
The Annals of Statistics
1998, Vol. 26, No. 3, 1126–1146

OPTIMUM ROBUST TESTING IN LINEAR MODELS

By Christine Müller

Georg-August-University of Göttingen

Robust tests for linear models are derived via Wald-type tests that
are based on asymptotically linear estimators. For a robustness criterion,
the maximum asymptotic bias of the level of the test for distributions in
a shrinking contamination neighborhood is used. By also regarding the
asymptotic power of the test, admissible robust tests and most-efficient
robust tests are derived. For the greatest efficiency, the determinant of the
covariance matrix of the underlying estimator is minimized. Also, most-
robust tests are derived. It is shown that at the classicalD-optimal designs,
the most-robust tests and the most-efficient robust tests have a very simple
form. Moreover, the D-optimal designs provide the highest robustness and
the highest efficiency under robustness constraints across all designs. So,
D-optimal designs are also the optimal designs for robust testing. Two
examples are considered for which the most-robust tests and the most-
efficient robust tests are given.

1. Introduction. A general linear model

YN = A�dN�β+ZN(1.1)

is considered, where YN = �Y1N� 	 	 	 �YNN�′ is the vector of real-valued ob-
servations, ZN = �Z1N� 	 	 	 �ZNN�′ the vector of error variables, β ∈ R

r an
unknown parameter vector, dN = �t1N� 	 	 	 � tNN�′ ∈ � N the vector of known
experimental conditions, that is, the design, A�dN� = �a�t1N�� 	 	 	 � a�tNN��′ ∈
R
N×r the design matrix and a� � → R

r the vector of known “regression”
functions. Realizations of the N-dimensional random vectors YN and ZN are
denoted by yN = �y1N� 	 	 	 � yNN�′ and zN = �z1N� 	 	 	 � zNN�′, respectively. For
this linear model, a hypothesis of the general formH0� Lβ = l should be tested
against the alternative H1� Lβ 
= l� where l ∈ R

s and L ∈ R
s×r is of rank s. For

these hypotheses, it is known that the classical F-tests are very sensitive to
outliers and to other deviations from normality. Therefore other tests, which
are robust against these violations of the model assumptions, should be used.

For testing a hypothesis of the form H0� β = 0 or H0� β1 = 0, where
β1 is a subvector of β, there exist several attempts to derive tests that
are robust against outliers. Many such tests were derived by transferring
the robustness criteria for estimators to the tests. See, for example, Ham-
pel, Ronchetti, Rousseeuw and Stahel (1986), Staudte and Sheather (1990),
Markatou and Hettmansperger (1990), Akritas (1991), Markatou, Stahel and
Ronchetti (1991), Silvapulle (1992a, b), Coakley and Hettmansperger (1992,
1994), Rieder (1994), Markatou and He (1994), Heritier and Ronchetti (1994),
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Markatou and Manos (1996). Up to now, only Ronchetti (1982) and Rieder
(1994), Section 5.4, considered the question of how to derive robust tests to
be as efficient as possible. Ronchetti (1982) derived most-efficient robust tests
within the class of τ-tests. These τ-tests have a complicated asymptotic dis-
tribution, and so only an implicit characterization of the tests is possible. See
also Chapter 7 of Hampel, Ronchetti, Rousseeuw and Stahel (1986). Rieder
(1994) defined most-efficient robust tests within the Wald-type tests that are
based on asymptotically linear estimators of β. However, a representation
of the tests that can be used in practice was not given. Moreover, an open
problem is how to derive most-robust tests, that is, tests with maximum
robustness.

The purpose of this paper is to characterize explicitly most-efficient robust
tests and most-robust tests in order that they can easily be used in practice.
To do this, we use Wald-type tests that are based on asymptotically linear es-
timators for Lβ. For a robustness concept, we make use of the concept already
proposed in Müller (1992a, c), which is similar to that of Rieder (1994). This
concept expresses robustness in terms of the asymptotic bias of the level of the
test for distributions in a shrinking contamination neighborhood. This robust-
ness concept is closely related to that of Heritier and Ronchetti (1994), which
is based on the influence function of the test statistic. However, Heritier and
Ronchetti need the strong assumption that the test statistic is Fréchet differ-
entiable. This excludes important tests such as the most-robust tests covered
here.

Using either our robustness concept or that of Heritier and Ronchetti to
derive most-efficient robust tests and most-robust tests leads to optimization
problems for influence functions. In these optimization problems, the efficiency
criterion and the robustness criterion are not convex functions of the influence
function. This differs from robust estimation, where, for every design, methods
of convex analysis can be used to characterize most-efficient robust estimators
and most-robust estimators [see Hampel (1978), Krasker (1980), Bickel (1981,
1984), Rieder (1985, 1987, 1994), Kurotschka and Müller (1992)]. Although
convex analysis can not be applied to the Wald-type tests considered here,
optimal tests can still be derived. To do this, we combine the efficiency of the
test with the efficiency of the design.

The paper is organized as follows. In Section 2, the Wald-type tests based
on asymptotically linear estimators, called ALE-tests, are defined and their
asymptotic behavior in contaminated linear models is investigated. From this
asymptotic behavior, the robustness measure and the efficiency measure for
ALE-tests are derived in Section 3. In Section 4, the most-robust tests and
their corresponding designs are given. In particular, it is shown that the clas-
sical D-optimal designs provide the highest robustness. In Section 5, most-
efficient tests and designs are derived under robustness constraints. At first,
admissible tests are characterized by generalizing a result of Krasker and
Welsch (1982). Then most-efficient robust tests are derived by reducing the
power (the efficiency) of the test to the determinant of the asymptotic covari-
ance matrix of the underlying estimator. It turns out that for most-efficient
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robust tests, the D-optimal designs are again optimal. In Section 6, two ex-
amples are given that show the applicability of the results for models with
qualitative factors and for models with quantitative factors. In the first ex-
ample, optimal robust tests for testing the equality of the effects in a one-way
lay-out model are presented. The second example deals with a testing problem
in the quadratic regression model. All proofs are given in Section 7.

2. Definition and asymptotic behavior of ALE-tests. Recall that the
test statistic of the classical F-test for testing H0� Lβ = l in the model (1.1) is

τLSN �yN�dN� =N
(
ϕ̂LSN �yN�dN� − l)′CLSN �yN�dN�−1(ϕ̂LSN �yN�dN� − l)�

where ϕ̂LSN is the Gauss–Markov estimator for ϕ�β� = Lβ and CLSN �yN�dN�
converges in probability to the asymptotic covariance matrix of the Gauss–
Markov estimator [see, e.g., Christensen (1987), page 40 ff.]. This test
statistic can be generalized by replacing the Gauss–Markov estimator ϕ̂LSN
by an asymptotically linear estimator. Many well-known estimators such as
R-estimators, M-estimators and one-step M-estimators are asymptotically
linear. Moreover, they are usually asymptotically linear for contiguous alter-
natives of H0� Lβ = l, that is, for alternatives of the form βN = β +N−1/2β
with Lβ = l. To define the asymptotic linearity of an estimator for contiguous
alternatives, we assume that the sequence of designs �dN�N∈N converges to
an asymptotic design measure δ with finite support in the following sense:

lim
N→∞

1
N

N∑
n=1

etnN
(�t�) = δ

(�t�)

for all t ∈ supp�δ�, where supp�δ� is the support of δ and et is the Dirac
measure on t ∈ � . The measure δ is also called a design. Moreover, we assume
that the error variables Z1N� 	 	 	 � ZNN have unknown variance σ2 so that
Z1N/σ� 	 	 	 �ZNN/σ are independent and identically distributed according to
a symmetric distribution P = PZnN/σ with mean 0, variance 1, and bounded
Lebesgue density f�z�. Here PNβ denotes the distribution of YN.

Definition 2.1. An estimator ϕ̂N for ϕ�β� = Lβ is asymptotically linear
for contiguous alternatives of H0� Lβ = l with influence function ψ if ψ� R ×
� → R

s satisfies the conditions

∫
ψ�z� t�P�dz� = 0 for all t ∈ � �(2.1)

∫
ψ�z� t�a�t�′zP�dz� δ�dt� = L�(2.2)

∫
�ψ�z� t��2P�dz� δ�dt� <∞�(2.3)
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and

lim
N→∞

PNβN

({
yN ∈R

N�
√
N

∣∣∣∣ϕ̂�yN�dN�−ϕ�βN�

− σ

N

N∑
n=1

ψ

(
ynN−a�tnN�′βN

σ
� tnN

)∣∣∣∣>ε
})

=0

(2.4)

for all ε > 0, σ ∈ R
+ and βN = β+N−1/2β with β, β ∈ R

r and Lβ = l.

For example, one-stepM-estimators for Lβ are asymptotically linear. These
estimators generalize the M-estimators and have the form

ϕ̂N�yN�dN� = Lβ0
N�yN�dN�

+ 1
N

N∑
n=1

ψ

(
ynN − a�tnN�′β̂0

N�yN�dN�
σ̂N�yN�dN� � tnN

)
σ̂N�yN�dN��

where β̂0
N is an initial estimator for β. In particular, (2.4) holds for one-step

M-estimators if the score functions ψ satisfy condition (2.2), (2.3) and

ψ�z� t�=ψ0�z� t�+h�t� sgn�z�, where, for all t∈T0� ψ0�·� t� is
antisymmetric, continuous and there exists λ1�t�� 	 	 	 � λ'�t�
so that ψ0�·� t� has bounded and continuous derivatives on
R \ �λ1�t�� 	 	 	 � λ'�t��.

(2.5)

This can be seen by considering the results of Müller (1994b), who shows (2.4)
for βN = β, that is, β = 0. Müller’s proof, however, provides that (2.4) also
holds for all βN = β+N−1/2β if PNβN is contiguous to PNβ . This, for example,
is the case for the normal distribution P = n�0�1�. Hence, for the rest of the
paper we will assume that PNβN is contiguous to PNβ .

We frequently have ψ of the form ψ�z� t� = Ma�t�ρ�z� t�, where M ∈ R
s×r

and ρ� R×� → R. In this case, (2.5) concerns only ρ. In particular, this is the
case for M-estimators for β, where L = Er×r (Er×r denotes the identity ma-
trix) andM−1 = ∫

a�t�a�t�′ρ�z� t�zP�dz� δ�dt�. Note that score functions ρ sat-
isfying (2.5) can be discontinuous and thus the corresponding M-functionals
are not Fréchet differentiable.

The asymptotic covariance matrix of an asymptotically linear estimator is
σ2C�ψ� δ�, where

C�ψ� δ� �=
∫
ψ�z� t�ψ�z� t�′P�dz� δ�dt�	

Hence, in addition to the Gauss–Markov estimator, the matrix CLSN in the F-
test statistic should be replaced by σ2C�ψ� δ� or by any CN� R

N×� N → R
s×s

such that CN�YN�dN� converges in probability to σ2C�ψ� δ�. The resulting
generalized F-test statistic for testingH0�Lβ = l is then of Wald-type [cf. Wald
(1943), Markatou, Stahel and Ronchetti (1991), Silvapulle (1992a), Heritier
and Ronchetti (1994)]. Such tests are called ALE-tests and their corresponding
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test statistics are called ALE-test statistics because they are based on asymp-
totically (A) linear (L) estimators (E) [cf. Rieder (1994), page 153]. For testing
subparameters, that is, hypotheses of the form H0� �0s×r−s �Es×s�β = 0, Wald-
type tests and thus ALE-tests are asymptotically equivalent to the score-type
tests [see Heritier and Ronchetti (1994), Markatou and Manos (1996)].

Definition 2.2. A test statistic τN� R
N × � N → R is called an ALE-test

statistic with influence function ψ for testing H0� Lβ = l if

τN�yN�dN� =N
(
ϕ̂N�yN�dN� − l)′CN�yN�dN�−1(ϕ̂N�yN�dN� − l)�

where ϕ̂N is asymptotically linear for contiguous alternatives of H0� Lβ =
l with influence function ψ and limN→∞ CN = σ2C�ψ� δ� in probability for
�PNβ �N∈N with Lβ = l. A test based on an ALE-test statistic is called an
ALE-test.

To derive the robustness and efficiency properties of ALE-tests, we study
the asymptotic behavior of ALE-test statistics in contaminated linear models,
where the contamination models the occurence of outliers. In contaminated
linear models, the errors Z1N/σ� 	 	 	 �ZNN/σ are independent but distributed
according to a contaminated distribution of the form

QnN�dz� �= PZnN/σ�dz�
= (

1 −N−1/2εc�tnN�)P�dz� +N−1/2εc�tnN�g�z� tnN�P�dz��

where ε > 0, c�t� ≥ 0, g�z� t� ≥ 0,
∫
c�t� δ�dt� ≤ 1 and

∫
g�z� t�P�dz� = 1 for

all t ∈ � and z ∈ R [compare with Bickel (1981, 1984) and Rieder (1985, 1987,
1994)]. The set of all sequences �QN

ε� c�g�N∈N = �QN�N∈N �= �⊗N
n=1 QnN�N∈N

defines the shrinking contamination neighborhood �ε around the ideal (cen-
tral) model �PN�N∈N. If QN is the distribution of ZN, then QN

β denotes the
distribution of YN. To derive power properties, we regard not only fixed β
with Lβ = l but also sequences �βN�N∈N of contiguous alternatives.

Theorem 2.1. If τN is an ALE-test statistic for testing H0� Lβ = l with in-
fluence function ψ, then τN has an asymptotic chi-squared distribution, that is,

�
(
τN�QN

βN

) −→ χ2
(
s�

[
γ + σb(ψ� �QN�N∈N

)]′[
σ2C�ψ� δ�]−1

× [
γ + σb(ψ� �QN�N∈N

)])
as N→ ∞

for all �QN�N∈N = �QN
ε� c�g�N∈N ∈ �ε and all βN = β + N−1/2β ∈ R

r with

LβN = l+N−1/2γ, where

b
(
ψ�

(
QN
ε� c�g

)
N∈N

) �= ε
∫
ψ�z� t�c�t�g�z� t�P�dz� δ�dt�
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and χ2�s� λ� is the chi-squared distribution with s degrees of freedom and
noncentrality parameter λ.

3. Efficiency and robustness of ALE-tests. Because b�ψ� �QN�N∈N� =
0 if �QN�N∈N = �PN�N∈N, Theorem 2.1 provides the asymptotic level and the
asymptotic power for ideal distributions PN. In particular, the rejection set
should be chosen to be �χ2

1−α� s�0�∞� in order to obtain an asymptotic α-level
test for the ideal distribution. Here χ2

1−α� s�0 refers to the �1−α�-quantile of the
chi-squared distribution χ2�s�0�. The asymptotic power for contiguous ideal
alternatives �PNβN�N∈N with LβN = l+N−1/2γ 
= l is thus given by

lim
N→∞

PNβN
(
τN > χ

2
1−α� s�0

) = 1 −� 2
s� γ′ �σ2C�ψ�δ��−1γ

(
χ2

1−α� s�0
)
�(3.1)

where �s� λ is the distribution function of the chi-squared distribution χ2�s� λ�.
We will regard this asymptotic power (3.1) as a measure for the efficiency of
an ALE-test. This power is maximized when γ′�σ2C�ψ� δ��−1γ is maximized
for all γ ∈ R

s.
As a measure for the robustness of an ALE-test, we regard its maximum

bias of the asymptotic level for contaminated distributions QN
β with Lβ = l,

that is,

bε�ψ� �= max
{

lim
N→∞

(
QN
β

(
τN > χ

2
1−α� s�0

)− α) � �QN�N∈N ∈ �ε

and β ∈ R
r with Lβ = l

}
	

The bias bε�ψ� is bounded if and only if ψ′C�ψ� δ�−1ψ is bounded. This is
shown in the following theorem.

Theorem 3.1. For an ALE-test for testing H0� Lβ = l with influence func-
tion ψ, the following inequalities are equivalent:

�i� bε�ψ� ≤ 1 −� 2
s�b�χ2

1−α� s�0� − α�

�ii� ε2�ψ′C�ψ� δ�−1ψ�δ ≤ b�

where �ψ′C�ψ� δ�−1ψ�δ �= max�z� t�∈R×supp�δ�ψ�z� t�′C�ψ� δ�−1ψ�z� t�.

Theorem 3.1 shows that the asymptotic bias of a test based on a M-
estimator for β is bounded if the self-standardized gross-error-sensitivity of
the M-estimator is bounded [for the definition of the self-standardized gross-
error-sensitivity see Krasker and Welsch (1982), Ronchetti and Rousseeuw
(1985), Hampel, Ronchetti, Rousseeuw and Stahel (1986)]. This result corre-
sponds to a result of Heritier and Ronchetti (1994), who derived the robustness
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of tests via influence functions by assuming Fréchet differentiability of the
test statistic.

In Sections 4 and 5, we consider the problem of deriving tests and designs
which maximize the asymptotic power and minimize the maximum asymp-
totic bias. This problem results in optimization problems within the set of
influence functions because the maximum asymptotic bias of the level and
the asymptotic power depend on the ALE-test only via its influence function.
The influence functions are typically of the form ψ�z� t� = Ma�t�ρ�z� t� (see
Section 2). Therefore, we will look at optimization problems for

1∗�δ�L� �= {
ψ: R × � → R

s� ψ satisfies conditions (2.1)–(2.3) and

ψ�z� t� =Ma�t�ρ�z� t� for all �z� t� ∈ R × � for some

M ∈ R
s×r and ρ� R × � → R

}
	

It is not clear if every ψ lying in 1∗�δ�L� is the influence function of an ALE-
test. But if we find an optimal solution ψ∗ in 1∗�δ�L� which satisfies the
conditions (2.2),(2.3) and (2.5), then we know from the remarks above that
a one-step M-estimator with score function ψ∗ is asymptotically linear with
influence function ψ∗; that is, ψ∗ is also an influence function of an ALE-test.
We will see that this is always the case.

In order to find the optimal design, we will regard the set of all designs,
such that the linear aspect ϕ�β� = Lβ is identifiable; that is,

2�L� �= �δ� there exists K ∈ R
s×r with L =K I�δ��	

We will occasionally consider the set of designs with fixed support � ⊂ � as
well; that is,

2� �= {
δ� supp�δ� = �

}
	

4. Most-robust tests and designs. In Theorem 3.1, it was shown that
the asymptotic bias of the level of an α level ALE-test for testing H0� Lβ = l
is a strictly increasing function of �ψ′C�ψ� δ�−1ψ�δ� so that most-robust tests
and designs should minimize �ψ′C�ψ� δ�−1ψ�δ. Thereby, let

bT0 �δ�L� �= min
{∥∥ψ′C�ψ� δ�−1ψ

∥∥
δ
� ψ ∈ 1∗�δ�L�}

be the minimum asymptotic bias for testing Lβ at δ.

Definition 4.1. (a) An ALE-test with influence function ψ0 is most-robust
for testing Lβ at δ ∈ 2�L� if

ψ0 ∈ arg min
{∥∥ψ′C�ψ� δ�−1ψ

∥∥
δ
� ψ ∈ 1∗�δ�L�}	
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(b) A design δ0 is most-robust for testing Lβ in 2 ⊂ 2�L� if

δ0 ∈ arg min
{
bT0 �δ�L�� δ ∈ 2}	

Note that the optimization criterion �ψ′C�ψ� δ�−1ψ�δ is not convex in ψ, but
it is invariant with respect to nonsingular transformations of Lβ.

The following theorem shows that the highest robustness is achieved at the
classical D-optimal designs. Recall that the classical D-optimal design is a
design for which the determinant of the covariance matrix of the nonrobust
Gauss–Markov estimator and the volume of the ellipsoid given by a fixed
power value of the nonrobust F-test are minimized. When we generalize the
designs dN to design measures δ, this means that a design δD is D-optimal
for Lβ in a set 2 of designs if and only if

δD ∈ arg min
{
det�LI�δ�−L′�� δ ∈ 2}�

where det�M� is the determinant of a matrix M, M− is the g-inverse of a
matrix M; that is, MM−M =M, and I�δ� �= ∫

a�t�a�t�′δ�dt� is the informa-
tion matrix of the design δ [see, e.g., Pázman (1986), page 100 or Pukelsheim
(1993), page 135].

Theorem 4.1. (i) We have bT0 �δ�L� ≥ s for all δ ∈ 2�L�.
(ii) If δD is D-optimal for Lβ in 2� ⊂ 2�L�, then bT0 �δD�L� = s; that

is, δD is most-robust for testing Lβ in 2�L�, and ψ01 given by ψ01�z� t� �=
LI�δD�−a�t� sgn�z�√π/2 is the influence function of a most-robust ALE-test
for testing Lβ at δD.

Note that ψ01 is the influence function of the L1 estimator and that the
M-functional of this estimator is not Fréchet differentiable. Hence ψ01 cannot
be treated using the approach of Heritier and Ronchetti (1994).

Theorem 4.1 holds also for designs which areD-optimal in a modified model.
In this case, we define for a function h� � → R

+ \ �0�
ah�t� �= h�t�−1a�t�� Lh �= LJ−

hIh�δ��
where

Jh �=
∫
ah�t�a�t�′δ�dt�� Ih�δ� �=

∫
ah�t�ah�t�′ δ�dt�	

Corollary 4.2. If there exists some function h� � → R
+ \ �0� so that

δ is D-optimal in 2supp�δ� ⊂ 2�L� for ϕh�β� = Lhβ in the modified model

Yh�t� = ah�t�′β+Z, then bT0 �δ�L� = s; that is, δ is most-robust for testing Lβ

in 2�L�, and ψ0 given by ψ0�z� t� = LhIh�δ�−ah�t� sgn�z�√π/2 is the influence
function of a most-robust ALE-test for testing Lβ at δ.

Note that Theorem 4.1 and Corollary 4.2 are analogous to Lemma 1(a)
in Müller (1994a) and Theorem 2 in Müller (1992b), respectively, which show
that for estimation, the minimum bias is attained at A-optimal designs. Using
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h�t� = �a�t��, Theorem 4.1(i) and Corollary 4.2 yield Theorem 2′ of Ronchetti
and Rousseeuw (1985) [or Proposition 1(ii) in Hampel, Ronchetti, Rousseeuw
and Stahel (1986), page 318] which concerns estimators with minimum self-
standardized gross-error-sensitivity.

5. Most-efficient robust tests and designs. A good test should not only
have a small bias of the level but also a high efficiency, that is, a high power at
least for the ideal model. Because small bias and high power are contrary prop-
erties, we use the usual approach of maximizing the power at the ideal model
under the side condition that the bias is bounded by some bias bound. Because
the asymptotic power at the ideal model and the maximum asymptotic bias
of an ALE-test are given by γ′C�ψ� δ�−1γ with γ ∈ R

s and �ψ′C�ψ� δ�−1ψ�δ,
respectively, we will maximize γ′C�ψ� δ�−1γ for all γ ∈ R

s under the side con-
dition that �ψ′C�ψ� δ�−1ψ�δ ≤ b. If we have no bias bound, that is, b = ∞,
then the influence function of the Gauss–Markov estimator, that is, ψGM given
by ψGM�z� t� �= LI�δ�−a�t�z� maximizes γ′C�ψ� δ�−1γ within 1∗�δ�L� for all
γ ∈ R

s. But for b < ∞, it is not possible in general to find an influence func-
tion which maximizes γ′C�ψ� δ�−1γ uniformly for all γ ∈ R

s, that is, which
minimizes C�ψ� δ� in the positive-semidefinite sense. We can characterize ad-
missible solutions, but in order to find optimal solutions, we have to consider
a real-valued function of C�ψ� δ�. For this real-valued function, we will use
the determinant, since the minimization of det�C�ψ� δ�� is invariant with re-
spect to nonsingular transformations of the linear aspect ϕ�β� = Lβ. Then,
det�C�ψ� δ�� is not convex in ψ. However, the side condition is not convex in ψ
as well. Therefore, the optimization results from convex analysis are not appli-
cable in any case. As in classical design theory, the solutions which minimize
det�C�ψ� δ�� are called “D-optimal.”

Definition 5.1. (a) An ALE-test with influence function ψb�δ is admis-
sible for testing Lβ at δ with bias bound b if �ψ′

b� δC�ψb�δ� δ�−1ψb�δ�δ ≤ b

and C�ψ� δ� = C�ψb�δ� δ� for all ψ ∈ 1∗�δ�L� with �ψ′C�ψ� δ�−1ψ�δ ≤ b and
C�ψ� δ� ≤ C�ψb�δ� δ�.

(b) An ALE-test with influence function ψb�δ is D-optimal for testing Lβ
at δ with bias bound b if

ψb�δ ∈ arg min
{
det

(
C�ψ� δ�)� ψ ∈ 1∗�δ�L� with

∥∥ψ′C�ψ� δ�−1ψ
∥∥
δ
≤ b} 	

(c) A design δb is D-optimal in 2 for testing Lβ with bias bound b if

δb ∈ arg min
{
min

{
det�C�ψ� δ��� ψ ∈ 1∗�δ�L�
with �ψ′C�ψ� δ�−1ψ�δ ≤ b

}� δ ∈ 2}	
In deriving admissible and D-optimal tests, we will assume that the ideal

distribution P is the standard normal distribution, that is, P = n�0�1�. The
distribution function of n�0�1� will be denoted by 8.

We first characterize the influence function of an admissible ALE-test by
generalizing a result of Krasker and Welsch (1982) concerning admissible
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estimators for estimating β with a self-standardized gross-error-sensitivity
bounded by b. For this we use the following matrices:

Mb�B� �=
∫
a�t�a�t�′

[
28

( √
b

�Ba�t��
)
− 1

]
δ�dt��

Qb�B� �=
∫
a�t�a�t�′g

( √
b

�Ba�t��
)
δ�dt��

Mb�0�B� �=
∫
a�t�a�t�′

√
b

�Ba�t��
√

2/π δ�dt��

Qb�0�B� �=
∫
a�t�a�t�′

( √
b

�Ba�t��
)2

δ�dt�	

Theorem 5.1. Let δ ∈ 2�L�, Bb ∈ R
s×r and

ψb�δ�z� t� �= LMb�Bb�−a�t�min
{
�z��

√
b

�Bba�t��
}

sgn�z��(5.1)

where

a�t�′B′
bBba�t� = a�t�′Mb�Bb�−L′[LMb�Bb�−Qb�Bb�Mb�Bb�−L′]−1

×LMb�Bb�−a�t� for all t ∈ supp�δ�
(5.2)

or

ψb�δ�z� t� �= LMb�0�Bb�−a�t�
√
b

�Bba�t��
sgn�z��(5.3)

where

a�t�′B′
bBba�t�

= a�t�′Mb�0�Bb�−L′[LMb�0�Bb�−Qb�0�Bb�Mb�0�Bb�−L′]−1

×LMb�0�Bb�−a�t� for all t ∈ supp�δ�	
(5.4)

Then the ALE-test with influence function ψb�δ is admissible for testing Lβ at
δ with bias bound b.

Theorem 5.1 can be used to show that at a D-optimal design δD, the influ-
ence functions of admissible ALE-tests for testing Lβ with bias bound b have
a very simple form. These influence functions are given by

ψb�δD�z� t� =



LI�δD�−a�t� sgn�z�

√
π/2� for b = s�

LI�δD�−a�t� sgn�z�min��z��√byb�
28�√byb� − 1

� for b > s�
(5.5)

where

y2
b =

1
s
g
(√
byb

)
> 0(5.6)
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with

g�y� �=
∫

min
{�z�� y}2

P�dz�	

This is stated in the following lemma. This lemma is analogous to Lemma
1(b) in Müller (1994a), which shows that for estimation with bias bound at
A-optimal designs, the influence functions of A-optimal AL-estimators have
a simple form. Thereby, instead of a formula for the trace of the asymptotic
covariance matrix, we have a simple formula for the asymptotic covariance
matrix of the underlyingAL-estimator. For this purpose, we defineW� �0�∞�×
�0�∞� → R by W�c� y� = g�y�/c − y2 and w� �0�1� → �0�∞� implicitely by
W�c�w�c�� = 0. Note that yb of (5.6) satisfies yb = �1/√b�w�s/b�. Set also

v�c� =




�28�w�c�� − 1�2

g�w�c�� � for c < 1�

2
π
� for c = 1	

Note also that a solution of (5.6) always exists and can be easily calculated.
This is because the function ω� �0�∞� → �0�∞� given by ω�y� = g�y�/c− y2

for c > 0 has at most one positive root which exists if and only if c < 1.
The root lies in S �= �y ∈ �0�∞�� 28�−y� ≤ c�, where ω is concave on S.
Hence, the root can be calculated by Newton’s method starting with an interior
point of S.

Lemma 5.2. If δD is D-optimal for Lβ in 2� ⊂ 2�L� and b ≥ s, then the
ALE-test with influence function ψb�δD given by (5.5) is admissible for testing
Lβ with bias bound b at δD and its asymptotic covariance matrix satisfies

C�ψb�δD� δD� =
1

v�s/b�LI�δD�
−L′	

If a�τ1�� 	 	 	 � a�τI� are linearly independent and δ is not D-optimal in
2supp�δ�, then we have a modification of Lemma 5.2 which gives at least a lower
bound for the asymptotic covariance matrix. For ψ with ψ�z� t� =Ma�t�ρ�z� t�,
set

vρ�t� �=
(∫
ρ�z� t�zP�dz�)2∫
ρ�z� t�2P�dz�

and

δρ��t�� �=
1∑

τ∈� vρ�τ�δ��τ��
vρ�t�δ��t��	

Lemma 5.3. If δ ∈ 2� ⊂ 2�L�, � = �τ1� 	 	 	 � τI�, a�τ1�� 	 	 	 � a�τI� are lin-
early independent and ψ ∈ 1∗�δ�L� with �ψ′C�ψ� δ�−1ψ�δ ≤ b and ψ�z� t� =
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Ma�t�ρ�z� t�, then

C�ψ� δ� ≥ 1
v�s/b�LI�δρ�

−L′	

Using Lemmas 5.2 and 5.3, we can show that at a D-optimal design δD we
have D-optimality of an ALE-test with influence function ψb�δD given by (5.5).
Moreover, the D-optimal design is also D-optimal for testing with bias bound
b in 2� . Furthermore, this holds not only within 2� with linearly independent
regressors but also for anyD-optimal design within designs of 2�L� with finite
support. Therefore, we have a theorem which is analogous to the theorem in
Müller (1994a), which shows that the A-optimal designs are also optimal for
robust estimation.

Theorem 5.4. If 20 = �δ ∈ 2�L�� supp�δ� is finite�, b ≥ s and δD is D-
optimal for Lβ in 20, then δD isD-optimal in 20 for testing Lβ with bias bound
b and an ALE-test with influence function ψb�δD given by (5.5) is asymptotically
D-optimal for testing Lβ at δD with bias bound b.

6. Examples.

Example 6.1 (One-way layout). In a one-way layout model with four lev-
els, the observation at tnN = i is given by

YnN = βi +ZnN = a�tnN�′β+ZnN

for n = 1� 	 	 	 �N, where

β = �β1� β2� β3� β4�′ ∈ R
4�

a�t� = (
11�t��12�t��13�t��14�t�

)′ ∈ R
4

and

� = �1�2�3�4�	
The hypothesis H0� Lβ �= �β2 − β1� β3 − β1� β4 − β1�′ = 0, or equivalently
H0� β1 = β2 = β3 = β4, versus H1� Lβ = �β2 − β1� β3 − β1� β4 − β1�′ 
= 0 is
usually tested in this model. TheD-optimal design for Lβ in 2�L� is, according
to Lemma 7.1,

δD = 1
4�e1 + e2 + e3 + e4�	

According to Theorem 4.1, this design δD is most-robust for testing H0� Lβ =
0, that is,

bT0 �δD�L� = 3 = min
{
bT0 �δ�L�� δ ∈ 2�L�}�

and the influence function of a most-robust ALE-test at δD has the form

ψ01�z� t� =
{ �−1�−1�−1�′ sgn�z�4

√
π/2� for t = 1�

�12�t��13�t��14�t��′ sgn�z�4
√
π/2� for t 
= 1	

(6.1)
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According to Theorem 5.4, for every b ≥ bT0 �δD�L� = 3, the D-optimal design
δD is alsoD-optimal for testing with bias bound b, where the influence function
of a D-optimal ALE-test for testing at δD with bias bound b is given by (5.5).
For b = bT0 �δD�L� = 3, it coincides with ψ01 given by (6.1), and for b >
bT0 �δD�L� = 3, it has the form

ψb�δD�z� t� =



�−1�−1�−1�′ sgn�z�4

min��z��√bvb�
28�√bvb� − 1

� for t = 1�

�1�2��t��1�3��t��1�4��t��′ sgn�z�4
min��z��√bvb�
28�√bvb� − 1

� for t 
= 1�

with v2
b = �1/3� g�√bvb� > 0; that is, vb = �1/√b�w �3/b�. For example, for

b = 4 we have vb = 0	240.

Example 6.2 (Quadratic regression). In a quadratic regression model, the
observation at tnN is given by

YnN = β0 + β1tnN + β2t
2
nN +ZnN = a�tnN�′β+ZnN

for n = 1� 	 	 	 �N, where β = �β0� β1� β2�′ ∈ R
3 and a�t� = �1� t� t2�′ ∈ R

3.
Assume that � = �0�1� and that the interesting aspect is Lβ �= �β0� β1 +
β2�′ ∈ R

2. In particular, testing the hypothesis H0� Lβ = �l1�0�′ means that
we test the hypothesis that the quadratic function is symmetric on �0�1� and
is equal to l1 at the end points t = 0 and t = 1. The D-optimal design for Lβ
in 2� with � = �0�1� is, according to Lemma 7.1,

δD = 1
2�e0 + e1�	

Hence, according to Theorem 4.1, δD is most-robust for testing H0� Lβ = 0 in
2�L� with

bT0 �δD�L� = 2 = min
{
bT0 �δ�L�� δ ∈ 2�L�}�

and the influence function of a most-robust ALE-test at δD has the form

ψ01�z� t� =
{ �1�−1�′ sgn�z�2

√
π/2� for t = 0�

�0�1�′ sgn�z�2
√
π/2� for t = 1	

(6.2)

According to Theorem 5.4, for every b ≥ bT0 �δD�L� = 2, the D-optimal design
δD is alsoD-optimal for testing with bias bound b, where the influence function
of a D-optimal ALE-test statistic for testing at δD with bias bound b is given
by (5.5). For b = bT0 �δD�L� = 2, this influence function coincides with ψ01
given by (6.2), and for b > bT0 �δD�L� = 2, it has the form

ψb�δD�z� t� =



�1�−1�′ sgn�z�2

min��z��√b vb�
28�√bvb� − 1

� for t = 0�

�0�1�′ sgn�z�2
min��z��√b vb�
28�√bvb� − 1

� for t = 1�
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with v2
b = �1/2�g�√bvb� > 0, that is, vb = �1/√b�w�2/b�. For example, for

b = 3 we have vb = 0	377.

7. Proofs.

Proof of Theorem 2.1. Consider the following part of τN:
√
NC

−1/2
N

(
ϕ̂N − l) = √

NC
−1/2
N

(
ϕ̂N − ϕ�βN�)+C−1/2

N γ	

Because �PNβN�N∈N is contiguous to �PNβ �N∈N, the covariance estimator
CN converges to σ2C�ψ� δ� in probability �PNβN�N∈N. Thus, because ϕ̂N is
weakly asymptotically linear for contiguous alternatives, the distribution
� �√NC−1/2

N �ϕ̂N − ϕ�βN���PNβN� behaves asymptotically like

�

(
N−1/2[σ2C�ψ� δ�]−1/2

N∑
n=1

σψ

(
ynN − a�tnN�′βN

σ
� tnN

)∣∣∣∣PNβN
)

= �

(
N−1/2

N∑
n=1

C�ψ� δ�−1/2ψ�znN� tnN�
∣∣∣∣PN

)
	

The third lemma of LeCam [see Hájek and Šidák (1967), page 208] states
that � �N−1/2 ∑N

n=1 C�ψ� δ�−1/2ψ�znN� tnN��QN� is asymptotically normally
distributed with mean C�ψ� δ�−1/2b�ψ� �QN�N∈N� and covariance matrix Es×s,
and in particular, that �QN�N∈N is contiguous to �PN�N∈N for all �QN�N∈N ∈
�ε. Then �QN

βN
�N∈N is also contiguous to �PNβN�N∈N such that C−1/2

N γ converges
to �σ2C�ψ� δ��−1/2γ in probability for �QN

βN
�N∈N, and

�
(√
N

[
σ2C�ψ� δ�]−1/2(

ϕ̂N − l�)∣∣QN
βN

)
is asymptotically normally distributed with mean �σ2C�ψ� δ��−1/2�γ + σb�ψ�
�QN�N∈N� and covariance matrix Es×s. ✷

Proof of Theorem 3.1. From Theorem 2.1 and the fact that �s� b�k� is
decreasing in b for all k > 0 we get at once that (i) is equivalent to

max
{
b
(
ψ� �QN�N∈N

)′
C�ψ� δ�−1b�ψ� �QN�N∈N��

�QN�N∈N ∈ �ε

} ≤ b	
(7.1)

The equivalence of (7.1) and (ii) follows from the results in Rieder (1985, 1994)
and Kurotschka and Müller (1992) concerning the maximum asymptotic bias
of asymptotically linear estimators in shrinking contamination neighborhoods
by interpreting the function C�ψ� δ�−1/2ψ as influence function. ✷

To derive the assertions forD-optimal designs, we need a modification of the
equivalence theorem for D-optimality of Kiefer and Wolfowitz (1960), which
was shown in Müller [(1997), page 15].
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Lemma 7.1. Let 2� ⊂ 2�L�. Then δD is D-optimal for Lβ in 2� if and
only if

a�t�′I�δD�−L′�LI�δD�−L′�−1LI�δ�−a�t� = s for all t ∈ � 	

Proof of Theorem 4.1. Assertion (i) follows from a straightforward gen-
eralization of the proof of Theorem 2′ in Ronchetti and Rousseeuw (1985) [or
Proposition 1(ii) in Hampel et al. (1986), page 318], and assertion (ii) follows
from using Lemma 7.1. ✷

Proof of Theorem 5.1. Because L = KMb�Bb� and L = K0Mb�0�Bb� for
some K, K0 ∈ R

s×r, it is easy to see that ψb�δ is an element of 1∗�δ�L� with
�ψ′

b� δC�ψb�δ� δ�−1ψb�δ�δ ≤ b. In order to show the admissibility of ψb�δ, the
proof of Krasker and Welsch (1982) is generalized.

At first assume

ψb�δ�z� t� �= LMb�Bb�−a�t�min
{
�z��

√
b

�Bba�t��
}

sgn�z�	

Set V �= LMb�Bb�−Qb�Bb�Mb�Bb�−L′, Q �= V−1/2LMb�Bb�−, D �= V−1/2L
and ψB�z� t� �= V−1/2ψb�δ. Because of (5.2), one obtains �Bba�t�� = �Qa�t�� for
all t ∈ supp�δ� and

ψB�z� t� = Qa�t�min
{
�z��

√
b

�Qa�t��
}

sgn�z�	

Because of
∫
ψB�z� t�a�t�′zP�dz� δ�dt� = D� Theorem 1 in Kurotschka and

Müller (1992) provides

ψB ∈ arg min
{
tr
(
C�ψ� δ�)�ψ ∈ 1∗�δ�D� with �ψ′ψ�δ ≤ b

}
	(7.2)

Assume that there exists ψ0 ∈ 1∗�δ�L� with

C�ψ0� δ� < C�ψb�δ� δ�(7.3)

and ∥∥ψ′
0C�ψ0� δ�−1ψ0

∥∥
δ
≤ b	(7.4)

Then
∫
V−1/2ψ0�z� t�a�t�′zP�dz� δ�dt� = V−1/2L = D and

V−1/2 C�ψ0� δ�V−1/2 < V−1/2C�ψb�δ� δ�V−1/2 = Er×r�

which, with (7.4), implies∥∥ψ′
0V

−1/2V−1/2ψ0

∥∥
δ
≤

∥∥∥ψ′
0V

−1/2(V−1/2C�ψ0� δ�V−1/2)−1
V−1/2ψ0

∥∥∥
δ
≤ b	

Hence, property (7.2) provides for V−1/2ψ0�

tr
(
V−1/2C�ψ0� δ�V−1/2) ≥ tr

(
V−1/2C�ψb�δ� δ�V−1/2)�

which is a contradiction of (7.3).
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For

ψb�δ�z� t� �= LMb�0�Bb�−a�t�
√
b

�Bba�t��
sgn�z��

the assertion follows as above. We have only to replace Mb�Bb� and Qb�Bb�
by Mb�0�Bb� and Qb�0�Bb�. ✷

Proof of Lemma 5.2. Set

Bb =



(
LI�δD�−L′)−1/2

LI�δD�−
1√
syb

� for b > s�

(
LI�δD�−L′)−1/2

LI�δD�−� for b = s	

Then the equivalence theorem for D-optimality (Lemma 7.1) provides
�Bba�t�� = 1/yb for b > s and �Bba�t�� = √

s for b = s for all t ∈ � so
that the admissibility of ψb�δD follows from Theorem 5.1. Moreover, because
of

√
byb = w �s/b�, we obtain for b > s�

C�ψb�δD� δD� =
∫
ψb�δDψb� δD d�P ⊗ δD� =

1
v�s/b�LI�δD�

−L′

and for b = s�

C�ψb�δD� δD� =
∫
ψb�δDψb� δD d�P⊗δD� =

1
v�1�LI�δD�

−L′	 ✷

For s = 1, the admissible solution for a bias bound b is also universally
optimal for the bias bound b. In particular, we get the following corollary of
Theorem 5.1, which is useful in proving Lemma 5.3.

Corollary 7.2. If

ρb�z� =
{

sgn�z�� for b = 1�

sgn�z�min
{�z��√by}� for b > 1�

where y2 = g�√by� > 0, then we have∫
ρb�z�2P�dz�(∫
ρb�z�zP�dz�)2 ≤

∫
ρ�z�2P�dz�(∫
ρ�z�zP�dz�)2

for all ρ� R → R with maxz∈R�ρ�z�2/
∫
ρ�y�2P�dy�� ≤ b,

∫
ρ�z�P�dz� = 0 and∫

ρ�z�2P�dz� <∞.

Proof. The assertion follows from Theorem 5.1 by setting a�t� = 1 for all
t ∈ � and L = 1 and by using Bb = 1/y for b > 1 and Bb 
= 0 arbitrarily
for b = 1 [see also Corollary 9.8 in Müller (1995) or Corollary 8.2 in Müller
(1997)]. ✷

Lemma 7.3. v� �0�1� → R is decreasing and concave.
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Proof. Define

w̃�b� �= w

(
1
b

)
and u�b� �= v

(
1
b

)
for b ≥ 1�

l�y� �= 28�y� − 1 − 2y8′�y� and h�y� �= y8�−y� −8′�y� for y ∈ R�

and

w �= w̃�b� for a fixed b > 1	

Then g�y� = l�y� + 2y28�−y�, l�y� > 0 and h�y� < 0 for y > 0. Using the
implicit function theorem we get for fixed b > 1,

w̃′�b� = g�w�w
2bl�w� > 0	

This implies

u′�b� = −�28�w� − 1�2h�w�
w

> 0(7.5)

and

u′′�b� = w̃′�b�2
w2

[
h�w�l�w� − (

28�w� − 1
)
w8�−w�] < 0	

In particular, we have

bu′′�b� + 2u′�b� = 1
w l�w�

[
h�w�l�w�g�w� − (

28�w� − 1
)
f�w�] < 0(7.6)

because f�y� �= y8�−y�g�y� + 4h�y�l�y� > 0 for y > 0. See also Lemma 12.7
in Müller (1995) or Lemma A.11 in Müller (1997). Because of (7.5) and (7.6)
we get

v′�c� = u′
(

1
c

)−1
c2

< 0

and

v′′�c� = 1
c4
u′′

(
1
c

)
+ 2
c3
u′
(

1
c

)
< 0	 ✷

Proof of Lemma 5.3. Set

A� �= �a�τ1�� 	 	 	 � a�τI��′�

M�ρ� �=
∫
a�t�a�t�′ρ�z� t�zP�dz� δ�dt��

Q�ρ� �=
∫
a�t�a�t�′ρ�z� t�2P�dz� δ�dt��

D �= diag
(
δ��τ1��� 	 	 	 � δ��τI��

)
�
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D1�ρ� �= diag
(∫

ρ�z� τ1�zP�dz�� 	 	 	 �
∫
ρ�z� τI�zP�dz�

)
�

D2�ρ� �= diag
(∫

ρ�z� τ1�2P�dz�� 	 	 	 �
∫
ρ�z� τI�2P�dz�

)
�

and

Dρ �= diag
(
δρ��τ1�

)
� 	 	 	 � δρ��τI����

where diag�λ1� 	 	 	 � λI� is the diagonal matrix with diagonal elements
λ1� 	 	 	 � λI. Because a�τ1�� 	 	 	 � a�τI� are linearly independent, we have
A� �A′

�BA� �−A′
� = B−1 for all regular B ∈ R

I×I. Note that if ψ ∈ 1∗�δ�L�
exists, then Lβ is identifiable at δ so that L = KA� for some K ∈ R

s×I

[see Lemma 1 in Kurotschka and Müller (1992)]. Then condition (2.2) in
the definition of ψ ∈ 1∗�δ�L� provides ψ�z� t� = LM�ρ�−a�t�ρ�z� t� for all
�z� t� ∈ R ×� . This implies

C�ψ� δ� =KD1�ρ�−1D2�ρ�D1�ρ�−1D−1K′

= 1∑
t∈� vρ�t�δ��t��

KD−1
ρ K

′ = 1∑
t∈� vρ�t�δ��t��

LI�δρ�−L′	
(7.7)

Moreover, for all z ∈ R and all i = 1� 	 	 	 � I� we have

b ≥ ψ�z� τi�′C�ψ� δ�−1ψ�z� τi�

= ρ�z� τi�2u′
iD1�ρ�−1D−1K′

(∑
t∈�

vρ�t�δ
(�t�))[LI�δρ�−L′]−1

KD1�ρ�−1D−1ui

= ρ�z� τi�2∫
ρ�y� τi�2P�dy�

1
δρ

(�τ�)δ(�τi�)u′
iK

′[LI�δρ�−L′]−1
Kui

= ρ�z� τi�2∫
ρ�y� τi�2P�dy�

δρ
(�τ�)

δ
(�τi�) a�τi�′I�δρ�−L′[LI�δρ�−L′]−1

LI�δρ�−a�τi�	

Setting

bi �=
bδ

(�τi�)
δρ

(�τi�)a�τi�′I�δρ�−L′[LI�δρ�−L′]−1
LI�δρ�−a�τi�

we have for i = 1� 	 	 	 � I�

max
z∈R

ρ�z� τi�2∫
ρ�y� τi�2P�dy� ≤ bi

so that Theorem 4.1(i) applied to the one-dimensional case provides bi ≥ 1.
Defining

ρ0�z� τi� �=
{

sgn�z�� for bi = 1�

sgn�z�min
{�z��√biyi}� for bi > 1�
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where y2
i = g�√biyi� > 0, we obtain according to Corollary 7.2,

vρ�τi� ≤ vρ0
�τi� = v

(
1
bi

)

for i = 1� 	 	 	 � I	 Note that
√
biyi = w �1/bi�. Because according to Lemma 7.3

v is concave we therefore have

I∑
i=1

vρ�τi�δ
(�τi�)

≤
I∑
i=1

v

(
1
bi

)
δ
(�τi�)

≤ v
( I∑
i=1

1
bi
δ
(�τi�)

)

= v

(
1
b

tr
( I∑
i=1

[
LI�δρ�−L′]−1

LI�δρ�−a�τi�a�τi�′I�δρ�−L′δρ
(�τi�)

))

= v

(
1
b

tr�Es×s�
)
= v

(
s

b

)
	

Then (7.7) implies the assertion. ✷

Proof of Theorem 5.4. Consider any δ ∈ 2 with supp�δ� = �τ1� 	 	 	 � τI�
and any ψ ∈ 1∗�δ�L� with �ψ′C�ψ� δ�−1ψ�δ ≤ b. If a�τ1�� 	 	 	 � a�τI� are not
linearly independent, then we can extend the regressors by ã�t� so that
a�τ1�� 	 	 	 � a�τI� are linearly independent, where a�t� = �a�t�′� ã�t�′�′. Then we
have ψ ∈ 1∗�δ�L� for some L̃, where L = �L� L̃� and 1

∗�δ�L� is defined for
the extended model given by Y = a�t�′β+Z. Denoting I�δ� = ∫

a�t�a�t�′δ�dt��
Lemma 5.3 provides

det
(
C�ψ� δ�) ≥ (

1
v�s/b�

)s
det

(
L I�δρ�−L

′)

≥
(

1
v�s/b�

)s
det

(
LI�δρ�−L′)

≥
(

1
v�s/b�

)s
det

(
LI�δD�−L′)

(7.8)

[see also Lemma A.15 in Müller (1987) for the property L I�δρ�−L
′ ≥

LI�δρ�−L′]. According to Lemma 5.2, the lower bound in (7.8) is attained by
an ALE-test with influence function ψb�δD at δD. ✷
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