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This paper provides a comparative sensitivity analysis of one-step
Newton–Raphson estimators for linear regression. Such estimators have
been proposed as a way to combine the global stability of high breakdown
estimators with the local stability of generalized maximum likelihood esti-
mators. We analyze this strategy, obtaining upper bounds for the maximum
bias induced by ε-contamination of the model. These bounds yield break-
down points and local rates of convergence of the bias as ε decreases to zero.
We treat a unified class of Newton–Raphson estimators, including one-step
versions of the well-known Schweppe, Mallows and Hill–Ryan GM estima-
tors. Of the three well-known types, the Hill–Ryan form emerges as the
most stable in terms of one-step estimation. The Schweppe form is sus-
ceptible to a breakdown of the Hessian matrix. For this reason it fails to
improve on the local stability of the initial estimator, and it may lead to
falsely optimistic estimates of precision.

1. Introduction. Statistical models are seldom believed to be complete
descriptions of how real data are generated; rather, the model is an approxi-
mation that is useful if it captures essential features of the data. Good robust
methods perform well even if the data deviate from the theoretical model.
The best-known example of this behavior is the outlier resistance and trans-
formation invariance of the median. There have been considerable challenges
in developing good robust methods for more general problems. A major chal-
lenge in regression modeling has been to combine gross stability, that is, a
breakdown point near 50%, with local stability as indicated by a bounded in-
fluence function; see, for example, Ruppert and Simpson (1990) for discussion
and further references.

Several authors have proposed one-step and k-step estimators to combine
local and global stability, as well as a degree of efficiency under the target
linear model. This approach follows from seminal work of Bickel (1975), who
showed that one-stepM-estimators have the same first order asymptotic prop-
erties as fully iterated estimators. Citing a suggestion by Bickel, Jurečková
and Portnoy (1987) proved that the initial estimator need only converge at
a rate op�n−1/4�. They used this fact to provide estimators that retain the
high breakdown point yet improve on the efficiency of the least median of
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squares estimator, which was shown by Rousseeuw (1984) to have breakdown
point equal to 1/2, and for which cube root-n convergence was established
under general conditions by Kim and Pollard (1990) and Davies (1990). Simp-
son, Ruppert and Carroll (1992) and Davies (1993) presented one-step GM-
estimators of the Mallows type to combine local and global stability. Coakley
and Hettmansperger (1993) considered one-step Schweppe-type estimators for
design independent efficiency under the target model, assuming the initial es-
timator to be root-n consistent. In each case the idea was to do one iteration, or
a fixed number of iterations, of a quadratically converging algorithm for GM
estimation. GM estimation is a generalization of maximum likehood estima-
tion and is closely related to the method of generalized estimating equations,
which is finding many applications in biostatistics, econometrics and other
fields.

Recently, Simpson and Chang (1997) studied a unified class of k-step
Newton–Raphson GM-estimators including versions of the preceding pro-
posals as special cases. They established root-n consistency and asymptotic
normality under regularity conditions that depend on the the score function
and regression weights. We provide a complementary sensitivity analysis
of these one-step GM-estimators, comparing stability properties within the
unified class. Based on the theoretical results and numerical computations,
we develop specific recommendations concerning one-step GM-estimators. We
find much to recommend the Hill–Ryan type of estimator, which is essen-
tially a maximum likelihood estimator for a heteroscedastic linear regression
model. In contrast to the well-known Schweppe form, and, to a lesser degree,
the Mallows form, the Hill–Ryan form requires fewer constraints on the
regression design and error distribution.

An important drawback of the Schweppe form, and with an inadequately
weighted Mallows form, is that the inverse Hessian easily breaks down to a
subspace. This causes the one-step estimator to have the same local stability
(or instability) as the preliminary regression estimator. It also leads to a break-
down of the Huber (1967) “sandwich” covariance functional, so that inferences
based on the estimator would lead to falsely optimistic estimates of precision.
Simpson, Ruppert and Carroll (1992) advocated stronger downweighting in
the Mallows case for similar reasons.

The rest of the paper is organized as follows. Section 2 reviews the gen-
eral approach to the sensitivity analysis and some previous results on optimal
sensitivity. Section 3 defines the class of estimators under investigation and
provides results about the regression weights. Problems with the Hessian ma-
trix are treated in Section 4, where we develop and justify an extended defi-
nition of the one-step functional. Section 5 provides the main results on the
global and local stability of one-step GM functionals, while Section 6 presents
a solution to an optimal sensitivity problem. Section 7 provides numerical
comparisons of the bias functions of one- and two-step Hill–Ryan estimators,
as well as the least median of squares functional, the minimax GM functional,
and certain S- and P-estimators. Section 8 provides some further discussion
and recommendations. Proofs for the main results are given in Section 9.
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2. Bias under the contaminated linear model: general sensitivity
analysis. We consider the effects of deviations from the linear regression
model, y = β′x+e, where x ∈ Rp and e are stochastically independent. Under
this model �x�y� has a distribution of the form

Fβ�x0� y0� =
∫ x01

−∞
· · ·
∫ x0p

−∞
G0�y0 − β′x�dH0�x��

The parameter β describes the dependence of y on the different components
of x. Given a random sample �x1� y1�� � � � � �xn� yn� from Fβ, many estimates
of β can be expressed as functionals of the empirical distribution, that is,

�2�1� β̂=T�Fn�� Fn�x0� y0�=n−1
n∑
i=1

1�0�∞��y0−yi�
p∏
j=1

1�0�∞��x0j−xij��

If the data come from the distribution F, then T�Fn� is typically a consistent
estimate of T�F�. Following Huber (1981), Hampel, Ronchetti, Rousseeuw and
Stahel (1986) and others, we study the behavior of T�F� as F departs from
the class �Fβ along ε-contaminations of the form Fβ�ε �= �1 − ε�Fβ + εF∗.
The measure of the stability of the functional is provided by the maximum
bias,

�2�2� bT�ε� = sup
F∗

�T�Fβ�ε� − β��

where � · � is a suitable norm; see Huber (1981). The bias function has been
used by various authors as a way to combine local and global aspects of the
stability of an estimator.

Global stability is often measured by the breakdown point,

�2�3� ε∗T = inf�ε > 0� bT�ε� = ∞�
It indicates how far from the model the estimator becomes completely uninfor-
mative. A positive breakdown point, equivalently a finite maximum bias for
some ε > 0, implies a global stability of the estimator. Equivariant functionals
always have ε∗T ≤ 1/2 if the bias norm is invariant; see, for example, He and
Simpson (1993), Remark 2.3. For further background see Huber (1981) and
Hampel, Ronchetti, Rousseeuw and Stahel (1986).

Example. The least squares estimate corresponds to T�F� = �EF�xx′�−1

×EF�xy�. Because T��1 − ε�Fβ + εFβ+δ = β+ εδ for each ε > 0, the break-
down point, ε∗T, equals 0, as is well known.

To measure the local stability of T we define the sensitivity of order r,

�2�4� γ
�r�
T �= lim sup

ε↓0
bT�ε�/εr�

where 0 ≤ r ≤ 1. If γ�r�T < ∞, then T is locally stable of order r. He and
Simpson (1993) showed that order 1 stability is the best possible for Fisher
consistent functionals.
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Hampel’s (1974) influence function is a widely used heuristic tool for assess-
ing local stability. It uses a slightly narrower class of deviations than contam-
ination bias, restricting to point mass contamination. In our experience, the
main technical challenge in going from an influence analysis to a local analy-
sis in terms of the contamination bias is not the size of the neighborhood, but,
rather, the interchange of the limit in ε and the supremum over the neighbor-
hood; compare Huber [(1981), page 15]. For instance, the existence problem
treated in Section 4 is revealed by the bias analysis, but fails to emerge in an
influence analysis.

Local bias and influence analysis can be compared if we slightly generalize
Hampel’s notion of gross-error sensitivity. He and Simpson (1992) defined the
generalized gross-error sensitivity,

�2�5� γ∗T �= sup
x�y

lim sup
ε↓0

�T��1 − ε�Fβ + ε�x�y −T�Fβ��
ε

�

avoiding the assumption that the influence function exists. They observed that
γ∗T ≤ γ�1�T for any functional T. Thus, an unbounded influence function implies
local instability of order 1, whereas local stability of order 1 implies a bounded
gross error sensitivity. Martin, Yohai and Zamar (1989) showed that bounded
influence GM-estimators are also locally stable of order 1. Yohai and Zamar
(1992) showed that the least median of squares functional is locally stable of
order 1/2.

Few functionals are known to achieve both the optimal O�ε� rate locally
and the optimal global breakdown point with respect to contamination bias.
He and Simpson (1993) and Maronna and Yohai (1993) presented equivari-
ant functionals having contamination bias within a dimension-free factor of
the smallest possible bias for equivariant functionals. He and Simpson (1993)
showed that such functionals forfeit a property they called local linearity.
Roughly, local linearity means a functional has an influence function with fi-
nite second moments under the model. Here we aim to develop reasonable
locally linear functionals with good local stability and optimal global stability,
as measured by the contamination bias. Davies (1993) established an even
stronger form of stability for a locally linear k-step functional. Our goal is to
compare stability properties across a unified class of estimators.

Definition (2.2) extends to other types of deviations from the model, and a
variety of neighborhoods have been used in the literature. Huber (1981) and
Bickel (1981) discussed several possibilities. Donoho and Liu (1988) consid-
ered various distance based neighborhoods. Davies (1993) argued for “weak”
metric neighborhoods. Since the Davies neighborhoods are larger than contam-
ination neighborhoods, stability with respect to those neighborhoods would be
a stronger result than stability with respect to contamination neighborhoods.
Conversely, lack of stability for contamination would imply lack of stability for
the Davies neighborhoods. Here we use the smaller contamination neighbor-
hoods for screening. Contamination neighborhoods are tractible and intuitive,
if somewhat heuristic, but they are sufficient to reveal existence problems
with poorly chosen one-step estimators.
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3. K-step GM-estimators. GM-estimators include many well-known re-
gression estimators, for instance, ordinary least squares, weighted least
squares, minimum L1 distance, Huber’s (1973) regression M-estimate, Mal-
lows’ (1975) generalizedM-estimate, the efficient bounded–influence estimate
of Krasker and Welsch (1982) and the locally linear regression estimates
studied by Cleveland (1979), Fan (1992) and others.

A unified class of GM-estimators consists of functionals of the form β̂ =
T�Fn� with

�3�1� T�F� �= argmin
t∈Rp

EF

[
ρ

{
y− t′x

S�F�w�x�H�α
}
w�x�H�1+α

]
�

where ρ is an even function such that ρ��r�� is nondecreasing in �r�, S�F� is a
residual scale functional and the weights w depend only on the marginal dis-
tribution of x. If w�x�H� ≡ 1 we obtain the Huber (1973) M-estimates, which
have unbounded influence functions. Weighted estimates with α = −1�0�1
correspond to the well-known Hill–Ryan, Mallows and Schweppe forms, re-
spectively; see Hampel, Ronchetti, Rousseeuw and Stahel (1986).

If ρ has a bounded derivative and the weights decrease to zero at least as
fast as �x�−1 as �x� increases, then theGM-estimator has a bounded influence
function. Despite good local stability, GM-estimators have breakdown points
that decrease to zero as the dimension p becomes large [Maronna, Bustos and
Yohai (1979)]. They cannot achieve the optimal global stability. To address this
deficiency we consider one-step GM functionals.

We need a preliminary regression functional, T0�F�, and residual scale
functional S�F� which are both equivariant, that is, if �y�x� has distribution
F and F∗ is the distribution of �y∗� x∗�, where y∗ = ay+ b′x, x∗ = Ax, where
a ∈ R, b ∈ Rp and A is a p × p matrix, then T0�F∗� = �A′�−1�aT0�F� + b�
and S�F∗� = �a�S�F�. Further conditions on S and T0 are given below. In the
numerical calculations of Section 7, we take T0�F� to be the LMS functional,
and we take S�F� to be the median absolute deviation (MAD) of residuals
from T0�F�, scaled to be consistent under the normal model.

Assume ρ�x� is twice differentiable with first and second derivatives ψ�x�
and ψ̇�x�. Then the Newton–Raphson and Scoring algorithms iterate according
to T1�F� �= T0�F� − )̇0�F�−1)0�F�, where

�3�2� )0�F� = S�F� EF
[
ψ

{
y−T0�F�′x
S�F�w�x�H�α

}
w�x�H�x

]
�

where H is the marginal distribution of x under F, and where )̇0�F� is one
of the following:

�3�3�
)̇nr

0 �F� = −EF
[
ψ̇

{
y−T0�F�′x
S�F�w�x�H�α

}
w�x�H�1−αxx′

]
�

)̇sc
0 �F� = −EF

[
ψ̇

{
y−T0�F�′x
S�F�w�x�H�α

}]
EH�w�x�H�1−αxx′��

Iterating a fixed number of times leads to k-step GM-estimators.
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Remark 1. In order for the scoring algorithm to have the accelerated con-
vergence of Newton–Raphson, it is essentially necessary that w�x�H�−α�y −
β′x� be stochastically independent of x. If α = 0, this condition implies a ho-
moscedastic linear regression model, but if α �= 0, it implies a nonstandard
heteroscedastic model. Simpson, Ruppert and Carroll (1992) observed that
Newton–Raphson with a monotone score function appears more robust to het-
eroscedasticity. In the sequel we restrict to Newton–Raphson and monotone ψ.

Under sufficient regularity conditions, the k-step GM-estimators have the
same first-order asymptotic theory as fully iterated GM-estimators. Results of
this kind have been known at least since the work of Bickel (1975). Simpson
and Chang (1997) provided an asymptotic result of this type for the general
class of estimators described in (3.2) and (3.3). From Huber’s (1967) theory of
M-estimation, they noted that we may estimate the covariance of β̂ = T�Fn�
by the sandwich functional, V0�Fn�, where

�3�4� V0�F� = )̇0�F�−1+0�F�)̇0�F�−1�

and

+0�F� = S2�F�EF
[
ψ2
{
y−T0�F�′x
S�F�w�x�H�α

}
w2�x�H�xx′

]
�

see also Simpson, Ruppert and Carroll (1992) and Coakley and Hettmansper-
ger (1993).

We require the weights to have certain invariance properties so that the
regression estimator will be equivariant. Thus, we consider weights of the
form

�3�5� w�x�H� = w��x−m�H��C�H��
where H is the distribution of x, m�H� and C�H� are location and scatter
equivariant functionals and �x�A �= �x′A−1x�1/2 for a symmetric positive defi-
nite matrixA. Suppose B is a p×p nonsingular matrix, b is a vector, and H̃ is
the distribution of Bx+b, where x ∼H. Then we assumem�H̃� = Bm�H�+b
and C�H̃� = BC�H�B′.

Remark 2. If the regression model lacks an intercept, then the one-step
GM-estimator is regression equivariant without the centering in (3.5). If x
has constant and binary components, then the weighting scheme should be
modified. For instance, let �b1� � � � � bq be a linearly independent basis for the
space orthogonal to the span of the constant and binary components of x, let
B = �b1� � � � � bq�, set z = B′x, and replace x by z in (3.5).

In the analysis, we will make the following assumption about the func-
tion w.

Assumption A. The weights are of the form (3.4), where m and C are
location and scatter equivariant, and where w�u� satisfies (i) 0 < u < v < ∞
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implies 0 < w�v� ≤ w�u� ≤ k0 for some k0 < ∞; (ii) w�u��u�κ ≤ k1 for some
κ ≥ 1 and k1 < ∞; (iii) w�u� is continuous and (iv) limu→∞w�u�uκ = k2 for
some finite k2 > 0.

Example. A convenient class of weight functions satisfying A(i)–(iv) uses
w�u� = 1/�c+ �u�κ�, where c > 0 and κ ≥ 1.

Assumption A(ii) implies a downweighting of distant x’s to limit their in-
fluence on the fit of the linear model to the central portion of the data. If
the regression function is assumed to be only locally linear, then more se-
vere downweighting is common; see, for example, Fan (1992). In addition to
the influence-localizing effect of the weights, we require the residual score
function to be bounded and relatively smooth. The following conditions are
workable for Newton–Raphson.

Assumption B. (i) ψ�u� is bounded, increasing, differentiable and odd,
with a bounded, continuous derivative ψ̇�u� > 0 for −∞ < u < ∞ and (ii) ψ̇
has a bounded, continuous derivative ψ̈.

To analyze regression functionals, we use the maximum bias of (2.2) with
the invariant norm �T−β�C0

�= ��T−β�′C−1
0 �T−β�1/2, where C0 = C0�H0�

is an equivariant scatter functional. If the uncontaminated design distribu-
tion has a finite positive definite covariance matrix, then we may set C0 =
CovH�x� without loss of generality. Equivariance of T implies that bT�ε� =
supF∗ �T�F0� ε�� if H0 is standardized so that C0 = Ip.

The bias of the one-step functional depends on the bias of the initial esti-
mate T0, the scale functional S, and the location and scatter functionals for
x. We separate the bias of S into two parts, b−S�ε� �= S�F0� − infF∗ S�Fε�
and b+S�ε� �= supF∗ S�Fε� − S�F0�. Define ε+S �= inf�ε� b+S�ε� = ∞ and
ε−S �= inf�ε� b−S�ε� = S�F0�. The breakdown point is the smaller of the two.
See He (1989), Martin and Zamar (1989) and Rousseeuw and Croux (1994)
for further discussion of breakdown of scale estimation. Here the scale es-
timate is applied to residuals from a preliminary fit. It will have the same
breakdown point as the pure scale estimator if the preliminary regression es-
timator has a breakdown point at least as large as that of the preliminary scale
estimator.

Let Hε = �1 − ε�H0 + εH∗ be the marginal distribution of x under the
contamination model in which H∗ is allowed to vary arbitrarily. Define the
equivariant bias functions

bm�ε� �= sup
H∗

�m�Hε� −m�H0��C�H0�

and

bC�ε� �= sup
H∗

∣∣λ1/2
max�C�H0�C�Hε�−1 − 1

∣∣+ ∣∣λ1/2
max�C�Hε�C�H0�−1 − 1

∣∣�
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where λmax�A� is the maximum eigenvalue of the matrix A. Also define the
matrix norm �A� �= sup�u�=1 �Au�. IfA is a symmetric matrix then λmax�A� =
�A�.

In order for T1 to be locally stable of order 1, we need T0�F� to be locally
stable of order at least 1/2, and we need S, m and C to be globally stable.
Global stability of T1 follows from the global stability of T0, S, m and C.
Examples for T0 and S include least median of squares, the S-estimators of
Rousseeuw and Yohai (1984), the τ-estimates of Yohai and Zamar (1988) and
the M-estimators with auxiliary scale studied by Yohai and Zamar (1997).
These are known to have bias of order ε1/2 as ε ↓ 0. Examples for m and C
include the multivariate S-estimates studied by Rouseeuw and Leroy (1987),
Davies (1987) and Lopuhaä (1989), the P-estimators of Maronna, Stahel and
Yohai (1992), and a locally and globally stable scatter functional developed
by Davies (1992). Robust multivariate location and scatter is by no means a
settled issue; see, for example, Rocke (1996) and Kent and Tyler (1996).

Under Assumption A we can relate properties of the regression weights to
the bias of the location and scatter functionals. Letmε =m�Hε�, Cε = C�Hε�,
and wε�x� = w��x−mε�Cε�. The assumptions about w imply that if a ≤ κ then

�3�6�
wε�x��x�a ≤ min

(
k0�

k1

�x−mε�κCε

)
��mε� + �x−mε��a

≤ k0�dκ + �κ�ε�a�

where dκ = �m0� + �k1/k0�1/κλ
1/2
max�C0�, and �κ�ε� = λ

1/2
max�C0��bm�ε� +

�k1/k0�1/κbC�ε�. As long as the location and scatter functionals for x are
globally stable, the weights satisfy

�3�7� sup
0≤ε≤δ

sup
x
wε�x��x�a <∞ if 0 ≤ δ < min�ε∗m� ε∗C��

Because w is decreasing on �0�−∞�, we can bracket the weight function as
follows:

�3�8� 0 < w−
ε �x� ≤ w��x−mε�Cε� ≤ w+

ε �x� ≤ k0�

where w−
ε �x� = w���x − m0�C0

+ bm�ε��1 + bC�ε�� and w+
ε �x� = w���x −

m0�C0
−bm�ε�+ �1+bC�ε�−1�. We need the the following additional properties.

Proposition 1. Assume the weight function satisfies condition A. If δ <
min�ε∗m� ε∗C� then

sup
0≤ε≤δ

sup
x

�wε�x�/w0�x� <∞ and sup
0≤ε≤δ

sup
x

�w0�x�/wε�x� <∞�

If in addition bm�0+� = bC�0+� = 0, then limε↓0 supx �wε�x�−w0�x��/w0�x� = 0
and limε↓0 supx �wε�x� −w0�x��/wε�x� = 0.
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4. Generalized one-step functionals. A serious problem arises in the
analysis of some of the one-step estimators. If the weights and α are such
that w�x�1−α�x�2 is unbounded, then the Hessian matrices in (3.3) may break
down for arbitrarily small amounts of contamination. Of course, this need not
cause the estimator to break down, since the estimator reverts to the initial
estimator if the inverse Hessian is a zero matrix. However, it implies that a
direct analysis of the one-step functional is not available. In order to prop-
erly define an extended version of the one-step functional when the Hessian
breaks down, we replace the general distribution F in (3.3) by an empirical
distribution sampled from F. The expectation with respect to the empirical
distribution sampled from any proper distribution exists with probability 1.
We therefore define the functional for weakly convergent sequences of empir-
ical distributions. The limiting form provides an appropriate generalization
of the one-step functional, which we then use in the sensitivity analysis of
Section 4. If w�x�1−α�x�2 is bounded, then the limiting form reduces to the
previously defined one-step functional.

Suppose �x′� y�′ are jointly distributed according to F, and let H be the
marginal distribution function of x. Under the assumptions about w and ψ,
we can define

�4�1� d �=
[
ψ̇

{
y−T0�F�′x
S�F�w�x�H�α

}
w�x�H�1−α

]1/2

x�

In order to extend the definition of the one-step estimator, we construct a
rotation of z that separates the components with finite second moments from
those lacking finite second moments. Define

� �F� = �ν ∈ Rp� such that EF�ν′d�2 <∞�
Then � is a subspace of Rp of dimension, say, h = h�F� ∈ �0� � � � � p. If
h = 0, then T1�F� = T0�F�. If h ≥ 1, let k = k�F� = p−h�F�, let U1�F� be a
p×k matrix whose columns form an orthonormal basis for � ⊥ and let U2�F�
be a p × h matrix whose columns form an orthonormal basis for � . Then
U = �U1 U2� is an orthogonal rotation matrix such that U′U = UU′ = Ip,
and �s′ t′�′ �= �d′U1 d

′U2�′ = U′d is a rotation of d such that:

1. E�λ′s�2 = ∞ for all λ �= 0, λ ∈ Rk;
2. E�t2i � <∞, 1 ≤ i ≤ h.

We may therefore define the functional

�4�2� R�F� =
{

0pp� if h�F� = 0�

U2�F��EF�U2�F�′dd′U2�F��−1U2�F�′� if h�F� > 0�

where 0ij is the i × j matrix with all elements equal to zero, provided we
requireE�t t′� to be positive definite if h > 0. The extended one-step functional
is given by

�4�3� T1�F� = T0�F� +R�F�)0�F��
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If )̇0�F� exists; that is, h = p, then the definition in (4.3) agrees with the one
given in (3.3).

In the sequel we replace the one-step functional by the more general func-
tional in (4.3). However, in order to justify that this is a proper interpretation
of the one-step functional when h�F� > 0, we need the continuity property
established in the following theorem.

Theorem 1. Let Fn be the empirical distribution for a random sample,
�x1� y1�� � � � � �xn� yn�, from F. Suppose Assumptions A and B(i) hold. Suppose
z and U2 are as described above. If h > 0, assume EF�U2�F�′dd′U2�F� is
positive definite. Then limn→∞�)̇0�Fn�−1 = −R�F� a.s.

If h�F� < p in (4.2), then we have a breakdown of the Hessian functional
used in the updating algorithm. According to Theorem 2 of Section 5, this in
itself does not cause a breakdown of the one-step estimator. However, if the
Hessian breaks down, then the one-step fails to improve the local stability of
the preliminary estimator. Thus, one would need to use a locally stable pre-
liminary estimator. Perhaps more importantly, the covariance estimate in (3.4)
breaks down to a subspace under arbitrarily small amounts of contamination.
Thus, if κ�1 − α� < 2 and there are extreme design points, the sandwich esti-
mate may lead to an over-optimistic assessment of precision. Simpson, Rup-
pert and Carroll (1992) referred to this phenomenon as variance breakdown.

5. Sensitivity analysis of k-step estimators. Armed with the exten-
sion given in Section 4, we state our main results concerning the local and
global bias of the one-step estimator. Denote the gross-error sensitivity of the
fully iterated GM-estimator by

γ∗GM = S�F0� sup
x�y

∣∣ψ{w0�x�−αy/S�F0�
}∣∣�w0�x�A−1

0 x��

where A0 = E0�ψ̇�w0�x�−αy/S�F0�w0�x�1−αxx′�. We require the following
additional conditions.

Assumption C. E0�w0�x�1−α�x�2 < ∞ and E0�w0�x�1−αxx′ is positive
definite.

Assumption D. Here bT0
�0+� = bS�0+� = bm�0+� = bC�0+� = 0, and

F0�y�x� is a symmetric distribution.

Assumption E. κ�1 − α� ≥ 2 and E0�w0�x�1−2α�x�3 <∞.

Theorem 2. (i) Under Assumptions A, B and C there are nonnegative func-
tions A�ε� and B�ε�, bounded on �0� δ� for δ < min�ε∗T0

� ε∗S� ε
∗
m� ε

∗
C�, such that

bT1
�ε� ≤ A�ε�bT0

�ε� + εB�ε�γ∗GM�
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(ii) If, moreover, D is satisfied, then

lim sup
ε↓0

A�ε� ≤ 1 and lim sup
ε↓0

B�ε� ≤ 1�

and, if β is one-dimensional, then lim supε↓0�A�ε� +B�ε� ≤ 1.
(iii) If, furthermore, E is satisfied, then A�ε� = O�ε� + o�bT0

�ε� as ε ↓ 0.

As an immediate corollary we obtain a lower bound for the breakdown point
of T1.

Corollary 1. Under the conditions of Theorem 2(i), ε∗T1
≥ min�ε∗T0

� ε∗S�
ε∗m� ε

∗
C�.

Under slightly stronger conditions we obtain an upper bound for the order
r sensitivity.

Corollary 2. Let T0 be locally stable of order r. Then under the conditions
of Theorem 2(ii), T1 is also locally stable of order r and

γ
�r�
T1

≤


γ
�r�
T0
� if 0 < r < 1�

γ
�1�
T0

+ γ∗GM� if r = 1�

If β is one-dimensional, then γ
�1�
T1

≤ max�γ�1�T0
� γ∗GM�.

Consequently, if any iteration is locally stable of order r, then subsequent
iterations are locally stable of order at least r. Under a stronger condition on
the weights, we find that iteration can improve the order of stability from 1/2
to 1.

Corollary 3. Let T0 be locally stable of order at least 1/2. Then under the

conditions of Theorem 2(iii), T1 is locally stable of order 1 and γ
�1�
T1

= γ∗GM.

6. Optimal local sensitivity. Suppose F0�y�x� is a symmetric distribu-
tion and H0�x� is spherical. Then the GM-estimator with the smallest sensi-
tivity atF0 has an influence function proportional to sign�y�x/�x�; see Martin,
Yohai and Zamar (1989). He and Simpson (1993) showed that this functional
has optimal sensitivity over a larger class, namely, the locally linear function-
als; see their Definition 2.1. We show that a one-step Hill–Ryan type estimator
can have sensitivity arbitrarily close to the lower bound for locally linear func-
tionals, which was given by He and Simpson (1993).

Define the weight function wc�u� = �c+ �u��−1, which satisfies Assumption
A with k0 = c−1, k1 = k2 = 1 and κ = 1. Let τc�x� = c tanh�x/c�. This
is an odd function that is strictly increasing from zero to c as its argument
increases from zero to ∞. Its first two derivatives are τ̇c�x� = 1 − tanh2�x/c�
and τ̈c�x� = −�2/c� tanh�x/c��1− tanh2�x/c�, both of which are bounded and
continuous. Thus τc satisfies Assumption B.
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We consider a one-step Newton–Raphson functional as given in (3.2) and
(3.3) with α = −1, ψ�x� = τc�x�, and weights as in (3.4) withw�u� = wc�u�. As-
sume that S�F0� = 1, m�H0� = 0 and C�H0� = Ip, where H0 is the marginal
distribution of x under F0. As k�1 − α� = 2, Corollary 3 implies that the
sensitivity of the one-step Hill–Ryan estimator is no larger than

�6�1� γ∗c = c sup
x

{
wc��x���A−1

c x�
}
�

where Ac = E0�τ̇c�wc��x��yw2
c��x��xx′�.

Theorem 3. Suppose that F0�x�y� has the conditional density f0�y�x� =
f0�y� almost surely, which is independent of x. Suppose f0 is symmetric about
zero and differentiable, and set φ�y� = �d/dy� log�f0�y�. Assume E0�φ�y�� <
∞, E0�x� <∞ and P0��x� = 0� = 0. Assume H0�x� = F0�x�∞� is spherical.
Then

�6�2� lim
c↓0
γ∗c =

p

E0�φ�y��E0�x�
�

The limit in (6.2) equals the lower bound for locally linear functionals in
this setting; see He and Simpson (1993), Section 5.1. Hence, the sensitivity of
the one-step Hill–Ryan estimator can be arbitrarily close to the optimum for
locally linear functionals.

Remark 3. This Hill–Ryan weighting method may be motivated by a
heavy-tailed, heteroscedastic regression model in which the scale depends on
the design, with larger scales being associated with more disparate regions of
the design space. Such a model is one way to conceptualize uncertainty about
the linear model in the extreme regions of the design space.

7. Numerical comparisons. To illustrate the effects of iteration we com-
puted the maximum bias of one- and two-step GM-estimators for point mass
contaminations. The initial regression estimator was Rousseeuw’s (1984) least
median of squares (LMS) estimate. For the scale estimate we used the median
absolute deviation (MAD) of LMS residuals and for the covariance of x we used
a P-estimator proposed by Maronna, Stahel and Yohai (1992).

We considered point mass contamination of a model specifying that x1� � � � �
xp� y are independent N�0�1� random variables, so β = 0. Because of the
spherical symmetry, we need only consider point mass contaminations of the
form �x0�0� � � � �0� y0�.

Exact expressions for the LMS functional and scale functional were ob-
tained as follows. Let F0 be the distribution x = �x1� � � � � xp� y�, a vector
of p + 1 independent N(0,1) random variables. We compute T0�x0� y0� =
T0�Fx0�y0

�, where T0 is the LMS estimate andFx0�y0
= �1−ε�F0+εδ�x0�0···0� y0�.

It can be shown that the first component of T0�x0� y0� is independent of p,
and the remaining components are all zero. It is therefore sufficient to consider
p = 1.
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Let Q�β�u� = Px0� y0
���y− βx�� ≤ u, where Px0� y0

is the probability mea-
sure corresponding to Fx0� y0

for p = 1. Then

Q�β�u� =
{
�1 − ε��2@�u/�1 + β2�1/2 − 1�� if u < �y0 − βx0��
�1 − ε��2@�u/�1 + β2�1/2 − 1� + ε� if u ≥ �y0 − βx0��

Define d1 = @−1��3/4 − ε�/�1 − ε�, d2 = @−1��3/4 − ε/2�/�1 − ε� and
M�β�x0� y0�, the median of �y− βx� under Fx0�y0

. Then

M�β�x0� y0�

=



d1�1 + β2�1/2� if �y0 − βx0� ≤ d1�1 + β2�1/2�

d2�1 + β2�1/2� if �y0 − βx0� ≥ d2�1 + β2�1/2�

�y0 − βx0�� if d1�1 + β2�1/2 ≤ �y0 − βx0� ≤ d2�1 + β2�1/2�

(7.1)

Let β0 be the solution of the equation d2
1�1+β2� = �y0−βx0�2 which is closest

to 0. Observe that for �y0� ≥ d1 this equation has a solution. Then using (7.1),
and the fact that T0�x0� y0� = T0�Fx0� y0

� = argminβM�β�x0� y0�, it is easy
to show that

�7�2� T0�x0� y0� =




0� if �y0� < d1�

β0� if d1 ≤ �y0� ≤ d2�

β0� if �y0� > d2 and d1�1 + β2
0�1/2 ≤ d2�

0� if �y0� > d2 and d1�1 + β2
0�1/2 > d2�

Let S�x0� y0� = 1�4826M�T0�x0� y0�� x0� y0, the MAD scale of the LMS resid-
uals. Then from (7.1) and (7.2) we get

S�x0� y0� =




1�4826d1� if �y0� < d1�

1�4826d1�1 + β2
0�1/2� if d1 ≤ �y0� ≤ d2�

1�4826d1�1 + β2
0�1/2� if �y0� > d2 and d1�1 + β2

0�1/2 ≤ d2�

1�4826d2� if �y0� > d2 and d1�1 + β2
0�1/2 > d2�

In addition to our exact expressions for LMS and the scale functional, an
exact formula for the covariance C�x0� y0� is available from Maronna, Stahel
and Yohai (1992). Given these expressions, we computed the one- and two-
step functionals by insertion into the Newton–Raphson formula, as described
in Section 3. The latter expression involves expectations with respect to y, x1
and z =∑p

i=2 x
2
i . The expectations were computed by Monte Carlo integration

using 10,000 replications. In particular, we computed

Tk�x0� y0� = Tk��1 − ε�F0 + εδ�x0�0�����0� y0��
where Tk is the k-step Hill–Ryan estimator with c = 0�2. Then for selected ε,
we computed

�7�3� B∗
k�ε� = sup

x0� y0

�Tk�x0� y0��� k = 1�2�
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Table 1
Maximum biases of one-step estimates

p �∗ � � 0�05 � � 0�10 � � 0�15 � � 0�20

2 2.49 0.20 0.52 0.91 1.36
3 2.96 0.23 0.58 0.97 1.44
4 3.15 0.26 0.62 1.01 2.21
5 3.48 0.29 0.64 1.05 3.19

10 4.89 0.34 0.73 1.92 5.12
15 6.54 0.39 1.06 2.94 7.93
20 7.66 0.42 1.27 3.35 8.44

We approximated the supremum in (7.3) by the maximum over a grid search
on �x0� y0�.

Table 1 gives the values for B∗
1 for selected amounts of contamination,

whereas Table 2 gives values for B∗
2. For comparison, Table 3 contains re-

sults for the minimax GM-estimator, using a P-type covariance estimator for
x, and Table 4 summarizes results for LMS, the minimax S-estimator, and
two types of P-estimators. The one- and two-step estimators are clearly com-
promises between the initial estimator (LMS) and the GM-estimator towards
which they iterate. The one-step is closer to LMS, but improves substantially
on small-ε, small-p performance of LMS. Although locally and for small p,
the one-step does not do quite as well as the GM-estimator, it improves sub-
stantially on the bias of the GM-estimator for larger p and ε. The two-step
estimator is more similar to the GM-estimator, with comparable small-ε bias.
It eliminates the technical breakdown of the GM-estimator seen in Table 3.
For ε = 0�2 and p ≥ 15, however, its large bias indicates near breakdown.

In the example presented, the one-step–two-step strategy eliminated or re-
duced the impact of the worst features of the initial and GM-estimators: the
local instability of LMS and the low breakdown point of the GM-estimator.
We expect similar benefits with other choices of initial estimator and GM-
estimator. Although the number of iterations had no effect on the sensitivity,
it clearly had an impact on the bias for larger amounts of contamination. Fur-

Table 2
Maximum biases of two-step estimates

p �∗ � � 0�05 � � 0�10 � � 0�15 � � 0�20

2 2.49 0.13 0.31 0.66 1.15
3 2.96 0.14 0.38 0.79 1.54
4 3.15 0.17 0.45 0.93 2.13
5 3.48 0.20 0.52 1.21 3.29

10 4.89 0.29 0.86 2.50 7.50
15 6.54 0.41 1.33 4.71 16.65
20 7.66 0.50 1.82 6.52 20.65
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Table 3

Maximum biases of the minimax GM-estimates with P-type covariance
matrix estimates

GM-estimates

p �∗ � � 0�05 � � 0�10 � � 0�15 � � 0�20

2 2.00 0.10 0.27 0.47 0.83
3 2.35 0.15 0.34 0.67 1.72
4 2.67 0.17 0.43 0.92 ∞
5 2.94 0.18 0.49 1.29 ∞

10 4.06 0.27 0.83 ∞ ∞
15 4.94 0.33 1.30 ∞ ∞
20 5.66 0.41 2.31 ∞ ∞

ther investigation may reveal strategies for selecting the number of iterations.
Rousseeuw and Croux (1994) provided results on the effect of increasing the
number of Newton steps in the location and scale problem. Jurečková and
Malý (1995) studied the effect of iteration when the score function has jump
points.

8. Recommendations. According to Theorem 2, an important condition
for good stability is that κ�1 − α� ≥ 2, where κ refers to the degree of down-
weighting and α determines how the weights interact with the scale of the
residual score function; see (3.2) and Assumption A.

The one-step Hill–Ryan estimator, with α = −1, has κ�1−α� ≥ 2 as long as
κ ≥ 1 so that for large �x� the weights are of order �x�−1 or smaller. It also
satisfies the design conditions E0�w0�x�2�x�2 <∞ and E0�w0�x�3�x�3 <∞
regardless of the distribution of x, if κ ≥ 1. Therefore, the one-step Hill–Ryan
estimator is locally stable of order 1 provided the initial estimator is locally
stable of order at least 1/2.

The one-step Mallows estimator, with α = 0, requires more severe down-
weighting with κ ≥ 2 and the design condition E0�w0�x��x�3 < ∞. With

Table 4
Maximum biases of S- and P-estimates

S-estimates (all p)

�∗ � � 0�05 � � 0�10 � � 0�15 � � 0�20

Minimax ∞ 0.49 0.77 1.05 1.37
LMS ∞ 0.53 0.83 1.07 1.52

P-estimates (all p)

MP 3.14 0.163 0.36 0.56 0.82
CMP 1.57 0.085 0.19 0.31 0.50

From Maronna and Yohai (1993).
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weights of order �x�−2, it is enough to have E0�x� <∞. With weights of order
�x�−1, which might be preferred due to efficiency considerations, we cannot
guarantee local stability of order 1 unless the initial estimator is locally stable
of order 1. One possibility is a two-step strategy starting with either a Hill–
Ryan iteration or Mallows with squared weights.

The one-step Schweppe estimator, with α = 1, cannot have κ�1 − α� ≥ 2,
so, if the starting value is not locally stable of order 1, we cannot guarantee
local stability of the Schweppe estimator. Moreover, to ensure that it retains
the stability of the starting value, we require E0�x�2 < ∞. If one prefers
a Schweppe-type estimator, we recommend first iterating with a Hill–Ryan
type or Mallows with squared weights. Coakley and Hettmansperger (1993)
made a similar recommendation. Inferences based on the estimator may still
be problematic because of the Hessian breakdown discussed in Section 4.

9. Proofs of main results. We present only the major steps in the proofs
of Theorems 1 and 2 by stating a series of lemmas on which the proofs rely.
We omit the proofs of all lemmas and propositions. These are in the technical
report by Simpson and Yohai (1993), which we will be happy to supply on
request.

The proof of Theorem 1 requires additional notation. Let v be a random
vector of dimension k, and let z be a random vector of dimension h, both with
finite second moments. LetH be the joint distribution of �v′� z′�′. Given λ ∈ Rk
and µ ∈ Rhwe denote by β�λ�µ�H� the coefficient of the best linear predictor
of µ′z based on λ′v; that is, β�λ�µ�H� = argminβ∈RE�µ′z−βλ′v�2, and we let
ρ�λ�µ�H� denote the corresponding “uncentered” correlation coefficient. Then
we have

�9�1�
β�λ�µ�H� = EH��λ

′v��µ′z�
EH�λ′v�2

and

ρ�λ�µ�H� = EH��λ′v��µ′z�
�EH�λ′v�21/2�EH�µ′z�21/2

�

We also define βi�H� to be the vector of coefficients of the best linear predictor
of the ith component zi of z based on v:

βi�H� = argmin
β∈Rk

E�zi − β′v�2�

Finally, let Sk = �λ ∈ Rk� �λ� = 1.

Lemma 1. For each n ≥ 1, let Hn be a distribution on Rk+h with second
moments, and let Qn and Jn be the marginal distributions of the first k and
last h coordinates, respectively. Assume also that

�9�2� lim
n→∞ inf

λ∈Sk
EJn�λ′v�2 = ∞ and lim sup

n→∞
sup
µ∈Rh

EQn�µ′z�2 <∞�

Then limn→∞ supλ∈Sk�µ∈Sh �β�λ�µ�Hn�� = 0.
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Lemma 2. Assume the conditions of Lemma 1. Then limn→∞ βi�Hn�=0.

Lemma 3. Let J be a distribution on Rk such that EJ�λ′v�2 = ∞ for
all λ ∈ Rk and let Jn, n ≥ 1 be a sequence of distribution functions on
Rh with finite second-order moments and such that Jn → J weakly. Then
limn→∞ inf λ∈Sk EJn�λ′v�2 = ∞.

Lemma 4. LetH be a distribution onRk+h and let J andQ be the marginal
distributions of the first k and last h coordinates, respectively. Assume the
following:

(i) EJ�λ′v�2 = ∞, for all nonzero λ ∈ Rk;
(ii) Q has second-order moments and EQ�zz′� is nonsingular.

For each n ≥ 1, letHn be a distribution on Rk+h with second moments, and let
Jn andQn be the corresponding marginal distributions. Assume the following:

(iii) Hn →H weakly;
(iv) limn→∞EQn�zz′� = EQ�zz′�.

Then limn→∞ supλ∈Sk�µ∈Sh �ρ�λ�µ�Hn�� = 0.

Lemma 5. Let H, J and Q satisfy conditions (i) and (ii) of Lemma 4. Let
�v′1� z′1�′� � � � � �v′n� z′n�′� � � � be a sequence of independent random vectors with
distribution H, where vi is of dimension k and zi of dimension h. Let

Mn�vv =
1
n

n∑
i=1

viv
′
i� Mn�zz =

1
n

n∑
i=1

ziz
′
i� Mn�vz =

1
n

n∑
i=1

viz
′
i

and

Mn =
(
Mn�vv Mn�vz

M′
n� vz Mn�zz

)
�

Then

lim
n→∞M

−1
n =

[
0kk 0kh
0hk �EQ�zz′�−1

]
a.s.

Proof of Theorem 1. The result follows from Lemma 5 applied to d =
�v′� z′�′, where d is given in (4.1). ✷

Next we state several lemmas used to prove Theorem 2.

Lemma 6. Let H0 be a distribution on Rp, p = k + h� with finite second-
order moments such that EH0

�xx′� is nonsingular. Let H∗ be another distri-
bution on Rp, and J∗ and Q∗ the corresponding marginal distributions of
the first k and last h coordinates, respectively. Assume that J∗ and Q∗ sat-
isfy (i) EJ∗�λ′v�2 = ∞ for all nonzero λ ∈ Rk; and (ii) EQ∗�z�2 < ∞. Let



1164 D. G. SIMPSON AND V. J. YOHAI

H = �1−ε�H0 +εH∗. Then there is a sequence of distributionsH∗
n on Rp with

finite second-order moments such that H∗
n →H∗ weakly, and such that

lim
n→∞��1 − ε�EH0

�xx′� + εEH∗
n
�xx′�−1 =

[
0kk 0kh
0hk �EQ�zz′�−1

]
�

where Q is the marginal of H corresponding to the last h coordinates.

We establish some properties of the Hessian type functional,

�9�3� A0�F� = E0

[
ψ̇

{
y−T0�F�′x
S�F�w�x�Fx�α

}
w�x�Fx�1−αxx′

]
�

where E0 denotes the expectation under F0, w�x�H� = w��x −m�H��C�H��
and Fx is the marginal distribution of x under F. In the following, let

�9�4� ω�ε� = sup
δ∈�0� ε�

sup
x

max
{
wε�x�
w0�x�

�
w0�x�
wε�x�

}
�

By Proposition 1(i), ω�ε� is finite for ε < min�ε∗m� ε∗C.

Lemma 7. If w satisfies Assumption A for some κ ≥ 1 and ψ satisfies
Assumption B, then

�A0�Fε�� ≤ ω�ε� sup
u

�ψ̇�u��E0�w0�x�1−α�x�2�

If in addition E0�w0�x�1−α�x�2 < ∞ and bT0
�0+� = bS�0+� = bm�0+� =

bC�0+� = 0, then limε↓0 �A0�Fε� −A0�F0�� = 0�

Lemma 8. Suppose w satisfies Assumption A for some κ ≥ 1 and ψ satisfies
Assumption B. Let

Mε�x�y� = inf
�v�≤1

ψ̇

[
v

�y� + bT0
�ε��x�

�S0 − b−S�ε�w̃ε�x�α
]
�

where w̃ε�x� = w+
ε �x� if α < 0, = 1 if α = 0 and = w−

ε �x� if α > 0. If
E0�w0�x�1−αxx′ is a finite, positive definite matrix and 0 ≤ ε < min�ε∗T0

� ε∗S�
ε∗m� ε

∗
C�, then

�9�5� λmin
{
A0�Fε�

} ≥ a0�ε� �= λmin
[
E0�Mε�x�y�wε�x�xx′

]
> 0�

If in addition bT0
�0+� = bS�0+� = bm�0+� = bC�0+� = 0, then

lim
ε↓0
λmin�A0�Fε� = λmin�A0�F0� > 0�

We next present error bounds for a key linearization. Define the functional

�9�6� D0�F� = S�F�E0

[
ψ

{
y−T0�F�′x
S�F�wα�x�Fx�

}
w�x�Fx�x

]
+A0�F�T0�F��

where A0 is given in (9.3).
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Lemma 9. Suppose w satisfies Assumption A for some κ ≥ 1 and ψ is odd
and satisfies Assumption B. Suppose the distribution of y under F0 is sym-
metric about zero. Assume bT0

�0+� = bS�0+� = bm�0+� = bC�0+� = 0.

(i) If E0�w0�x�1−α�x�2 <∞, then

�9�7� �D0�Fε�� ≤ bT0
�ε�ω�ε��ψ̇�supE0�w0�x�1−α�x�2

and �D0�Fε�� = o�bT0
�ε�� as ε ↓ 0.

(ii) If E0�w0�x�1−2α�x�3 <∞, then

�9�8� �D0�Fε�� ≤ b
2
T0
�ε�ω�ε��ψ̈�sup

S0 − b−S�ε�
E0�w0�x�1−2α�x�3�

and �D0�Fε�� = o�b2
T0
�ε� as ε ↓ 0.

Proof of Theorem 2. Let Tε = T0�Fε�, Sε = S�Fε�, mε = m�Hε�, Cε =
C�Hε�, and wε�x� = w��x−mε�Cε�. Use (4.3), (9.3) and (9.6) to write

�9�9�

T1�Fε� = Tε + �1 − ε�SεR�Fε�E0

[
ψ

{
y−T′

εx

Sεw
α
ε�x�

}
wε�x�x

]

+ εSεR�Fε�EF∗

[
ψ

{
y−T′

εx

Sεw
α
ε�x�

}
wε�x�x

]

= {
I− �1 − ε�R�Fε�A0�Fε�

}
Tε + �1 − ε�R�Fε�D0�Fε�

+ εSεR�Fε�EF∗

[
ψ

{
y−T′

εx

Sεw
α
ε�x�

}
wε�x�x

]
�

By the definition of R�Fε� and Lemma 6, there is a distribution F∗∗, which
depends on Fε, such that �x� has finite expectation and

�9�10� ∥∥R�Fε� − �1 − ε�−1�A0�Fε� +Bε�F∗∗�−1
∥∥ ≤ ε�

where

�9�11� Bε�F� = ε

�1 − ε�EF
[
ψ̇

{
y−T′

εx

Sεw
α
ε�x�

}
wε�x�1−αxx′

]
�

Using (9.11),

�9�12�

�I− �1 − ε�R�Fε�A0�Fε��
≤ ε�1 − ε��A0�Fε�� +

∥∥{A0�Fε� +Bε�F∗∗�}−1
Bε�F∗∗�∥∥

≤ ε�1 − ε��A0�Fε�� + min
[
1�
ε�ψ̇�sup supx�wε�x�1−α�x�2

�1 − ε�λmin�A0�Fε�
]

= A1�ε�� say.

Thus, the norm of the first term on the right in (9.9) is no larger than
A1�ε�bT0

�ε�. If Assumption A holds with κ�1 − α� ≥ 2, then A1�ε� = O�ε� as
ε ↓ 0. Otherwise we merely have A1�ε� = 1 +O�ε�.
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The representation in (9.10) also implies that

�9�13� �R�Fε�� ≤ ε+ �1 − ε�−1�A0�Fε�−1� = ε+ 1
�1 − ε�λmin�A0�Fε�

�

Using Lemmas 7, 8 and 9(i), we have �1 − ε��R�Fε�D0�Fε�� ≤ A2�ε�bT0
�ε�,

where

�9�14� A2�ε� ≤
{
ε�1 − ε� + 1

a0�ε�
}
ω�ε��ψ̇�supE0�w0�x�1−α�x�2�

and limε↓0A2�ε� = 0. If E0�w0�x�1−2α�x�3 < ∞, then Lemma 10(ii) implies
the accelerated convergence A2�ε� = o�bT0

�ε� as ε ↓ 0.
It remains to bound the last term on the right side of (9.9). Using (9.10)

again,

�9�15�

∥∥∥∥R�Fε�EF∗

[
ψ

{
y−T′

εx

Sεw
α
ε�x�

}
wε�x�x

]∥∥∥∥
≤ �ψ�sup sup

x

{�wε�x�A0�F0�−1x�}
× {
ε�A0�F0�� +

1
1 − ε

∥∥{A0�Fε� +Bε�F∗∗�}−1
A0�F0�

∥∥}�
Moreover,

�9�16� ∥∥{A0�Fε� +Bε�F∗∗�}−1
A0�F0�

∥∥ ≤ 1 + �A0�Fε� −A0�F0��
a0�ε�

and

�9�17�
sup
x

�wε�x�A0�F0�−1x� ≤ sup
x

�w0�x�A0�F0�−1x�

+ supx �wε�x� −w0�x���x�
λmin�A0�F0�

�

Combining (9.15)–(9.17) shows that the last term in (9.9) is bounded by
εB�ε�γ∗GM, where

B�ε� = {
1 +S−1

0 b
+
S�ε�

}[
1 + supx ��wε�x� −w0�x�A−1

0 x�
supx �w0�x�A−1

0 x�

]

×
{

1 + ε�A0� +
ε+ �A0�Fε� −A0�

�1 − ε�a0�ε�
}
�

Proposition 1 and Lemma 9.7 imply that B�ε� is finite if 0 ≤ ε < min�ε∗T0
� ε∗S�

ε∗m� ε
∗
C�, and limε↓0B�ε� = 0. SettingA�ε� = A1�ε�+A2�ε� completes the proof

for general p.
In Theorem 2(ii), the slight improvement for p = 1 occurs because in this

case ��A0�Fε� +Bε�F∗∗�−1Bε�F∗∗�� = 1 − ��A0�Fε� +Bε�F∗∗�−1A0�Fε��. ✷
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Proof of Theorem 3. For each β ∈ Rp, let Fβ�x�y� = F0�x�y−β′x� and
let Eβ denote expectation under Fβ. Because of the symmetry,

Eβ�τ̇c�wc��x���y− β′x�wc��x��x� = 0�

Differentiating with respect to β and setting β = 0 yields the identity

�9�18�
Ac = E0

[
τ̇c
{
wc��x��y

}
w2
c��x��xx′

]
= −E0

[
τc
{
wc��x��y

}
φ�y�wc��x��xx′

]
�

Next observe that for each nonzero x and y

�9�19� lim
c↓0
wc��x�� = �x�−1� lim

c↓0
c−1τc

{
wc��x��y

} = sign�y��

and

�9�20� ∣∣c−1τc
{
wc��x��y

}
wc��x�� − sign�y��x�−1

∣∣ ≤ 2�x�−1�

By assumption,

�9�21� E0

∥∥φ�y��x�−1xx′
∥∥ = E0�φ�y��E0�x� <∞�

Using (9.18)–(9.21) we obtain

lim
c↓0
c−1Ac = −E0�sign�y�φ�y�E0��x�−1xx′� = −E0�φ�y��E0��x�−1xx′��

The spherical symmetry implies that

�9�22� E0��x�−1xx′� = cpIp
for some scalar cp. Taking the trace on both sides of (9.22) shows that cp =
p−1E0�x�.

To establish the convergence of γ∗c , first observe that γ∗c ≥ p�E0�φ�E0�x�−1

by Theorem 2.2 of He and Simpson (1993) because γ∗c is the sensitivity of a
locally linear functional. On the other hand,

γ∗c = sup
x

�cA−1
c x�

c+ �x� = sup
�x��=0

�cA−1
c x�

c+ �x� ≤ sup
�x��=0

�cA−1
c x�

�x� = λmax�cA−1
c ��

Moreover, by continuity, limc↓0 λmax�cA−1
c � = p�E0�φ�y��E0�x�−1. ✷
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