�

}
�

The methods used in the proofs of Theorems 3.1–3.4 are similar to Huber
(1984), so the details are omitted here.

3.2. Asymptotic properties. As seen in the previous subsection, under ei-
ther �Uρ� or �Cρ�, ε̂A, ε̂Rv, 1 ≤ v ≤ n, and ε̂SR are nonrandom, and converge
to the same asymptotic breakdown point. However, when ρ satisfies �Bρ�, the
sample breakdown points are random and may have different asymptotic be-
havior which is studied in this subsection. Throughout the remainder of this
paper, →d stands for the weak convergence in the sense of Pollard [(1990),
page 44].

We begin by introducing the following condition for F and ρ:

(Fρ) ρ is centrosymmetric with a derivative function ψ�x� satisfying(∫
ρ�x− τ�dF�x�

)′
= −

∫
ψ�x− τ�dF�x��

∫
�ψ�x− τ��dF�x� <∞�

ψ�x� ≥ 0 for x ≥ 0 and F�·� = F0�· − θ� has density f�x� = f0�x− θ�,
where f0�x� is centrosymmetric, strictly decreasing for x ≥ 0 and con-
tinuous at F−1

0 ��1 + ε∗
R�/2��

At first, we show consistency for ε̂SR, ε̂A and ε̂Rn.

Theorem 3.5 (Consistency). If ρ satisfies condition (Bρ), then for any F ∈
� � both ε̂SR and ε̂A converge to the same ε∗

A almost surely. If F and ρ satisfy
conditions (Fρ) and (Bρ), then ε̂Rn converges to ε∗

R almost surely.

Remark 3.1. It follows from Theorem 3.5 that ε∗
R ≤ ε∗

A. In addition, nu-
merical results show that for the commonly used bounded ρ functions, ε∗

R <
ε∗
A� Thus, Theorem 3.5 suggests that for the location M-estimator with a

bounded ρ� the replacement sample breakdown points may be different from
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both the addition sample breakdown point and the simplified replacement
sample breakdown point in the large sample case.

Theorem 3.6. Suppose that ρ satisfies condition �Bρ� and
∫ �ρ�x − τ1� −

ρ�x − τ2��2 dF → 0 as τ1 − τ2 → 0� Let � = �−ρ�· − τ�	 τ ∈ R1�� Then there
exists an F-bridge W indexed by � [Pollard (1984), page 149] such that

n1/2
(
ε̂A − ε∗

A

) −→d

1
�1 +A∗�2

sup
τ ∈T�F�

W
(−ρ�· − τ�)�

n1/2
(
ε̂SR − ε∗

A

) −→d

1
�1 +A∗�3/2

sup
τ ∈T�F�

W
(−ρ�· − τ�)�

Suppose that F and ρ satisfy conditions (Fρ) and (Bρ), that ρ is continuous
and that there exists an interval �a� b� such that 0 < a < b < ∞� �a� b� ∩
�q∗�∞� 
= � and ψ�x� > 0 for x ∈ �a� b�� where q∗ = F−1

0 ��1 + ε∗
R�/2�. Then

n1/2(ε̂Rn − ε∗
R

) −→d N�0�VR��
where N�0�VR� is a normal distribution with zero mean and variance

VR = 1(
1 − ρ�q∗�)2

{
2
∫ ∞

q∗
ρ2�x�dF0�x� + ε∗

Rρ
2�q∗�

}
− ε∗2

R �

Remark 3.2. (1) If ρ is bounded and continuous, then, as τ1 − τ2 → 0�
∫ (
ρ�x− τ1� − ρ�x− τ2�

)2
dF�x� → 0�

(2) Suppose F and ρ satisfy condition (Fρ). Then T�F� = �θ� is unique and
the limit distributions of ε̂A and ε̂SR are normal with asymptotic variances

VA = 2
∫∞

0 ρ2�x�dF0�x� −A∗2

�1 +A∗�4
� VS = 2

∫∞
0 ρ2�x�dF0�x� −A∗2

�1 +A∗�3
�

respectively.

Obviously, for the ρ functions which have appeared in the literature, such
as the biweight, Hampel, Andrews and tanh functions [see Hampel, Ronchetti,
Rousseeuw and Stahel (1986)], and for the commonly used normal, Laplace
and t distributions, the conditions in Theorem 3.6 hold.

Remark 3.3. Theorem 3.6 indicates that ε̂A has a smaller asymptotic vari-
ance than ε̂SR� The reason is that the behavior of both ε̂A and ε̂SR is deter-
mined by their corrupted samples, respectively. In the case of ε̂A, the sample
size after corruption is n�1 + ε̂A/�1 − ε̂A�� [approximately n�1 +A∗�]. In con-
trast, in the case of ε̂SR the sample size after corruption is still n.
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Table 1
The limits and asymptotic standard variances of ε̂A� ε̂SR and ε̂Rn

Biweight

c 3 4 5 6 7 8 9
ε∗
A 0.4310 0.4577 0.4719 0.4801 0.4852 0.4886 0.4909
ε∗
R 0.3838 0.4260 0.4498 0.4640 0.4730 0.4791 0.4833√
VA 0.0840 0.0546 0.0375 0.0271 0.0203 0.0158 0.0126√
VS 0.1113 0.0741 0.0516 0.0375 0.0283 0.0221 0.0177√
VR 0.1262 0.0894 0.0642 0.0475 0.0363 0.0285 0.0229

Hampel

h1 1 1.31 1.5 2 2.5 3 3
h2� h3 2, 3 2.039, 4 2.5, 5 3, 6 3.5, 7 4, 8 4.5, 9
ε∗
A 0.4415 0.4599 0.4721 0.4817 0.4872 0.4906 0.4919
ε∗
R 0.3996 0.4293 0.4499 0.4668 0.4766 0.4827 0.4852√
VA 0.0740 0.0533 0.0380 0.0259 0.0184 0.0135 0.0116√
VS 0.0990 0.0725 0.0524 0.0360 0.0257 0.0190 0.0162√
VR 0.1153 0.0883 0.0655 0.0461 0.0333 0.0248 0.0212

Andrews

aπ π 4 5 6 7 8 9
ε∗
A 0.4454 0.4645 0.4766 0.4835 0.4877 0.4905 0.4925
ε∗
R 0.4062 0.4372 0.4579 0.4700 0.4776 0.4827 0.4862√
VA 0.0688 0.0467 0.0316 0.0226 0.0169 0.0131 0.0105√
VS 0.0924 0.0638 0.0437 0.0315 0.0236 0.0184 0.0147√
VR 0.1083 0.0781 0.0549 0.0402 0.0305 0.0238 0.0191

tanh
a 2.032 1.22 1.488 0.820 1.194 1.5 1.5
b� c 2.451, 3 1.289, 4 1.55, 4 0.865, 5 1.217, 5 1.8, 6 2, 7
ε∗
A 0.4221 0.4609 0.4646 0.4674 0.4770 0.4957 0.4999
ε∗
R 0.3690 0.4310 0.4372 0.4428 0.4588 0.4920 0.4981√
VA 0.1173 0.0506 0.0481 0.0375 0.0291 0.0060 0.0015√
VS 0.1543 0.0689 0.0657 0.0513 0.0402 0.0084 0.0021√
VR 0.1758 0.0836 0.0810 0.0613 0.0501 0.0109 0.0028

Remark 3.4. Consider the biweight, Hampel, Andrews and tanh ρ func-
tions with tuning constants c, �h1� h2� h3�, a and �a� b� c�� respectively. The
definitions of the derivatives of these functions can be found in Huber [(1981),
pages 100–102] and Hampel, Ronchetti, Rousseeuw and Stahel [(1986),
page 151]. Assume F0 is a normal distribution. Then the asymptotic break-
down points ε∗

A and ε∗
R and the asymptotic standard variances

√
VA,

√
VS

and
√
VR of ε̂A� ε̂SR and ε̂Rn� for different tuning constants, are given in

Table 1.

The numerical results suggest that among the three kinds of sample break-
down points, ε̂Rn and ε̂A have the largest and smallest asymptotic variances,
respectively. The asymptotic variances of these sample breakdown points are
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decreasing functions of c. This implies that in the large sample case the degree
of the dependence of these sample breakdown points on the initial sample is
decreasing in the tuning constants.

Remark 3.5. In principle, the asymptotic approach just developed can be
used to handle the sample breakdown points of the expressions similar to
those in Theorem 3.2. In light of this point, we can obtain the asymptotic dis-
tributions of the replacement sample breakdown points for some tests and the
corresponding confidence intervals in Zhang (1996). The details are omitted
here.

4. Proofs of the main results. In this section, we will prove Theorems
3.5 and 3.6. Lemmas 4.1–4.7 below are auxiliary lemmas. The proofs of Lem-
mas 4.3 and 4.7 are given in the Appendix. The proofs of Remarks 3.1 and 3.2
and Lemmas 4.1, 4.2 and 4.4–4.6 are omitted.

Lemma 4.1. Suppose ρ satisfies �Bρ� and F is continuous. Then, for ε ≥
0� δ ≥ 0� ε+ δ ≤ 1�

0 ≤ B�ε� −B�ε+ δ� ≤ δ�
and for 0 ≤ ε ≤ 1,

B�ε� = lim
v→ ∞ inf

C	F�C� ≤ ε
C∈�v

sup
�t�<∞

∫
R1−C

−ρ�x− t�dF�x��

Lemma 4.2. Define

�v = {
IR1−Dρ�· − t�	 D ∈ �v� t ∈ R1}�

where IR1−D is the indicator function. Then for ρ satisfying �Bρ� and some
nonrandom integers �vn� with vn/n→ 0�

sup
f∈�vn

∣∣∣∣
∫
fdFn −

∫
fdF

∣∣∣∣ → 0

almost surely.

Lemma 4.3. Assume thatF is a continuous distribution and that ρ satisfies
�Bρ�. Then, for a sequence of nonrandom integers �vn� satisfying vn/n→ 0 and
vn → ∞, ε̂Rvn → ε∗

R almost surely.

For t ∈ R1, 0 ≤ ε ≤ 1 and F0 in �Fρ�, set

8�t� ε� =
∫ −F−1

0 ��1+ε�/2�

−∞
−ρ�x− t�f0�x�dx

+
∫ ∞

F−1
0 ��1+ε�/2�

−ρ�x− t�f0�x�dx�
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Lemma 4.4. If F and ρ satisfy (Fρ) and (Bρ), then

B�ε� = 2
∫ ∞

F−1
0 ��1+ε�/2�

−ρ�x�dF0�x��

Furthermore, for ε fixed, if there exists an interval �a� b� such that �a� b� ∩
�F−1

0 ��1 + ε�/2��∞� 
= � and ψ�x� > 0 for x ∈ �a� b�, then 8�t� ε� attains the
maximum only at t = 0.

Lemma 4.5. For ρ centrosymmetric and satisfying �Bρ�, θ ∈ R1 and 0 ≤
k ≤ n,

inf
#�Xθ ∩I� =k

I= �−a� a� or �−a� a�

∑
x∈Xθ−I

−ρ�x� ≤ inf
D∈�n

#�D∩X� =k

sup
�t�<∞

∑
x∈X−D

−ρ�x− t�

≤ inf
#�Xθ ∩I� =k

I= �−a� a� or �−a� a�

sup
�t�<∞

∑
x∈Xθ −I

−ρ�x− t��

where Xθ = �x1 − θ� � � � � xn − θ��

The combination of Lemmas 4.4 and 4.5 leads to the reduction of �n to �1�

Proof of Theorem 3.5. Without loss of generality, we assume the true
parameter θ = 0� Choose a sequence of integers �vn� such that vn/n→ 0 and
vn → ∞� It follows from the left-hand side of the inequality in Lemma 4.5
that

ε̂Rn ≤ ε̂Rvn for vn ≥ 1�

This together with Lemma 4.3 implies that as n→ ∞�
lim ε̂Rn ≤ lim ε̂Rvn = ε∗

R almost surely.

On the other hand, if we let

Snk = inf
#�X∩I� =k

I= �−a� a� or �−a� a�

∑
x∈X−I

−ρ�x��

ε̂0n = min
{
k

n
	 k ≥ Snk

}
�

then it follows from the right-hand side of the inequality in Lemma 4.5 that
ε̂Rn ≥ ε̂0n� By the same argument as Lemma 4.3, we prove that ε̂0n converges
to ε∗

R almost surely. We obtain the desired result for ε̂Rn.
It remains to show the results for ε̂SR and ε̂A. We take ε̂SR as our example

because both terms are similar. At first, we show that∣∣∣∣Ann −A∗
∣∣∣∣ → 0 almost surely(4.1)



1182 J. ZHANG AND G. LI

as n→ ∞� Since∣∣∣∣Ann −A∗
∣∣∣∣ ≤ sup

t

∣∣∣∣ 1
n

n∑
i= 1

−ρ�xi − t� −
∫ (−ρ�x− t�)dF�x�

∣∣∣∣�(4.2)

it suffices to show that the right-hand side of (4.2) converges to zero almost
surely. This follows from Theorem 24 and Lemma 25 in Pollard [(1984), pages
25 and 27] and the fact that the graphs of functions in �−ρ�·−t�	 t ∈ R1� form
a polynomial class of sets [Pollard (1984), page 17]. Set

f�n�k� = n− k
n�1 +A∗�

(
An−k
n− k −A∗

)
�

By Theorem 3.2, (4.1) and the definition of ε̂SR we have

�ε̂SR − ε∗� ≤ sup
0 ≤k≤n

f�n�k� + 1
n

→ 0 almost surely

as n→ ∞� The proof is complete. ✷

Lemma 4.6. Suppose function ρ satisfies the condition �Bρ�. Let

Dn =
{
t ∈ R1	

n∑
i=1

−ρ�xi − t� = sup
τ∈�1

n∑
i=1

−ρ�xi − τ�
}
� n = 1�2� � � � �(4.3)

Then T�F� is a bounded closed set and

sup
t∈Dn

d�t�T�F�� 	= sup
t∈Dn

inf
τ ∈T�F�

�t− τ� → 0 almost surely.

Lemma 4.7. Suppose function ρ satisfies the conditions in the first part of
Theorem 3.6. Denote by C�� �F� the set of all uniformly continuous functionals
with respect to seminorm �∫ g2 dF�1/2 defined on � � Let τn be a sequence of
positive integer-valued random variables with τn/n converging to a positive
constant τ0 in probability. Define

Wn =
{

1
n1/2

n∑
i=1

(
−ρ�xi − t� +

∫
ρ�x− t�dF�x�

)
	 t ∈ R1

}
�

Then C�� �F� is separable and completely regular, and there exists an F
bridge, say �W�g�	 g ∈ � �, whose paths belong to C�� �F� almost surely
and such that Wn →d �W�g�	 g ∈ � � and Wτn

→d �W�g�	 g ∈ � ��

Proof of Theorem 3.6. We begin with the proof of the assertion for ε̂SR�
The key point is applying the representation theorem of random elements
[Pollard (1990), page 45]. First, it follows from Theorem 3.4 and condition
�Bρ� that

�An−m+1 −m� ≤ 1�

�ε̂SR − ε∗
A� ≤

∣∣∣∣mn − A∗

1 +A∗

∣∣∣∣ + 0
(

1
n

)
→ 0 almost surely.
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Hence, as n→ ∞�

n1/2
(
An−m+1

n
− ε∗

A

)

= −n1/2
(
An−m+1

n
− ε∗

A

)
A∗(1 + o�1�)

+ 1
�1 +A∗�1/2

�n−m+ 1�1/2
(
An−m+1

n−m+ 1
−A∗

)
�1 + o�1�� + o�1��

which results in

n1/2
(
An−m+1

n
− ε∗

A

)
= �n−m+ 1�1/2

�1 +A∗�3/2

(
An−m+1

n−m+ 1
−A∗

)(
1 + o�1�) + o�1��

Thus, if

�n−m+ 1�1/2
(
An−m+1

n−m+ 1
−A∗

)
−→d sup

τ ∈T�F�
W

(−ρ�· − τ�)�(4.4)

then, by Theorem 3.4 and Lemma 3.1 in Zhang and Li [(1993), page 329]
as well as the representation theorem of random elements just mentioned,
Theorem 3.6 is proved. To prove (4.4), we assume, without loss of generality,
that there exists an interval �−b� b� which containsDn defined by (4.3) because
of Lemma 4.6. Now from Lemma 4.7 we deduce (4.4).

The proof of the assertion for ε̂A is similar.
The proof of the assertion for ε̂Rn is based on Lemma 4.5. The key step is to

show that the statistics in the left- and right-hand sides of the inequality in
Lemma 4.5 converge weakly to the same distribution by using the functional
limit theorem of noncentral empirical processes [see Lemma 3.1 of Zhang and
Li (1993)]. As before, for simplicity, we assume θ = 0�

At first, we introduce the two distributions, Gn and G, by

Gn�x� = Fn��−x� x��� G�x� = F��−x� x�� for 0 ≤ x <∞�
G−1
n �u� = inf�x ≥ 0	 Gn�x� ≥ u�� G−1�u� = inf�x ≥ 0	 G�x� ≥ u��

for 0 ≤ u ≤ 1� For a ≥ 0� set Ia = �−a� a� or Ia = �−a� a�� For 0 ≤ k ≤ n� define
ank = G−1

n �k/n�, Ink = Iank = �−ank� ank� or Ink = Iank = �−ank� ank� such that
Fn�Ink� = k/n� For notational simplicity, in the following discussion we use
the symbol op�1� to denote any random variable which converges weakly to
zero.

Step 1. Let q∗ = F−1��1 + ε∗
R�/2��

� =
{
τ	

∫
I�x 
∈ Iq∗�(−ρ�· − τ�)dF = sup

�t�<∞

∫
I�x 
∈ Iq∗�(−ρ�· − t�)dF

}
�

�n =
{
τ	

∫
I�x 
∈ Ink1

�(−ρ�· − τ�)dFn = sup
�t�<∞

∫
I�x 
∈ Ink1

�(−ρ�· − t�)dFn
}
�

where I�·� is the indicator of a set, k1 = nβ̂n and β̂n is any function of X
which converges to ε∗

R almost surely. Then, by Lemma 4.4 and the assumption,
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� = �0�� Analogous to Lemma 4.6, we can prove that

sup
t∈�n

d�t�� � → 0 almost surely.

Thus, without loss of generality, t is restricted to �−τ0� τ0� for a sufficiently
large value τ0�

Step 2. To obtain the limit process of

W1n�t� = n1/2
∫
I�x 
∈ Ink1

�(−ρ�x− t�)dFn�x� − cn�q∗� t�� �t� ≤ τ0�(4.5)

where

cn�a� t� = n1/2
∫
I�x 
∈ Ia��−ρ�x− t��dF�x��

k1 = nβ̂n and β̂n is any function of X which converges to ε∗
R almost surely.

Consider the empirical process

W0n�a� t� = n1/2
∫
I�x 
∈ Ia�

(−ρ�x− t�)(dFn�x� − dF�x�)�
�t� ≤ τ0� �a− q∗� ≤ δ�

where Ia = �−a� a� or Ia = �−a� a� and δ > 0 is a constant. By Pollard’s
functional central limit theorem [Pollard (1990), page 53] and the condition
�Bρ�, there exists a Gaussian random element, sayW0�a� t�, �t� ≤ τ0� �a−q∗� ≤
δ� such that

W0n −→d W0

and almost surely the sample paths of W0 are continuous in �a� t�� Note that,
by Theorem 3.5 and that sup0 ≤u≤ 1 �G−1

n �u� − G−1�u�� → 0, we have that
ank1

→ q∗ almost surely. Therefore,
{
W0n�ank1

� t�	 �t� ≤ τ0
} = {

W0n�q∗� t� + op�1�	 �t� ≤ τ0
}
�(4.6)

On the other hand, by Theorem 3.5, ε̂Rn → ε∗
R almost surely. Then, uni-

formly for �t� ≤ τ0�

cn�ank1
� t� − cn�q∗� t�

= n1/2
(∫ −ank1

−q∗
+
∫ q∗

ank1

)(−ρ�x− t�)dF�x�

= −n1/2f�q∗�(ρ�q∗ + t� + ρ�q∗ − t�)[G−1�ε∗
R� −G−1

n �β̂n�
](

1 + op�1�)
= −n1/2f�q∗�(ρ�q∗ + t� + ρ�q∗ − t�)[G−1�ε∗

R� −G−1�β̂n�
]

− n1/2f�q∗�(ρ�q∗ + t� + ρ�q∗ − t�)[G−1�β̂n� −G−1
n �β̂n�

]
× (

1 + op�1�) + op�1�(4.7)
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= �ρ�q∗ + t� + ρ�q∗ − t��
2

× [
n1/2�Gn�q∗� − ε∗

R� + n1/2�β̂n − ε∗
R��1 + op�1��] + op�1��

Substituting (4.6) and (4.7) into (4.5), we obtain that

W1n�t� = W0n�q∗� t� + �ρ�q∗ + t� + ρ�q∗ − t��
2

× [
n1/2�Gn�q∗� − ε∗

R� + n1/2�β̂n − ε∗
R��1 + op�1��� + op�1�

= n1/2
∫ [
I�x 
∈ Iq∗��−ρ�x− t�� + �ρ�q∗ + t� + ρ�q∗ − t��

2
I�x ∈ Iq∗�

]

× �dFn�x� − dF�x��

+ op�1� + n1/2�β̂n − ε∗
R��1 + op�1���ρ�q∗ + t� + ρ�q∗ − t��

2

(4.8)

uniformly for �t� ≤ τ0�

Step 3. Define

Snk = inf
#�X∩I�=k�

I=�−a�a� or �−a�a�

∑
x∈X−I

−ρ�x��

ε̂0n = min
{
k

n
	 k ≥ Snk

}
�

Unk = inf
#�X∩I�=k�

I=�−a�a� or �−a�a�

sup
�t�<∞

∑
x∈X−I

−ρ�x− t��

ε̂1n = min
{
k

n
	 k ≥ Unk

}
�

Letting β̂n = ε̂0n and ε̂1n in (4.8), respectively, and by the definitions of ε̂0n
and ε̂1n� we have

n1/2(ε̂1n − ε∗
R

) = n1/2 sup
�t� ≤ τ0

[∫ [
I�x 
∈ Iq∗�(−ρ�x− t�)

+
(
ρ�q∗ + t� + ρ�q∗ − t�)

2
I
(
x ∈ Iq∗

)]

× (
dFn�x� − dF�x�) + op�1�

+ n1/2�ε̂1n − ε∗
R�(1 + op�1�)

×
(
ρ�q∗ + t� + ρ�q∗ − t�)

2
+ cn�q∗� t�

]

− sup
�t�≤τ0

cn�q∗� t��(4.9)
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n1/2�ε̂0n − ε∗
R� = n1/2

∫ [
I�x 
∈ Iq∗�(−ρ�x�) + ρ�q∗�I�x ∈ Iq∗�]

× (
dFn�x� − dF�x�) + op�1�

+ n1/2�ε̂0n − ε∗
R��1 + op�1��ρ�q∗��

Let

W̃n�t� = n1/2
∫ [
I�x 
∈ Iq∗�(−ρ�x− t�) + �ρ�q∗ + t� + ρ�q∗ − t��

2
I�x ∈ Iq∗�

]

× (
dFn�x� − dF�x�) + op�1�

for �t� ≤ τ0� Let W̃ denote the limit of W̃n� Then, using the representation
theorem, we have a sequence of random elements, say �W∗

n�t�	 �t� ≤ τ0�� αn,
n ≥ 1� and �W∗�t�	 �t� ≤ τ0�� such that W∗

n → W∗, αn → 0 almost surely and
W∗
n, W∗ and αn are the representations of W̃n, W̃ and op�1�, respectively.
Let β0n and β1n be, respectively, the solutions of the equations

β0n = W∗
n�0� + ρ�q∗�β0n�1 + αn��

β1n = sup
�t� ≤ τ0

[
W∗
n�t� + β1n�1 + αn�

(
ρ�q∗ + t� + ρ�q∗ − t�)

2
+ cn�q∗� t�

]

− sup
�t� ≤ τ0

cn�q∗� t��

By using the above equations, the inequality −1 ≤ ρ�t� ≤ 0, the fact that
� = �0� proved in Step 1 and Lemma 3.1 in Zhang and Li (1993), we can
show that (i) �β0n� and �β1n� are bounded sequences and (ii) every convergent
subsequence of �β0n� and �β1n� converges to the solution of the equation

β0 =W∗�0� + ρ�q∗�β0�(4.10)

This implies that both β0n and β1n converge to the solution of the equation
(4.10). Thus, from (4.9), (4.10) and the representation theorem of random ele-
ments, we conclude that n1/2�ε̂0n − ε∗

R� and n1/2�ε̂1n − ε∗
R� converge weakly to

the same limit W̃�0�/�1 − ρ�q∗���
Note that, by Lemma 4.5,

n1/2(ε̂0n − ε∗
R

) ≤ n1/2(ε̂Rn − ε∗
R

) ≤ n1/2(ε̂1n − ε∗
R

)
�

Consequently,

n1/2(ε̂Rn − ε∗
R

) −→d W̃�0�/(1 − ρ�q∗�)�
which follows a normal distribution with zero mean and variance

VR = 1(
1 − ρ�q∗�)2

{
2
∫ ∞

q∗
ρ2�x�dF�x� + ε∗

Rρ
2�q∗�

}
− ε∗

R
2�

This completes the proof. ✷
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APPENDIX

Proof of Lemma 4.3. Let

>n1 = sup
C∈�vn

∣∣Fn�C� −F�C�∣∣�

>n2 = sup
�t�<∞
C∈�vn

∣∣∣∣
∫
R1−C

−ρ�x− t�dFn�x� −
∫
R1−C

−ρ�x− t�dF�x�
∣∣∣∣�

Then

F�C� − >n1 ≤ Fn�C� ≤ F�C� + >n1�

By Lemma 4.2, there exists a subset ?1 with Pr�?1� = 1 such that

>n1 → 0 and >n2 → 0 for w ∈ ?1�(A.1)

For notational simplicity, we still use ε̂Rvn to denote the value of ε̂Rvn at
each fixed w ∈ ?1 below. By the condition �Bρ�, 0 ≤ rnvn/n ≤ �n+1�/2n. Thus,
to complete the proof, it remains to show that every convergent subsequence
of �ε̂Rvn� converges to ε∗

R. Without confusion, we use the same symbol, ε̂Rvn ,
to represent a convergent subsequence of ε̂Rvn with a limit value ε∗� In the
following discussion, we show that ε∗ = ε∗

R�
From (A.1) and the assumption just made it follows that for each δ > 0�

there exists an n0 such that for n ≥ n0,

ε̂Rvn < inf
{

sup
t

∫
R1−C

−ρ�x− t�dF�x�	 F�C� ≤ ε∗ − 3δ
4
�C ∈ �vn

}
+ δ

2
�

ε̂Rvn ≥ inf
{

sup
t

∫
R1−C

−ρ�x− t�dF�x�	 F�C� ≤ ε∗ − 3δ
4
�C ∈ �vn

}
− δ

2
�

Then using Lemma 4.1 and letting n→ ∞ we have

ε∗ ≤ B
(
ε∗ − δ

4

)
+ δ

2
� ε∗ ≥ B

(
δ

2
+ ε∗

)
− δ

2
�

Apply Lemma 4.1 again and let δ→ 0+. Then the desired result follows. ✷

Proof of Lemma 4.7. We give only an outline of this proof because it is a
special case of Zhang (1993). Since ρ satisfies the condition �Bρ� and

∫ �ρ�x−
τ1� − ρ�x − τ2��2 dF�x� → 0 as τ1 − τ2 → 0� it is easy to show C�� �F� is
separable and completely regular [Pollard (1984), page 67]. We construct a
new empirical process

{
1
n1/2

n∑
i= 1

(
−ρ�xi − t� +

∫
ρ�xi − t�dF�x�

)
I�τ≥ i/n�	 t ∈ �1�0 < τ ≤ 1

}
�
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Set

fni�xi� t� τ� = −1
n1/2

ρ�xi − t�I�τ≥ i/n��

!Fn 	=
(

sup
t

�ρ�xi − t��
n1/2

)
1 ≤ i≤n

�

�n = { !fn�t� = (
fni�xi� t� τ�

)
1 ≤ i≤n	 t ∈ �−b� b��0 ≤ τ ≤ 1

}
�

Yn�t� τ� =
n∑
i=1

(
fni�xi� t� τ� −Efni�x1� t� τ�

)
�

From Pollard’s functional central limit theorem [Pollard (1990), page 53], it
can be shown that there exists a Gaussian random element �Y�t� τ�	 t ∈
�−b� b��0 ≤ τ ≤ 1� to which �Yn�t� τ�	 t ∈ �−b� b��0 ≤ τ ≤ 1� converges weakly.
Using the results and Example 9.2 in Pollard [(1990), page 44], we have that
�Yn� τn/n� converges weakly to �Y�τ0� in the sense of Pollard [(1990), page 44].
Combining this with Example 9.5 of Pollard (1990) and the usual truncation
trick for τn, we can show that Wτn

= �n/τn�1/2Yn�·� τn/n� converges weakly to
τ

−1/2
0 Y�·� τ0� in the sense just mentioned. Now the desired result follows from

the fact that the processes τ−1/2
0 Y�·� τ0� and Y�·�1� have the same distribu-

tion. ✷
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